
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2018 

Agent-based Computing in Java Agent-based Computing in Java 

Michael SYMONDS 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
SYMONDS, Michael, "Agent-based Computing in Java" (2018). Master's Projects. 599. 
DOI: https://doi.org/10.31979/etd.sg85-bd85 
https://scholarworks.sjsu.edu/etd_projects/599 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/599?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


 
 
 
 

SAN JOSE STATE UNIVERSITY 

 

MASTERS THESIS 
 
 

 

Agent-based Computing in Java 
 
 
 
 

Author: 
Michael SYMONDS 

Supervisor: 
Dr.  Jon PEARCE 

 
 
 
 
 
 
 
 

A thesis submitted in fulfillment of the requirements 
for the degree of Master of Science 

in the 

Department of Computer Science 
 
 
 

 
April 30, 2018 



 



III 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SAN JOSE STATE UNIVERSITY 
 

Abstract 

Department of Computer Science 

Master of Science 

Agent-based Computing in Java 

by Michael SYMONDS 

 

Agents are powerful, autonomous entities capable of performing simple, or vastly 
complex, operations individually or in groups of agent systems. Their capabilities 
extend significantly as mobile agents distributed across a network. Agent-based 
computing is a widely used technology with a broad range of applications, 
particularly in distributed computing and agent-based modeling. Many types of 
systems can be designed using the different architectures that define how they act, 
communicate, migrate, and more. This paper surveys agent-based computing, their 
architectures, and efforts at the standardization of certain aspects of the technology. 
It explores an existing framework called Jade through the lens of a demonstration 
based on the Sugarscape model, implemented using Jade’s library. Finally, it 
presents a new framework, called NOMAD, a simple barebones framework which 
comprises the most essential components needed for a mobile agent framework. 
With it, a user can quickly and more deeply understand the vital challenges agent 
systems must address, such as communication and code mobility, and the solutions 
needed to be implemented. They’ll be able to use the framework to extend its 
capabilities, create new components, and build powerful agent systems of their 
own. 
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Chapter 1 

 

An Abstract Model of Agent-Based 
Computing 
 
In object-oriented programming, agent-based computing is a well-developed and 
broadly used technology. The combination of autonomy that agents provide and 
mobility in the form of a mobile agents makes a powerful tool to use in several 
domains of application, including the modeling of highly complex simulations, 
distributed computing systems, software-as-a-service, and more. 

Depending on the challenge being addressed, the architecture that the agent-based 
system might implement can take significantly different forms. Considering the agent 
itself, the environment it runs in, the services needed, and how groups of agents should 
interact, several questions must be addressed before an appropriate framework can be 
developed and used.  From decades of development, several existing frameworks are 
available, some even as open source toolkits and libraries, to help the developer get a 
head start on the foundation needed to provide the right environment for the agents to 
perform their tasks. With a better understanding of agent-based computing, and the 
key components vital to those systems which many existing frameworks share, 
developers gain an advantage with creating a well-designed agent-based system robust 
enough to perform any needed tasks and lightweight enough to avoid overhead from 
unnecessary components. This paper will survey agent-based computing and mobile-
agent systems, examine existing implementations of such systems, and introduce a new 
basic mobile framework, called NOMAD. The main purpose of NOMAD is to describe 
the essential mechanisms needed to implement a mobile agent system in the Java 
language.  

The next few sections will describe the concepts of agents and agent systems, 
examples of applications of agent-based systems, the different strategies agents can 
take to solve problems, discuss the effort to standardize aspects of agent systems, and 
finally introduce a few examples of implemented agent frameworks to illustrate how 
different strategies, models, and standards can be combined into agent systems. 

Chapter 2 will focus more deeply on the Jade (Bellifemine, Caire, and  Greenwood, 
2007) agent framework to see how its components function, with a more technical 
focus,  through the lens of a demo implemented using the framework itself. The last 
chapter will focus on building a simple mobile agent framework from scratch, 
describing the essential components required and discuss some of the problems to be 
addressed when designing such a system. By the end, the reader should have a good 
sense of the concepts, technology, standards, and (In the case of the Java language) the 
implementation that goes into modern agent-based systems. 
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1.1 Defining Agents 

The world of agent-based systems begins with the agent itself. In the simplest form, 
an agent is an entity which acts on behalf of the user. Like objects, agents possess 
both a state, through its data, and behavior through methods. But unlike objects, 
they are autonomous and goal-driven. Agents can have an understanding about 
their environment. Though they may possess a set of deterministic behaviors, they 
can select from among these behaviors in a dynamic order based on their goals and 
what they know about their environment. This can allow them to act in non-
deterministic ways. The key qualities that separate an agent from a standard object 
are: autonomy, reactiveness, pro-activeness, and social ability. Though not a strict 
requirement, yet given the prevalence among agent systems, it could be 
argued that mobility should also be included as a key quality. Agents are 
typically described in terms of their internal behaviors and their external 
interactions with the environment (Agents, 2018) (and in the case of a multi-agent 
system, the interaction with other agents as well).  Agents reside within a location 
usually referred to as a platform or container. The platform provides the services 
that facilitate discovery, communication, migration and more. Multiple platforms 
of agents can exist, whether in the same process, on different processes within the 
same hardware, or fully distributed across a network. Agents can be social and 
operate independently or collectively within their platform or over the network 
environment. 

The autonomy that an agent possesses is typically enabled by having its own thread 
of execution in which it operates. It can detect aspects of its environment or more 
fully model it through representations defined through mechanisms of perception, 
event handling, or from messages received from other agents or entities. With this 
information, it can respond in a reactive fashion, or formulate and refine its strategy to 
control its environment through pro-active reasoning.  Through communication and 
negotiation, agents can utilize their social ability to share information about their 
environment, services they perform, commands to follow, or coordinate other tasks to 
collectively achieve goals. 

Agents can migrate to other platforms and environments, even over a network. 
These so-called mobile agents can suspend their operation, migrate to another location 
with its own code and attributes, and resume operation while keeping its state. The 
idea of an agent retaining its state is the subject of some interest. Agents are described 
as having weak or strong mobility. Agents with weak mobility can take their code and 
attributes, but do not resume their action at the same line of instruction where they 
were suspended. Typically, these agents are activated and resume operation by starting 
at the very beginning of their behavior cycle. Agents with strong mobility, by contrast, 
can retain their state in a way where mechanisms can also capture the agent’s 
execution state, which includes the program counter and   the stack where it was 
executing (Cabri, Leonardi, and Zambonelli, 2018). A hybrid version of this, 
implemented in the Jade demo discussed in Chapter 2, uses a state machine model of 
agent behavior to allow post-migration resumption of activity at     a checkpoint in its 
behavior cycle. With this and the above traits all taken together, agent-based systems 
can be constructed in myriad ways to serve a vast array of services and applications. 



 

1.2.  Applications of Agent-based Systems 3 
 

1.2 Applications of Agent-based Systems 

Many types of applications take advantage of the unique benefits that agents offer. 
For more than two decades agent systems have been developed and used for 
increasingly complex real-world applications. Most applications of agent-based 
computing fall into two broad categories: distributed computing and agent-based 
modeling. Many applications can even span both categories, such as agent-based 
supply chain optimization applications that model resource distribution strategies 
in the cloud. Below is a small, but by no means exhaustive, set of examples. 

 
1.2.1 Distributed Computing 

Multi-agent systems are a natural fit for distributed computing. Agents can encapsulate 
highly complex processes, operate autonomously, and migrate or even clone 
themselves throughout the network by command or at will. Applications of distributed 
computing span a number of areas such as the sciences (Korpela et al., 2001) (Hebert, 
2015), business and e-commerce (Lange and Oshima, 1998) (Karabey and Adar, 2014), 
control systems (Aguilar et al., 2001), robotics and autonomous systems (Perugini et 
al., 2003), Healthcare (Moreno and Garbay, 2003), security, network analytics (Voorde, 
2016), military and defense, the Internet of Things (Yu, Shen, and Leung, 2013), web 
services (Booth et al., 2004), even the web itself was at one point in consideration to 
be remade as an agent-based system (Berners-Lee et al., 2004). 

One of the key advantages agents bring to a distributed system is mobility. 
Imagine a very large database located remotely where complex calculations need 
to be made on its data. Trying to pull that data through the network is both a bur- 
den to the network and a significant security risk of exposure is the data is sensitive. 
Instead, agents can be sent to the data, perform the necessary tasks, and return with 
the result in a much more efficient way that minimizes exposure over the network. 
With their autonomy, agents can redistribute themselves to different parts of the net- 
work to balance out processing resources. Or they can duplicate themselves if their 
task is suited to parallelization. 

 
1.2.2 Agent-based Modeling 

The other area where agent-based systems are most commonly used is agent-based 
modeling (ABM). Several branches of science, from neuroscience and physics to eco- 
nomics, sociology, socio-economics and more have used ABM to great effect in 
measuring the response and behavior of autonomous agents within a given 
environment. ABM developed significantly in social sciences with the appearance of 
early agent-based programming languages like NetLogo in the 1990s. One of the first 
large scale models of note developed at that time was called Sugarscape (Epstein    and 
Axtell, 1996). This model simulated and explored various social phenomena like 
seasonal migration and disease transmission, which is discussed in greater detail in 
chapter 2. 

Other types of models examine optimal communication and team effectiveness, 
various aspects of social networks and culture, effects of economic policy, even 
models of human cognition. The wide use of such models has led to the 
development of several frameworks designed specifically to address both the 
potentially high degree of complexity of simulations and the challenge they pose to 
verification and validation of the results. 
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1.3 Architectures of Agents and Agent Systems 

Depending on the task to be solved, the strategy used by the agent and the design of its 
location environment can influence how well the agents can perform the tasks at hand. 
The architecture used to create agents embedded in autonomous vehicles to navigate 
their surroundings may not be as effective when applied to detect objects in images, 
regulate the load of a power distribution system, or determine trends in the stock 
market. Multi-agent systems with a high degree of inter-agent cooperation and 
teamwork may require robust communication and synchronization services from their 
platform environment. Architectures defining how knowledge is represented and 
expressed may also play an important role with inter-agent communication and 
cooperation. Security strategies that demand complex considerations may play a role 
for vital components of the task. Different configurations of services for different tasks 
may be required, demanding strict systems of modularity to add and remove services, 
even dynamically. 

Several different types of agent frameworks and environments have been 
developed over the years to address as many of these different scenarios as possible. 
Most of them can be sorted into a few abstract categories of architectures. These are 
Reactive, Deliberative (or Pro-Active), Cognitive and Hybrid types of architectures. When 
considering an agent architecture, the question to answer is: how does the agent need 
to interact with its environment or other agents? Each of these categories addresses 
distinct strategies of action and representation of the agent’s environment. The 
sections below describe each type of architecture and give examples of what a 
specific architecture of that type might look like. From there, a more macro-level 
perspective is taken to look at the Distributed architecture, which describes the 
components of multi-agent systems and the elements needed for coordinating agent 
interaction and services are discussed. 

 
1.3.1 Reactive Agents 

Consider a robot given the task to move from one location to another while avoiding 
obstacles.  The robot needs to have some model of its environment to make a plan of 
action. In many cases though, creating the symbolic representations that make up the 
elements of the environment, determining a plan of action based on that knowledge, 
and then executing that plan, is a highly complex process. The resources and time 
required to determine a course of action might cause the execution of that action to 
happen too late. The robot may then become paralyzed with inaction if the 
environment always changes faster than it can understand it. 

One view is that an agent does not actually need any symbolic representation of its 
environment to interpret. Instead, by using a set of stimulus-response rules, the agent 
has a more direct connection to its environment and can react to it in a timely fashion. 
Agents whose architecture follows this paradigm are said to have a reactive 
architecture. One example of this is the Subsumption architecture (Brooks, 1986). This 
reactive architecture was developed as a hierarchical, layered system of task-achieving 
behaviors. The system must follow three basic requirements: agents should be able to 
cope with multiple goals, have multiple sensors, and be robust. 

On what layer a task-achieving behavior might be in the hierarchy determines 
how specific that task may be. Though layers work in parallel, higher layers can 
have access to data in the layers below and are able to change that data 
intermittently, thus influencing the behavior of those layers. Though this 
architecture was influential for others that came later, it is generally limited in how 
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FIGURE 1.1: The Subsumption Architecture (Chong, Tan, and Ng, 
2007) 

 

the system can scale in complexity and its ability for explicit reasoning. 
 
1.3.2 Deliberative agents 

An agent that can hold a representative model of its environment, has a set of de- sires 
or goals, and a plan for how to achieve those goals, is said to operate using a 
deliberative architecture. Here the agent creates a set of possible actions based on 
interpretation of the environment model and must deliberate to choose which action to 
take. This includes potentially accepting a schedule of behaviors to take in an or- der 
that may need to be adjusted or abandoned as its belief about the environment    it 
models changes. 

There are many architectures that fall under this category, and most of them are 
based on a model called the Belief-Desire-Intention architecture, or BDI. Beliefs are the 
agent’s informational awareness of the environment. Desires are some subset of the 
agent’s overall set of goals. Intentions are the subset of available desires the agent 
commits resources to achieving. Unlike in the reactive architecture, the agent here has 
an explicit representation of all three of these concepts within its memory during 
runtime. 

One of the most successful control systems built for practical reasoning based     on 
BDI is the Procedural Reasoning System, or PRS. This is a framework for building 
reasoning systems to perform tasks in an environment. The basic concept of the 
framework is that the system has an interpreter which holds beliefs about the 
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FIGURE 1.2: The BDI Architecture (I., 2014) 
 

agent’s environment, deciding which goals it should attempt to achieve, and which 
knowledge areas to apply towards achieving its selected goals. Knowledge areas are 
pieces of procedural knowledge which inform the agent how to perform some specific 
task, like determine a path through the environment or translate through that 
environment. 

 

 

FIGURE 1.3: The PRS Architecture 
 
 
1.3.3 Cognitive Architectures 

BDI and PRS concern themselves with the decision process to determine actions based 
on the relationship between the goals an agent has, and the model generated from the 
input received about its environment. Cognitive architectures instead concern 
themselves with how the knowledge that symbolizes the environment is 
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represented and communicated both within the agent and between it and its 
environment, including other agents. Cognitive architectures embody computational 
structures underlying general intelligence. 

 

 

FIGURE 1.4: The ACT-R Cognitive Architecture (Haring, Ragni, and 
Konieczny, 2012) 

 
But not just any structure will do. Agents that implement this architecture are 

primarily concerned with formalizing theories about the structure of the human 
mind and modeling those formalizations. Such theories try to explain how organ- 
isms (or agents) can detect and respond to their environment, how goals are 
acquired, how behavior related to those goals is executed, and how knowledge is 
learned and represented (Newell, 1990). A few examples of this are the Soar project, 
ACT-R (Adaptive Control of Thought—Rational), Brahms, and LIDA (Learning 
Intelligent Distribution Agent). Decision making for these examples incorporate 
several theories of cognition, though the emphasis for each may differ from a focus 
on AI to that of cognitive modeling. 

 
1.3.4 Hybrid Architectures 

Hybrid architectures, predictably, combine both deliberative and reactive (and 
potentially cognitive as well) architectures together into one agent. In this way, an 
agent can both reason about their environment and take the best action to achieve 
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its goals and still react efficiently to changes in that environment. A number of 
architectures designed to incorporate these two concepts, like TouringMachines 
(Ferguson, 1992) and InterRRaP (Muller and Pischel, 1993), consist of layers, similar 
to the subsumption architecture. 

 

 

FIGURE 1.5: The TouringMachine Hybrid Architecture (Ferguson, 
1992) 

 
In the case of TouringMachines, the layers consist of the planning, modeling, 

and reactive layers. These layers run in parallel, are independently connected to the 
perception system with sensory input, model the environment at different levels of 
abstraction, and compete for control of the agent’s actions. A set of global context-
dependent controllers handle conflicts and final decisions the agent makes. In the 
case of InterRRaP, the layers are vertical. Communication is limited only to adjacent 
layers. Decision making is decentralized, where control spreads upwards through 
the layers until the most valid layer is reached and action is executed. 

Another example of the hybrid architecture is the Brahms system (Sierhuis, 
Clancey, and Hoof, 1999), developed in 1998 by NASA Ames research center. 
Brahms incorporates both hybrid and cognitive architectures. With it, NASA 
developed several systems and applications including an Orbital Communications 
Adaptor Management System, an advanced multi-agent EVA communications 
system, and a Metabolic Rate Advisor personal assistant for astronauts to name a 
few. 

 
1.3.5 Distributed Architecture 

The architectures described above are from the perspective of a single agent. But when 
considering a collection of agents, either all in one platform location or distributed 
among several, a shift is needed to a higher perspective to describe architectures that 
include both the agents and the platforms they reside in and migrate be- tween. Though 
they are called architectures in this section, they can also be thought of as systems or 
protocols. These distributed architectures should describe systems that manage 
multiple agents and components needed to facilitate multiagent services, such as 
communication protocols, directory services, and migration. 
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FIGURE 1.6: The Contract Net Protocol (Agents, 2018) 
 

Different architectures may address different components. For example, one of the 
most widely used architectures in multiagent systems focuses on managing the 
collective behaviors of distributed agents. This is the Contract Net Protocol (CNP). In 
this system, an agent will decompose a given task into smaller subtasks. It will then 
broadcast task announcements with eligibility requirements out to other agents. 
Agents who can take on new tasks will go through an evaluation process to determine 
if their eligibility satisfies the requirements and respond with a bid if so.  Bids are 
evaluated, and the contract is awarded to the winner. Those agents now have a 
manager-contractor relationship. As completed tasks come in, managers monitor the 
partial success of their tasks as they work towards a completed solution. Contractors 
who take on tasks can themselves follow this process, further breaking down tasks into 
simpler subtasks, and so forth. 

CNP is limited, however, assuming the nature of tasks being resolved can be 
decomposed. Also, the communication structures do not scale to more complex 
interactions such as negotiation between agents. Other multiagent infrastructures, like 
RETSINA, focus on services that enable complex social interactions between agents 
which do allow for such features. In this architecture, RETSINA is less concerned with 
the architecture of the individual agent and more with the ability of the agent to 
communicate with other agents and with RETSINA’s components to give the agent a 
sense of social awareness. This gives the developer flexibility in choosing coordination 
schemes and to define what the "social norms" are for the agent society. Other 
architectures such as DECAF, Teamcore, and Agentis likewise describe different 
structures of agent interaction models, each having varying focus on different features 
(Luck, Ashri, and D’Inverno, 2004). These include generic and reusable behaviors, 
principals of coordination which can provide certain guarantees of system 
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FIGURE 1.7: Retsina MAS (Sycara, 2012) 
 

behavior, or employing standardized communication protocols to enable interactive 
applications, respectively. 

It would be a long discussion indeed to examine the architectures for the various 
components of the multiagent system and choose which one is appropriate for a system 
to be designed. Because of this, many have pushed for standardization of the 
distributed architectures of multiagent systems. This would enable separately 
designed, discrete multiagent systems to have some degree of interoperability. 
Standardization would also make them potentially more accessible to inexperienced 
users learning how to use them.  The next section will discuss the efforts   to 
standardize aspects of multiagent systems. 

 
1.4 Agent System Standardization 

The development of agent-based computing evolved over the same period as the World 
Wide Web.   One of the visions for the agent model was to utilize its features   in the 
context of software-as-a-service. A client can request applications and services from a 
server which can be delivered upon request via agents. In this sense, a client can be not 
only an end user, but other applications as well.  With the variety of architectures in 
development to address the wide array of strategies to employ multi agent systems, it 
was quickly realized that a set of standards would be greatly beneficial to help ensure 
the interoperability of agent systems. To date, there are, ironically, several standards 
and pseudo-standard technologies that have been developed and currently in use. 
Some, like the Knowledge Query and Manipulation Language (KQML) and the 
Foundation for Intelligent Physical Agents (FIPA) standards groups, focus on 
communication standards. Others like the Object Management Group Mobile Agent 
System Interoperability Facility ( OMG MASIF) focus on mobility; and still others like 
Knowledge Interchange Format ( KIF) and 
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FIGURE 1.8: The FIPA Agent Management Reference Model 
 

The Semantic Web focus on other enabling technologies like knowledge expression and 
ontologies. Of these standards, one of the most widely adopted is the FIPA standard, 
which is what this discussion will focus on, as communication is one of the key 
requirements when considering the interoperability of discrete software systems. 

FIPA is an IEEE Computer Society standards organization that promotes agent-
based technology and the interoperability of its standards with other technologies. The 
multiagent system (MAS) envisioned by FIPA stems from a philosophy that agents 
should be supported by a generic distributed computer infrastructure, or set of 
middleware services (Agents, 2018). Agents that utilize the services of communication, 
data storage and retrieval, migration, directory services, and so forth should receive 
those services from entities within the platform they reside. For some services, such as 
communication, FIPA stresses that these should not be agent-based for reasons of 
efficiency. When passing a message to another agent, it would first need to pass the 
messaging agent a message before it then forwards the message to the intended 
recipient. Better that the service is implemented as a non-agent entity. So, the Message 
Transport System, or MTS is specified to facilitate that service. The Agent Management 
System, however, can be agent-based. This service oversees the agent lifecycle, 
registering and deregistering the agent from the local platform, and managing the 
agent directory, or white pages. Similarly, the Directory Facilitator can also be agent-
based. This agent provides the directory of services, or yellow pages, allowing agents 
to find others by the services they provide. 

Agent communication represents the heart of the FIPA multiagent system model. 
It standardizes an extensible library of “communicative acts” that allow 
representation of different intentions (ex. requesting, proposing, informing, 
querying, soliciting proposals, refusing, etc…). It also defines the structure of the 
message that is
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sent between agents, including its properties (the encodings and the representation 
language) and information useful to identify and follow threads of conversation be- 
tween agents, and to represent timeouts for the communication. It also defines inter- 
action protocols which provide agents with a library of patterns to achieve common 
tasks such as delegating an action, calling for a proposal, etc... 

In all, FIPA has completed several specifications that span the categories of agent 
communication, agent transport, agent management, abstract architecture and 
applications. But currently only a subset of 25 of those specifications have made it to 
the standardization stage. In the sections below, an overview is given of 3 of the 
specifications (the Agent Management, Message Structure, and Message Transport 
specifications) commonly used by multi-agent implementations which conform to the 
FIPA standard.  You will see these standards implemented in Chapter 2 as the Jade 
Framework is explored. Keep in mind that implemented frameworks are not bound to 
conform to all FIPA (or any) standards and may do so to only a subset or even just one. 

 
1.4.1 FIPA Agent Management Specification 

The Agent Management Service specification is described in terms of logical 
components, each of which possess a set of capabilities. The details of how these 
components are implemented is left to the developer, but the capabilities of each are 
well defined. It describes an agent system contained within an Agent Platform (AP). 
This AP can be as small as a single-process platform with lightweight threaded agents 
to a fully distributed platform built on middleware standards. 

A required component of the AP is the Agent Management Service (AMS). The 
AMS is a pre-defined agent which controls access to, and use of, the AP. No more 
than one can exist in a single AP. The AMS manages a directory of all Agents 
registered to it. Agents must register with an Agent Identity (AID), a label which 
distinguishes it from all others. The AID must carry certain re- quired parameters 
such as the agent’s globally unique name, its transport address, and resolvers (a list 
of name resolution service addresses). The AMS must also provide directory service 
for agents to locate each other which is called the white pages service. 

Optionally, the AP can also have a Directory Facilitator (DF). Unlike the AMS, 
multiple DFs may exist within an AP. If an agent provides a service, that service can 
be registered with the DF. Other agents may then query the DF for to find out the 
services being offered by the agents who registered. This is called the yellow pages 
service. The Message Transport System is the default service for communication 
between agents on different APs. 

Finally, there is the Agent component itself. As stated above, the agent must 
have a globally unique name, with its identity encapsulated in the AID. It must be 
registered to the AP and list a transport address at which it can be contacted. It 
must communicate using an Agent Communication Language (ACL). An agent has a 
physical life cycle which is managed by the AP. 
 
1.4.2 FIPA Message Structure and Transport Specification 

It’s assumed that every Agent Communication Language (ACL) message in an agent 
system contains at least sender, receiver, and content parameters. The FIPA ACL 
Message Structure Specification simply requires that the message also contains a 
performative parameter as well. The performative defines a type of communicative 
act. 
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FIPA lists a total of 22 such performatives in the Communicative Act Library 
Specification, encompassing every conceivable communicative scenario between 
agents. These are acts such as inform, request, propose, accept proposal, query if, subscribe, 
and  so forth. 

 

 

FIGURE 1.9: The Message Transport Reference Model 

 
The Transport Specification describes the ACL message structure as a 

combination of the payload, which holds the ACL message of the agent 
communication, and the envelope which holds transport information only. It also 
specifies an Agent Communication Channel entity which carries out message 
transport tasks directly to the agents on AP. It also has access to the AMS and DF. 
We can thing of the ACC as part of the MTS. Once a message is received by the ACC 
from an agent, it delivers the message to the remote ACC at the destination(s) 
specified in the envelope. The destination ACC then delivers the message to the 
local agent whose AID is listed as the intended recipient. 

 
1.5 Examples of Implemented Agent Architectures 

The number of architectures, standards, protocols, and other technologies have given 
rise to several implementations which have been used to solve a very wide range of 
needs. There are far too many to cover here but a few will illustrate how different 
combinations of models lead to unique and interesting frameworks. Some brief 
examples are JACK, which uses a BDI model with FIPA ACL standards, Brahms which 
combines BDI and Cognitive architectures, but does not incorporate any official 
standard, or BOND, a FIPA-compliant mutliagent system where agents can be created 
statically using the toolkit’s API or dynamically during runtime using BOND’s blueprint 
language. The choice of toolkit to use for a developer lies within what purpose the agent 
system will be used for, how much that system will scale (even across network 
platforms), the interoperability needed between software systems or agents, and so 
forth. 
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Below three frameworks are introduced. The first, NetLogo, is an agent-based 
programming language designed to be widely accessible to those who are new to agent- 
based computing, even children. The other two, Aglets and Jade, are multi-agent frame- 
work implementations which illustrate the Reactive and Deliberate architectures 
respectively. 

 
1.5.1 NetLogo 

NetLogo (Tisue and Wilensky, 2004) is a multiagent programming language with an 
integrated modeling environment. It’s designed to model complex systems at a level 
suitable for scientific research, but with an environment accessible enough for even k-
12 students to quickly grasp its language and interface to start experimenting right 
away. 

 

 

FIGURE 1.10: Screenshot of Sugarscape in NetLogo (Pearce, 2018) 
 

NetLogo originated as a combination of StarLisp and Logo, then was re-written 
entirely in Java, and now is mostly written in Scala with some parts still in Java. Its agent 
model consists of turtles (Agents) and patches (the Environment). Patches are typically 
aligned in some n x m grid and populated with symbolic turtles that can traverse the 
grid. Both turtles and patches can be given actions using the coding language while 
attributes and parameters of the experiment being created 
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can be adjusted dynamically using buttons and sliders automatically generated in 
the provided GUI. 

 

 

FIGURE 1.11: Sample code from the NetLogo language 
 

Since its inception in 1999, NetLogo has amassed a model library with over 150 
pre-built simulations. These simulations cover several fields including Biology, 
medicine, physics, chemistry, economics, social sciences, computer science, 
mathematics, and more. There are also several existing extensions such as having two 
NetLogo systems connect to each other from different systems via peer-to-peer, one 
which adds BDI and FIPA ACL message passing, even one which enables the Cognitive 
Architecture to turtle agents. 

 
1.5.2 Aglets 

The Aglets framework (Lange and Oshima, 1998) is a mobile agent toolkit written 
entirely in Java that implements the reactive architecture. Aglet agents are built with 
the intention of being a generalization and extension of Java Applets.  Aglets are 
lightweight, mobile, and follow an event-driven model of execution. They are designed 
to work well in web server environments, delivering content and resources on demand. 

Four key abstractions make up the model underlying the API: the aglet (agent), its 
proxy, a context, and the identifier. The aglet agent is autonomous and can be created, 
disposed, cloned, dispatched (moved), retracted, and de/activated as core functions. 
The proxy is the aglet’s representative. As a layer of protection, the proxy 
acts as a go-between to handle all communication and access to public methods on   its 
behalf. It can also hide the aglet’s real location, adding another layer of security.   The 
context is the location where aglets operate locally. It can be thought of as a container 
which holds local agents and provides services and execution 
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FIGURE 1.12: Tahiti interface in Aglets (Lam, Kwan, and Ramam- 
ritham, 2002) 

 
management. Several contexts can be hosted within one server process, with 
multiple server processes able to be run on a platform, or node, in a network. A 
single, globally unique, immutable Identifier is bound to each aglet in a context. 

As mentioned above, Aglets has an event-based programming model which is 
implemented through event-listeners. The developer has three types of listeners 
available to catch certain events and prompt responsive action. A Clone listener al- lows 
an aglet to take action just before, after, or when a clone is actually created. A Mobility 
Listener allows an aglet to act just before an aglet is either dispatched or retracted, or 
just after the aglet arrives at its destination context. A persistence listener allows it to 
take action just before its deactivated to allow it to save the state or any other 
serializable data. Any additional action the aglet may perform is defined in the 
overridden run() method which is called after the aglet is activated in a context. 

 

 

FIGURE 1.13: Aglet Message Passing and Access through Agent Proxy 

 
Communication is facilitated through message passing. An aglet will get a 

handle on another aglet’s proxy using the context resource. The messages passed 
are objects that allow for synchronous or asynchronous passing between agents. 
The agent’s proxy receives and handles the message first through a 
handleMessage(Message msg) method the developer would override. The agent can 
choose a future reply which creates a response that the recipient can handle 
asynchronously. 
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An aglet can be dispatched to, or recalled from, a new context. This is 
accomplished by first deactivating the aglet. It’s then serialized, transmitted 
through the network, deserialized, and then activated at the new context. 
Activation calls the run() method which starts the aglet from the beginning, so the 
only opportunity to save any kind of state before transfer falls within the 
onDispatching(MobilityEvent ev) method which is invoked before deactivation. 
Aglets can migrate themselves or be moved by request from their local context. They 
also have the ability to cancel requests for migration by throwing an exception 
during the onDispatching(MobilityEvent ev) method. 

 
1.5.3 Jade 

Like Aglets, Jade (Bellifemine, Caire, and Greenwood, 2007) is written in Java, but 
instead uses the concept of behaviors for programming agents. Behaviors can also take 
the form of registered services that other agents can seek out and request, provided 
they possess the relevant ontology. The other major difference from Aglets is that Jade 
conforms to several FIPA standards, particularly the agent management, 
communication language, and ACL Message specifications. 

 

 

FIGURE 1.14: The Jade Interface 
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Jade can operate in both fixed and mobile environments. It incorporates a 
technology called LEAP, which allows it to split its operations into a lightweight 
front end which can run on mobile devices and a remote backend. Communication 
happens with asynchronous message passing. Agents can be dynamically 
discovered using the white or yellow page services, even targeted in groups by 
specifying a property (ex. all agents interested in news updates) as the message 
destination. Jade provides security features with mechanisms to authenticate and 
verify rights assigned to agents, and other extensible features. 

Jade supports agent mobility, along with the execution state of an agent. It also 
supports code migration for destination hosts which do not know about the agent. 
This system works dynamically through Java’s Class Loader to maintain network 
efficiency. 

As a middleware, Jade provides both the environment to maintain a multiagent 
system, and an API library easy to use for creating your own agents, ontologies, 
concepts, and behaviors. Premade agent examples are also provided, along with 
several premade FIPA-compliant interaction templates. 

In the next chapter, a deeper look is taken at the Jade framework for a better 
understanding in how the architectures and standards are implemented by the major 
components. These will be examined through the lens of a Sugarscape concept demo 
implemented using custom agents built with the Jade library. 
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Chapter 2 
 

Sugarscape In The Jade Framework 
 

2.1 A More In-Depth Overview of the Jade Framework 

As mentioned in the previous chapter, Jade conforms to the FIPA Agent 
Management Specification. The main environment Jade provides is a Platform, 
which is created in the JVM, and holds at least one container it calls the main 
container. Multiple containers may exist within a platform, which is fully connected, 
and containers may exist on different physical systems in the network. You may also 
link platforms together, which allows for inter-platform communication between 
agents. 

The main container keeps two required agents which provide all platform services 
for the agents. The first is the Agent Management Service, or AMS agent.  This agent is 
responsible for managing the agent lifecycle and agent directory, or white page 
services. The other is the Directory Facilitator, or DF agent. this agent is responsible for 
keeping the service directory or Yellow page services. A set of static methods can be 
used to access services from these agents or can be requested by sending an ACL 
message. 

 

 
 

FIGURE 2.1: The Jade Platform (Grimshaw, 2010) 
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As a middleware, Jade’s internal architecture comprises extensible, separated 
modules which is achieved by writing the code as a collection of independent 
aspects or services. This results in what they refer to as a distributed coordinated 
filters architecture. The services are what has been previously described, such as the 
Message Transport service, the AMS, DF, migration services, and so forth. Every 
container in a platform sits on a node where these services are kept and managed 
by a Service Manager. The result is a modular framework which scales by adding 
or removing services to suit the target platform (desktop, mobile, etc…). All of this, 
of course, is hidden from the developer who only needs to concern themselves with 
implementing the agent system desired. 

 
2.2 Sugarscape 

Sugarscape is a popular model for agent-based social simulation.  The seed of the idea 
for Sugarscape came from a paper presented in 1969 called Models of Segregation, by 
Thomas Schelling, an economist and professor (Schelling, 1969). Schelling, this first 
person to use Agent-based models, was interesting in seeing how certain preferences 
of individuals in social populations affected who they wanted to live next to.  On paper, 
he used "o"s and "+"s to represent demographic pairs of a population (eg. whites and 
blacks, boys and girls, etc…) which he distributed randomly along a line on the page.  
Then, based on rules defining how content an individual subject (symbol) is based on 
the ratio of symbols in its "neighborhood" (the number of symbols within a window 
that extends some number to either side of its position), the subject may choose to 
move to a different position on the line to satisfy the desired ratio. 

 

 

FIGURE 2.2: Segregation Diagrams from a grid version of Schelling’s 
model (Schelling, 1969) 

 
The behavior of these symbols changed as the rules of the symbol’s tolerance and 

size of window defining its neighborhood changed, including the ratio of overall 
symbols in the model. The interesting emergent behavior of these experiments was 
that neighborhoods still became segregated even when a high tolerance for mixed 
neighbors was set. As you may see, the model used in the paper has the hallmarks 
of an agent-based model: individuals acting on a set of rules and reacting to changes 
with respect to its environment. 

Years later in 1996, the book Growing Artificial Societies: Social Science From the 
Bottom Up (Epstein and Axtell, 1996) was published by Joshua M. Epstein and 
Robert Axtell. In the book, Epstein and Axtell took Schelling’s ideas and created a 
model 
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that came to be known as The Sugarscape. This model considered a 51x51 grid where 
each square contained some random amount of sugar. In stepwise fashion, agents 
which were distributed around the grid searched their area around them up to a 
limited distance, moved towards squares that produced sugar, then consumed the 
sugar in that square. In the process of traversing patches and consuming sugar, the 
agents may act on the environment or other agents in some way, such as spread dis- 
ease or pollution, trade sugar for spice or information, gain other resources, skills or 
tools, reproduce or terminate, or any other action befitting the context of the scenario 
being modeled. 

 

 

FIGURE 2.3: Epstein and Axtell’s Sugarscape Immediate Growback 
model (implemented in NetLogo) (Li and Wilensky, 2009) 

 
A huge variety of simulations are possible with such an abstract model, and so this 

has become one of the most widely used across many fields of sociology, science, 
economics, and more.  NetLogo, as mentioned in the previous chapter, has 3 variants of 
the Sugarscape model among its open library: "Immediate Growback", "Constant 
Growback" and "Wealth Distribution".  There are more implementations on other open-
source software as well. 

This paper presents the Sugarscape model implemented in the Jade framework. 
The concept of this implementation tries to remain as faithful to the original as 
possible. The environment consists of several containers within a single platform. 
Static sugar producing agents and mobile sugar consuming agents are randomly 
distributed among the containers. Producers and consumers will generate and 
consume, respectively, a small amount of sugar at randomly different rates and 
amounts per agent. Sugar consumers will broadcast a request for sugar to all producers 
and receive responses back. The consumer must decide the largest amount of sugar it 
will gain from a producer, with the restriction that it must be in the same container as 
the producing agent to accept the proposal. If a consumer agent must migrate to a 
different container to be local to the desired producer, it must pay an additional cost of 
sugar required to migrate to that agent’s location. It must select the best option, 
balancing the travel cost against the sugar it will gain. The consumer will travel to the 
producer with the best offer (if needed), accept that agent’s proposal, and consume the 
sugar it receives. If a consumer cannot keep its supply of sugar above 0, 
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it will terminate. In the absence of a formal grid through which to traverse, the cost an 
agent pays to migrate to a container, or "patch", might vary, to approximate the sense 
of distance that the original implementation defines. 

The next section will explore how the Sugarscape implementation plays out while 
looking closer at the inner workings of the Jade framework from a user’s perspective, 
illustrating how agents’ behavior, communication, and migration services are handled 
in the framework. 

 
2.3 Initializing the Demo: The Travel Agent 

For the user, creating an agent in Jade is as simple as creating a class which ex- 
tends the base Agent class, then implementing the required setup() method. This 
method is intended to handle initialization tasks the user might want to perform. 
The main actions and services an agent provides are typically implemented as 
behaviors which are described in the next section. However, if an agent is simple 
and performs only a single task, it can use the setup() method to perform this task. 
At the end, the agent can be terminated by calling the doDelete() method. 
Should there be a need to perform any special persistence or clean-up operation 
prior to the agent’s termination, this can be accomplished by overriding the 
takeDown() method which is invoked by the framework before the agent is 
terminated. 

 

 

FIGURE 2.4: The DemoMasterAgent Class 
 

There may be a complex setup to implement in the agent-based model, with a 
potentially wide array of agent types to initialize and varying numbers of each type. 
Several containers may also need to be generated to distribute the agents among. 
Regardless of size or complexity, a single agent can be created to handle the entire 
setup process and begin the simulation. Jade provides a handle to the runtime 
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instance that can be used to programmatically create containers. This can be accomplished 
with 

LISTING 2.1: DemoMasterAgent: Creating a new Container in setup() 

jade.core.Runtime runtime =  j ade.core.Runtime.instance(); 

String newContainerName = "Container_n"; 
Profile newContainerProfile = new ProfileImpl(); 
newContainerProfile.setParameter(Profile.CONTAINER_NAME,  newContainerName); 
newContainerProfile.setParameter(Profile. MAIN_HOST, "localhost"); 
ContainerController cController = 

runtime.createAgentContainer(newContainerProfile); 

The container controller’s createNewAgent(String agentName, String className, 
Object[] args) method can then be used to generate the  agents  you  need.  
Arguments can be passed to the agent though the Object array parameter during 
initialization. These can be retrieved with the getArguments() method from the  
Agent class. Note that the createNewAgent() method does not return a reference  to  
the agent itself but instead an AgentController object used to activate the agent.  This   
adds a layer of protection and avoids exposing any direct reference externally, unless 
the agent is explicitly programmed to do so. Agents are distributed by randomly 
selecting one of the existing container controllers each time a new agent is created. The 
controller is used to add the agent to its container. 

LISTING 2.2: DemoMasterAgent: setup() 

public void setup() { 
. . . 

System.out.println("Starting producer agents"); 
for(int i = 0; i < STATIC_AGENT_COUNT ; i++) { 

String agentName = "ProducerAgent_" + (i+1); 
int pos = (int) (Math.round(Math.random().(CONTAINER_COUNT-1 ) ) ) ;  
try { 

staticAgents[i] = containers[pos].createNewAgent (agentName , 
"examples.myStatic.StaticAgent", new O b j e c t [ ]{}); //arguments  
staticAgents[i].start(); 

              } catch (StaleProxyException e){ 
 e.printStackTrace(); 

} 
} 
. . . 

} 

All of this can be accomplished within the setup() method. As a shortcut, the 
DemoMasterAgent class will pull double duty to also act as a travel agent and provide 
the service of notifying agents of the cost in sugar required to migrate from one 
container to another. The sugar cost for traveling from each container to every other 
is created in a map for the travel agent to manage. The service itself of responding 
to travel cost requests will be provided as an implemented behavior, which will be 
registered to the DFAgent. How to register a service will be covered in the next 
section. In summary, the travel agent’s setup() method will: 

• create some given number of containers 
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create some given number of sugar producer and consumer agents and dis- tribute 
them by randomly selecting a container controller to initialize each of them into 

• create a map of travel costs for inter-container migration 

• register itself as a travel agent service with the DF agent on the platform 

• add the behavior of the service itself to its behavior list 

The next section will look at the creation of the Sugar Producer agent with a closer 
look at how behaviors and services operate from the user’s perspective. 

 
2.4 Behaviors, Registering a Service, and Message Handling: 

The Sugar Producer Agent 

The SugarProducerAgent class is slightly more complex than the DemoMasterAgent 
agent. The goal of the sugar producer agent is to periodically generate sugar, respond 
to sugar requests from consumer agents with a proposal that includes some amount of 
sugar it’s willing to offer, and to deliver the proposed amount of sugar to the consumer 
agent that has accepted its proposal. In terms of setup, this agent needs only to register 
its service with the DF agent, then add the behaviors for generating sugar and handling 
request and proposal response messages to its behavior schedule. 

 

 

FIGURE 2.5: The SugarProducerAgent Class 

• 
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2.4.1 Behaviors 

A Jade agent has a list of scheduled behaviors which are executed in a round-robin 
fashion. The agent schedules behaviors by adding them, at the bottom of the list. 
Behaviors are executed one at a time by calling their action() method. When a 
behavior reaches the end of its method, if it considers itself complete, then it is 
removed from the Behaviors list, otherwise it’s rescheduled by being placed back at 
the bottom of the list and executed again when it gets back to the top. 

 

 

FIGURE 2.6: The Jade Agent Path of Execution (Caire, 2009) 
 

The most basic extension from the Behaviour class is the abstract SimpleBehaviour 
class. From this behavior, three other main abstract behavior types are most commonly 
extended from: the OneShot Cyclic, and Composite behaviors. The OneShot behavior is 
just like simple behavior except the done() method always returns true, ensuring the 
behavior is performed only once. In contrast, Cyclic behavior’s done() method always 
returns false. The Composite behavior consists of any combination of the other 
behaviors. Jade provides other abstract behavior templates as well based on this core 
set, such as TickerBehaviour, WakerBehaviour, SequentialBehaviour, Parallel- Behaviour, 
and others. 

The first behavior needed is the agent’s SugarReplenishBehavior.  The rate at which 
the agent generates sugar should be at a measured and consistent interval. To 
accomplish this, the behavior extends the TickerBehaviour Class.  This behavior cycles 
through a waiting period of a length specified by the user, then executes its task; at 
which point it waits again, then performs the task, waits, and so forth. A constructor is 
built which will call the super constructor and pass in a reference to the 
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FIGURE 2.7: Jade Behavior Hierarchy (Caire, 2009) 

 
agent to connect the behavior with and a long value to specify the amount of time    
the behavior will wait until is executes the desired task. 

public SugarReplenishBehavior(Agent a, long period) {  
super(a, period); 

} 

The TickerAgent’s onTick() method is overridden, where inside is defined the 
agent’s action. Because the behavior has a reference to the SugarProducerAgent agent, 
it can call an implemented method defined there which will increase the agent’s sugar 
variable by some given amount. 

@Override 
protected void onTick() { 

((StaticAgent)myAgent).generateSugar(); 
} 

This completes the creation of the simple behavior. It can be added to the agent’s 
scheduler during its setup() method. An instance of this behavior is constructed, 
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passing in a reference to the agent and a value (representing milliseconds for the tick 
intervals) as constructor arguments, then the base Agent Class’s addBehaviour(Behaviour 
b) method is used to append it to the bottom of the agent’s behavior schedule. 

The behavior scheduler executes behaviors sequentially in a single thread. This 
means the action() method of a behavior completes and returns before the next 
behavior’s action() method is invoked. This model has several advantages such 
as avoiding synchronization issues and provides improved performance; and the 
user always has the option of setting a composite behavior with concurrent children 
scheduling by extending the ParallelBehaviour class if performing multiple tasks con- 
currently is desired. 

 
2.4.2 Registering a Service 

Now that the SugarProducer agent will produce sugar, it needs to be found by the 
SugarConsumer agents. A service is "published" through the DF (Directory Facilitator) 
yellow pages service. This requires invoking a static register() method of the 
DFService class and passing it a DFAgentDescription object, which describes the ser- 
vices being provided. The DFAgentDescription object requires the Agent’s AID and a 
ServiceDescription object which must include the service type and the service name, 
and optionally the languages and ontologies required to use the service. This demo 
does not need to concern itself with languages or ontologies, the agent only needs to 
be discoverable by SugarConsumer agents. The service is registered as follows: 

LISTING 2.3: SugarProducerAgent: setup() 

Protected void setup() { 
. . . 
DFAgentDescription agentDescription = new DFAgentDescription( ) ; 
agentDescription.setName(getAID()); 
ServiceDescription sdesc = new ServiceDescription(); 
sdesc.setName("SugarProducer_ " + this.getLocalName());  
sdesc.s e t Type("sugar-maker"); 
agentDescription.addServices(sde sc); 
try{ 

DFServic e.register(this, agentDescription); 
        catch(FIPAException e) { 

. . . 
} 
. . . 

} 

Any agent which solicits the yellow pages service specifying "sugar-maker" as a 
service type will receive a list of all agents within the platform, regardless of which 
container they are located, who have registered this service. 

 
2.4.3 Messaging 

Once the SugarConsumer agent gets a list of service providers, it will send each a re- 
quest for a proposal. A behavior is needed to handle these requests, as well as the 
acceptance (or rejection) of that proposal. There are many options for how to 
accomplish this. As mentioned in chapter 1.5.3, Jade’s message model conforms to the 
FIPA ACL message specification. The FIPA ACL Message Structure Specification de- 
scribed in chapter 1.4.2 requires a message performative be included in the message 
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content.  As a feature of the framework, Jade provides the ability to filter messages by 
performative type, allowing the agent to pull only the next message which has a 
matching type from the message queue. If we think of a proposal request aligning with 
the performative "request" and the acceptance or rejection of that proposal with the 
performative "inform", then two discrete behaviors can be made which monitor only 
messages with the respective performative type to handle. 

 

 

FIGURE 2.8: Message Routing in the Jade Platform (Grimshaw, 2010) 
 

Starting with the behavior for handling proposal requests, a new behavior called 
RequestHandlerBehavior can be made, which will extend the SimpleBehaviour class. 
Inside its constructor, it will call its super constructor and pass a reference to the 
agent as an argument which is standard practice and will be needed later. There 
are two ways to retrieve a message from the message queue, by using receive() 
or blockingReceive(). The latter blocks the agent thread while waiting for a 
message to enter the queue. While there may be cases where this is useful, using it 
here would prevent the agent from its other behaviors and could not generate 
sugar or handle "inform" messages. So the asynchronous receive() method is used 
where it will pass in a MessageTemplate object as an argument. This will specify the 
communication act, or performative, needed to filter the messages by. 

LISTING 2.4: RequestHandlerBehavior: action() 

Protected void action(){ 
    . . . 
    ACLMessage msg ; 
    MessageTemplate mt = 
    MessageTemplate . MatchPerformative ( ACLMessage . REQUEST ) ; 
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// Get a message from the queue or 
// wait for a new one if queue is empty  
msg = myAgent.receive(mt); 
if (msg == null) {  
     block(); 

return; 
} else{ 

// handle message 
. . . 

} 
. . . 

} 

If there is no message in the queue which matches the desired performative, it 
will call block() which sends the behavior to a list of behaviors in a blocked state. It 
will stay there until a new message enters the queue and wakes this behavior out of 
its blocked state to check again. Once a matching message is received, it will extract 
the content which can be a String or an object. Jade messages also have the feature 
of creating an automatic reply message using createReply(), which automatically 
creates a new Message object and populates the receiver slot with the Agent ID 
(AID) of the agent the original message was received from. The SugarProducer 
agent will then generate a proposal object which will set an offer of sugar to be 
some portion of its supply, or zero if it has none, then change the message’s 
performative to "inform" and send the message using the send(ACLMessage msg) 
method of the base Agent class. 

LISTING 2.5: RequestHandlerBehavior: action() 

protected void action(){ 
. . . 

e l s e { 
. . . 

// handle message 
String sugarQuote = 

((StaticAgent) myAgent ) . getSugarQuote (msg.getSender()); 
             Proposal p = new Proposal(myAgent.getAID()) ; 

p.setAgentLocation(myAgent.here());  
p.setSugarOffer(sugarQuote) ; 
ACLMessage replyMsg = msg.createReply(); 
replyMsg.setPerformative(ACLMessage .INFORM); 
try { 

replyMsg.setContentObject(p); 
} catch(IOException e) { 
     e.printStackTrace(); 
} 
myAgent . send ( replyMsg ) ; 

} 
. . . 

} 

The behavior to handle the proposal response is virtually the same, the only 
difference being the performative of the message filter is now set to "inform" and 
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the action taken should reflect the acceptance or rejection of the proposal, which can 
be a simple string with either "accept" or "reject" as the message content. 

 
2.5 State Machines, The Yellow Pages, and Mobility: The Sugar 

Consumer Agent 

The SugarConsumer agent does most of the work in this demo, and thus, is the most 
complicated to set up. There are different behaviors it needs to perform but those 
behaviors depend on the state of the agent. It could be waiting to receive proposals 
from the agents it sent requests to, it could be trying to decide between those proposals. 
It may need to migrate, or not, depending on the location of the agent with the best 
proposal. These behaviors should be scheduled only when they’re appropriate. 

 

 

FIGURE 2.9: The SugarConsumerAgent Class 
 
 
2.5.1 Creating a State Machine 

One solution is to create a central behavior for the agent, causing it to operate like a 
state machine. This behavior is in charge of monitoring the agent’s current 
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state and, if needed, schedule the right behaviors when needed. Considering the 
agent’s goals, the following states are defined to determine its behavior: 

 
NORMAL: The agent’s starting state. This state is reached when the agent is 
started for the first time or it has just completed consuming sugar and ready    to 
begin searching again for more sugar. 

SEARCH: The agent gets a list of SugarProducer agents and sends each of them   a 
proposal request. 

AWAIT_RESPONSE: This state keeps monitoring the messages until proposals are 
received from all requested agents. 

DECISION: The agent examines all proposals, gets travel costs from the 
TravelAgent for consideration with non-local SugarProducer agents, and selects 
the best proposal. 

MOBILE: This state is activated only if the best proposal requires the agent to 
migrate to a different container. 

CONSUME: The agent accepts the proposal, receives the sugar, and consumes 
it. 

• TERMINATE: This state is activated if the agent’s sugar supply reaches zero.  
 

Separate from any behavior related to these states, the agent will have a behavior 
always running which periodically consumes its sugar supply by some small amount. 
This behavior is built and scheduled in the exact same way the SugarReplenishBehavior 
for the SugarProducer agent was made in the previous section. The only difference is that 
the method called in the SugarConsumer agent will reduce its sugar supply rather than 
increase it. 

The states described above are each represented by a unique integer value. The 
current state is explicitly kept by the SugarConsumer agent. The main behavior can 
keep track of the current state through a switch-case and define the appropriate action 
for the given state. Typically, when the behavior related to a state finishes, it can shift, 
or even force, the agent to the next state and even schedule new behaviors, or some 
other action depending on whether it finished successfully or not. 

 
2.5.2 The Yellow Pages Service 

In the NORMAL state, the agent checks to see that its message queue and behavior 
schedule are nominal before switching to the SEARCH state and scheduling its 
associated behavior. Once in the SEARCH state, the first task is to query the DF’s 
yellow pages service for a list of SugarProducer agents by service type. This is very 
similar to the process of registering for a service, only now we are calling the static 
method search() from the DFService class. The parameters of this method require 
a reference to the agent requesting the service and a DFAgentDescription object 
specifying one or more of a service type, language, ontology, protocol, or service 
description. Optionally, a SearchConstraints object may also be included as an 
argument with optional parameters that allow you to specify the max number of 
results returned or the max depth which limits the recursive depth of the search 
over the DF federation graph. 

• 

• 

• 

• 

• 

• 
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LISTING 2.6: SugarSearchBehavior: action() 

protected void action(){ 
    . . . 
    DFAgentDescription template = new DFAgentDescription ( ) ; 
    ServiceDescription template Sd = new ServiceDescription(); 
    template Sd.setType("sugar-maker"); 
    SearchConstraints sc = new SearchConstraints(); 
    sc.setMaxResults(new Long(100)); 
    try{ 
        DFAgentDescription [] results = 
        DFService.search(myAgent, template, sc); 
    } catch(FIPAException e ) { 
    // handle exception... 
    } 
   . . . 
} 

FIPA specifications of the yellow pages service specify that a DFAgentDescription 
matches the search template if all fields specified in the template are present and 
match the values and should be included in the results. 

 

 

FIGURE 2.10: Jade Yellow Pages Service (Caire, 2009) 
 

Each DFAgentDescription object in the results list will contain the AID of the ser- 
vice provider as well as a list of the services matching the template. The AID is extracted 
and used to generate a message to send the agent of the AID, requesting a proposal. 
When creating the message, it must pass in the performative as a required constructor 
argument. The performative "request" is used as the SugarProducer agent is 
programmed to respond to messages with such performatives, but any performative 
can be used that suits the application’s needs. Then the message recipient is set with 
the AID from the DFAgentDescription object and sent using the base Agent’s 
send(ACLMessage msg) method. 

LISTING 2.7: SugarSearchBehavior: action() 

protected void action(){ 
    . . . 
    DFAgentDescription dfd = results[i]; 
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AID provider = dfd.getName(); 
ACLMessage msg = new ACLMessage (ACLMessage . REQUEST );  
msg.addReceiver(provider); 
msg.setContent("sugarquote");  
myAgent.send(msg) ; 
. . . 

} 

In the demo, the AID of the agent set to receive the request for a proposal is 
passed to a list that tracks outbound proposal requests awaiting response. A behavior 
needs to be scheduled to handle the message response, once the proposal arrives, to 
remove the agent’s AID from the tracking list. Once all proposal requests are sent out, 
the consumer agent can transition to the AWAIT_RESPONSE state to continue. 

When all proposals are finally received, the tracking list will be empty which causes 
the agent’s state to transition to the DECISION state. In this state, the associated 
ProposalAnalysisBehavior behavior has the agent look over each proposal to see how 
much sugar is being offered.   In the case of proposals from non-local agents, the 
consumer agent must calculate the offset of the sugar they offer by the cost of sugar 
required to migrate to that agent. To get the travel rates, the agent uses the yellow pages 
to look for agents providing the "travel-rates" service in the same way   it looked for 
agents that provided the "sugar-maker" service. A request message is sent to the 
DemoMasterAgent agent, and then receives back a table of current travel rates to all 
containers. With this, the agent can calculate the net amount of sugar being offered less 
the cost to travel if needed. Assuming the agent is local, the consumer agent can simply 
change the state to CONSUME. Otherwise, if migration is necessary, once the best 
proposal is chosen, the agent will then change the state to MOBILE. The appropriate 
behavior is then scheduled depending on the new state. 

 
2.5.3 Mobility 

On a scale of weak to strong, as discussed in Chapter 1.1, Jade describes their agent 
mobility model as not-so-weak. Once at the new destination, agents do not completely 
start over as though they were first created, as weak agents do. Neither are they able 
to capture every aspect of their state, including the execution environment, program 
counter, or the execution stack as would be defined for strong mobility. They are 
instead able to capture and serialize the agent’s state in terms of explicit non-transient 
variables defined in the agent’s class. Included in that state data is the agent’s scheduler 
which holds the scheduled behaviors.  Once the agent is activated in the new 
destination, it can start executing the next behavior in the schedule. With the use of the 
state machine, as has been setup for the consumer agent, it can extend that strength of 
mobility a bit further. 

The Jade Agent Mobility Service provides intra-platform mobility. With this service, 
any agent can migrate to any other container in the platform, but not a container 
belonging to another platform. An agent can query the AMS (via the white pages 
service) or DF (via the yellow pages service) for a location(s) which it can use as a 
destination to migrate to. The location is used as a parameter and must be an object 
from a class which implements the Location interface. The two classes provided for 
that in Jade are ContainerID and PlatformID. The ContainerID is used for the intra-
platform mobility service. The PlatformID is reserved for the Inter-Platform Mobility 
Service, an add-on that must be explicitly included when launching the Jade 
application. The inter-mobility service does have the ability to move an agent to a 
container 
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in a different platform. It accomplishes this by packing up the agent, and all of its class 
files, as a content object using the ACLMessage system. In this system the agent, and its 
code, must be gathered into a single, potentially large, package to be moved. This 
carries some disadvantages, such as increased resource utilization over the network 
and a potential degree of redundancy in situations where some, but not all, of the 
agent’s class code may already exist at the destination platform. The demo functions 
entirely within one platform, so the focus will just be on the intra-platform mobility 
service. 

An agent that wishes to use mobility services is required to have registered the jade-
mobility-ontology ontology. Briefly, ontologies are a set of concepts and symbols used to 
express some specific domain of knowledge or information. These concepts and 
symbols are structured using a syntax that is represented by a language. For instance, 
while FIPA does not require using any specific language, it does recommend a type 
called the Semantic Language (SL) for communicating with the AMS and DF. Ontologies 
and languages are used to help an agent parse and decode information it receives from 
another agent or platform through ACL Message content, or to help it perform actions 
defined in classes related to the ontology.  While they are a useful and advanced feature 
of the Jade platform, this demo only requires that the existing mobility ontology be 
registered to use the related service, not to create its own, and any in-depth discussion 
about ontologies falls outside the scope of this paper. 

An agent can be moved directly or indirectly. That is, it can move itself, or by others. 
One way to move an agent is by sending a FIPA request message to the AMS with the 
ontology of the message set to jade-mobility-ontology and the language set to FIPA-SL0. 
The content slot must be set with a MoveAction object, which in turn must be set with 
a MobileAgentDescription that must include the name of the agent being moved (which 
may be our agent or some other) and the destination as a Location object. Once 
received, the AMS will locate the agent to be moved and perform the move-agent action 
on it. 

The simpler and more direct way, and the method employed in this demo, is for 
the agent to move itself by calling its doMove(Location destination) method. To 
spare the agent from having to query the AMS for the location of the agent whose 
proposal it wants to accept, the SugarProducer agent includes its ContainerID object 
with the Proposal object. The agent extracts the location from the proposal, pays the 
required cost in sugar to travel to the destination and, if the cost does not put its 
sugar supply to zero, switches its state to MOBILE and calls its doMove() method. 

LISTING 2.8: ProposalAnalysisBehavior: action() 

public void action(){ 
    // extract the location object from the proposal 
    Location destination = bestProposal.getAgentLocation(); 
 
    //pay the cost of movement now 
    String from = myAgent.here().getName(); // current location 
    String to = bestProposal.getAgentLocation().getName(); // destination  
    int cost = ((MobileAgent)myAgent).travelRates.get(from).get(to); 
    ((MobileAgent)myAgent).consumeSugar(cost); 
 
    // if agent is not dead , then proceed with migration 
    if(!((MobileAgent)myAgent).getBehaviorState().equals("TERMINATE")){ 
        ((MobileAgent)myAgent).setCurrentBehaviorState( 
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                      ((MobileAgent)myAgent).MOBILE); 
myAgent.doMove(destination); 

} 
} 

Once migration has been initiated, the agent will change its internal state from 
ACTIVE to TRANSIT. Before the actual migration happens, the agent’s beforeMove() 
method is invoked at the source location to give the user the opportunity to have the 
agent perform any necessary tasks prior to the agent’s serialization. This may include 
things such as closing any instances of a GUI, releasing local resources, or addressing 
any transient variables belonging to the agent it will not bring with it. Upon arrival to 
the destination location, but before the agent and its behavior scheduler is activated, 
the agent’s afterMove() method is then  invoked.  This allows the user to reestablish the 
agent’s resources, services, re-register ontologies or services, or any other action 
required. As the state of the state machine is set to MOBILE, the main behavior, which 
is still scheduled and running, will correctly detect that the agent has arrived at the new 
destination.   It will message the SugarProducer agent to accept the proposal, update its 
state to CONSUME, and schedule the consume behavior to catch the SugarProducer 
agent’s response with the sugar and consume it. This completes a cycle in the life of the 
agents of the SugarScape demo. 

 

 

FIGURE 2.11: Sugarscape Demo in Jade. ConsumerAgent_7 has died 
because the agent in its container (4) has no sugar to offer and the other 
producers cannot offer enough to offset the cost of travel. 
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Jade is a very robust framework, and there are a great deal more features it includes 

which cannot be covered here but are quite useful. Much can also be said about the 
underlying services which power the framework itself, unseen by the user. Many of 
these features and services are modular as they are only useful under certain situations 
and not needed by every user, particularly given certain resource- limited platforms 
like mobile. This brings up the interesting question: what are the most essential 
components necessary to create a mobile agent frame- work? The next chapter will 
discuss the components vital to creating a simple mobile framework, the critical 
problems which need to be addressed, and present a complete implementation of such 
a framework. 
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Chapter 3 
 

Implementing NOMAD: A Basic 
Mobile Agent Framework in Java 
 
Depending on the complexity of the agent-based software, there are many 
advantages to starting with an existing framework. The user is spared from the 
time- consuming work of implementing the robust and feature-rich toolkits that 
exist today. Open-source libraries are available in a variety of architectures. Some 
of these architectures have modularity and versatility, many with libraries that have 
well-documented APIs and strong communities. But there is always a case where 
no single implementation can address all the needs one may have to address in an 
application. For the variety of frameworks available, each is built to provide only a 
limited scope of features. Some of those features may overlap between frameworks, 
like message passing, mobility, deliberative reasoning, ontology-defined services, 
security, and more. But how each framework implements such features can be 
significantly different and impact how a developer might choose one over another. 
There are many cases where no framework can address all issues. Or even if there 
were, it may come with a host of other unnecessary features and boilerplate code 
to be dealt with to use what is needed. The time required to use a complicated 
framework, the overhead needed to use the features desired, or other required 
features not needed that drain resources, may make using an existing 
implementation more trouble than it’s worth. 

In such cases, the solution may be to implement a basic framework from 
scratch. This allows control over the balance between a stable, feature-rich 
application that is also lightweight and can execute as needed. Luckily, building an 
agent-based system isn't too hard. It simply needs the agent itself and a platform 
to provide the services it needs. It’s when mobility is incorporated that more care 
is needed. This is especially the case if agents operate asynchronously. This chapter 
will focus on building a simple framework called NOMAD, that will provide the 
most essential elements which define an agent-based application. It will 
incorporate only the absolute essential components for a mobile agent framework. 
These components are the asynchronous agent, the platform, communication, and 
mobility, each of which will be covered in the sections below. 

 
3.1 An overview of the NOMAD Framework 

Even with the goal of building the most basic framework possible, certain choices need 
to be made in terms of architecture. Typically, these choices are determined in the 
context of the problem that the application will address. The goal of NOMAD is to 
provide the core essential services to maintain a working mobile agent application, but 
modular and flexible enough in structure to allow the user extensibility for new 
features and existing components. To test the features of the framework, a simple 
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agent demo program will be built on top of it. This program will create several static 
and mobile agents, each with the goal of interacting with as many other agents as each 
can find. Mobile agents will be able to migrate to other platforms while static agents 
must remain in place. This should be sufficient to showcase the core features to be 
included. 

 

 

FIGURE 3.1: The NOMAD model 

 
NOMAD will be based on a Reactive architecture. More specifically, there will 

be no planning or behavior features that will enable pro-active behavior or 
reasoning. To create one requires defining a specified design which then locks the 
user into the chosen method. Moreover, the user always has the option of adding 
their own approach within the existing space for the agent’s reactive action. Each 
agent in NOMAD operates in its own thread. Its lifecycle is managed by the platform 
it resides in. The platform also provides other services to the agent, such as 
migration, communication, and directory services. In comparison to the Jade 
framework discussed in the previous chapter, it fulfills the roles of the Platform, 
container, DF agent, and AMS agent combined. Similar to the way a Jade container 
sits over a node that provides all the actual services, each platform in NOMAD has 
a single node called the Message Transport Service (MTS). The MTS executes the 
network services and related tools for communication and transport, as well as File 
I/O services for persistence features and logging. 

As a more in-depth look is taken at each of these components, we’ll discuss the 
potential pitfalls, consider alternative approaches, and propose possible extensions 
and new components to add to the framework. At the end, NOMAD will be a ready- 
to-go framework that can be built on and shaped as the user requires. 

 
3.2 The Agent: Asynchronous Autonomy 

As the framework should be versatile enough to allow a user to create many different 
kinds of agents, one cannot predict what form those types of agents may take. The 
simplest approach is to create an abstract agent class that enables mobility, 
communication, and its own thread in which to run tasks which the user can simply 
extend and build what they need over it. The Agent class is specified as abstract 
because the user should not be able to create agents directly from it. This would 
cause them to introduce more code into the class and risk unintentionally breaking 
its functionality in some way. Implementing Serializable is necessary for any class 
that may migrate over the network or have its information written to file, which will 
be discussed later. 
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FIGURE 3.2: The NOMAD Framework 
 

The essential attributes the agent will need to have is an ID, which may be as simple 
as a String or its own object class. For the sake of stable message and agent mobility, 
the ideal situation is a system which can guarantee that each agent’s ID is unique within 
the system. If we allow a platform to connect dynamically at runtime, it becomes very 
difficult to make such a guarantee without some sort of separate ID system that can 
assign aliases to agents. This would be similar to a DNS lookup system which keeps a 
table of web URLs that map to unique IP addresses. For now, the name is kept as a String 
and the Platform assigns an ID to the agent. An agent’s ID consists of the name of the 
platform it originated from (the host name of the computer) concatenated with the port 
number that the local server is listening on, followed by a "-n" where n is a unique 
integer. The platform tracks this value as a static counter. An example of an agent ID is 
"myComputer8888-1". The combination of host name, port, and number help to ensure 
agent names are as unique as possible. 

A reference to the agent’s local platform is assigned to it and used when it needs 
to call up services the platform provides. A PlatformLocation object is also assigned, 
called classFileSource. This object holds information about a platform location, such 
as the host name, IP address and port number. The agent should always know which 
platform it originated from so that if it arrives to a platform that does not happen 
to have its class files in the JVM’s class path, the destination platform’s class loader 
can know where to retrieve 
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them from. The agent also needs to know which platforms it’s already been to, so a 
HashMap keeps that information for it. Lastly, the agent needs some boolean flags to 
indicate various states such as traveled, done, suspended, and available. 

As Agent extends Thread, it’s required that it implements the run() method. 
Here is where the agent performs any tasks as defined by the user. But once the 
method is done, the agent thread dies (unless it’s a daemon thread) and the agent 
becomes inert except to any outside calls to its methods. In other words, it cannot 
run its own run() method again to allow continuous action. To avoid this, a looping 
behavior should be used, where the user can then control when that loop stops. To 
accomplish this, a while loop is used where the conditional argument is the agent’s 
done attribute. Inside the loop, an abstract update() method is called which the user 
must implement to decide how the agent should behave. When the user decides 
the agent is done and should terminate, they must check out with the platform by 
calling the platform method checkout() which will set the agent’s done flag to true 
and break the loop, ending the thread. 

The agent will also need abstract methods related to migration. One, called 
beforeMove(), will allow the user to act before the actual migration of the agent 
happens. This will let them save any information requiring persistence, manage 
objects and data related to any transient variables, or even have the option to 
cancel the migration itself. The other will be afterMove(), which gives the agent a 
chance to perform necessary task before it is activated in the new platform, such as 
reconnecting or instantiating variables. 

An abstract method called interact(Agent a) will also be included. An agent 
can get access to another agent directly by querying the Platform, and use it to call 
the interact() method on the other agent. This is a simplified form of agent 
communication included as a simple example of how agents can interact. For the 
purposes of the demo, this method is implemented in the MarketAgent agent 
example to "say hello" to the target agent. In practice, however, it’s not 
recommended for actual use outside of debugging as there are security risks in 
allowing agent to have direct access to each other. Additionally, there are other risks 
such as the agent migrating and terminating in the middle of their interact() 
method being executed. The preferred way to communicate is to do so via 
message passing, as this can be handled asynchronously when the agent wants, 
which will be covered in the communication section. 

 

LISTING 3.1: The Agent Class 

package platform; 
 

import java.io.Serializable; 

import java.util.ArrayList; 
import java.util.HashMap;  
import java.util.Map; 

public abstract class Agent extends Thread implements Serializable{ 

     private String myID ; 
private PlatformLocation classFileSource; 
private PlatformID passport; 
private Platform localPlatform; 
private ArrayList<Agent> localAgents; 
private Map<String, Boolean> visitedPlatforms = 
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new HashMap< S t r i n g, Boolean> ( ) ;  

        private boolean t r a v e l e d = f a l s e; 
private boolean done = true; 
private boolean suspended = false;  
private boolean available;  

 
public Agent ( ) { } 

. . . 
// getters and setters 
. . . 

public void run ( ) { 
while ( ! done ) { 

while (suspended) { 
//suspended while migrating 

} 
if (traveled){ 

//agent has awoken f o r t h e first time since migration 
if (localPlatform.getMyID() 

.equals(this.getPassport().getHostName())){ 
// I landed where I should have 

} else { 
// something went wrong , I ’m not where I intended to be 
if(this.getVisitedPlatforms().get(localPlatform.getMyID()) != null && 
this.getVisitedPlatforms().get(localPlatform.getMyID())){ 

localPlatform.logStatus(this.getMyID() + 
" : something went wrong and I ’m back where " + 
" I emigrated from ,  so I’m shutting down now.");  

localPlatform.checkOut(this); 
} 

} 
this.setTravelled(false); 
this.setPassport(null); 
this.visitedPlatforms.put(localPlatform.getMyID(), false); 

} 
if(!done ) 

this.update(); 
} 
this.interrupt(); 

} 
public abstract void update(); 
public abstract boolean interact(Agent a);  
public abstract void beforeMove() ; 
public abstract void afterMove(); 

} 
 
 

3.3 The Platform: Managing the Agent Lifecycle 

Like the Agent, the Platform class runs in its own thread, but does not need to ex- 
tend Serializable. As a nexus for agents that are arriving, departing, and changing 
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states, fulfilling various requests and services to those agents, accessing shared re- 
sources, and coordinating the update and retrieval of data through the MTS, the 
Platform must engage in a delicate dance of multitasking. In terms of architecture and 
the ecosystem of connected platforms, there are 2 main approaches to take. The first 
considers each platform to be independent, decentralized entities that form peer- to-
peer relationships with each other. In addition to being a more basic structure, an 
advantage of this is that launching the application or connecting it to other platforms 
remains the same process no matter where it’s run. There is also better fault tolerance 
as there’s no critical node that, were it to fail, would collapse the entire network of 
platforms. 

The other option is to have one platform designated as a "master platform" where 
all others register to it. The advantage here is that directory and other information 
services can be centralized, as opposed to the peer-to-peer structure where a plat- form 
may need to query multiple others to find an agent. There are hybrid versions of this 
as well, for example a peer-to-peer structure where certain platforms can be 
designated managers of services like the agent directory or alias mapping. As NOMAD 
is focused on being a starting point for building your own framework, it’s built with a 
basic peer-to-peer structure. 

On construction, the platform gets a reference to the MTS singleton object and 
uses it to establish its own identity. The platform identity is kept in a PlatformID 
object. This object holds the platform’s name which, similar to the agent, is the 
computer’s host name concatenated with the port number used by the server. It 
also holds a PlatformLocation object which encapsulates its hostname, IP address 
and port number, plus a count of the active agents running locally, and flags to help 
keep track of its registration status with other platforms. Once a user creates the 
agents they want and adds them to the platform instance, they call the platform’s 
start() method which is the launch point for the core application. The agents are 
not started at this point, however, the platform will handle that once it has initialized 
all of its components. Instead the platform creates the agents’ IDs, registers them 
to its directory, sets their local platform to its location, sets their classFileSource 
location and adds the local platform location to the agent’s visited location history. 
In the demo, a number of static and mobile MarketAgent agents are created using 
this process. 

public synchronized void addNewAgent(Agent a){ 
    a.setMyID(this.getMyID() + "_" + (Integer.toString(++ this.agentCount))); 
    a.setlocalPlatform(this); 
    a.getVisitedPlatforms().put(this.getMyID(), true); 
    a.setDone(false); 
    a.setName(a.getMyID()) ; 
    a.setClassFileSource(mts.getMyPlatformID().getlocation()); 
    synchronized(agentMap) { 
        agentMap.put(a.getMyID(), a); 
    } 
} 

Once inside the run() method, the platform has the MTS initialize all of its ser- 
vices. This begins with starting the File I/O services to enable logging. All agent, 
server, client, and platform status messages get piped to the logging service through 
the MTS. The File I/O service will then read in from a separate XML file information 
about other platforms that will also be running. It will attempt to connect to, and 
register with, these platforms once the server has finished initialization. It builds 
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the neighbor platforms list, passes the list back to the platform and then proceeds to 
launch the server. 

The server too runs in its own thread. Once running, the MTS will then launch 
a client and iterate through the neighbor platforms list, sending its own PlatformID 
to each of them. the server, client, and network transport will be discussed in more 
detail in the next section. Once it’s able to successfully send its PlatformID to all 
neighbors on the list, the MTS completes its initialization and passes control back to 
the platform. 

 

LISTING 3.2: The Platform Class: run() 

public void run () { 
// initialize Message Transport Services 
// (file/log, TCP/IP, preference/neighbor data loading) 
if(mts.initializeServices()){ 

int checkedIn = 0;  
int attempts = 1; 
this.logStatus( 

"Verifying all neighbor platforms have checked in..."); 
 

while (checkedIn < this.neighbors.size() && attempts < 5) { 
this.logStatus("Check in query " + attempts + " of 5..."); 
checkedIn = 0 ; 
synchronized(neighbors){ 

Iterator<PlatformID > iter = neighbors.iterator(); 
 

while (iter.hasNext()){ 
if(iter.next().isCheckedIn()) 

checkedIn++; 
} 

} 
 

this.logStatus(checkedIn + " of " + 
this.neighbors.size() + " platforms checked in"); 
attempts++; 

 
if(checkedIn < this.neighbors.size()){  

try{ 
Thread.sleep(2000); 

} catch (InterruptedException e) { 
e.printStackTrace(); 

} 
} else{ 

break ; 
} 

} 
if(checkedIn >= this.neighbors.size()){ 

this.logStatus( 
"Initialization successful, waking agents to begin simulation..."); 

// start services for all registered agents  
agentMap.forEach((key, va lue) -> { 
     agentMap.get(key).start(); 
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}); 
allWoke = true; 
if(foreignAgents.size() > 0){ 

for(Agent a : foreignAgents) { 
    this.addForeignAgent(a); 
} 

} 
this.setPriority(MIN_PRIORITY); 
while (!done) { 
    if(this.agentMap.isEmpty()){ 
        quietlyWaitForTheWorldToEnd(); 
    } 
} 

 

this.logStatus("Done called"); 

if(!agentMap.isEmpty()){ 
       agentMap.forEach((key, va lue) -> { 
            Agent a = agentMap.get(key); 

        a.setDone(true); 
        a.interrupt(); 
    } ) ; 
} 
mts.closeAllServices(); 
this.interrupt(); 

} else{ 
System.out.println("Error: Platforms not checked in, exiting."); 
System.exit(1); 

} 
} else{ 

System.out.println("Error initializing MTS services, exiting."); 
System.exit(1); 

} 
} 

Successful initialization means that all of the neighbor platforms are also up and 
running. At this stage, the platform will now wait until all other platforms have 
sent their PlatformIDs to it. Once received, the platform is now fully connected to all 
others. The local platform will now begin to register the agents it was given and 
start to activate them. It keeps track of the agents using a Map where the key is 
the agent’s name. It iterates through the map and calls start() on each. When 
complete, the platform raises an internal flag to indicate that all agents have been 
activated. It does this because from the moment it sends its PlatformID out and 
receives a PlatformID back from the first neighbor platform, that neighbor platform 
could potentially already be fully connected and have already started all of their 
own agents. Moreover, those agents could already have attempted to migrate to 
this local platform. Incoming agents from other platforms are not allowed to be 
registered and activated until all native local agents have been. It will check a 
queue to see if any foreign agents are waiting to be registered. If so, it will register 
those agents as well and activate them into the pool. Adding a foreign agent in 
similar to adding a new agent except the platform will not give the agent a new ID 
or set its classFileSource variable. It will also call the agent’s afterMove() method 
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and allow the agent to act before calling its start() method. 
At this stage, the process of initializing the platform and deployment of its agents 

is complete. With the agent demo, agents should interact with as many other agents 
as possible. Once they cannot find any more agents whom they’ve not yet met, they 
will terminate. To facilitate this, the platforms should stay running until all the 
agents in all platforms are no longer running. A simple way to achieve this is to 
have each platform’s thread go into a loop until its local agent list is empty. This 
occurs when all of the agents have either migrated to other platforms or terminated. 
It will then go into a looping method to start polling other platforms to see what 
their population sizes are. If it discovers that all other platforms have no running 
agents, then the platform will shut itself down, ending the application. Note that 
this is a condition specific towards the demo and is not ideal for general use. 

As an alternative, a graphic user interface would enable user interaction with the 
platform, allowing the launch and termination of agents, create and send messages, or 
shut down the platform upon request. Shutting down the platform involves the MTS 
having the server stop listening and then closing its own thread. It’s here that the user 
may wish to write any persistent information to file if there are settings or 
configurations that wish to be saved. 

LISTING 3.3: The Platform Class: quietlyWaitForTheWorldToEnd() 

public void quietlyWaitForTheWorldToEnd(){ 
this.logStatus("Local pop 0 , quietly waiting for the world to end..."); 
while(this.getAgentMap().isEmpty()){ 

mts.getValidDestinations(); 
if(allMyFreindsAreDead()){ 

this.done(); 
return; 

}  else{ 
try{ 

Thread.sleep(2000); 
} catch(InterruptedException e) { 

e.printStackTrace(); 
} 

} 
} 

} 

The other core service the platform provides is to facilitate migration. When an 
agent wants to move, it must decide which platform to migrate to. Depending on 
the circumstance, it needs information about the other platforms where it’s possible 
to travel to. As discussed in the previous chapter, when a platform conforms to 
standardizations such as FIPA, it provides a white pages service for locating other 
agents, or a yellow pages service for locating by services provided, which includes 
the address information needed to migrate. For the peer-to-peer architecture, the 
decentralized nature of the structure forces an agent or platform to have to iteratively 
query each its neighbors to look for a specific agent. For NOMAD, and the purpose 
of the agent demo, a more simplified service is performed. A list is gathered of 
platforms with a population greater than zero. An agent can request this list and 
then decide for itself which location it would like to migrate to, calling the platform’s 
migrate() method using itself and the chosen location as arguments. 

Once received, the platform will shift the agent into a suspended state. It then calls 
the agent’s beforeMove() method to allow it a chance to perform needed tasks 
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prior to migration as mentioned in the Agent section above. The platform then 
switches the agent to a migration state by setting its traveled flag. When the agent 
is restarted at the new platform, this state will trigger the agent to check that 
migration occurred as intended. The agent is then passed off to the MTS to perform 
the actual migration. If successful, the platform switches the agent to a termination 
state by setting the agent’s done flag, then removing it from its suspended state and 
calling interrupt on its thread. This allows the agent’s thread to end, completing its 
termination. The agent will be later removed by Java’s automated garbage 
collection. 

 

LISTING 3.4: The Platform Class: migrate() 

public synchronized void migrate(Agent a, PlatformID destination){ 

    this.logStatus("emigrate request received, removing " + 
a.getMyID() + " from local roster"); 

    a.setSuspended(true); 
    this.removeAgent(a); 
 
    // allow agent to act before migration 
    a.beforeMove(); 
 

    // have MTS migrate the agent to the chosen address, if present 

    if(destination != null){ 
       this.logStatus("Best Candidate selected, migrating Agent " + a.getMyID() 

+ " to Platform: " + destination.getHostName()); 
        a.setlocalPlatform(null); 
        String last = this.setLastLocation(a); 
        a.setPassport(destination); 
        a.setTravelled(true); 
        if(mts.migrateAgent(a, destination)){ 
            // migration was successful, we can stop the agent thread. 
            a.setDone(true); 
            a.setSuspended(false); 
            a.interrupt(); 
        } else{ 
            // migration failed 
            this.logStatus("Migration attempt failed, reactivating agent" 
             + a.getMyID() + " to local platform..."); 
            a.getVisitedPlatforms().put(this.getMyID(), false); 
            a.getVisitedPlatforms().put(last, true); 
            this.addAgent(a); 
            a.setlocalPlatform(this); 
            a.setPassport(null); 
            a.setSuspended(false); 
        } 
    } else{ 
        this.logStatus("Address not valid, reactivating Agent " 

+ a.getMyID() + " to local Platform"); 
        if(this.addAgent(a)){ 
            a.setSuspended(false); 
        } else{ 
            this.logStatus("agent reactivation failed, shutting agent down." ) ; 
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this.checkOut(a); 
} 

} 
} 

If the MTS reports instead that migration failed, the platform will roll back the 
agent’s visited platform data, relink itself as the local platform, clear the agent’s 
passport to null, and unsuspend the agent to resume normal function. Note that it 
does not turn off its traveled flag. When the agent resumes function, it will still 
perform its destination check, realize that it is still in its original platform (or more 
specifically, that it’s not in its intended platform), notify the user of the error, and 
shut itself down. The user may instead wish to throw an exception or perform some 
recovery or additional task, if desired. 

 
3.4 Mobility: Network Transport Service 

From a top-level perspective, NOMAD takes an agent that wants to migrate, packs it 
into an object for transport, then inserts that object as a payload into a telegram along 
with a command instructing the destination platform how to handle the payload. The 
telegram is then sent to the destination platform, where the agent is appropriately 
handled and deserialized before being registered and activated. 

LISTING 3.5: MTS: migrateAgent() 

public boolean migrateAgent(Agent a, PlatformID p){ 

byte[] ba = this.myClient.serializeAgent(a); 
MigrationPod mp = new MigrationPod(a.getMyID(), 

a.getClassFileSource(), ba); 
boolean result = this.myClient.sendAgent(mp, p); 
p.setActive(result); 
return result; 

} 

In the MTS, the agent is first serialized into a byte array, then packed into a 
MigrationPod object along with the agent’s ID and the location object.  The MigrationPod  
is then sent to a client to be transmitted. 

The client creates a new Telegram object, setting the receiver slot with the 
destination location and using its own PlatformID location to set the telegram’s sender  
slot. It then inserts the MigrationPod as the telegram’s payload and sets the com- mand 
string as "agent". A socket is then opened to the destination platform and the serialized 
Telegram is sent. 

LISTING 3.6: Client: sendAgent() 

public boolean sendAgent(MigrationPod mp, PlatformID p) { 
Telegram t = new Telegram(p.getlocation(), 

mts.getMyPlatformID().getlocation()); 
t.setCommand("agent"); 
t.setPayload(mp); 

 
try{ 

mts.logOutput("Client: Opening connection to " + 
t.getRecipientIP() + " (" + t.getRecipientHostName() + ") on port " + 

t.getRecipientPort() + " ..."); 
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        Socket cSocket = 
new Socket(t.getRecipientHostName(), t.getRecipientPort()); 

 ObjectOutputStream oos = 
new ObjectOutputStream(cSocket.getOutputStream()); 

 

       mts.logOutput("Client: migrating Agent " + mp.getAgentName() + " to " +  

        t.getRecipientHostName()); 
 
        oos.writeObject(t); 
        oos.flush(); 
 
        mts.logOutput("Client: Agent migration complete"); 
        cSocket.close(); 
 
        return true; 
 
    } catch(IOException e){ 
        mts.logOutput("Client: Couldn’t get I/O for the connection to " + 
        t.getRecipientHostName()) ; 
        return false; 
    } 
} 

It’s a trivial exercise in Java socket programming to implement methods that 
transmit an agent from one network location to another. As noted in the Agent section 
above, any object being transmitted needs to extend the Serializable interface so that 
Java can encode the object into the stream of bytes that stores the object’s state; and 
correctly recovers that state when deserialized at the destination. This capturing and 
reacquisition of state forms the minimal basis for an agent to have weak mobility. 

The key challenge with agent mobility comes in situations where an agent is 
defined and activated at one platform but needs to move to a different platform 
running in a discrete JVM that does not contain the class files that define the agent. 
This is a common case in distributed computing and one of the distinct features 
that defines mobile agent applications. How is new code introduced to a running 
application? 

The Java language stands apart from other compiled languages like C, C++, Go 
and others in that the Java Virtual Machine enables classes to be loaded dynamically 
during runtime rather than only during compile time. It loads classes only when it 
needs them. Java uses a hierarchy of class loaders to accomplish this. Each loader in 
the hierarchy builds paths to the class files the JVM will read from and load into the 
virtual machine. There are several kinds of class loaders, not all may be used, but 
even the simplest of applications use at least three. At the top of the hierarchy is the 
Bootstrap class loader which loads all the critical runtime classes needed to launch 
the virtual machine (and, ironically, usually implemented in C) (Horstmann and 
Cornell, 2000). Below that is the Extension class loader which is responsible for 
loading classes from installed optional packages or from jar files located in the ext 
directory in the JRE home library. Last is the System or Application class loader, 
which is responsible for loading the classes from the system classpath, all the 
libraries specific to the application being run. It’s this class loader which can be 
utilized to allow a platform to load agents when the class files do not exist in that 
JVM. 
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Once a class is loaded by a classloader, any class called for by the related object 
automatically looks to the same class loader as its source for any additional classes 
needed. Using this feature, a custom class loader can be created to describe where 
the class loader can look to find the classes it needs. To do this, a class is created 
which extends ClassLoader, the abstract base class. Then, only two methods need to 
be overridden. The first is loadClass(String className, boolean  resolve).  By default, 
each class loader takes the class name and calls the same method of its parent class to 
try and find it there first. This means the bootstrap class loader looks through its 
classpaths first. If it cannot find it, the extension class path searches through its 
class paths and, if still not found, falls back to the application class loader. If it 
cannot find the class, it will throw a ClassNotFound exception. If it does, the resolve 
boolean tells it to find any classes referenced by the current class in question and load 
those as well. In this customized version of the class loader, it will still call the same 
method on its parent, but if not found in any of the of the parent class loaders, it will 
instead call an overridden version of its findClass() method. 

LISTING 3.7: The MyClassLoader Class 

public class MyClassLoader extends ClassLoader{ 
 

String agentName; 
PlatformLocation classSource; 
Client sender; 

 
public MyClassLoader(String an, PlatformLocation loc){ 

sender = new Client(); 
classSource = loc; 

} 
 

@Override 
public Class findClass(String name) throws ClassNotFoundException{ 
 byte[] classFile = getMissingClass(name); 

if(classFile != null){ 
return defineClass(name, classFile, 0, classFile.length); 

} else{ 
throw new ClassNotFoundException(name); 

} 
} 

 

@Override 
Protected Class<?> loadClass(String className, boolean resolve) 

throws ClassNotFoundException { 
// check whether loader already has class 
try{ 

return super.loadClass(className, resolve); 
} catch(ClassNotFoundException e) { 

e.printStackTrace(); 
return this.findClass(className); 

} 
} 

 

private byte[] getMissingClass(String name){ 
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        System.out.println("In getMissingClass(" + name + " ) "); 

        Telegram t = new Telegram(classSource); 
        t.setCommand("class"); 
        t.setPayload(name); 
        return sender.getClassFile(t); 
    } 
} 

To load an instance of a class, the class loader needs to call its internal  
defineClass(String name, byte[] b, int off, int len) method. The overridden 
findClass() method of the custom class loader needs to therefore acquire the class 
needed as a byte array to pass to the define() method. To accomplish this, the 
custom class loader has been given attributes which represent the name of an agent, 
its class file source location, and a client through which it can contact the class file 
source location it needs to request the needed class file from. These attributes are 
linked when the instance of the class loader is created. 

 

 

FIGURE 3.3: NOMAD: Deserialization Process 

 
When a Telegram arrives at a destination platform and it includes a MigrationPod, 



3.4. Mobility: Network Transport Service 51 
 

 

the server will assign a ServerHelper to handle the incoming transmission. The 
Telegraph is deserialized, its command string read, and is then forwarded to the 
appropriate handling block. Inside the block, the MigrationPod is extracted and de- 
serialized. Note that the agent is still in its byte array form inside the MigrationPod 
object. The server now needs to deserialize the agent byte array using an instance of 
the custom class loader. But how can the class loader be linked to this process? 

The answer lies with the ObjectInputStream class. The deserialization process is 
initiated by this class when its readObject() method is called on the input stream. 
As the input stream is read in, the ObjectInputStream instance detects the class 
name of the object it’s attempting to deserialize, called a class declaration, and will 
call its resolveClass(ObjectStreamClass v)  method  in  order  to  find  an  instance of 
the class to construct the corresponding object. This is the method that must be 
overridden in a custom class which extends ObjectInputStream so that the custom 
class loader can be used to find the class instead of the default application class 
loader. 

 

LISTING 3.8: ServerHelper: run() 

public void run ( ) { 
this.logOutput(myName  + " started, new client connected"); 
try{ 

ObjectOutputStream oos = 
new ObjectOutputStream(socket.getOutputStream()); 

ObjectInputStream ois = 
new ObjectInputStream(socket.getInputStream()); 

 
Telegram t = null; 
try{ 

t = (Telegram)ois.readObject(); 
} catch(ClassNotFoundException e) { 

e.printStackTrace(); 
} 
String  cmd = t.getCommand(); 
if(cmd != null){ 

this.logOutput("received command: " + cmd); 
 

if(cmd.equalsIgnoreCase("agent")){ 
MigrationPod mp = (MigrationPod)t.getPayload(); 
Agent a = deserializeAgent( 
                   mp.getAgentName(), mp.getClassScource(), 

mp.getAgent()); 
this.logOutput("agent initialized successfully"); 
mts.registerIncomingAgent(a); 
this.socket.close(); 
this.interrupt(); 

. . . 
// other command handling blocks 
. . . 

} 

NOMAD implements a class called CustomOIS that extends ObjectInputStream 
as an inner class of the MTS. The ServerHelper constructs an ObjectInputStream 
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object from this custom class, passing in the agent’s byte array, name, and 
classFileSource object as parameters. When the readObject() method is called on the 
ObjectInputStream object, it reads in the class name of the object being deserialized 
and calls its internal resolveClass(ObjectStreamClass v) method. This method, which 
is overridden in the CustomOIS class, constructs an instance of the custom class 
loader, passing in the agent’s name and classFileSource object. The static method 
forName(String name, boolean initialize, ClassLoader loader) is then called, 
passing in the name of the class it needs to load and the custom class loader as 
parameters. The custom class loader can now find the class at the agent’s class file 
source location, returning an instance of it which resolves the deserialization, 
allowing the agent to be created. 

LISTING 3.9: The MTS.CustomOIS Class 

// inner class 
public class CustomOIS extends ObjectInputStream { 
 
    String agentName; 
    PlatformLocation classSource; 

    public CustomOIS() throws IOException {} 

    public CustomOIS(Input Stream in, String agentName, 
        PlatformLocation loc)throws IOException { 
        super(in); 
        this.agentName =  agentName; 
        this.classSource = l o c ; 
    } 
 

    @Override 
    protected Class resolveClass(ObjectStreamClass oso) 

throws IOException , ClassNotFoundException { 
 

        ClassLoader myCL = (ClassLoader) classSites.get(agentName); 

          if(myCL == null){ 
            classSites.put(agentName, new MyClassLoader(agentName, classSource)); 
               myCL = (ClassLoader)classSites.get(agentName); 

            } 
 
        Class c = null; 
        try{ 
            System.out.println("Looking for class " + oso.getName()); 
             c = Class.forName(oso.getName(), true, myCL); 
        } catch(ClassNotFoundException ex){ 
             c = (Class)primitiveJavaClasses.get(oso.getName()); 
             if(c == null){ 
                System.out.println("Cannot locate " + oso.getName()); 
                throw ex; 
                } 
          } 
        return c; 
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} 
} 

When the custom class loader is first created for an incoming agent, it’s kept 
in a table with the agent’s name as a key. This is so that any subsequent classes the 
readObject() method discovers in the serialized byte stream also needing to be 
resolved, it will not cause new class loaders to be created but instead always refer 
to the first instance created, keeping the agent’s class resources all within the same 
class loader. The agent’s personal class loader may also be needed later too if the 
agent ever calls an internal method that references a class which has not yet been 
loaded into the local classpath as it runs tasks in the platform. 

As a side note on security, additional features can also be implemented in the 
custom class loader with respect to controlling what classes can be loaded in the 
JVM. In any case where executable code is moved over a network connection and 
run at its destination, security implications must be considered. As a basic frame- 
work, NOMAD does not incorporate any such measures, and the user is encouraged 
to define policies within the class loader for determining what classes may or may 
not be loaded. The user can also explore Java’s Security Manager Utility, which al- 
lows for defining policies about what specific access or operations can be permitted 
to threads during runtime, or whether remote code is allowed to be executed. 

 
3.5 Communication: Getting the Message Out 

As a general delivery system, the same Telegram object used to transmit agents to 
remote platforms can also be used to send messages to them as well. As the platform 
network follows a peer-to-peer structure, a little extra work is needed to find agent 
recipients if they’re not local to the message sender. A Message object can be created 
by an agent and populated with the name of the agent it wishes to communicate 
with. There is also a generic attribute T which references any object or primitive that 
also needs to be delivered. This will provide a great amount of flexibility in the con- 
tent an agent wishes to send to another. However, the user should be careful. When 
the agent recipient is on the same platform as the sender, anything can be attached 
to the message as content. But if the agent is remote, anything attached to the con- 
tent slot must implement the Serializable interface even though the Message class 
itself already does. Otherwise, a NotSerializableException will be thrown while 
attempting to transmit the message and delivery will fail. 

The agent needs only to call send(Message msg) from its base class. This will 
prompt a call to the platform which will check the message’s recipient field to see if 
the intended agent is local. If so, the platform will push the message onto a message 
queue belonging to the agent. As the platform may be pushing a message onto   the 
mailbox at the same time that the agent might be polling one from it, each of these 
actions are synchronized to prevent any thread errors from occurring. If the 
intended agent is not local, the message gets passed off to the MTS to find on which 
platform the agent resides and send the message there. 

LISTING  3.10:  Platform:  sendMessage() 

public   synchronized boolean sendMessage (Message m) { 

 if(this.agentMap.containsKey(m.getTo())){ 
this.agentMap.get(m.getTo()).mailbox.add(m); 
return true; 

} else{ 
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        return mts.sendRemoteMessage(m); 
    } 
} 

To find the agent, the MTS gets a list of all neighbor platforms and iterates 
through them, using a client to send a Telegram to each of them with a "findagent" 
command and the name of the intended agent as the payload. 

LISTING 3.11: MTS: sendRemoteMessage() 

public  boolean sendRemoteMessage(Message m) { 

    Client c = new Client(); 
    Iterator<PlatformID > iter = 

this.platform.getAllNeighborPlatforms().iterator(); 
    PlatformID winner = null; 
    while(iter.hasNext() && winner == null) { 
        PlatformID candidate = iter.next(); 
         winner = c.findAgent(m.getTo(), candidate); 
    } 
    if(winner != null){ 
        return c.sendMessage(m, winner); 
    } else{ 
        return false; 
    } 
} 

In the ServerHelper of the destination platform, the name is used and, if the 
agent is found, returns its PlatformID as a confirmation (or returns a payload of null 
otherwise).  The client checks if the return payload has a PlatformID and returns it    to 
the MTS. 

 

LISTING 3.12: Client: findAgent() 

public PlatformID findAgent(String name, PlatformID loc){ 

    Telegram t = new  Telegram (loc.getlocation(),  
       mts.getMyPlatformID().getlocation()); 
    t.setCommand ("findagent"); 
    t.setPayload(name); 
    Socket cSocket; 
    Telegram ct = null; 
    try{ 
         cSocket = new Socket(t.getRecipientIP(), t.getRecipientPort()); 
        OutputStream os = cSocket.getOutputStream(); 
        ObjectOutputStream oos = new  ObjectOutputStream (os); 
        oos.writeObject(t); 
         oos.flush(); 
         InputStream is = cSocket.getInputStream(); 
        ObjectInputStream ois = new ObjectInputStream(is); 
         ct = (Telegram)ois.readObject(); 
         oos.close(); 
         ois.close(); 
         cSocket.close(); 
    } catch (UnknownHostException e){ 
        e.printStackTrace(); 
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} catch(IOException e){ 

e.printStackTrace(); 
} catch(ClassNotFoundException e){ 

e.printStackTrace(); 
} 
return(PlatformID)ct.getPayload(); 

} 
 

LISTING 3.13: ServerHelper: run() 

public void run ( ) { 
. . . 

// Telegram deserialized 
. . . 
String cmd = t.getCommand(); 
. . . 

// other command blocks 
else if(cmd.equalsIgnoreCase("findagent")){ 

// if agent name is local, return myPlatformID 
// otherwise return null 
String name = (String)t.getPayload(); 
Telegram response = t.reply(); 
if(mts.isLocalAgent(name)){ 

response.setPayload(mts.getMyPlatformID()); 
} else{ 

response.setPayload(null); 
} 
oos.writeObject(response); 
oos.flush(); 
this.socket.close(); 
this.interrupt(); 

} 
. . . // e l s e 

} 

The MTS then has the client deliver the message to the destination. 

LISTING 3.14: Client: sendMessage() 

Public boolean sendMessage(Message m, PlatformID loc) { 

Telegram t = 
new  Telegram(loc.getlocation(), mts.getMyPlatformID().getlocation()); 

t.setCommand("message"); 
t.setPayload(m); 
Socket cSocket; 
Telegram ct = null; 
try{ 

cSocket = new Socket(t.getRecipientIP(), t.getRecipientPort()); 
OutputStream os = cSocket.getOutputStream(); 
ObjectOutputStream oos = new ObjectOutputStream(os); 
oos.writeObject(t); 
oos.flush(); 
cSocket.close(); 
return true; 
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    } catch(UnknownHostException e){ 

        return false; 
    } catch(IOException e) { 
        // possible that payload contains a 
        // non-serializable object or object 
        // with non- serializable fields/references 
        return false; 
    } 
} 

Once the message has arrived, the ServerHelper extracts the message and passes 
it to its MTS, who then forwards it to the platform for final delivery. Once received, 
the agent is free to handle the content within the message as needed. A command 
String is included in the Message object. In the same way the server helper used the 
"agent" command in the Telegram’s command slot to determine how to handle it, 
so too can the agent use the Message command slot to know what content to expect 
and how to use it, if necessary. 

 
3.6 Future Work 

Though only a basic framework, NOMAD contains all of the features needed to 
enable powerful mobile agent applications fit for agent modeling, distributed 
computing, message passing, file sharing, and more. In spite of this, the ways in 
which the framework can be extended and expanded are almost limitless.  
Depending on the needs of the user though, there are certainly different priorities 
in how the framework’s existing features can be further developed to be more robust 
and fault-tolerant, or with new features to be added to expand its capability. There 
are a few improvements, however, that may have immediate benefit to users 
regardless of the domain to which NOMAD may be intended. 

The first improvement would be the addition of a GUI or other type of interface 
to enable the user to perform essential functions on the platform. This would 
provide a simple means to launch new platforms and agents, send messages, close 
down agents and platforms, and other basic functions. This could even be 
implemented as a dedicated agent which launches by default when starting the 
application. Another useful feature would be a mechanism to designate a platform 
as a master node in the platform network. Organizing the network into such a 
hierarchy with a root master could make certain tasks, like directory services and 
information queries, more simplified if those resources were consolidated at a 
master node. Recovery policies could be implemented to move the services to 
another platform in the event that the master node somehow fails. Increased 
security as well, particularly with code mobility, would also certainly benefit the 
framework regardless of implementation. 

For any other new features to be added, it’s important to consider that the 
original purpose of NOMAD is to be extremely lightweight. Therefore, new features 
should be implemented in a modular way which can be added or removed easily as 
needed, such as through launch arguments, or a preferences file similar to the one 
NOMAD currently uses to specify which port to run the server on. 
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3.7 Conclusion 

In an age where distributed computing is extremely widespread and common, Agent- 
based computing in its many forms stands as a very powerful model that provides 
flexibility, autonomy through its agents, and versatility. From the simple view of the 
agent as an autonomous entity that provides the abstract principle of agency, or acting 
on behalf of the user or software, comes a broad base of architectures and 
implementations used in a vast number of domains in business, science, and 
engineering. These implementations sometimes conform to established standards that 
extend their capabilities and interaction with other agent-based systems. How these 
implementations are designed have an impact on where their strengths lie in areas of 
planning, cognition, behavior, reaction, mobility, sociability, efficiency, security, and fault-
tolerance. As new technologies develop, new opportunities for using agent-based 
systems are discovered, driving the need for using the agent paradigm in new ways. 

By understanding the core principals and technologies of agent-based systems, 
particularly agent mobility, the user can take better advantage of the implementations 
of such systems in developing applications with them. Having a simple framework from 
which to begin experimenting with implementing agent systems, and building onto 
that framework to expand its capabilities as needed, NOMAD hopes to offer the user 
the advantage of more quickly mastering the concepts needed to bring agent-based 
computing into the next decade of advancement. 
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