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ABSTRACT

A Study On Effects Of Data Poisoning On HMMs

by Rachel Gonsalves

With the ever increasing use of burgeoning volumes of data, machine learning

systems involving minimal human oversight are crucial for classification and analysis

tasks. Machine learning algorithms used for such purposes have revolutionized the

way we sort, classify, and analyze data.

The accuracy of any machine learning algorithm depends heavily on the data it

is trained on. In some circumstances, an attacker can attempt to poison the training

data to subvert a machine learning system. In this research, we analyze the effects of

training data poisoning attacks on hidden Markov models (HMMs), in the context of

malware classification. With the increase in percentage of data poisoning, HMM is

still able to classify most files correctly. Hence we find that HMMs are able to classify

at high and low level of poisoning.
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CHAPTER 1

Introduction

With the sheer rise in the amount and variety of data being generated, it has

become crucial that we have techniques to classify data independent of human

supervision. Machine learning techniques prove useful not only in classifying data but

also in identifying malware. Malware can affect computers, leak sensitive data [1],

cause denial of service attacks and cause much damage to crucial systems in the

current world. Many machine learning techniques are being used today to detect

malware and prevent attacks. In order to escape detection and carry out attacks

successfully, attackers come up with innovative ideas; one such idea is to compromise

the training data of a machine learning model, which causes incorrect learning and

thus confuses the model and leads to decreased accuracy but with higher and lower

levls of posoinonig the model still [2].

The attacks that involve influencing the models can be categorized as [3]:

• Causative

• Exploratory

Figure 1: Poisoning of Training Set
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The accuracy and efficiency of a machine learning algorithm depends on the

training data. When the training set for a machine learning algorithm is poisoned,

such an attack is called a causative attack. [3]. Poisoning a model slowly over a

period of time is called the Boiling Frog attack [2]. Figure 1 describes how an

attack on the training set works [3]. 𝑃𝑧 indicates the true distribution. 𝐷𝑡𝑟𝑎𝑖𝑛 and

𝐷𝑒𝑣𝑎𝑙 represent the training and testing set respectively. 𝐻 is the machine learning

algorithm.𝑓 is the hypothesis that is evaluated by comparing the results. An example

of a causative attack against a spam filter is described as follows in [4]: Attackers

try and circumvent spam filter re-training by sending non-intrusive traffic, carefully

constructed to resemble the upcoming spam. This causes the defending filter to be

mis-trained which results in an inability to effectively block the spam. This would

be as follows: the spam sales pitch "You need a new phone? Really, do buy now!"

is recast as "Do you really need buy a new phone, now!?"; while both these phrases

have markedly different meanings they are treated the same by the spam filter. [4] In

an exploratory attack, the attacker observes the effects of instances designed for the

learning model but does not directly influence the learning [5] [2].

The goal of a malware detector is to ensure secure learning [3]. In the current

experiment, we check how susceptible HMMs are to data poisoning. For a given

training set, when data is poisoned, the model is tested on a benign and malware test

data. When the model training set is poisoned, we quantify the change in performance

of the model.

The remainder of this paper is structured as follows. Relevant background topics

are discussed in Chapter 2. This chapter includes an introduction to Hidden Markov

Models(HMMs), on which our training and testing methods and some related work.

In Chapter 3, we discuss the implementation, present the results and observations.

Chapter 4 contains the conclusion and a brief discussion of future work.
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CHAPTER 2

Background
2.1 Hidden Markov Model

Hidden Markov model is a machine learning technique which is used for statistical

pattern analysis [6]. To get a deeper understanding of the concept and an overview of

the terminology used, we look at an example from the paper ’A Revealing Introduction

to Hidden Markov Models’ [7] and understand the terminologies. Suppose we want to

predict the temperatures of some 100 years ago and know that relation between the

size of growth of tree rings and the weather. The weather is categorized to hot(H)

and cold(C). The sizes of tree rings to small(S), medium(M) and large(L). Given an

observation of tree ring sizes we try to find whether it was hot or cold during the

growth of the ring. These states are unknown thus known as hidden states. The

model is represented by observation matrix, transition matrix and the initial state

distribution.

The transition matrix 𝐴 is a 𝑁 * 𝑁 matrix where is 𝑁 is the number of

states, observation matrix is 𝑁 * 𝑀 where M is the number of observed symbols.

Initial state distribution is the probability of starting at any given state and is

give by a list of size 𝑁 , these represent probabilities corresponding to each state.

Each matrix is row stochastic. In the Figure 2 [7], 𝑋0−𝑋𝑛 represents the hidden states.

𝑇 = length of the observation sequence

𝑁 = number of states in the model

𝑀 = number of observation symbols

𝑄 = 𝑞0, 𝑞1, ..., 𝑞𝑁−1 = distinct states of the Markov process

𝑉 = 0, 1, ..., 𝑀 − 1 = set of possible observations

𝐴 = state transition probabilities

3



𝐵 = observation probability matrix

𝜋 = initial state distribution

𝑂 = (𝑂0, 𝑂1, ..., 𝑂𝑇 −1) = observation sequence.

Figure 2: Hidden Markov Model

HMM is used to solve mainly three problems:

Problem 1: Given a sequence of observation to find the probability of the observed

sequence

Problem 2: Finding the state sequence that best fits the given model.

Problem 3: To find a model that fits best the observed data [7].

2.2 Hidden Markov Model for Malware Detection

For malware classification in HMM, the model is trained on the opcode sequence

of the malware. This type of analysis is known as static analysis because it does not

involve execution and monitoring [8]. Malware detection with the help of HMM is

statistical as it trains on statistical features [9].

2.3 ROC Curves

For Receiver Operating Classifier(ROC) curves, we need to calculate the True

Positive Rate(TPR) and False Positive Rate(FPR).For a given classifier, we need

to understand that samples can be classified in 4 ways [10]. When a given malware

4



sample is correctly classified as malware, it is considered to be a true positive. When

a malware sample is classified as benign it is a false negative. When a sample is

benign and classified as benign it is a true negative.When a benign sample is wrongly

classified as malware it is False Positive. TPR is the total number of true positives

upon the total number of positive samples, TPR also termed as the sensitivity [11]. A

True Negative Rate(TNR) is the total number of true negatives up the total number

of benign samples and is known as the specificity. [12]. The x-axis of the ROC curve

represents the FPR and y-axis represents the TPR. The threshold passes through the

point (TPR,FPR) [10].

2.4 Related Work

When it comes to data poisoning, a lot of work has been done to observe its

effects on various machine learning techniques. Data poisoning attacks mostly occur

when a system is adaptive [13]. It is also most common when data is gathered from

unreliable sources. One of the methods used to improve the efficiency and decrease the

model vulnerability is that the model can be trained to reject a sample which causes a

decrease in efficiency. The sample would be considered as an outlier. This technique

is also known as Reject On Negative Impact(RONI) or data sanitization [14] [13].

Blacklisting and white listing sources requires a lot of effort and it also blocks some

good traffic. This does not prove to be effective in the long run either [15]. Another

method, weighted bagging, was used for the training data; this helps make the model

robust against such attacks [16] [5] . The concepts of data sanitization, weighted

bagging and defining upper and lower bounds for testing data are useful when dealing

with adversarial machine learning and are decribed in detail in [17] [18].
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CHAPTER 3

Methodology and Results
3.1 Methodology

Hidden Markov models are useful in classification of malware. HMM is used to

distinguish between malware and benign files. [7] For the detection of malware, the

model is trained on the opcode sequence. This trained model is tested on opcode

sequence of benign files as well as malware. For the purpose of this experiment, the

HMM is trained on 100 files each of 3 malware families. The 𝐴, 𝐵 and 𝜋 matrix are

initalized to around 1/𝑁 , 1/𝑀 and 1/𝑁 per row respectively. The 26 most frequently

occuring opcodes were mapped and the rest were considered to be space. For the

current model the values were initialized as follows: 𝑁 = 2, 𝑀 = 27. 𝑀 is 27 for the

number of opcodes and space inserted for every opcode not in the 26. N is 2 as it gave

the best classification after experimenting with N ranging 2 to 6. For each training

100 files are used.

3.2 Dataset

In order to test the effects of data poisoning on the model, the model was initially

trained on a pure training set so the changes in the efficiency of the model can be

observed once the data is poisoned. For the purpose of this experiment, malware files

from the Malicia dataset were used. The model was trained on 3 malware families

based on the number of samples available in the training set: Winwebsec [19], Zbot [20]

and Zeroaccess [21].

For each malware family, the training set and test set contained 100 files. Once the

model was trained and tested, the data was poisoned gradually by adding files one by

one to the training set, training and then testing the model. The decrease in efficiency

of the model is checked by evaluating the Area Under the Curve (AUC).
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3.3 Tests

This section includes the results of data poisoning on 3 malware families.

100 files from each malware family were selected randomly. For the purpose of

testing, a sequence with 𝑇 = 15000 was used from each sample file to score the samples.

3.3.1 Effects of Data Poisoning on Winwebsec

The model was trained on 100 files from the Winwebsec malware family, and

tested on 100 samples of malware and benign files, the training data was poisoned with

the addition of one malware file and was tested again. From Figure 3 to Figure A.27,

we see the scatter plots and ROC curve of the tested data. In the results we see that

the AUC of the model decreases with addition of each benign sample. In the pure

training set, an AUC of 0.64 is observed 3, which gradually goes to 0.95 A.22 with a

data poisoning of 45%

7



Figure 3: Winwebsec ROC Curve and AUC with Pure Dataset
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Figure 4: Winwebsec Scatter Plot for with Pure Dataset
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3.3.2 Effects of Data Poisoning ZeroAccess

The model was trained on 100 files from the ZeroAccess malware family, and

tested on 100 samples of malware and benign files, the training data was poisoned with

the addition of one benign file after each test and was tested again. From Figure 5

to Figure A.41, we see the scatter plots and ROC curve of the tested data. The

results were evident as we see that the AUC of the model decreases with addition of

each benign sample. The results were evident as we see that the AUC of the model

decreases with addition of each benign sample. In the pure training set, an AUC of

0.93 is observed Figure 5, which gradually reduces to 0.19 which can be reversed to

an auc of 0.81 Figure A.40 with a data poisoning of 45%

Figure 5: ZeroAccess ROC Curve and AUC with Pure Dataset

10



Figure 6: ZeroAccess Scatter Plot for with Pure Dataset

3.3.3 Effects of Data Poisoning on Zbot

The model was trained on 100 files from the Zbot malware family, and tested

on 100 samples of malware and benign files, the training data was poisoned with

the addition of one benign file at a time and was tested again. From Figure 7 to

Figure A.63, we see the scatter plots and ROC curve of the tested data. In the results

we see that the AUC of the model does not decreaset with addition of each benign

sample. In the pure training set, an AUC of 0.71 is observed Figure 7, which gradually

increaseses to 0.79 Figure A.58 with a data poisoning of 45%

11



Figure 7: Zbot ROC Curve and AUC with Pure Dataset
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Figure 8: Zbot Scatter Plot for with Pure Dataset
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3.3.4 Results for All Malware Families

The following Figure 9 is a graphical representation of the change in AUC with the

increase in percentage of data poisoning for all malware families.The x axis represents

the AUC and the y axis represents the percentage of data poisoning.

Figure 9: Effects of Data Poisoning on All Malware Families
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CHAPTER 4

Conclusion and Future work
4.1 Conclusion

HMM was trained on three malware families, these trained models were tested

on malware and benign samples. The models trained on pure datasets performed well.

Multiple HMM models were trained with training data poisoned from 0% to 45% for

each family incrementing the poisoning by 5. As the percentage of poisoning increased,

the model was still able to classify the files at a higher and lower level of poisnoning.

4.2 Future Work

HMMs trained on API calls as features are stronger and hence it would be a good

comparison to see how HMMs trained dynamically perform with this type of an attack

15
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APPENDIX

APPENDIX A
A.1 Graphs for Data Poisoning on Winwebsec

Figure A.10: Winwebsec ROC Curve and AUC with 5% Data Poisoning
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Figure A.11: Winwebsec Scatter Plot for 5% Data Poisoning
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Figure A.12: Winwebsec ROC Curve and AUC with 10% Data Poisoning
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Figure A.13: Winwebsec Scatter Plot for 10% Data Poisoning
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Figure A.14: Winwebsec ROC Curve and AUC with 15% Data Poisoning
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Figure A.15: Winwebsec Scatter Plot for 15% Data Poisoning
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Figure A.16: Winwebsec ROC Curve and AUC with 20% Data Poisoning
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Figure A.17: Winwebsec Scatter Plot for 20% Data Poisoning
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Figure A.18: Winwebsec ROC Curve and AUC with 25% Data Poisoning
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Figure A.19: Winwebsec Scatter Plot for 25% Data Poisoning
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Figure A.20: Winwebsec ROC Curve and AUC with 30% Data Poisoning
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Figure A.21: Winwebsec Scatter Plot for 30% Data Poisoning
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Figure A.22: Winwebsec ROC Curve and AUC with 35% Data Poisoning
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Figure A.23: Winwebsec Scatter Plot for 35% Data Poisoning
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Figure A.24: Winwebsec ROC Curve and AUC with 40% Data Poisoning

32



Figure A.25: Winwebsec Scatter Plot for 40% Data Poisoning
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Figure A.26: Winwebsec ROC Curve and AUC with 45% Data Poisoning
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Figure A.27: Winwebsec Scatter Plot for 45% Data Poisoning
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A.2 Graphs for Data Poisoning on ZeroAccess

Figure A.28: ZeroAccess ROC Curve and AUC with 5% Data Poisoning
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Figure A.29: ZeroAccess Scatter Plot for 5% Data Poisoning
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Figure A.30: ZeroAccess ROC Curve and AUC with 10% Data Poisoning
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Figure A.31: ZeroAccess Scatter Plot for 10% Data Poisoning
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Figure A.32: ZeroAccess ROC Curve and AUC with 15% Data Poisoning
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Figure A.33: ZeroAccess Scatter Plot for 15% Data Poisoning
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Figure A.34: ZeroAccess ROC Curve and AUC with 20% Data Poisoning
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Figure A.35: ZeroAccess Scatter Plot for 20% Data Poisoning
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Figure A.36: ZeroAccess ROC Curve and AUC with 25% Data Poisoning
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Figure A.37: ZeroAccess Scatter Plot for 25% Data Poisoning
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Figure A.38: ZeroAccess ROC Curve and AUC with 30% Data Poisoning

46



Figure A.39: ZeroAccess Scatter Plot for 30% Data Poisoning
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Figure A.40: ZeroAccess ROC Curve and AUC with 35% Data Poisoning
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Figure A.41: ZeroAccess Scatter Plot for 35% Data Poisoning
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Figure A.42: ZeroAccess ROC Curve and AUC with 40% Data Poisoning
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Figure A.43: ZeroAccess Scatter Plot for 40% Data Poisoning
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Figure A.44: ZeroAccess ROC Curve and AUC with 45% Data Poisoning
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Figure A.45: ZeroAccess Scatter Plot for 45% Data Poisoning
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A.3 Graphs for Data Poisoning on Zbot

Figure A.46: Zbot ROC Curve and AUC with 5% Data Poisoning
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Figure A.47: Zbot Scatter Plot for 5% Data Poisoning
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Figure A.48: Zbot ROC Curve and AUC with 10% Data Poisoning
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Figure A.49: Zbot Scatter Plot for 10% Data Poisoning
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Figure A.50: Zbot ROC Curve and AUC with 15% Data Poisoning
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Figure A.51: Zbot Scatter Plot for 15% Data Poisoning
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Figure A.52: Zbot ROC Curve and AUC with 20% Data Poisoning
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Figure A.53: Zbot Scatter Plot for 20% Data Poisoning
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Figure A.54: Zbot ROC Curve and AUC with 25% Data Poisoning
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Figure A.55: Zbot Scatter Plot for 25% Data Poisoning
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Figure A.56: Zbot ROC Curve and AUC with 30% Data Poisoning
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Figure A.57: Zbot Scatter Plot for 30% Data Poisoning
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Figure A.58: Zbot ROC Curve and AUC with 35% Data Poisoning
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Figure A.59: Zbot Scatter Plot for 35% Data Poisoning
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Figure A.60: Zbot ROC Curve and AUC with 40% Data Poisoning
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Figure A.61: Zbot Scatter Plot for 40% Data Poisoning
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Figure A.62: Zbot ROC Curve and AUC with 45% Data Poisoning
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Figure A.63: Zbot Scatter Plot for 35% Data Poisoning
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