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ABSTRACT

PE Header Analysis for Malware Detection

by Samuel Kim

Recent research indicates that effective malware detection can be implemented

based on analyzing portable executable (PE) file headers. Such research typically

relies on prior knowledge of the header to extract relevant features. However, it is also

possible to consider the entire header as a whole, and use this directly to determine

whether the file is malware. In this research, we collect a large and diverse malware

data set. We then analyze the effectiveness of various machine learning techniques

based on PE headers to classify the malware samples. We compare the accuracy and

efficiency of each technique considered.
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CHAPTER 1

Introduction

One of the managers came to our office requesting help to access his files. He could

not open any of the files on his laptop. He was a victim of ransomware inadvertently

downloaded onto his computer when opening an email attachment from work. The

anti virus software on the mail servers and his laptop computer failed to detect the

malware instance. This software not only encrypted the files on his laptop, but also

encrypted his external backup drive. In order to get his files back, this particular

malware required payment to be made through cryptocurrency. Unfortunately, it was

company policy to not pay the ransom. In the end he lost years worth of work on

multiple projects. This is a true story, and stories like this have become increasingly

common.

Although the number of unique malware types have decreased, the total number

of malware instance have increased significantly [5]. Malware developers have become

more focused on certain types of malware, such as ransomware, and have developed

methods to obfuscate the purpose of the code making them difficult to detect. Some

ways of obfuscation is by polymorphic or metamorphic self replication, where each

new replicated malware instance is undetectable by current signatures. The number

of active malware instances encountered has continued to grow exponentially, driven

both by replication of existing malware designs and new malware development. To

combat this growth, different detection methods have been developed.

The most common detection method which is still in use today is signature

detection. When a malware instance is identified a signature is extracted. The

signature is a unique contiguous set of bytes which identifies the malware [6]. Normally

the signature is extracted from the payload, which executes the actual malicious act [7].

This act could be anything from encrypting files as happens with ransomware, deleting
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files as often occurs with viruses, or even stealing personal information as commonly

happens in web and email-based malware. Once the signature has been identified, it is

placed in a database and utilized to identify the malware instance. The key weakness

to this technique is that the malware must first be identified and a unique payload

extracted, after which an analysis can be utilized for detection.

The heuristic method is a process by which the activities of a malware instance

is analyzed either in realtime, where the maware is executed in a virtual environment,

or by decompiling and analyzing the code. When running in a virtual environment,

malicious activities of the program are observed. The anti virus software attempts to

detect whether acts such as file replication, overwriting, or obfuscation are attempted.

When the code is decompiled, a comparison is made with known malware code to

determine if the program is malicious [8]. The primary weakness of this method is

its inability to detect viruses which utilize new methods to implement the malicious

activity.

In a generic detection method, the virus is detected by identifying generically

threatening techniques. Examples of generic detection might include contacting a

known ip address, renaming files or modifying a specific file [9]. Unlike heuristic

approach, the program is not thoroughly analyzed for detection, but rather generically

detected. The weakness in this method is that it is unable to find unknown malware.

To improve on some of these shortcomings, machine learning technique have been

developed to detect malware. Features are extracted using either a dynamic analysis

or static analysis of the potential malware instance [10]. In dynamic analysis, features

are extracted by running or emulating the code. In contrast, static analysis looks at

the sequence of bytes or opcode values and extracts features from that information.

Most of these studies require analysis or execution of the entire program. There are

only a few studies which focus only on the PE headers.
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Most studies have fairly small data sets (in the thousands). The few studies

which utilize large data sets are unable to share them due to various restrictions on

use of the data. It is fairly easy to get large data sets of computer viruses, but these

sets are unorganized and not cleaned for machine learning. Furthermore, getting

large data sets that are labeled and classified in multiple groups (such as families of

malware) are also difficult to collect or unavailable.

In this paper we will be using a large data set of over 500,000 labeled malware

instance. We will go over how this data set was collected and labeled. Analysis of

each PE file will focus on the header; we will explore the feasibility of this technique

to identify and classify malware. Both feature free and feature full approach will be

used in the machine learning algorithms.

In Chapter 2, we will go over some background information. We will review some

of the previous work which has been done that specifically focuses on the PE header.

The PE file structure will also be reviewed in this chapter. Furthermore, there will be

an overview of the features and machine learning algorithms that will be used in this

project. In Chapter 3, we will discuss how the malware was labeled using Windows

Defender, and what these labels mean. This chapter will also talk about the tools and

libraries used to parse the header and run the experiments. Chapter 4 will discuss the

experiments and results. Finally, Chapter 5 will provide a conclusion and a direction

for future work.
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CHAPTER 2

Background

Section 2.1 of this chapter will introduce the PE file structure. In Section 2.2,

prior malware detection work utilizing the PE header will be discussed. PE features

will be covered in Section 2.3. Section 2.4 will go over the machine learning algorithms

which will be used in the experiments.

2.1 PE File Format

Windows program files are in a specific format called Portable Executable (PE).

They were first introduced back in Windows NT 3.1 [11]. Since its introduction,

extensions have been made for additional binary formats including .NET and 64 bit

support (PE+32). This is the standard binary format for EXE and DLL files under

Windows.

The PE file starts with the MS-DOS header, the bytes being the ascii value

of MZ as shown in Figure 1. This identifies the first part of the file as a MS-DOS

header section. The next section is the stub program, a full fledged MS-DOS program.

The purpose of this program is to give a descriptive error message to the user if the

program is executed in MS-DOS, or any version of Windows prior to Windows NT

3.1. The hex view in Figure 1 shows a message "This program cannot be run in DOS

mode". Note that the programmer can insert any stub program that they like.

The hexadecimal address at 0x3c contains the offset to the PE signature [12].

The PE signature follows the MS-DOS stub and consists of 4 bytes which identify the

image format; a PE format image file will have a signature consisting of the letters P,

E, and two null bytes: i.e., "PE\0\0" [13]. After the signature is the PE header.

Included in the PE header is the COFF file header. This includes the Machine field,

in our case this will be an INTEL 386 or compatible processor, the NumberOfSections,

the SizeOfOptionalHeader, the NumberOfSymbols and PointerToSymbolTable. After
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Figure 1: Hex view of the first part of the PE file

the COFF file header is the Optional header. This header is divided in two parts: the

Window specific fields, and the data directories. The Window specific fields is used

by the operating system to load and execute the file. The data directories contain the

location (RVA) and size of the different tables which are required by the OS, These

are loaded into memory at run time.

After the Optional header is the section tables. These are basically the Section

header for each data section. Matt Pietrek calls it the "phone book containing

information about each section in the image" [11]. It contains size and location

information.

5



Sections are where the code or data is located. For instance, the .text section is

where your code goes, the .data section is where your static and global variables are

stored, and the .bss section is the location of the uninitialized variables.

2.2 Prior Work

From this brief overview of the PE file format we can see that the PE header is

quite complex, with many variables and fields. It is common for malware developers

to manipulate the PE header to hide the malware instance from anti virus software.

In this section we will review some of the studies that focuses on the PE header.

2.2.1 PE Header for Malware Detection

This small project, [14], demonstrated malware detection by extracting the header

fields and making a comparison of these features against benign files. The "pefile"

Python library was used to extract the File, Optional, and Section headers. No

machine learning was used, however all the features from the extracted headers were

compared. The top 5 feature which differed significantly from a benign header were

used for binary classification. A 99.5% true positive rate was achieved using this

detection method.

The benign data set was downloaded from download.com and softpedia.com.

A program was developed, called Web-Spider, which uses the BeautifulSoup and

Appscript libraries to download these files. The malware was provided by the professor,

Dr. Perdisci. A total of 5,598 malware samples and 1,237 benign samples were used

in the project.

2.2.2 Detection Utilizing Support Vector Machine

This study, [15], used Support Vector Machine algorithm to detect and classify

malware. The Microsoft application Dumpbin was used to extract the header infor-

mation. They classified the malware into 5 different classes: benign, virus, email
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worm, trojan and backdoor. Feature selection was done and an accuracy of 98% was

achieved for detecting virus. No classification accuracy was given, however accuracy

of above 80-90% was achieved for each of the malicious classes against benign files.

This project had 1,908 benign programs and 7,863 malicious files. The virus

binaries are from VX Heaven and was identified by the Kaspersky anti virus software.

The benign files were extracted from Windows 2000 and XP operating system, and a

website called PChome.

2.2.3 Machine Learning

This project, [16], compared and used multiple machine learning algorithms to

classify malware. The following algorithms were used in this research: Naive Bayes,

Decision Tree, SVM, Random Forest and IB5. All the algorithms had an area under

the ROC curve (AUC) above 0.85 for both multi-class and binary classification.

Random Forest had the best AUC result of 0.991 for multi-class and 0.998 for binary

classifications.

The data set was collected from various sources, some of them pre-labeled. All

viruses were cleaned using 3 different anti virus applications. 8,265 benign files and

15,641 infected files with 7 different classes were in the data set. Headers and Import

tables were extracted using the objdump program. A total of 1,867 features were

extracted.

2.2.4 PE Header with Minimal Domain Knowledge

Lastly, this paper [17], which our project is based on, obtained their malware

data sets from three different sources: VirusShare, Open Malware, and an "Industry

Partner". These data sets were grouped by their sources. The total number of malware

were 541,575 where 240,000 of them were from the "Industry Partner", these were

unavailable due to a non disclosure agreement.
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Five machine learning models were utilized in this approach. Two kinds of

features were extracted from the PE header, minimal domain knowledge and domain

knowledge. The minimal domain knowledge approach uses the byte value of the header,

where as the domain knowledge approach uses the extracted header information based

on the PE specification from Microsoft (both approaches are detailed in Section 2.3).

The first 3 header sections from the PE file was used, Import tables were not utilized.

The baseline approach was using a domain knowledge feature onto two tree based

learning algorithms, Random Forest and Extra Trees. These algorithms were applied

to each of the groups. The result of the tree based model gave an accuracy of 99% for

both VirusShare and Open Malware data sets, and 69.9% for the "Industry Partner"

set. No other machine learning model results based on domain knowledge features

were published in this paper.

The minimal domain knowledge feature for the five machine learning model

results are shown in Table 1.

Group A Test Group B Test Open Malware
Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy(%)

Fully Connected 90.8 97.7 83.7 91.4 89.9
LSTM 84.2 96.7 77.5 86.7 79.7

Extra Tree 86.4 97.2 80.7 86.1 85.5
Random Forest 78.9 96.8 82.3 91.2 64.4

LR 3-grams 71.2 91.4 77.8 87.3 61.5
Table 1: Group A - VirusShare, Group B - Industry Partner

As we can see, the accuracy was above 70% for all 3 groups while the Neural

Network (Fully Connected) had an accuracy above 80%. Binary classification was

applied to all experiments.
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2.3 Feature Definition

In this section we will clearly define the features that were used in this project.

We will cover feature full and feature free, note that these were referred to as "domain

knowledge" and "minimum domain knowledge" in [17].

2.3.1 Feature Full

Feature full is produced by extracting the feature utilizing knowledge of the

Microsoft PE specification. For example, in the PE specification the value for

NumberOfSection is located in the Image file header, 2 bytes after the signature. The

value extracted would be used as a feature. There are a number of programs and

libraries that parse the PE file in this manner, such as PortEx, pefile, and objdump.

We used the pefile library on the first 3 header sections, resulting in 87 features. The

list of exact features used is in Appendix A.

2.3.2 Feature Free

Feature free is simply reading the first 64 bytes from the MS-DOS header and

adding the PE header which starts at the offset defined at 0x3c. 264 contiguous bytes

are read, starting from the offset. Each byte is considered a feature, giving us 328

features. The header file may not end at byte 328, however it gives us a general

overview of the header without parsing out each specific feature. This is in contrast

to the feature full approach. The feature free calculation was utilized in the previous

project, [17].

2.4 Machine Learning Algorithms

This section will give a brief overview of the machine learning model which was

used in this project.
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2.4.1 Random Forest

The Random Forest approach consists of multiple decision trees created from a

dataset. Random sets of features are picked at the split of each node. The average

probability from each decision tree will be used to determine the classification.

Here is the basic algorithm for training a Random Forest classification [18].

1. For each decision tree that is going to be grown:

(a) Choose a random subset from the data set, this will be used to build each

decision tree.

(b) Grow each tree, apply following steps on each node until the minimum

depth is reached.

i. Randomly select a set of features.

ii. Pick the best split point based on the randomly selected features.

iii. Split the node into 2 child nodes.

2. Output the forest (all of the trees).

For example, consider a 5 tree Random Forest. Each tree would be created using

one of the 5 subsets that was created in part (a) of the algorithm. Individual trees

would be created by selecting a random fixed set of features at each node, then picking

the best split point based on those features that will create two child nodes. This will

be repeated until the minimum chosen depth is reached. Once the forest is created,

the average probability on all 5 trees for each leaf classification can be computed to

determine the classification [19].

2.4.2 K-Nearest Neighbors

K-NN is a clustering machine learning algorithm that uses the training set to

determine the classification. The K in K-NN simply means that you are choosing the
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K number of the nearest neighbors based on feature using a distance formula. The

Euclidean distance is a commonly used formula for this model [20].

Figure 2: K-NN classification example [1]

The sample in Figure 2 shows a plot of two classes, ‘‘a’’ and ‘‘o’’, based on two

features. The ‘‘a’’ and ‘‘o’’ points are from the training set, therefore there are 8 class

‘‘a’’ training points and 7 class ‘‘o’’ training points, for a total of 15 elements in the

training set. The vector ‘‘c’’ is the input which we are trying to classify. If 𝐾 = 3,

then the 3 nearest neighbors to ‘‘c’’ would be 2 ‘‘o’’s and 1 ‘‘a’’, by majority rules this

would make ‘‘c’’ a class ‘‘o’’.

Since the classification is based on the number of nearest neighbors, it is possible

for a tie to exist, particularly if the K is even or is a multiple of the number of classes.

There are different ways of handling this, you can either choose a K which is not even

and not a multiple of the number of classes, or randomly pick a class [18, 21].

The weakness in this model is the cost in calculating the distance to all the

training points. Additionally with larger feature spaces the complexity of the equation

makes it difficult to compute [21].
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2.4.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning classifier which was

originally intended for binary classification, however it can be extended to more than

two by using one-versus-one or one-versus-all classifications. We will first give a

brief description on how SVM works for binary classification. Then we will touch on

one-versus-one and one-versus-all classification and how they apply to SVM.

SVM implements classification by producing the best line or hyper-plane between

the two classes. This hyper-plane is generated by determining the widest margin

which separate the two groups without having any of the points inside that margin. In

Figure 3, we can see that the larger margin is 𝑧2. The one # and two � points would

be the support vectors. Finding the best line is a constrained optimization problem

where the support vectors would be considered the constraints and the optimization

is finding the best line by maximizing the margin. This problem can be solved using

techniques from Lagrange multipliers. [22] provides more information on how the

Lagrange multiplier is used in SVM.

The Figure 3 example has two features, therefore it has two dimensions. The

same solution and technique can be applied to larger dimensions with more than two

features. The classes in this case would be separated by a hyper-plane.

Another way to change the dimension is to use the kernel trick. This transforms

the training points into a different space by adding another factor [23].

Figure 4 shows a plot that cannot be linearly separated in its current state. By

applying the kernel trick to the training points, this will essentially project the points

into a different dimension as shown in Figure 5. As a result, a third dimension 𝑍 is

added which makes the classes linearly separable.

There are a variety of transformation that can be used in the kernel trick. These

include Linear, Radial Basis Function, Polynomial, and Sigmoid [20].
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Figure 3: SVM classification example [2]

Figure 4: Kernel trick [3]

2.4.4 OVO and OVA

Although SVM is intended for use with binary classification, classification with

more than two classes can be accomplished utilizing the one-vs-one and one-vs-all

techniques. These techniques can be used generically with any binary classifiers [24].
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Figure 5: Kernel trick transformation [3]

Figure 6: OVO and OVA example [3]

2.4.4.1 OVO

The one-vs-one (OVO) method compares each of the classes against each other

to define the classification [24]. Figure 6 shows a plot of 3 classes, ×, △, and �. In

the OVO method you would train the machine learning algorithm 3 times creating 3

binary models with the following classification, × vs △, × vs � and, △ vs �. Now

when a new vector 𝑧 is classified, it is input into each of the models. The classification

will be based on which of the classes have the most votes, also known as majority

rules. For example, if two of the models output × and the third model outputs a △

then the classification would be an × because × received two votes and △ received
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one vote. This method allows a balanced comparison when there is an equal number

of classes with all the training data. However, as more classes are added more models

need to be trained for each of the comparisons.

2.4.4.2 OVA

The one-vs-all (OVA), also known as one-vs-rest, method compares each class

against all of the available data [24]. Again looking at Figure 6, 3 binary classifiers

will be created: × vs △ and �, △ vs × and �, and � vs △ and ×. To determine

what class a 𝑧 vector is in, the 𝑧 vector will be input into each of the models and the

highest probability will be chosen. This method requires fewer classification models

to be trained than OVO. However, training is imbalanced, since one class is being

trained against the rest of the classes.

2.4.5 Neural Network

Finally, the last machine learning algorithm that we will use in this project is the

Neural Network. The first part of this section will describe the components of the

Neural Network and how a given input is classified. The second part will go over the

training and learning process.

2.4.5.1 Structure of Neural Network

The Neural Network is consists of nodes known as Perceptrons [25]. These

Perceptrons are organized in layers where the first layer is the input layer and the last

layer is the output layer. All layers in between the input and output are called hidden

layers. This model is fully connected because each node in one layer is connected to

all the node in the next layer. We can see in Figure 7 that there is an input layer, a

hidden layer, and an output layer.

Each node has an activation function that takes a given input and outputs a

value between 0 and 1. Some common activation functions include sigmoid, ReLu
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Figure 7: Neural Network

and tanh [24]. The edges which connect these nodes are represented as weights. The

product of the weights and an activation value is sent to the next layer as input. The

weights are the variables that are tweaked to learn the correct output. Although not

shown in Figure 7, the bias value is another variable which is also adjusted. It is a

way to control the inactivity of the weighted sum. There is a unique bias for each of

the hidden and output layers which is added to each node of those layers.

In Figure 8 we can see that there are four inputs, the product of all the 𝑥𝑖 and 𝑤𝑖.

These values are summed up with the bias 𝑏 and input into the activation function.

The 𝑥𝑖 are the activation values and the 𝑤𝑖 are the weights. The output of the

activation function is the new 𝑥 for the next layer. This process continues until the

output layer of the Neural Network. The output is in decimal form and the largest

value from those output nodes is the result. For example, in Figure 7 the two outputs

represent benign or malicious. If the top output node (benign) is 0.53 and the bottom
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Figure 8: Illustration of single node

output node (malicious) is 0.47 then the prediction result is benign. The total of all

the output nodes will equal one, 0.53 + 0.47 = 1.

2.4.5.2 Training Neural Network

When training the Neural Network, the end goal is to minimize the cost function.

The cost function is the predicted output minus actual output squared and averaged

among all the training data. To minimize the cost, the gradient descent is applied to

cost function. This will give directions on how to change the weights and biases to

decrease the cost. Back-propagation is the algorithm used to compute the gradient

descent, [25] provides more information on back-propagation. The details of back-

propagation is outside the scope of this paper.
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CHAPTER 3

Implementation

In this section we will describe the data set and the process we took to label each

PE file. Code snippets will be shown to demonstrate the key commands that were

used in this project. These are not full programs but simple demonstrations of how

they are used. The libraries and hardware will also be covered here.

3.0.1 Data

The larger labeled data set from the various papers which we found were un-

available due to NDAs and license agreement. We attempted to use VirusTotal to

label the malwares, however there were limitations to the student account that was

provided to us. The rest API queries were limited to 10,000 per day and the request

per minute were also throttled. This subsection will describe the process we utilize to

verify and label the data set using Microsoft Windows Defender.

List of software that was used to process and label the data.

• Linux (Ubuntu 16.04 LTS was used in this project.)

• Ktorrent (BitTorent client to download the data set)

• Windows 10

• Windows Defender

• Cygwin with rsync.exe enabled

• PowerShell ISE

The data set used came from VirusShare [26] and was distributed using BitTorrent.

It was broken down into multiple zip files with one zip file per torrent. At the time of

this writing there are over 300 torrents where the first 148 torrents, contain 131,072

samples each. The remaining torrents contains 65,536 samples each. Each zip file

contains a mixed bag of samples for different platforms, this includes PE files, Android

APK files, ELF files, etc...
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$ /usr/bin/file <file_name > | grep PE32 | sed ‘s/:.*// ’ >> PElist.
txt

Figure 9: Linux command to list PE file

Since each zip file contains a variety of different file types, the Linux file command

was used to filter out all the non PE files. The Linux command in Figure 9 uses the

combination of file, grep, and sed to check if the file is of type PE. Looping through

each file name with this line provide a list of all the PE files. Each PE file name

was added to PElist.txt file. The PElist.txt was used to transfer each PE file onto a

Windows 10 machine.

Before transferring using the PElist.txt file, the following Windows Defender

setting were configured. Real time protection was turned on, cloud-based protection

was turned off, and automatic sample submission was also turned off. The rsync.exe

file and the Cygwin bin folder was also added to the Windows Defender exclusion list.

This prevented Windows Defender from deleting or putting the rsync.exe file into

quarantine.

After setting the Windows Defender options, the generated PElist.txt was copied

over to a Windows 10 machine. Using the PElist.txt file, each file was transferred

over using the rsync command from a Cygwin install. A PowerShell script was used

to transfer each file.

Figure 10 contains a portion of the PowerShell script which was used to transfer

the file and extract the labels from the event logger. Windows 10 has a lot of

automation built into the system so the logs can have information which we do not

need. The wevtutil on line 2 and 4 will clear the logs for Windows Defender. Lines 7

through 9 utilize rsync from Cygwin to transfer the file. On line 7, $env:Path, the

environment path needs to be set as a precondition in order for the script to find and
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1 Start -Sleep 1
2 wevtutil cl "Microsoft -Windows -Windows Defender/Operational"
3 Start -Sleep 1
4 wevtutil cl "Microsoft -Windows -Windows Defender/WHC"
5 Start -Sleep 1
6
7 $env:Path += ";C:\ cygwin64\bin"
8 $rsync_cmd = "rsync.exe -av --progress -e ‘"ssh ‘" jdoe@10 .0.0.5:/

data_set/torrent_processing/${fnumber }/ VirusShare_${fnumber }/${
virus} ."

9 Invoke -Expression $rsync_cmd
10 Start -Sleep 2
11
12 Get -WinEvent -FilterHashtable @{logname ="Microsoft -Windows -Windows

Defender/Operational ";id =1116} | Select -Object -First 1 -
ExpandProperty Message >> ${fnumber}‘.txt

Figure 10: Code snippets to explain the relevant PowerShell commands

execute the rsync command. The Invoke-Expression on line 9 implements the actual

execution of rsync. When the rsync command is invoked, Windows Defender will

automatically detect and delete the malware that is being transferred in real time.

All of these events, with information about the malware, will be logged. Finally, in

line 12, the Windows Defender logs are extracted and appended to a text file. The

${fnumber} is a variable containing a string representing the zip file which the script

is processing.

......

.......
Name: VirTool:Win32/VBInject
ID: 2147600125
Severity: Severe
Category: Tool

........

.......

Figure 11: Snippet of the log file that was exported

The PowerShell script will generate a UTF-16 unicode text file with output similar

to Figure 11. This unicode text file was moved to a Linux machine and parsed with

20



Python to extract the relevant labels into csv files. Because of the UTF-16 encoding,

the encoding flag had to be set in the Python code as shown in Figure 12.

with open(event_viewer , encoding=’utf -16-le ’) as f:
header = f.read (1)
text = f.readlines ()

Figure 12: Setting the encoding flag to open the file

The benign set was extracted from two malware free Windows 7 and 10 installation

that had a variety of uninfected programs installed. The hard drive was removed from

each of the machines and mounted onto a Linux operating system using an external

hard drive disk dock. Using the find command, Figure 13, all paths to the files were

listed. Using that list with the file command, Figure 9, all the PE files were copied

over to a designated folder. To prevent duplicate files, they were renamed to their

md5sum equivalent hash.

$ find /mnt -type f > FileFolderList.txt

Figure 13: Linux find command to list all files on the mounted hard drive

3.0.2 Malware Naming

Windows Defender uses the Computer Antivirus Research Organization (CARO)

naming scheme. Figure 14 shows 5 parts of the name. The type is a broad general-

ization of what the malware does. The platform entry indicates for which operating

system this malware is intended. These can include Android, Linux, Windows, or

others. The family entry is based on the malwares purpose and evidence that it came

from the same author. Variant indicates that it is another version of the same mal-

ware, normally created through replication. Finally, the last part provides additional

information on the malware using a series of suffixes which can be looked up [4].
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Figure 14: Windows Defender naming convention [4]

3.0.3 Software and Hardware

All experiments were done on a Centos 7 operating system. The workstation

used has a 10 core Xeon E5-2630V4 processor with 64 gigabytes of memory. The

Neural Network experiments were executed on a Nvidia GTX 1080 TI video card using

Cuda cores. The Anaconda Python distribution was used for all experiments. This

distribution contained most of the necessary libraries including Pandas, SciPy and

scikit-learn. Keras and Tensorflow libraries were added to the Anaconda distribution

for use with the Neural Network experiments.
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CHAPTER 4

Experiment and Results

Here we will discuss the experiment and the results. The four machine learning

algorithms used in the experiments are Random Forest, K-NN, SVM, and Neural

Networks. The design and setup for each algorithm’s experiment will be described

here.

4.1 Design of the Experiment

These experiments compared feature full vs feature free approaches for family and

binary classification (benign vs malware). The data set for the binary classification

was balanced with 85,042 benign files and 85,042 malware instances, sampled from

the larger set. The data set for the family classification experiment was done on

102 families, where each family had a sample size of 1,000 members. 1,000 benign

files was also included in this experiment, giving a total of 102,000 specimens. To

make the comparison, four experiments were utilized for each of the machine learning

algorithms.

dataframe_sample = malware_dataframe.sample(n=85042)

Figure 15: Sampling example

The Panda sample function was used to sample the data. In Figure 15, the

malware_dataframe is a Panda dataframe containing the entire data set. The parameter

n=85042 will randomly choose 85,042 specimen, without replacement (no duplicate, all

specimens are unique) returned as a dataframe. For invocation of the experiment,

a new sample was chosen. Therefore all the experiments utilized a different sample

from the same larger data set. This was implemented for both the family and binary

classifications.
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X_train , X_test , y_train , y_test = train_test_split(X, y, test_size
=0.2)

Figure 16: Splitting the data set

After sampling, data sets for all the experiments were shuffled and split into train

and test sets. 80% of the data was used for training and 20% of the data was used

for testing. In Figure 16, the train_test_split function from the sklearn library does

exactly that.

The sklearn library function StandardScaler was used to normalize the features on

all the experiments. This simply re-scales the data points where the mean is zero and

the standard deviation is one [27]. In other words, after StandardScaler has completed,

the values will be transformed and ‘‘squished’’ so that all values center around zero

and the values are not as spread out (standard deviation is reduced to one).

Standardscalar function utilize the 𝑍-score formula below:

𝑧 =
(𝑥− 𝜇)

𝜎

The 𝑥 is the current value, 𝜇 is the mean (average) of the current feature column that

the 𝑥 is in, 𝜎 is the standard deviation (the spread) of that column, and the 𝑧 is the

new normalized value. There are other normalization techniques, but StandardScaler()

is considered the most common [27].

After building and training the model, the accuracy and the AUC was computed

from the test set. Also, a 5-fold cross-validation was done on the entire set to verify

the accuracy of the value which was produced from the test set.

4.2 Random Forest Experiment

For the Random Forest experiment, the default parameters were used for all

four experiments. Some key parameters include max_features, n_estimators and
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min_sample_leaf. By default, the max_feature parameter was set to auto, which is

the square root of the total number of features. The n_estimators parameter is the

number of trees that will be created, the default is 10. The min_sample_leaf parameter

represents the leaves of the tree, the default is set to one. This means that a decision

branch is created until no other decisions exist, that end node is the leaf node.

For family classifications, both feature full and feature free approaches gave an

85% accuracy and an AUC of 97% and 99%, respectively. The binary classification

produced a 99% value for AUC as well as a 99% accuracy for feature free and feature

full approaches.

4.3 K-NN Experiment

The sklearn.neighbors.KneighborsClassifier function was used to do the K-NN.

The K parameter is represented by n_neighbors value and was set to 5. The Euclidean

distance formula was used to determine the 5 nearest neighbors for the test set.

The AUC and accuracy was 96% and 76%, respectively, for feature full family

classification. Feature free for family classification had slightly lower results, with an

AUC of 93% and an accuracy of 74%. Again, the binary classification gave a 99%

across all scores.

4.4 SVM Experiment

For the SVM experiment, the kernel type was set to ’RBF’ for all experiments.

For family classification, the gamma was set to 0.0115 and the cost was set to 2048.

For binary classification, the gamma was set to 0.01 and the cost was set to 1.

Feature free approach performed better at 80% accuracy than feature full at 57%

accuracy. The binary classification also performed slightly better with feature free at

99% accuracy vs feature full at 96% accuracy.
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4.5 Neural Network Experiment

Keras was used to build the Neural Network. Keras is a high level Python API

that is capable of running on top of different deep learning frameworks [28]. This

project uses Keras on top of Tensorflow, which utilizes the Cuda cores on the Nvidia

graphics card.

The Neural Network had 2 hidden layers with 400 nodes per layer. Each node

was using the ReLu activation function. Dropout of 0.2 was implemented at each of

the hidden and output layers. When fitting the model, the batch_size was set to 64

and the epochs value was set to 35.

The results for family classification of this model gave a 98% AUC for both

feature full and feature free approaches. The accuracy for feature full was 75%, while

the feature free was 79%. For binary classification, we again obtained 99% accuracy

for all four scores.

Table 2: Results from 102 family classification

Family Classification Feature Full Feature Free
Algorithm AUC Accuracy AUC Accuracy

Random Forest 0.97201 0.8522 0.9914 0.8479
K-NN 0.9655 0.7689 0.9382 0.7421
SVM 0.9384 0.5765 0.9960 0.8003

Neural Netowrk 0.9846 0.7516 0.9839 0.7949

Table 3: Results from binary classification (malware vs benign)

Binary Classification Feature Full Feature Free
Algorithm AUC Accuracy AUC Accuracy

Random Forest 0.9996 0.9967 0.9994 0.9969
K-NN 0.9978 0.9926 0.9977 0.9928
SVM 0.9950 0.9686 0.9991 0.9924

Neural Network 0.9988 0.9915 0.9984 0.9962
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CHAPTER 5

Future Work and Conclusion

The ROC AUC are normally generated for binary classifications. This ROC

AUC, in Table 2 and 3, was generated by the correctness of each prediction in the

test set. In other words, it is a two class classification where the two classes represent

whether the specimen was correctly categorized. This kind of measurement is known

as micro-averaging. It is normally utilized to measure the effectiveness of large classes

in imbalanced test sets [29]. Since we have balanced all the experiments, we can

assume that this shows a general effective measurement of the model.

From Table 2, we can see the ROC AUC scores on all of the family classifications

are higher than the accuracy. This is because accuracy is based on a single threshold,

implicitly set to 0.50. It is a ratio of how many predictions were correct. The ROC

AUC is a summary of all the thresholds, and is a way to show how well different

models perform based on their thresholds. Accuracy and ROC AUC are simply two

different measurement with different meaning.

Based on the accuracy and the ROC AUC, with the exception of SVM, using

feature free versus feature full did not seem to matter for either binary and family

classification. SVM feature free, for family classification, may have contained more

information since bytes may go beyond the three header sections, giving it a better

family score. For all other approaches, similar results were obtained for each algorithm.

This shows that the header information, using either feature free or feature full

approaches, gives enough information to detect and classify the malware instance.

There is also the question of how these particular malware were detected and

labeled by the anti virus company. The fact that binary classification gives a 99%

accuracy shows that there is a strong possibility that header information is an important

feature in their detection methodology. Furthermore, this may also indicate that
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manipulation of the header is common practice among malware developers. Relabeling

all the VirusShare repositories using different anti virus software may give some insight

into their approaches.

Another possible future experiment would be to include the Import tables and

use the type labels for classification. The Windows Defender type is a more general

classification then family. Type describes what the malware does. A few examples of

type would be backdoor, spyware, and ransomware. We did some basic experiments

using the features described in Section 2.3 and the type as the label, however the

results were poor (below 50% accuracy). Adding the Import tables may improve the

results since they contain information on functions and libraries that the malware

may use.

The labeling technique described in Section 3.0.1 made it possible to collect

enough information to do classification greater than two. Furthermore, we were

able to experiment on data sets which were larger than many of the past projects.

With this large labeled data set, experiments can be verified and extended to include

multi-class classification.
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APPENDIX A

Features

e_magic e_cblp e_cp
e_crlc e_cparhdr e_minalloc
e_maxalloc e_ss e_sp
e_csum e_ip e_cs
e_lfarlc e_ovno e_res
e_oemid e_oeminfo e_res2_1
e_res2_2 e_res2_3 e_res2_4
e_res2_5 e_res2_6 e_res2_7
e_res2_8 e_res2_9 e_res2_10
e_res2_11 e_res2_12 e_res2_13
e_res2_14 e_res2_15 e_res2_16
e_res2_17 e_res2_18 e_res2_19
e_res2_20 e_lfanew signature
Machine NumberOfSections TimeDateStamp
PointerToSymbolTable NumberOfSymbols SizeOfOptionalHeader
Characteristics Magic MajorLinkerVersion
MinorLinkerVersion SizeOfCode SizeOfInitializedData
SizeOfUninitializedData AddressOfEntryPoint BaseOfCode
ImageBase SectionAlignment FileAlignment
MajorOperatingSystemVersion MinorOperatingSystemVersion MajorImageVersion
MinorImageVersion MajorSubsystemVersion MinorSubsystemVersion
Reserved1 SizeOfImage SizeOfHeaders
CheckSum Subsystem DllCharacteristics
SizeOfStackReserve SizeOfStackCommit SizeOfHeapReserve
SizeOfHeapCommit LoaderFlags NumberOfRvaAndSizes
Name Misc Misc_PhysicalAddress
Misc_VirtualSize VirtualAddress SizeOfRawData
PointerToRawData PointerToRelocations PointerToLinenumbers
NumberOfRelocations NumberOfLinenumbers Characteristics

Table A.4: Features used for feature free experiments, extracted using pefile library
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Adload Dorkbot Lethic Swizzor
Agent Dorv Lmir Systex
Aksula Drstwex Lolyda Taterf
Allaple Enterak Multsarch Tibs
Alureon Expiro Nagram Tiop
Autorun EyeStye Obfuscator Toga
BHO FakeRean Ogimant Unruy
Bagsu FakeSysdef OnLineGames VB
Bamital Fareit PcClient VBInject
Bancos Farfli Plingky Vbinder
Banker Fosniw Poison Viking
Banload Frethog QQpass Virut
Beebone Fynloski Ramnit Vobfus
Bibei Gamarue Rbot Vundo
Bifrose Hiloti Rebhip Waledac
Bulta Hotbar Renos Webprefix
C2Lop Hupigon Rimecud Wintrim
CeeInject Injector Rimod Winwebsec
ClickPotato Jadtre Sality Xpaj
Cutwail Karagany Sefnit Xtrat
Cycbot Kelihos Simda Zbot
Delf Killav Sinowal Zegost
DelfInject Koutodoor Sirefef Zlob
Diplugem Lamechi Small Zonsterarch

Zwangi
Table A.5: 101 family used for classification
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APPENDIX B

Random Forest Feature Importance

The feature importance value was generated using the Random Forest Classifier

from scikit-learn. Due to space, only the top 15 features for feature free are shown in

Tables B.8 and B.9. The Byte is the byte offset from the beginning of the PE file for

the first 64 bytes, after 64 bytes the value in 0x3C is read and we continue from that

read offset. For example, the first entry in Table B.8 shows the Byte value 76, we

subtract 76− 64 = 12, starting from the value read at 0x3C we go to the 12th byte.

The Cygwin ls.exe command was used to determine the Potential Header for all

of the Tables. PE headers are not strictly enforced and offsets may be different due

to variations in the header, therefore the Potential Header value may not be identical

for other PE files.

Feature Name Importance

1. TimeDateStamp 0.084791
2. SizeOfImage 0.073026
3. AddressOfEntryPoint 0.069002
4. SizeOfInitializedData 0.066414
5. Misc_PhysicalAddress 0.057584
6. Misc_VirtualSize 0.057184
7. SizeOfCode 0.056384
8. Misc 0.056301
9. SizeOfRawData 0.044140
10. e_lfanew 0.041902
11. CheckSum 0.035907
12. Characteristics 0.033730
13. NumberOfSections 0.030746
14. MajorLinkerVersion 0.026311
15. MajorImageVersion 0.020167
16. Characteristics 0.019226
17. SizeOfUninitializedData 0.018736
18. BaseOfCode 0.018319
19. DllCharacteristics 0.017721
20. MinorLinkerVersion 0.017668
21. PointerToRawData 0.012411
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22. SizeOfHeaders 0.012027
23. MajorOperatingSystemVersion 0.010630
24. SizeOfStackReserve 0.010575
25. Name 0.010204
26. FileAlignment 0.010016
27. MinorImageVersion 0.009256
28. MajorSubsystemVersion 0.007577
29. SizeOfStackCommit 0.006865
30. MinorOperatingSystemVersion 0.005309
31. SizeOfHeapReserve 0.004879
32. VirtualAddress 0.004434
33. SectionAlignment 0.004380
34. Subsystem 0.003742
35. PointerToLinenumbers 0.003550
36. MinorSubsystemVersion 0.003265
37. e_cblp 0.002870
38. e_minalloc 0.002642
39. PointerToRelocations 0.002413
40. e_cp 0.002197
41. e_res 0.002123
42. e_ovno 0.001747
43. SizeOfHeapCommit 0.001328
44. e_sp 0.001049
45. e_cparhdr 0.001045
46. e_res2_9 0.000951
47. e_res2_10 0.000921
48. e_res2_2 0.000903
49. e_res2_13 0.000892
50. e_ip 0.000750
51. e_lfarlc 0.000698
52. e_res2_14 0.000696
53. NumberOfSymbols 0.000658
54. e_res2_11 0.000656
55. e_res2_15 0.000645
56. SizeOfOptionalHeader 0.000613
57. e_res2_3 0.000588
58. e_crlc 0.000559
59. LoaderFlags 0.000546
60. e_res2_18 0.000536
61. e_oemid 0.000529
62. NumberOfRvaAndSizes 0.000522
63. e_maxalloc 0.000472
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64. e_cs 0.000445
65. e_oeminfo 0.000430
66. e_csum 0.000415
67. Magic 0.000404
68. e_res2_17 0.000394
69. e_res2_1 0.000375
70. e_res2_8 0.000359
71. PointerToSymbolTable 0.000331
72. e_res2_7 0.000327
73. e_res2_20 0.000324
74. e_res2_12 0.000316
75. e_res2_4 0.000293
76. e_res2_6 0.000287
77. e_res2_16 0.000286
78. NumberOfLinenumbers 0.000232
79. e_res2_19 0.000210
80. Machine 0.000209
81. e_res2_5 0.000200
82. e_ss 0.000142
83. Reserved1 0.000044
84. NumberOfRelocations 0.000041
85. ImageBase 0.000006
86. signature 0.000000
87. e_magic 0.000000
Table B.6: Feature full family, feature importance
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Feature Name Importance

1. Subsystem 0.134816
2. DllCharacteristics 0.130153
3. MajorLinkerVersion 0.107264
4. MajorSubsystemVersion 0.099652
5. Machine 0.054559
6. CheckSum 0.050982
7. SizeOfHeaders 0.043853
8. TimeDateStamp 0.038626
9. Characteristics 0.035392
10. MajorOperatingSystemVersion 0.029959
11. SizeOfStackReserve 0.029872
12. AddressOfEntryPoint 0.029187
13. MajorImageVersion 0.028772
14. SizeOfOptionalHeader 0.028155
15. MinorOperatingSystemVersion 0.026572
16. PointerToRawData 0.019837
17. Name 0.016201
18. SizeOfUninitializedData 0.014611
19. e_lfanew 0.014396
20. Characteristics 0.007346
21. Magic 0.006299
22. NumberOfSections 0.006201
23. MinorSubsystemVersion 0.004621
24. SizeOfImage 0.004171
25. SizeOfInitializedData 0.003958
26. Misc_VirtualSize 0.003535
27. VirtualAddress 0.003514
28. SizeOfRawData 0.003358
29. Misc_PhysicalAddress 0.003276
30. Misc 0.003253
31. SizeOfHeapReserve 0.002818
32. SizeOfCode 0.002660
33. BaseOfCode 0.002630
34. e_ovno 0.001996
35. MinorLinkerVersion 0.001515
36. MinorImageVersion 0.001106
37. SectionAlignment 0.000875
38. SizeOfStackCommit 0.000621
39. PointerToRelocations 0.000502
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40. e_cblp 0.000329
41. FileAlignment 0.000305
42. e_cparhdr 0.000287
43. SizeOfHeapCommit 0.000265
44. PointerToSymbolTable 0.000249
45. e_cp 0.000239
46. NumberOfSymbols 0.000205
47. e_sp 0.000159
48. Reserved1 0.000104
49. e_oeminfo 0.000082
50. e_cs 0.000061
51. e_res2_11 0.000052
52. LoaderFlags 0.000050
53. PointerToLinenumbers 0.000048
54. e_res2_17 0.000043
55. NumberOfLinenumbers 0.000042
56. e_res2_9 0.000038
57. e_res 0.000038
58. e_res2_3 0.000036
59. e_minalloc 0.000036
60. e_res2_6 0.000030
61. e_ip 0.000024
62. ImageBase 0.000021
63. e_res2_10 0.000017
64. e_res2_13 0.000017
65. e_res2_12 0.000016
66. e_res2_1 0.000014
67. e_res2_4 0.000012
68. e_res2_5 0.000010
69. e_res2_20 0.000010
70. e_maxalloc 0.000008
71. NumberOfRvaAndSizes 0.000007
72. e_oemid 0.000007
73. e_res2_14 0.000006
74. e_res2_2 0.000005
75. e_res2_15 0.000004
76. e_res2_18 0.000003
77. e_lfarlc 0.000003
78. e_res2_7 0.000002
79. e_crlc 0.000000
80. e_res2_19 0.000000
81. e_res2_16 0.000000
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82. e_res2_8 0.000000
83. NumberOfRelocations 0.000000
84. signature 0.000000
85. e_csum 0.000000
86. e_ss 0.000000
87. e_magic 0.000000
Table B.7: Feature full binary, feature importance
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Byte Importance Potential Header

1. 76 0.031758 PointerToSymbolTable
2. 147 0.024748 SizeOfImage
3. 106 0.024021 AddressOfEntryPoint
4. 206 0.023649 Size of Image Directory
5. 94 0.022319 SizeOfCode
6. 322 0.020937 Misc_VirtualSize
7. 98 0.020424 SizeOfInitializedData
8. 205 0.020409 Size of Image Directory
9. 203 0.019574 VirtualAddress of Image Directory
10. 61 0.019143 e_lfanew
11. 202 0.018807 TimeDateStamp
12. 197 0.018723 Size of Image Directory
13. 114 0.018066 BaseOfData
14. 194 0.017560 VirtualAddress of Image Directory
15. 321 0.017180 Misc_PhysicalAddress

Table B.8: Feature free family, top 15 feature importance

Byte Importance Potential Header

1. 160 0.152031 SizeOfStackReserve
2. 91 0.130916 MinorLinkerVersion
3. 137 0.115016 MajorSubsystemVersion
4. 129 0.051571 MajorOperatingSystemVersion
5. 197 0.050210 Size of Image Directory
6. 153 0.041540 CheckSum
7. 120 0.032546 SectionAlignment
8. 114 0.029533 BaseOfData
9. 157 0.027153 Subsystem
10. 119 0.020858 ImageBase
11. 315 0.020580 Name of Section
12. 88 0.018150 Magic
13. 301 0.017794 Size of Image Directory
14. 76 0.017590 PointerToSymbolTable
15. 222 0.016897 Size of Image Directory
Table B.9: Feature free binary, top 15 feature importance
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