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ABSTRACT

Boosted Hidden Markov Models for Malware Detection

by Aditya Raghavan

Digital security is an important issue today, and efficient malware detection is

at the forefront of research into building secure digital systems. As with many other

fields, malware detection research has seen a dramatic increase in the application

of machine learning algorithms. One machine learning technique that has found

widespread application in the field of pattern matching and malware detection is

hidden Markov models (HMMs). Since HMM training is a hill climb technique, we can

often significantly improve a model by training multiple times with different initial

values. In this research, we compare boosted HMMs (using AdaBoost) to HMMs

trained with multiple random restarts, in the context of malware detection. These

techniques are applied to a variety of challenging malware datasets and we analyze

the results in terms of effectiveness and efficiency.
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CHAPTER 1

Introduction

A recent study by International Telecommunications Union stated that, as of

2017, around 54% of households worldwide had access to the Internet [4]. In terms of

pure numbers, the count of Internet users has increased from around 1 billion in 2005

to almost 3.6 billion in 2017 [5]. This trend of digitalization is expected to continue

over the next few years and soon the entire world will be connected by Internet. These

statistics indicate that both developed and developing nations are heavily reliant on

their computers and Internet.

This proliferation of computers and Internet have resulted in digitalization of

almost all services throughout the world. Not only businesses, even essential services

like power grids, water dams, traffic lights etc. are all controlled by large scale

computer systems. We also have an increasing number of Internet-of-Things (IoT)

devices, which connect every aspect of an individual’s life with the Internet. There are

around 23 billion IoT devices all over the world as of today [6]. Although, digitalization

and automation is the right way forward, they bring their own challenges and issues.

These systems are vulnerable if not protected and maintained efficiently.

Bad actors exploit this over reliance on Internet for financial gain. There are

reports of cyber-warfare being the foremost mode of attack in future conflicts world-

wide [7]. Malware is the driving force behind such attacks. Malware, short for,

malicious software, are programs which are designed to damage and/or affect the

functioning of devices [8]. The scale and the mode of attack vary in each case as they

range from a targeted attack on an individual to a worldwide ransomware attack.
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From Figure 1 we can see that, every third computer in the world is affected

by malware and this number is rapidly increasing. Such malware attacks, result

in huge financial losses to those affected. Reports suggest that, there was a 62%

increase in average cost of a cybercrime over five years in 2017 [9]. The cost of such

financial losses are further expected to reach $6 trillion by 2021. Hence, combating

malware is of crucial importance in the cyber world today and this increasing cost

has also resulted in an increase in expenditure by the governments and businesses for

protecting their systems which is expected to exceed $1 trillion in 2021 [10].

Figure 1: Computer Infections Worldwide [2]

There are different types of malware which affect the smooth functioning of

computer systems in different ways. Adware, spyware, trojans, viruses, worms,

ransomware etc. are some of the most common types of malware [11].

• Adware — Advertising supported malware display advertisements automatically

using pop-ups on certain software which use adware as a source of revenue.
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• Spyware — This malware, tracks the user activities on the device on which they

are residing and are generally used in combination with other form of malware.

• Trojans — Malware that disguise themselves as verified and legitimate software

are called as trojans. These generally install spyware to monitor the target user’s

activities by installing keyloggers.

• Ransomware — Malware that on infecting the target machines, steal, restrict

access to important files for the users and ask for ransom in exchange for

returning the files are termed as Ransomware. There have a couple of high

profile instances of worldwide attacks using this form of malware in 2017.

• Virus — Malware that spread through a network of computers by replicating

and possibly even mutating by piggybacking on other software are known to be

viruses.

• Worms — Worm is one of the oldest forms of malware, that self replicate unlike

viruses which require human intervention to spread.

Several techniques are employed to counter these ever-increasing malware threats.

Anti-virus software, firewalls, intrusion detection/prevention systems are used in

tandem to keep systems secure. Anti-virus software generally relies primarily on

signature detection (i.e., pattern matching) to detect malware. However, there are

many advanced forms of malware that can evade signature-based detection [12].

Machine learning techniques may be used to improve on signature detection [13].

Hidden Markov models (HMMs) are one popular machine learning technique that has

been successfully applied to the malware detection problem [14]. In this research, we

compare the effectiveness of malware detection using HMMs with multiple random

restarts to combining HMMs using AdaBoost [15].
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The report is organized as follows. In Chapter 2 we provide relevant background

information, including an introduction to hidden Markov models and AdaBoost, and

we also discuss problems related to malware detection. In Chapter 3, we look at boosted

hidden Markov model and its implementation considered in this paper. Chapter 4

describes our experimental setup and results, and we provide some discussion and

analysis of our results. Finally, in Chapter 5, we provide our conclusion and discuss

future work.
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CHAPTER 2

Background

Systems make adjustment on its own based on some intelligence and these enforced

changes are termed as machine learning [16]. Several complex problems like character

recognition and voice recognition have been solved using various machine learning

techniques. Hidden Markov models is one such technique which has found widespread

applications in solving pattern matching problems in an efficient manner [17, 18]. In

this chapter, we introduce the concepts of hidden Markov models and AdaBoost. We

also briefly discuss, the issues with machine learning applied in the context of malware

detection and classification.

2.1 Hidden Markov Model

Hidden Markov models are based on a Markov process [14]. In a Markov process,

the probabilities for a random process depends on a sequence of previous event(s). If

the Markov process is of order one, it indicates that the probability of the next event

depends only on the current event. Hidden Markov models make use of this feature

of a Markov process to predict/determine probabilities of an unknown/hidden state

as depicted in Figure 2.

Figure 2: Hidden Markov Model
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As mentioned in the Figure 3, the matrix denoted by A, holds probabilities of

transition from one state to the other [14]. Another matrix, termed as the observation

probability matrix, contains the values of emission probabilities. Both, state transition

matrix and observation probability matrix are row stochastic. Finally, there is an

initial state distribution matrix, also row stochastic, which can be set to any starting

value deemed appropriate to have several starting points of the model. The state

transition matrix is of size 𝑁 × 𝑁 , while observation probability matrix is of size

𝑁 ×𝑀 . The size of the initial distribution matrix is 1×𝑁 .

Figure 3: Hidden Markov Model Notations

In previous research done using hidden Markov models, it is observed to perform

well in solving pattern matching problems. Hidden Markov models based on Markov

processes of order one and two have been used to detect handwritten letters [18].

Using a selected set of features, this research demonstrates that, hidden Markov model

using the Viterbi algorithm produces a model with 93% accuracy rate [19].

Voice recognition is another such research topic, where hidden Markov models

are known to have performed quite well [20]. The algorithm for voice recognition

is based on HMM and uses features extracted from the vocals available for training

the model. Every HMM has two different stages, training and testing, available data

is split for each stage. During training, the model is still naive and requires lot of

iterations of training to be able to develop a model good enough to test on with good

accuracy.

6



Malware detection, like the problems of voice recognition and character recogni-

tion, are basically pattern matching problems. Every malware with a known signature

or pattern can be used to train these models. The signature extracted from a malware

is fed into this model for it to be able to identify similar files. Once trained, files are

tested on this model and scores are computed. Threshold values are set, and then

files are classified as malware or benign depending on which side of the threshold they

fall [13].

The features chosen as input for the hidden Markov models may also vary in a

malware detection problem. There are two basic types of features that can be chosen:

• Static — Features extracted from a file not in execution

• Dynamic — Features extracted from a file in execution (i.e., runtime)

Opcode sequences, function calls, file entropy, and the size of the file are some examples

of such features. It is tougher to extract dynamic features as compared to the static

features of any file. However, existing research indicate that hidden Markov models

provide better results with dynamic features [21].

2.2 AdaBoost

Boosting is the process of combining many weak classifiers which perform better

than a coin flip to create a strong classifier. AdaBoost is a boosting algorithm used

to build a strong classifier by combining several weak classifiers [22]. However, this

technique requires a sufficient number of classifiers to be effective and the stronger

model generated performs better only by a certain amount. AdaBoost is one of

the most widely used boosting technique. Adaptive Boosting (AdaBoost) builds

subsequent classifiers based on the classifier determined at the current stage.
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AdaBoost is a greedy and an iterative approach which identifies the weaknesses of

each classifier and chooses the best classifier to mitigate that weakness. As there is no

guarantee that the performance of the classifiers always improves, we stop when the

results are no longer better than the previous stage. In the Figure 4, we see that every

data sample has a classification in every classifier. The strong classifier is created

by weighing the weak classifiers to correctly classify every test sample. However,

AdaBoost, tends to snowball errors as it is highly sensitive to noise.

Figure 4: AdaBoost

There are several applications of such boosting algorithms. One such example

is using AdaBoost to combine several classifiers generated using Gaussian Mixture

Models to build a strong classifier for Network Intrusion Detection [23]. Another

implementation of AdaBoost can be found for improving the selection of features for

a vision based application [24].

2.3 Malware detection using Machine Learning

Most of the anti-virus software nowadays use machine learning models to improve

their performance. To gauge the performance of any such model, we plot a Receiver

Operating Characteristic curve (ROC) curve and calculate the area under the curve [25].

They use their scan engine to check for any files with a pattern matching any of the
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malware definitions present in the software. It has been observed that, anti-virus

software vendors dedicate great emphasis on reducing the false positive rate of their

software. It has been widely reported that, high false positive rates affect the brand

reputation of an anti-virus vendor [26]. The matrix in Figure 5 gives the structure of

the confusion matrix.

Figure 5: Confusion Matrix [3]

To ensure low false positive rates, the anti-virus software vendors prefer to lower

their true positive rate as well. By lowering the true positive rate or the sensitivity

of the model, the false negative rate increases thereby also reducing the accuracy of

the model. Hence, if we can reduce the false positive rate of any such model using

machine learning then, the performance of anti-virus software would improve.

We also address the cold start problem in malware detection, caused due to

limited availability of malware samples. Many a malware families, have very few

samples of malware available for analysis. This increases the difficulty of extracting a

signature from the malware and training a model with sufficient data to identify the

malware. Improving the classification of such malware with limited samples, will help

mitigate the vulnerability of a system to lesser known malware.
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CHAPTER 3

Implementation

Combining classifiers to achieve better results has been found to work very well

in several pattern matching problems [15, 27]. We employ a similar technique of

boosting a set of weak classifiers of hidden Markov models using AdaBoost to improve

malware detection.

3.1 Hidden Markov Models with Random Restarts

As mentioned in Section 2.1, we train an HMM on static and/or dynamic features

extracted from a set of sample data and classify files based on a score generated using

such models. The traditional method used for such pattern recognition problems

using HMM involves random restarts. The re-estimated values of the model, during

training, plateau after a while. Training the model further after this does not help

improve the model.

Random restart specifies repeating the training stage for HMM model using

different initial values for initial state distribution and state transition matrix. We

train a model, score the files after training and then repeat the process with different

initial values to the model as the previous model. We compare the performance of all

models obtained using random restarts and choose the one with the best performance.

However, the rest of the models trained and used for scoring are not considered any

further. Although, random restarts help us find the best classifier over a range of

initial values, the training effort for all models except the best performing model

chosen for classification is ignored. We look to take advantage of these discarded

models for improving the classification as compared to the random restart technique.

10



3.2 Combining Classifiers

Considering a set of classifiers for any generic pattern matching problem, the

observed mismatch in the set of misclassified patterns does not always overlap [27].

This indicates that, the mismatch caused in each classifier might be different for

different set of patterns. Hence, there is an opportunity to combine these classifiers

and improve the classification using machine learning techniques like boosting.

3.3 Boosted Hidden Markov Models

Boosted hidden Markov models are created by combining multiple hidden Markov

models using AdaBoost. This technique has been previously found to have produced

promising results for creating an intrusion detection system [15]. A boosted hidden

Markov model is built for improving the performance of an intrusion detection system.

A variant of the HMM called incremental HMM (iHMM) is used to reduce training

time before combining these multiple classifiers with AdaBoost [15]. A sequence of

events for every user is recorded and the iHMM uses this information to train itself.

All these models are trained individually and independently of each other. These

models vary due to random restarts and number of iterations of training they have

been subject to. These models are then individually asked to classify the various

scenarios to detect the intrusion of an unknown user into the system [15]. The models

on their own do not perform as well as when they are combined using AdaBoost.

This follows the methodology of combining several weak classifiers to build a strong

classifier. This is achieved using AdaBoost and the several incremental hidden Markov

models used are the weak classifiers.

11



A similar setup is followed in this research for improving malware detection. A

dataset containing sequence of opcodes for different malware families are used to build

models [1]. Multiple hidden Markov models are trained on a sequence of opcodes.

These HMM are then used to score the test files and these scores are fed to the

AdaBoost boosting algorithm to generate an improved classification.

On every iteration of the boosting algorithm, a weak classifier is identified and

added to build a stronger classifier. Depending on the classification of the malware,

these weak classifiers are assigned weights and combined appropriately to obtain

better classification from the resultant classifier. Such boosting techniques can be used

to resolve the false positive rate and cold start issue in the field of malware detection.
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CHAPTER 4

Experiments and Results

To compare the malware detection techniques using the traditional method and

boosting techniques, we performed a set of experiments on the Malicia dataset [1].

Table 1 lists the different malware families in the Malicia dataset.

Table 1: Malicia Dataset [1]

Malware Family Name Malware Type File Count
Cridex Trojan 74
Harebot Backdoor 53

Security Shield Spyware 58
SmartHDD Trojan 68

Zbot Trojan 2316
ZeroAccess Trojan 1305

We use the dataset to perform classification using both traditional and boosting

techniques. We create multiple hidden Markov models using random restarts, train

each model and score the models. We consider the area under the curve of a ROC as

a parameter to gauge the performance of the model [25].

Boosting technique is used to classify the malware by combining all the models

to obtain a final classification from the boosted model. We perform a 5-fold cross vali-

dation on the results obtained using traditional technique and measure the robustness

of both the techniques by morphing the training data by 10%, 50% and 100%. We

later consider the application of this technique to address the cold start problem in

malware detection, by limiting the amount of data available for training the model.
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4.1 Initial Experiments

Each of the malware family in the dataset is split into two sections of training

data and scoring data. We randomly pick 60% of the total number of samples for

each family and use it for training the models. The remaining 40% is used for scoring

purposes. These files contain a stream of opcodes extracted for the original malicious

files. We generate a long sequence of opcodes from all the chosen training files to be

given as observation sequence for our multiple hidden Markov models.

We modify this string of opcodes before feeding it to the model. Only the

top thirty opcodes from this sequence are considered. Rest all opcodes are simply

considered as other opcode and is replaced by OTHER in the sequence. For all

malware families, the top thirty opcodes amount for over 90% of the total training

data as seen in Table 2. Hence, it helps us optimize the training phase by also reducing

the dimensions of the observation probability matrix i.e. 𝑁 = 2, 𝑀 = 31 for every

model.

Table 2: Top Opcodes Frequency

Malware Family Name Top 30 Opcodes Percentage
Cridex 94.8%
Harebot 94.3%

Security Shield 96.3%
SmartHDD 99.99%

Zbot 93.7%
ZeroAccess 96.1%

For the boosted hidden Markov models, we use the models generated by random

restarts and combine to possibly generate a stronger classifier. The classification

for each of the models are given as inputs for the AdaBoost boosting algorithm. It

considers the threshold value for each model and the scores for each tested file. This

14



algorithm, then produces a score for each of these test files and that classification is

considered to be the final classification using boosted hidden Markov models. The

benign files used for every experiment are the same and are also obtained from the

Malicia dataset [1]. We compare the results of both techniques by plotting a ROC

curve and measuring its area under the curve.

As shown in Figure 6, for the Cridex malware family, using the traditional random

restarts technique, the best classification we obtain has an area under the curve (AUC)

of its ROC curve of 0.583. However, using the boosting techniques on these models

the classification improves the AUC by 6%. In case of Harebot malware, there is no

difference in the performance of boosted technique versus the random restart technique.

For SmartHDD malware family, a clear separation can be seen between the scores of

malware files and benign files. This results in an AUC of 1 as shown in Figure 7 and

gives us the perfect classification using the traditional model.

Figure 6: AUC of ROC for malware families
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Figure 7: SmartHDD Classification

We see an improvement of 5% in AUC for the classification using the boosting

technique for Security Shield. Zbot is one of the biggest malware families in this

dataset. The performance of boosting technique for this malware does not provide

any improvement and a similar case is seen for ZeroAccess malware as well.

From this set of experiments, we see that although boosting does not improve the

classification for all the malware families, it does perform better than the traditional

technique of random restarts for some of families. We also observe that, for the families

where boosting does not improve the classification, we already have a strong classifier

using the random restarts technique. Boosting is applied to weak classifiers and the

resultant classifier performs better than the traditional technique. This indicates that

for any malware family which has weak classifier using the traditional technique, we

can improve the classification using boosting.
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4.1.1 Cross Validation

Some of the malware families included in the dataset [1] are not large in number.

This limited availability of data samples might result in inclusion of bias due to

improper partition of data. In such cases, the availability of more data helps remove

or reduce these biases. This is achieved using cross validation [14].

We split the malware data set into equal subsets and train the model using all

but one subset which is used for testing purposes. We repeat this and ensure each

subset is used as scoring data set once. This provides us multiple models which can

then be combined using boosting techniques. Such cross-fold validation smooths out

any bias that may be present in the match data (malware data). We perform 5-fold

cross validation, thereby breaking down every match set (each malware family) into 5

equal subsets and check the performance of the boosted hidden Markov models.

Splitting the Cridex dataset into 5 separate subsets, we do a 5-fold cross validation

which gives an AUC of ROC curve of 0.554 as shown in Figure 8. The AUC decreases

when compared with the initial experiment with no morphing, however, it is considered

a more accurate classification as it removes the biases introduced when choosing the

training data.

On 5-fold cross validation of Harebot malware family, we get an AUC of ROC

curve of 0.518 as shown in Figure 9 which is not much better than the probability of a

coin toss. Hence, this indicates that the model obtained is very poor and not reliable

for classification of Harebot malware with the data available. The model obtained for

Security Shield malware performs very poorly as we get an AUC of ROC curve of

0.509 as shown in Figure 10. For the SmartHDD malware dataset, we almost get a

clear separation for the model with an AUC of 0.998 as shown in Figure 11.

17



Figure 8: Cridex 5-fold Cross Validation

Figure 9: Harebot 5-fold Cross Validation

For Zbot malware family, on 5-fold cross validation we get an AUC for ROC

curve of 0.770 as shown in Figure 12 and on cross validation of ZeroAccess malware,

we get an AUC of ROC curve of 0.90 as shown in Figure 13. There is a correction

in the AUC values of ROC curve of each malware family on 5-fold cross validation.

This ensures that any bias that could’ve been included because of random selection of

training and scoring data would be removed. It is imperative to use such techniques

wherever applicable to get a more accurate classification.
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Figure 10: Security Shield 5-fold Cross Validation

Figure 11: SmartHDD 5-fold Cross Validation

4.2 Morphing

To further compare and verify the performance of boosted hidden Markov models

versus the traditional technique we morph the data up to different degrees and measure

the performance of both techniques. Morphing provides an indication of the robustness

of the techniques employed. The benign opcode sequence is concatenated at the end

of the original training data sequence. Experiments were performed for three different

degrees of morphing: 10%, 50% and 100%. This degree indicates that for the first set
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Figure 12: Zbot 5-fold Cross Validation

Figure 13: ZeroAccess 5-fold Cross Validation

of experiments, the training data was morphed by adding benign opcode sequence of

the size equivalent to 10% of original training data size.

Morphing is one of the most common techniques employed by malware developers

to defeat such signature detection techniques. We measure the performance of boosting

technique against the traditional techniques when such tactics are implemented to

avoid detection. For every malware family, we categorize the files in training data

and scoring data. The split is same as that in the previous experiments - 60:40. We

add benign files to the training dataset such that appropriate percentage of morphing

is enforced.

20



4.2.1 10% Morphing

For this experiment, we concatenate benign code at the end of the training data

which is equal to 10% of its actual size. Generally, higher degree of morphing is

applied with more sophisticated techniques. However, we use this simple experiment

to measure the performance of the techniques over a range of degree of morphing as

seen in Figure 14.

For Cridex malware, the boosting technique out performs the traditional technique.

There is an 8% increase in the AUC using the boosting technique. With 10% morphing,

boosting provides a better classification than the random restart technique for Harebot

malware. The improvement in classification between the two techniques also increases

by 4,5%.

Figure 14: Malware Families with 10% Morphing

Just like in the previous malware families, the boosting technique out performs

traditional technique for Security Shield with an 2.5% improvement on the AUC.

Zbot malware classification sees a 1.5% improvement in the AUC using boosting

compared to random restarts technique. For ZeroAccess malware, as seen in the initial
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experiment, boosting does not improve the classification provided by the traditional

technique. We can attribute this to the fact that, with this minimal morphing, the

classifier obtained from the traditional techniques are still strong classifiers. Hence,

boosting does not really perform well when any of the classifiers are strong.

4.2.2 50% Morphing

For the next set of experiments, we increase the amount of morphed training

data to 50%. A long sequence of benign opcodes, half the size of the actual training

data, is appended at the end of the training data. This increased morphing degree,

helps us verify if using techniques like adding dead code can help defeat the techniques

being analyzed 15. For malware families of Cridex, Security Shield and Zbot there

is no improvement in the AUC Boosting technique as compared to random restarts

technique. An improvement of 5.8% and 16% AUC of ROC is seen for Harebot and

ZeroAccess malware respectively.

Figure 15: Malware families with 50% Morphing
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4.2.3 100% Morphing

To test the robustness of suggested techniques, we ramp up the degree of morphing

to 100%. The benign opcode sequence which is attached at the end of the original

training data, is equal to the size of the actual training data. This doubles the size

of the training data and makes it much more difficult to detect signatures in the

test files. The classification does not improve for Cridex and Security Shield. There

is however, an improvement seen in the classification for other malware families as

shown in Figure 16.

Figure 16: Malware families with 100% Morphing

4.2.4 Summary

The classification is best for most families with no morphing of the training data.

Morphing worsens the performance of classifiers based on signature detection for some

malware. However, using boosting the performance of these models is still better than

the models using traditional techniques. Although, for models with strong classifiers

obtained using random restarts, the boosting techniques do not perform as well. In

most cases, the AUC of ROC curve is highest for models using boosting with no

morphing. Even the slightest amount of morphing (10%) affects the performance of

the classifiers almost as much as training data with 50% or 100% morphing.
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4.3 Cold Start Problem

Even with a huge volume of malware in the digital world, the availability of

information on every malware family is not possible. If there is a lack of malware

samples for any type of malware, it is difficult to build effective models to train and

identify the malware. Machine learning techniques like HMM, need a significant input

for training to build a good model. The cold start problem results in generation of

poor classifiers. In general terms, lack of sufficient training data is a major issue for

generating signature detection models.

We may however, resolve this problem using a boosting technique which will

help improve the classification of weak classifiers generated using the limited training

data. To test the boosted HMM in this context, we consider a set of experiments on

the malware dataset by restricting the amount of training data over a range of values

from five to twenty-five. We generate many models using random restarts and train

them on the limited training data. We then score the test files and applying boosting

to these classifiers to try and improve the classification with limited training.

4.3.1 Varying training data size

Experiments were performed choosing a range of files randomly to train and build

a thousand weak classifiers for each of the malware family. These models generated

using random restarts were then subject to thousand iterations of boosting to build a

strong classifier. The files chosen for both set of experiments did not have any overlap.

We see that, for every malware family, there is an improvement in the classification

using boosting. The best available classifier is chosen at every iteration of boosting to

reduce misclassifications. We can choose the best performing model from thousand

iterations as sometimes the performance of the model worsens on further boosting
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depending on the weak classifier being combined with it. We plot a graph containing

the accuracy values for each weak classifier and compare it with the accuracy of the

strong classifier generated after each iteration of boosting.

Models were trained initially only on five files for each malware family. Similar

experiments were conducted for ten, fifteen, twenty and twenty-five files each. The

results were summarized by plotting bar graph for each malware family comparing

HMM with random restarts versus boosted HMM. We also compare the difference in

AUC of ROC for these techniques.

In Figure 17, for Cridex we see an improvement in accuracy of 0.73% using just 5

files for training the model. Harebot on the other hand sees an improvement of 1.6%

in accuracy as show in Figure 18. An improvement of similar magnitude is seen for

Security shield in Figure 19.

Figure 17: Cridex Cold Start - 5 Files
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Figure 18: Harebot Cold Start - 5 Files

Figure 19: Security Shield Cold Start - 5 Files
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As only 107 benign files are used throughout the project, using an imbalanced

dataset affects the accuracy and the AUC of the ROC curve of the models for that

family. Only two hundred files were considered for each of Zbot and ZeroAccess to

avoid this imbalance in dataset. Zbot shows the biggest improvement of 3.7% in its

accuracy using boosted HMM as seen in Figure 20. However, no improvement is seen

in the accuracy for ZeroAccess as shown in Figure 21.

Figure 20: Zbot Cold Start - 5 Files

We can see that from Figure 22, the accuracy for all but one of the malware

family improves by varying percentages on using boosted HMM when only five files are

available for training the HMM with random restarts. Also, on comparing the AUC

for the ROC curve of the models generated using these techniques, an improvement is

seen in all malware family whose accuracy improved as shown in Figure 23.
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Figure 21: ZeroAccess Cold Start - 5 Files

Figure 22: Cold Start - 5 Files Summary
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Figure 23: Cold Start - 5 Files AUC for ROC comparison

In Figure 24, for Cridex we see an improvement in accuracy of 4.28% considering

just 10 files for training. Boosting also improves the classification for Harebot by 0.7%

as shown in Figure 25. However, there is no improvement seen for Security Shield as

seen in Figure 26.

Similar to the previous experiment for Zbot and ZeroAccess, only 200 files are

considered for scoring to avoid an imbalanced dataset. A significant improvement of

3.4% is seen in accuracy for Zbot as shown in Figure 27. However, no improvement is

seen in the accuracy for ZeroAccess family as seen in Figure 28.

29



Figure 24: Cridex Cold Start - 10 Files

Figure 25: Harebot Cold Start - 10 Files
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Figure 26: Security Shield Cold Start - 10 Files

Figure 27: Zbot Cold Start - 10 Files
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Figure 28: ZeroAccess Cold Start - 10 Files

The Figure 29 provides a comparison of the performance of both techniques for

each of the malware family using only 10 files for training. On comparing the AUC of

the ROC curve for both the techniques, we see that for all malware families except

ZeroAccess, there is a significant improvement in the AUC using boosted HMM. In

Figure 30, we see that the best case of boosted HMM outperforms both the average

case and the best case for HMM with random restarts.

Using 15 files for training, we see an improvement in accuracy for every malware

family except Security Shield as seen in Figure 33. There is a 4.5% improvement in

accuracy for Cridex as seen in Figure 31 and a 0.8% improvement for Harebot as

shown in Figure 32.
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Figure 29: Cold Start - 10 Files Summary

Figure 30: Cold Start - 10 Files AUC for ROC comparison
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Figure 31: Cridex Cold Start - 15 Files

Figure 32: Harebot Cold Start - 15 Files
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Figure 33: Security Shield Cold Start - 15 Files

Considering only 200 files for scoring Zbot and ZeroAccess, to avoid an imbalanced

dataset, we see a significant improvement of 5.6% in accuracy for Zbot as shown in

Figure 34. However, the accuracy for ZeroAccess family improves only by 0.33% as

seen in Figure 35.

The Figure 36 provides a comparison of the performance of both techniques for

each of the malware family using only 15 files for training. On comparing the AUC of

the ROC curve for both the techniques, we see that for all malware families except

ZeroAccess, there is a significant improvement in the AUC using boosted HMM which

is similar to what was observed in previous experiments. In Figure 37, we see that

the best case of boosted HMM again outperforms both the average case and the best

case for HMM with random restarts.
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Figure 34: Zbot Cold Start - 15 Files

Figure 35: ZeroAccess Cold Start - 15 Files
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Figure 36: Cold Start - 15 Files Summary

Figure 37: Cold Start - 15 Files AUC for ROC comparison
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For next set of experiments, we use 20 files for training the models using both

HMM with random restarts and then using those models to boost the scores and

generate a stronger classifier. For the first time, we see an improvement in accuracy

with each malware family. In Figure 38, we see an improvement in accuracy for of

0.73% and an improvement of 1.6% for Harebot as seen in Figure 39. There is a 0.79%

improvement in accuracy for Security Shield as seen in Figure 40.

Figure 38: Cridex Cold Start - 20 Files
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Figure 39: Harebot Cold Start - 20 Files

Figure 40: Security Shield Cold Start - 20 Files
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We see an improvement of 3.24% in accuracy for Zbot as shown in Figure 41 and

the accuracy for ZeroAccess family improves by 0.68% as seen in Figure 42. For these

two families, only 200 files are considered for scoring to avoid an imbalanced dataset.

The Figure 43 provides a comparison of the performance of both techniques for

each of the malware family using only 20 files for training. On comparing the AUC of

the ROC curve for both the techniques, we see that for all malware families except

Security Shield and ZeroAccess, there is a significant improvement in the AUC using

boosted HMM which is similar to what was observed in previous experiments. In

Figure 44, we see that the best case of boosted HMM again outperforms the average

case for HMM with random restarts.

Figure 41: Zbot Cold Start - 20 Files
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Figure 42: ZeroAccess Cold Start - 20 Files

Figure 43: Cold Start - 20 Files Summary
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Figure 44: Cold Start - 20 Files AUC for ROC comparison

Finally, we use 25 files for training the models for each family and again an

improvement in accuracy is seen for each malware family. In Figure 45, we see an

improvement in accuracy for of 2.8% and an improvement of 0.84% for Harebot as

seen in Figure 46. A similar improvement of 0.82% is seen in accuracy for Security

Shield as shown in Figure 47.
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Figure 45: Cridex Cold Start - 25 Files

Figure 46: Harebot Cold Start - 25 Files

43



Figure 47: Security Shield Cold Start - 25 Files

For Zbot and ZeroAccess, only 200 files are considered for scoring to avoid an

imbalanced dataset. A significant improvement of 4.86% in accuracy is observed for

Zbot as shown in Figure 48 and the accuracy for ZeroAccess family improves by 0.67%

as seen in Figure 49.

The Figure 50 provides a comparison of the performance of both techniques for

each of the malware family using only 20 files for training. On comparing the AUC of

the ROC curve for both the techniques, we see that for all malware families except

ZeroAccess, there is a significant improvement in the AUC using boosted HMM which

is similar to what was observed in previous experiments. In Figure 51, we see that

the best case of boosted HMM consistently outperforms the average case and the best

case for HMM with random restarts in all but the best case for ZeroAccess family.
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Figure 48: Zbot Cold Start - 25 Files

Figure 49: ZeroAccess Cold Start - 25 Files

45



Figure 50: Cold Start - 25 Files Summary

Figure 51: Cold Start - 25 Files AUC for ROC comparison

46



4.3.2 Summary

We can see that, from Figure 52, there is an improvement in accuracy using

boosted HMM over the traditional random restarts technique for almost all cases

except for a couple of experiments. Also, no trend is observed in the improvement

depending on the number of files chosen for training. Depending on the malware

family, we may choose the appropriate number of files used for training the models to

maximize the improvement in accuracy.

Figure 52: Cold Start - Accuracy Improvement Percentage
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CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

With an increasing threat of malware attacks and proliferation of Internet, it is

important to have optimal and efficient malware detection techniques. Combining

classifiers for malware detection using hidden Markov models and boosting techniques

like AdaBoost provide better results than the traditional random restart technique

and help improve malware classification. Morphing is one of the common techniques

used for defeating classifiers based on signature detection. We see that, using the

traditional techniques, even the slightest amount of morphing by just concatenating

benign code at the end of training data, decreases the accuracy of the classifier.

Sophisticated techniques of adding dead code make it easier to defeat such

traditional signature detection methodologies. The classifiers obtained using traditional

techniques would be weaker. We can then apply boosting techniques on these weak

classifiers to produce better results. A similar approach is found to have improved

the performance of classifiers for intrusion detection systems [15]. Boosting can be

applied to malware detection and various similar pattern recognition and signature

detection problems, to improve the classification. Boosting proves to be very useful

for combating techniques used by malware developers to avoid detection. We should

always employ boosting algorithm on the classifications obtained using multiple models

and combine them to obtain a better improved classification with minimal extra effort.
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5.2 Future Work

New samples of malware collected, are seen to employ highly sophisticated tech-

niques to avoid detection. Some malware are encrypted while some are metamorphic

which constantly evolve to avoid such signature detection. We can use boosted tech-

niques combined with hidden Markov models to identify and detect encrypted text.

Using this, we would be able to identify encrypted malware. Metamorphic malware

on the other hand, constantly evolve. However, they are still not very different from

the original form of malware. Hence, boosting will help identify those odd samples of

malware which might have only slightly avoided detection. We have limited informa-

tion and sample data on most of the newer malware. We can use multiple models

with limited training which act as weak classifiers and combine those using boosting

to have a stronger classifier. This will help us quickly improve our detection ability

for malware which are uncommon. We have a variety of such scenarios in which

boosting would help us improve our ability to detect malware.
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