
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

Analyzing Android Adware Analyzing Android Adware

Supraja Suresh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Suresh, Supraja, "Analyzing Android Adware" (2018). Master's Projects. 621.
DOI: https://doi.org/10.31979/etd.7xqe-kdft
https://scholarworks.sjsu.edu/etd_projects/621

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/621?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Analyzing Android Adware

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Supraja Suresh

May 2018

c○ 2018

Supraja Suresh

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Analyzing Android Adware

by

Supraja Suresh

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2018

Dr. Mark Stamp Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Fabio Di Troia Department of Mathematics

ABSTRACT

Analyzing Android Adware

by Supraja Suresh

Most Android smartphone apps are free; in order to generate revenue, the app

developers embed ad libraries so that advertisements are displayed when the app is

being used. Billions of dollars are lost annually due to ad fraud. In this research, we

propose a machine learning based scheme to detect Android adware based on static

and dynamic features. We collect static features from the manifest file, while dynamic

features are obtained from network traffic. Using these features, we initially classify

Android applications into broad categories (e.g., adware and benign) and then further

classify each application into a more specific family. We employ a variety of machine

learning techniques including neural networks, random forests, adaboost and support

vector machines.

ACKNOWLEDGMENTS

I would like to thank Dr.Mark Stamp for his guidance and support throughout

the project and my degree program. I am grateful to Fabio Di Troia for his suggestions

to improvise the project and to Dr. Katerina Potika for being helpful and for her

valuable time.

I would also like to thank my family and friends for being my strength and

support throughout the course of my Master’s degree.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 4

2.1 Overview of Advertising in the Web Domain 4

2.2 Overview of Advertising in the Mobile Domain 5

2.3 Overview of Android . 6

2.4 Android Adware . 8

2.4.1 GhostClicker . 8

2.4.2 Judy . 9

2.4.3 Copycat . 9

2.4.4 HummingBad . 9

2.4.5 Hamob . 10

2.4.6 MarsDaemon/Marswin . 10

2.4.7 Origin . 10

2.5 Related Work . 11

2.6 Machine Learning Models . 13

2.6.1 Random Forest . 13

2.6.2 Adaboost . 15

2.6.3 Support Vector Machines 15

2.6.4 Deep Learning . 17

3 Methodology . 21

vi

vii

3.1 Dataset . 21

3.2 Feature Collection and Extraction 21

3.2.1 Static Features . 22

3.2.2 Dynamic Features . 24

3.3 Recursive Feature Elimination . 28

4 Experiments . 30

4.1 Experiments Conducted . 30

4.1.1 Scenario A . 30

4.1.2 Scenario B . 30

4.1.3 Scenario C . 30

4.1.4 Scenario D . 31

4.2 Evaluation Metrics . 31

4.3 Results . 32

4.3.1 Results for Scenario A . 32

4.3.2 Results for Scenario B . 34

4.3.3 Results for Scenario C . 35

4.3.4 Results for Scenario D . 36

4.4 Discussion . 36

5 Conclusion and Future Work . 40

LIST OF REFERENCES . 41

APPENDIX

Results for Adware vs Benign Classification 45

LIST OF TABLES

1 Android Application Family and their Count 22

2 Extracted Static Features . 24

3 Extracted Dynamic Features . 29

4 Important Features by Adaboost 37

5 Important Features by Random Forest 38

viii

LIST OF FIGURES

1 Ad Fraud Common Examples [1] 6

2 Android Architecture [2] . 7

3 Predicting a label using Random Forest [3]. 14

4 SVM Line Hyperplane and Maximum Margin of Separation. . . . 16

5 Input Space to Higher Dimensional Feature Space. 17

6 Single Perceptron Flow [4] . 18

7 MLP with 2 Hidden Layers [5] . 19

8 Flow Chart of Static Feature Extraction 24

9 Partial Json Result of Apps from ApkAnalyser 25

10 Flow Chart of Dynamic Feature Extraction. 28

11 Accuracy of Models for Static, Dynamic and Combined Features
for Adware vs Benign Classification 32

12 Area under ROC for Combined Features for Adware vs Benign . . 33

13 RFE on Combined Features . 34

14 Accuracy of identifying family of apps using combined features . 35

15 Accuracy of classifying each family vs benign apps with ad 39

A.16 Area under ROC with combined features for SVC 45

A.17 RFE of Static Features . 46

A.18 RFE of Dynamic Features . 46

A.19 Accuracy of Classifying each Family against Benign Apps without
Ads . 47

ix

CHAPTER 1

Introduction

Advertisements are used to promote or sell a product, an idea or a service. The

advent of the internet, and later the smartphone, has pushed marketing strategies

towards digitizing advertisements as it’s the new norm and the digital channel is

rapidly growing with no signs of slowing down [6]. These ads are displayed while

browsing a website online or while using a mobile application. A majority of the

smartphones are built on the Android platform which led to the growth of a huge

ecosystem of apps. This rapid growth gave rise to the increase in the apps with

malicious intent. Most of the apps are available for free use. Based on statistics from

the 4th quarter of 2017, 93.99% of the apps available in Google playstore are available

for free [7].

The major revenue generators for several free mobile apps and online web services

are through advertisements, but they are plagued by fraudulent activities [8]. Ads

fetched from ad providers are launched by interleaved ad libraries in the web page or

in the mobile apps and are displayed to the users. The ad providers pay the developers

of the app or the web page certain amount for each ad impression, i.e., each ad that

is fetched and displayed to the user. In addition, the developer gets paid for each

click the user makes on the displayed ads. Unfortunately, the problem of ad fraud

has been disrupting the advertising industry for a long time. When the developers

include code that fetches an ad but does not display it to the user, or when the app

clicks on an ad without user activity, this is fraudulent activity [9]. Software that

commits ad fraud is called Adware.

1

Cybercriminals profit from the ad industry and it affects the users and businesses

in several ways. Adware can be structured to steal sensitive information from a user’s

phone and pass it on to third parties. Adware not only displays annoying pop-up

messages, but attackers can root users phone and gain access to the devices [10].

Adware can be also used for other purposes, such as performing DoS attacks.

There are slight differences in how ad fraud is committed on the web and on

mobile devices. In the web context, ad fraud is often perpetrated by botnets, which

are collections of compromised user machines called bots. Fraudsters issue fabricated

impressions and clicks using bots so that the traffic they generate is varied (i.e., by IP

address), making such fraud difficult to detect [8]. The user system has to be infected

with malware so that it acts as a bot and receives a command from a central server

to display ads and clicks on them automatically. In the mobile world, at most one

application runs in the foreground, while several can run in the background. If the

application running in the background fetches ads or clicks on the ads, it is committing

ad fraud. Fraudulent activity also includes the case in which the application fetches

the ad but does not display it to the user, or clicks on the ad automatically. Such

fraud can be caused by code in the application which could turn the phone into a bot

by downloading modules that infect the device and display ads based on commands

from the botnet command and control server.

The main purpose of this research is to analyze the use of machine learning

as a possible solution to detect adware. This can be done by classifying the apps

based on the features obtained from the static and dynamic analysis. Static features

may involve features extracted from Java byte code or from the Android manifest

file, AndroidManifest.xml. As static analysis cannot detect dynamic code injection

or loading we also extract dynamic information. Dynamic analysis can be done by

2

running the code and monitoring API calls, network traffic, and other similar aspects.

In this paper, we consider dynamic information obtained by monitoring network traffic

while executing the application. These features can be used for isolating fraudulent

traffic from legitimate traffic and identifying different families of adware.

The remainder of the report is organized as follows. Chapter 2 gives a basic

overview of advertising in the web and mobile domains and detection mechanisms.

Chapter 3 discusses the proposed methodology. Chapter 4 explains the experiments

performed and the results obtained while Chapter 5 outlines future enhancements.

3

CHAPTER 2

Background

This chapter provides the needed background information related to advertising,

android, adware, ideas and existing solution to detect adware and the basic machine

learning techniques used in the research.

2.1 Overview of Advertising in the Web Domain

Advertising in the web involves ads displayed as a part of the website to the

user. The website owner called the publisher embeds ads in the website using libraries

provided by the third party ad providers in the <iframe> or <script> tags whose src

attribute points to the ad provider’s ad servers [8]. These ad providers are responsible

for finding and selecting advertisements and they also pay the publishers for the ads

displayed. When a user loads the website, an ad request is made along with the

publisher id and user related information so that appropriate ads can be selected as,

different ads target different groups of users. The response to this contains the pixel

URL, click URL and content URL. The content is provided by the ad provider itself

and the marketers who want their ads to be displayed via a provider use a tracking

pixel to track the ads so that the marketers are not charged for fraudulent activities

by the provider [8]. The click URL contains the corresponding page that will be

loaded when an ad is clicked.

The web front is plagued by several types of ad fraud due to botnets, ghost sites,

ad stacking or purchased traffic. Bots are programs on normal user computers that

can be controlled by a central Command and Control server (C&C). The C&C server

together with the bots form a botnet which can be used to click on ads on a web

4

page or generate excessive web traffic and overwhelm a server. Ghost sites are legit

websites whose content are old or copied from other websites and they have several ad

slots. These sites are usually not visited by the users but by the bots generating ad

impressions with no return on investment. At a given time only one ad can be viewed

and stack ads on top of the other generate multiple ad impressions but only one ad

is displayed to the user. In addition to ghost sites, bots can also visit legitimate and

popular websites and view ads thus creating fraudulent impressions [11]. This traffic

can be purchased by the publishers thus increasing their revenue.

2.2 Overview of Advertising in the Mobile Domain

Mobile advertising usually comprises of ads displayed in android apps most of

which are freely available in numerous app stores. The app developer generates

revenue when ads are displayed to the user and when the user clicks the ads. To

achieve this, the app developer obtains a publisher id by registering to an android ad

provider and embeds the ad library provided in the application code. This library

takes care of fetching the ads through an HTTP request and displays it to the user

after receiving the pixel, click and content URL from the ad server. Most ad libraries

implement the requesting ad and display it by simply loading an ad element in a web

view [8].

Advertising in smartphones also suffers from ad fraud in the form of fraudulent

impressions, auto-clicking, fat finger fraud, multiple sdk libraries and pixel stuffing. In

an app, it is possible to have several sdks from different ad providers and ad networks

but ideally, only one of the ads will be displayed in a spot; the rest being counted as

fraudulent impressions. Pixel stuffing occurs when an ad, say, of dimensions 1024×480

pixels are crammed to a 1× 1 pixel on the app screen which is not visible to the user.

5

Pixel stuffing also occurs in the web domain where it is also termed iframe stuffing.

Fat finger fraud occurs when an ad is placed near the navigation buttons in a phone

with the intention to make the user accidentally click it. It is also a common practice

in mobile applications to give a reward like an extra life in a game or extra points

for watching an ad. The user could open the ad and even click on it without being

interested in the content, this user behavior is not addressed as a part of the research.

Figure 1: Ad Fraud Common Examples [1]

2.3 Overview of Android

Android is one of the most popular operating systems to run applications on

the mobile phone. It is an open source project, with Google as one of its major

6

contributors. It allows apps developed on this platform to run on different hardware

devices provided it has Android installed. Figure 2 shows the major components in

the architecture of an Android operating system.

Figure 2: Android Architecture [2]

It is built on top of Linux and provides abstractions needed to interact with the

hardware components like keyboard, camera, and screen. It contains several libraries

on top of it for storage of information, web browsing, working with audio and other

functions. Several java-based android libraries are available for development purposes,

a developer can use app library to access the application, webkit library to incorporate

browsing functionalities into the application, text to control the displayed text and

view for building the interface the user interacts with to name a few.

The Android Runtime contains the core libraries and also provisions a Dalvik Vir-

tual Machine (DVM) which is similar to java virtual machine that has been improvised

for android. The Dalvik bytecode generated from java bytecode of an application is

run on this DVM. It is worthy to note that each application in android runs in its

own DVM. The Application Framework layer exposes several classes that can be

7

used by the applications to perform needed functions. Some of the available classes

include activity manager, content provider, and notification manager. Applications

are built on top of the application framework and it provides the interface for the

user. It comes packaged as a .apk file with the needed libraries, AndroidManifest.xml,

and classes.dex file. While the manifest file contains the list of permissions, content

providers, and resources used, the classes.dex file contains the packaged application

code without duplicated sections.

2.4 Android Adware

Adware is a malicious software that presents the user with unwanted ads. This

often annoys the user more than causing harm. The main target of adware is to

generate revenue for the publisher, some types of adware also collect information

regarding the user and his activities without user’s consent. This type of adware is

also called spyware. The behavior of an adware depends on the family the application

belongs to, the recent adware families used in this research are described below.

2.4.1 GhostClicker

Applications belonging to the GhostClicker family are known for automatically

clicking the ads once downloaded. According to Trendlabs, the auto clicking routines

are embedded in the Facebook Ad software development kit (SDK) and in Google

Mobile Services (GMS) as a legit logs package thus avoiding suspicion. It also tries

to evade detection by checking the system property and triggering the auto clicker

routine only when it is not nexus as android emulators used for detecting malware

usually are termed as “Nexus XXX”. Some of the apps also request device admin

permission which when provided makes it difficult to uninstall. The auto clicker is

8

not implemented in javascript code but inserts itself into Google’s advertising platform

and gets the ad location and simulates clicking [12].

2.4.2 Judy

In 2017, researchers from Checkpoint crawled Google play and identified around

41 applications that automatically clicked on ads and termed this family as Judy. All

these applications were from a Korean firm and it invaded Google Plays Bouncer, a

program that prevents malicious apps from entering play store. Once the app was

installed it relies on C&C server for operation. The C&C server gives a user agent,

javascript code and url’s. The URL’s are opened using the user agent and then the

javascript code takes care of clicking on the ads [13].

2.4.3 Copycat

Copycat is an adware campaign identified by researchers at Checkpoint that

reached its peak during April and May 2016. It affected around 14 million devices

worldwide, rooted around 8 million devices generating around $1.5 million in revenue

to the group [14]. The infected apps rooted the user’s device and gave control of

the user’s device to the attackers. It steals revenue in two ways, first by substituting

the referrerID with a fraudulent id when apps are downloaded and the second by

displaying unwanted ads based on conditions. It was the initial family of adware that

injected code to the Zygote process.

2.4.4 HummingBad

HummingBad installs a rootkit to the device and it generates revenue for the

attackers by installing fraudulent apps and generates fraudulent ad revenue. The

9

malicious components are encrypted making it harder to detect and it uses two attack

vectors so that if one fails the other can meet the objective. The apps look for certain

events like a timeout or whether the screen is on and then it roots the device and tries

to connect to the C&C center. The other attack strategy kicks in when it does not get

the root privileges. At first, it tries social engineering methods through a component

called ’qs’ that gets decrypted and connects to the C&C server from where it can

download apps, initiate referrer requests for generating Google Play advertisement

revenue or launch applications [15].

2.4.5 Hamob

Hamob is an adware that usually does not do much harm other than display ads

when installed in the device [16]. It captures information about the user and then

uses it to send a large number of ads and annoys the user.

2.4.6 MarsDaemon/Marswin

Once installed the infected app displays ads and will not stop even when the

application is force stopped. It spawns several processes and creates a file and locks

it [17]. The processes check the file and see if they are locked and start a process

when a related process is dead. This ensures that the ad libraries can inject apps by

not killing the apps even when forced.

2.4.7 Origin

Origin is a family of applications that poses to be benign but in the background

sends user information to a C&C server and delivers an ad to the user. Thus it acts as

a trojan and adware. Email, appid, gcmid ,imei identifier are some of the information

10

that is sent to the server and based on the command received it can show banner

ads, redirect to facebook or chrome and installing shortcuts on the screen. At least

100 applications are estimated to be affected by this adware according to analysts at

Dr.Web. As the behavior depends on several factors it makes it hard to detect.

2.5 Related Work

In the web advertising realm, Daswani provided a detailed study of the clickbot

architecture and various techniques for detection to help other researchers interested

in this area. Detection techniques for fabricated impression, clicks, and duplicate

clicks (where the publisher clicks the same ad many times) have been proposed in [18,

19] but these techniques fail when trying to combat botnets.

Considerably less research work has been done with a focus on ad fraud through

mobile devices. Security companies like TrendMicro, Checkpoint, and others identify

fraudulent apps in the Google Play store and report them to be removed so that

it does not affect further users. By then, the damage is already done and we need

mechanisms to detect before it affects the users. On this front, Liu [20] made a

significant contribution by trying to identify fraud through ad stacking and hidden

ad rendering. The experiment used a technique to analyze UI of the apps and then

detect but it fails when ad traffic is generated in the background.

Initial work in this field was done by Miller and his team where they performed

a detailed analysis of clickbot families Fiesta and 7cy [21]. This paved the way to

understand the working of a clickbot. In the recent years, Crussell [8] proposed an

analysis tool called MADFraud which detected fraudulent impressions and click after

running the apps automatically. This approach used machine learning for identifying

ad requests and used HTTP request trees and heuristics to detect adfraud. On the

11

other hand, Arp and his team proposed a lightweight method to detect android mal-

ware using only static features fed to a machine learning model [22]. They gathered

extensive static features and used SVM for classification but it does not take into

account the features from dynamic analysis. This is a drawback as attacks due to

code transformation appear only during dynamic analysis and cannot be detected by

this mechanism.

Grace and team [23] analyzed the permissions used by in-app ad-libraries to

determine the potential risks caused by these libraries. The authors from [24] used a

two order risk analysis scheme to identify and classify malware on basis of risks. The

first order depends on permissions of an application while the second order uses certain

heuristics to identify risky applications. Researchers in [25] also used permissions to

identify malicious applications.

Detection using dynamic analysis has also been performed earlier on the apps.

The authors of TaintDroid [26] and DroidScope [27] performed detailed analysis of the

applications by running in a controlled environment but are complex to be deployed

on the mobile phones. Authors of [28] detected malware using network traffic features

and achieved accuracy above 90% using 8 distinguishing features. More recently, a

network-based android malware detection and characterization mechanism was pro-

posed by Lashkari [29] and his team which aims to segregate malware, adware, and

benign apps. They proposed that 9 traffic features are needed for classifying the apps

using machine learning. Though this provided a good method it had few limitations

in data collection method. An efficient algorithm to minimize the number of network

traffic based features to detect malware was introduced in [30]. Several deep learning

methods were proposed to segregate malware based on network traffic like [31], [32]

and [33] outlined a method to use deep learning using static features. We employ

12

several static and dynamic methods to derieve features and propose a solution to

detect adware and classify them according to their families using machine learning

techniques.

2.6 Machine Learning Models

Machine learning relates to the field where a computer can learn by itself given

some data without programming for it explicitly [34]. It involves training a model or

an algorithm with data that has the final outcome, this is called Supervised Learning.

When the model is trained with data without providing the final outcome it is called

Unsupervised Learning. For this research, we know that if a given apk is an adware

or not so we use supervised learning models like random forest, adaboost, support

vector machine (SVM) and a deep learning based model called Multilayer Perceptron

(MLP).

2.6.1 Random Forest

Random Forest algorithm is an ensemble supervised classification algorithm that

combines several weak learners to form a strong learner. The weak learners used here

are Decision Trees. It is a non-linear model and in addition to using boosting it also

uses a bagging approach, here not only are the samples chosen at random for each

decision tree but also the features are chosen at random. This randomness prevents

the problem of overfitting that the decision trees face.

In simpler terms, for a dataset with 5 samples 𝑋1,𝑋2,𝑋3,𝑋4,𝑋5 with labels

𝐿1,𝐿2,𝐿1,𝐿2,𝐿1 and features 𝑓1,𝑓2,𝑓3 each. Then Random Forest may create 3 weak

13

classifiers with inputs as

Weak classifier 1: (𝑊1) = [𝑋1, 𝑋3, 𝑋5] with features 𝑓1, 𝑓2

Weak classifier 2: (𝑊2) = [𝑋2, 𝑋4, 𝑋5] with features 𝑓2, 𝑓3

Weak classifier 3: (𝑊3) = [𝑋1, 𝑋2, 𝑋3] with features 𝑓1, 𝑓3

Here we can see that each weak learner takes a subset of the input with overlap

and only a subset of the features is used. After training the final outcome of a test

sample is the majority outcome of those of the weak learners. Say for a test sample 𝑋6

the 3 weak classifiers output 1,-1,1 then, the final outcome is 1. An added advantage

of this ensemble model is that it can also show the importance of each feature that

can be used for gaining various insights.

Figure 3 shows the steps in prediciting the label of a given input

Figure 3: Predicting a label using Random Forest [3].

14

2.6.2 Adaboost

The Adaboost algorithm was the pioneer in boosting based Machine Learning

models. It improves the prediction accuracy by considering a number of inaccurate

results and combining them. Similar to random forest the weak classifiers are trained

on a subset, with overlap, of the training data and each has a weight associated to it

that determines the probability of its occurrence in the subset. The weight of an entry

is increased when it is misclassified so that the next classifier can perform well on these

misclassified samples. While combining the results of the weak classifiers, ones with

higher accuracy are given more weights which inturn influences the final prediction.

The weighted training samples are used to train the weak classifiers which are added

one by one till a pre-defined number of classifiers or when no more improvement can

be achieved during training. In the end, it has a set of weak classifiers each with a

stage value which decides the final output. For Example, consider the output labels

for the 5 weak classifiers to be 1,-1,1,-1,1 then the output can be expected to be 1

as that’s the maximum value, but in adaboost the final output is linear weighted

combination of the predicted values. If each stage weight is 0.3,0.9,0.2,0.7,0.5 and

using a linear combination we get -0.6 which gives the final output as -1. Unlike

random forests, adaboost can be used with any classifier like decision trees, SVC and

others.

2.6.3 Support Vector Machines

Support Vector Machine is a supervised algorithm that works by identifying the

optimal hyperplane. It accepts an n-dimensional input and then it generates an

n-1 dimensional hyperplane to classify the samples and predict the label. For a 2-

dimensional input with 2 labels the hyperplane is a line that separates one class of

15

labels from the other. SVM is based on the following concepts :

Maximizing the Margin: For a binary classification with 2-dimensional input

in Figure 4, the hyperplane is the solid yellow line and the margin is formed by

the dashed line that represents the minimum distance between the hyperplane and a

sample from the training set. The main aim in SVM is to maximize the margin and

the solid black lines to the hyperplane are called the support vectors.

Figure 4: SVM Line Hyperplane and Maximum Margin of Separation.

Working in a higher dimensional space: Hyperplane can be identified and

used for separation only when the data is linearly separable. When the data is not

linearly separable, to classify the training set we first need to map the input space

to a higher dimensional feature space where the data is linearly separable; and then

identify the separating hyperplane. In Figure 5 we can see that for a non-linearly

separable input data when a transformation is applied it becomes linearly separable.

16

Figure 5: Input Space to Higher Dimensional Feature Space.

Kernel trick: The mapping function that makes the non-linearly separable data

to linearly separable is called the kernel trick.

2.6.4 Deep Learning

In this experiment we used Multilayer Perceptron (MLP), a deep learning model.

It consists of a network of perceptron/neurons. The output of a perceptron is a linear

combination of inputs based on weights passed through an activation function.

𝑦 = 𝜑

(︂ 𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏𝑖

)︂
(1)

In Equation 1, 𝑥 forms the input vector, 𝑤 the weight vector, 𝑏 the bias vector

and the 𝜑 forms the activation function. Figure 6 shows a single flow of data through

a perceptron.

Several activation functions like RELU, logistic sigmoid, hyperbolic tangent are

available. These functions add the needed non-linearity for making the network more

17

Figure 6: Single Perceptron Flow [4]

powerful. For our experiments, we used hyperbolic tangent which squishes the input

to be within -1 to 1. It is given by

tanh(𝑥) =
2

1 + exp−2𝑥
− 1

.

A single layer perceptron is less effective and hence multiple layers are stacked

to form a multilayer perceptron. It usually has one Input Layer, several Hidden

Layers and an Output Layer [35]. The data passes from one layer to the other and is

subjected to several transformations after which it is given as the output.

MLP, when used for a supervised algorithm, tries to understand the relationship

between the input and labels of a training set through transformations and then tries

to predict the label for a test set. It relies on Backpropagation Algorithm for updating

18

the weights. It has two steps

1. Forward Pass: The inputs are used to calculate the output values using Equa-

tion 1

2. Backward Pass: The weights are adjusted by backpropagating the partial

derivatives of the cost function and the error derivatives. This can be achieved

by simply applying the chain rule.

Figure 7 shows an MLP with 2 hidden layers, one input, and one output layer.

It can also be considered as fully connected layers as the outputs from all the nodes

in a layer are propagated to the next.

Figure 7: MLP with 2 Hidden Layers [5]

The error function used here in the experiment is Cross-Entropy Loss Function

along with Softmax layer. This allows the output to be treated as a probability mea-

sure of a sample belonging to a class. Cross-Entropy is a distance measure between

probability distributions. The activations from the output layer are normalized using

19

softmax given by 𝑠(𝑜𝑗) where

𝑠(𝑜𝑗) =
exp(𝑜𝑗(𝑥))∑︀
𝑘 exp(𝑜𝑘(𝑥))

Training involves updating the weight vectors through backpropagation and once

it is completed it can be used to predict the label for the test set. Thus from the

output of the softmax layer we obtain the class the test sample belongs to.

20

CHAPTER 3

Methodology

This section initially describes the dataset collected and used. Then it describes

the procedure to collect and extract the features from static and dynamic analysis.

3.1 Dataset

The dataset used for this experiment was mostly collected manually. We initially

identified android adware families in the recent times from blogposts which listed the

infected apps package name or SHA keys or both. Then we downloaded the apks

and verified if it is infected or not on VirusTotal, an online tool that runs different

antivirus engines, websites and URL scanners and gives an aggregate result. Apps

for the adware families Hamob and Copycat the apks were obtained from the Drebin

dataset [22] and then verified to be malicious and then used. The benign apps were

obtained by first choosing apps from the playstore with and without ads, downloading

them and then making sure the apps are not infected in VirusTotal. A total of 266

apps were used in this experiment; the application family names and the count of

apps in each family are shown in Table 1.

3.2 Feature Collection and Extraction

The features collected and extracted play an important role in determining and

improving the model accuracy. The methodology used to extract the static and

dynamic features are described in this section.

21

Table 1: Android Application Family and their Count

Family Name Count
Judy 45

GhostClicker 29
Origin 20

HummingBad 20
Hamob 16
CopyCat 12
Marswin 29

Benign without ads 48
Benign with ads 47

3.2.1 Static Features

Android applications distributed as .apk files contain AndroidManifest.xml,

classes.dex and other resources. Static analysis is a part of reverse engineering the

apk files without executing it. Static analysis of an apk involves analyzing the code

segments of the apk without running it on an emulator. It is difficult to detect ob-

fuscated code and dynamic code loading using this method. The major advantage

of static analysis is that the cost of computation is low and requires low resources.

Static analysis was conducted using a tool called ApkAnalyzer [36], a java tool to ex-

tract detailed information about the APK files. This in turn uses apktool to generate

a JSON describing the permissions, activities, services used and other information.

The tool gets information in several categories like:

1. Basic Metadata — The file name, size, source of download, size of compiled dex

and arc sizes

2. Manifest Metadata — The number of activities, listed and used permissions,

services, content providers and broadcast receivers, min, max and targeted sdk

22

version and supported screen size.

3. Certificate Metadata — Signing algorithm used, issuer name, start and end

date, MD5 public key and hash of the certificate

4. Resources Metadata — The number of xml, gif, jpg, idpi, hdpi, layouts and

menus used to name a few.

5. File Hashes —Hashes of the dex files, resources, drawables, layout and all other

files in Manifest.MF

Permissions are one of the most important features in detecting malicious apk.

In addition to the permission we also used the activities as it represents the entry

point for user interaction. An app can have several activities and an activity of

one app can be used by another app if allowed. Next, the number of services was

extracted as it represents the long-running operations that run in the background for

an app. The broadcast receivers allow the apps to react to broadcast notifications or

announcements. The content provider manages the app data like the user’s contact

information on an android phone. It can also be used to store and retrieve data

private to an app.

One approach would have been to list all the values of the components mentioned

above and construct a feature vector, it would have been of very high dimensions.

Instead of building a high dimensional feature vector and reducing it, we wanted to

try and see if just using the count of these components like permissions, activities

and so on helps in identifying adware. The static features used for the experiments

are as shown in Table 2 .

For each app in the dataset, the ApkAnalyzer is used on the file to obtain the

23

Table 2: Extracted Static Features

Number Static Feature Name
1 numberOfActivities
2 numberOfServices
3 numberOfContentProviders
4 numberOfBroadcastReceivers
5 numberOfPermissions

JSON file with app details. A custom parser to extract the above-mentioned features

were used on the JSON file and the static features were extracted and normalized.

The steps involved in extracting static features are shown in the below Figure 8 and

the sample partial json for adware, benign with and without ads are shown in Figure 9:

Figure 8: Flow Chart of Static Feature Extraction

3.2.2 Dynamic Features

Dynamic analysis involves running the apk in a real/emulated environment and

collecting information. It can detect dynamic code loading and gather application

information. The dynamic analysis could also involve monitoring the system call or

network traffic and the like. As the ads are from the provider the proposed methodol-

ogy monitors network traffic and tries to extract features based on the flow and count

24

Benign app with ads

Adware

Figure 9: Partial Json Result of Apps from ApkAnalyser

25

information. The apk was run on an Android Emulator called Bluestacks and then

the network traffic was captured using Wireshark in a Windows Virtual Box.

Steps:

1. Start Bluestacks and attach it as one of the emulators using ADB command –

adb connect 127.0.0.1:5555.

2. Store the apks in an input folder and pass the python script to Monkeyrunner

to automate installation.

3. Monkeyrunner picks each apk and installs it in bluestacks and starts the appli-

cation.

4. The python script also captures the network traffic using wireshark by run-

ning the application for 30 minutes when the user is interacting with the app

manually.

5. After the desired time, wireshark is stopped and the apk is uninstalled and

moves on to the next apk.

6. This process continues for each of the apks in the input folder.

The features from network analysis are extracted on several basis:

1. Packet-Based : Packet-based features are used to capture the packet statistics

like number of packets sent, number of packets received, the total number of

packets exchanged and the ratio of packets received to packets sent. We also

focused on DNS and HTTP protocol based packets as ads requests are served

over HTTP and ad domains are resolved using DNS in certain cases. DNS

26

related - features like the number of DNS requests, DNS responses, the max,

min and average value of DNS answer length is also accounted for. HTTP

related - features like the number of HTTP requests, max, min and average

header length. Percentage of TCP, UDP, DNS requests out of the total packets

is also extracted.

2. Time-Based : Time based features have been proved effective in classifying the

network traffic [37] and using it as a basis we extracted features like the time

the flow was active (active time), the time the flow was idle (idle time), the

average number of packets per second and the average length of the packets in

both the directions per second.

3. Flow-Based : A flow is a sequence of packets with the same source and destina-

tion, IP and port along with the same protocol. The flow-based features include

number of flows and ratio of number of IP from which packets were received to

the number of IP to which packets were sent to.

4. Byte-Based : This captures the information transferred between the sender and

receiver and so the min, max and average size of the packets and the payload

of HTTP requests was extracted as byte-related features.

The pcap file thus generated also has few packets other than that of those from

the application which was filtered out. The features as shown in Table 4 were ex-

tracted with a python script using scapy, a powerful package manipulation program in

python. Scapy can perform tasks like scanning, filtering, probing, attacks or network

discovery [38]. The steps involved in extracting static features are shown in the below

Figure 10.

27

Figure 10: Flow Chart of Dynamic Feature Extraction.

3.3 Recursive Feature Elimination

One can get a varied number of features for a task but one of the major questions

plaguing the machine learning field is ’ how many features is enough ?’ to effectively

and accurately address the task at hand. Not all features generated will be important,

we tried to identify the optimal number of features needed to identify adware by

using RFE with ten-fold cross-validation. We started with using the most important

features, then with 2, 3, . . . , 37 features and identified the number of features that

gave better results. The major advantage of using RFE is that it takes an algorithm

that gives feature importance and uses the specified number of features to train and

test. If for example, we specified the number of features to be used as 3 then RFE

runs and gets the most important feature, then runs the model with the remaining

features to identify the most important feature from the feature subset and includes

it; then does the same till the required features are identified. The major advantage

of using RFE is that it does not remove several features at a time as it would give

sub-optimal features. This approach of removing features recursively by building a

model on the remaining subset of features is proved to be effective.

28

Table 3: Extracted Dynamic Features

S.No Dynamic Feature Name Description

1 dnsReqCount No of DNS requests
2 dnsResCount No of DNS responses
3 dnsAnswerLength Min, Max and Avg DNS answer

length
4 PayloadHttp Min, Max and Avg payload size of

the HTTP requests
5 noOfPkt Total no of packets exchanged
6 httpCount No of HTTP requests/responses

sent or received
7 HeaderLength Min, Max and Avg header length

in the HTTP requests made
8 PktSize Min, Max and Avg size of the

packets
9 noOfPktsSent No of packets sent
10 noOfPktsReceived No of Packets received
11 Percentage of TCP, UDP,

DNS
Percentage of the TCP,UDP and
DNS requests made out of the to-
tal values

12 ActiveTime Min, Max and Avg flow active
time

13 IdleTime Max, Min and Avg Idle time be-
tween Flows

14 flowCount No of flows observed
15 ratioOfRBySIP Ratio of number of IP from which

packets are recevied to the IP’s
sent to by the application

16 avgpktcountPerSec Average packets count per second
17 avgpktLenPerSecond Average packets length per second
18 ratioOfRBySPkts Ratio of packets received to pack-

ets sent in total

29

CHAPTER 4

Experiments

This chapter discusses the experiments performed on the applications and the

corresponding results. First, the metrics used for evaluation are discussed and then

the results from the static and dynamic analysis are presented.

4.1 Experiments Conducted

We performed multiple experiments using static, dynamic and combined features

for the following scenarios.

4.1.1 Scenario A

We started off with a binary classification by considering all the adware families

as one group called adware and the benign apps with and without ads as benign, to

see how well can the models differentiate between adware and benign apps.

4.1.2 Scenario B

As in machine learning extracting features can be hard and there is no guarantee

that the features are useful for classification; Out of the total static(5), dynamic(32),

and combined(37) features we tested the ideal number of features needed to effectively

perform the binary classification using Recursive feature elimination(RFE).

4.1.3 Scenario C

In the next set of experiments, we tried to label the apps after classifying it to

adware or benign using a two-level classification mechanism where the first step as

30

described in Scenario A and then ran a trained model to label the family the apps

belong to.

4.1.4 Scenario D

Lastly, we performed experiments to gauge the difficulty in identifying each fam-

ily of adware from the benign apps without ads and benign apps with ads. This

formed several sets of classifiers the results of which are described in the next section.

4.2 Evaluation Metrics

Accuracy is a measure that is used to determine how well the model detected

adware and the correctness of the predicted family of an apk. If

∙ True Positives (TP): number of positive examples, labeled as such.

∙ False Positives (FP): number of negative examples, labeled as positive.

∙ True Negatives (TN): number of negative examples, labeled as such.

∙ False Negatives (FN): number of positive examples, labeled as negative.

Then accuracy is defined by

accuracy = (TP + TN)/(TP + TN + FP + FN)

In addition to accuracy, we also consider area under the ROC curve. Roc curve is a

graph that plots True positive Rate vs False Positive Rate (TPR vs FPR). A model

with AUC-ROC values closer to 1 is considered to be a good classifier and if it is near

0.5 then it can be considered to perform worse than flipping a coin.

TPR = TP/(TP + FN)

FPR = FP/(FP + TN)

31

4.3 Results

We experimented with algorithms like Random Forests(RF), Support Vector

Classifier(SVC), Adaboost and MLP for the above-mentioned use cases. Where in

each of the model was trained with 80% of the data and the remaining 20% of the

data was used for testing. The results of which are discussed below.

4.3.1 Results for Scenario A

Here we classified apps as adware or benign for all 3 sets of features as shown

in Figure 11. To have an idea of how the model would perform on new data we

performed ten-fold cross-validation where we split the dataset into 10 parts and used

9 for training and one for testing. This is repeated 10 times and each time a different

set is chosen for testing.

Figure 11: Accuracy of Models for Static, Dynamic and Combined Features for Ad-
ware vs Benign Classification

32

Our experiments showed that using dynamic features alone for detecting adware

is not sufficient as the accuracy was only about 76% when experimented with com-

bined features the accuracy improved to 84%. Though the overall accuracy for binary

classification is higher for static features, about 85%, we still prefer using combined

features as we suspect the model overfits a little as the dataset is small. From Fig-

ure 11, we see that linear SVC is not ideal for this case and tree-based techniques

like adaboost or random forest works well. Adaboost results are slightly higher than

random forest or MLP irrespective of the feature set used. This shows that dynamic

features are not sufficient enough to detect adware and using tree-based ensemble

methods with combined features is more suitable for this task.

Plotting Area under ROC for the models with combined features shows that the

value is higher for random forest (0.9) than adaboost (0.83) though, the accuracy

for adaboost was slightly higher. Figure 12 shows the ROC curve for ten fold cross

validation for adaboost and randomforest when combined features were used for de-

tecting adware. The area under the curve for SVC in Appendix A shows that it did

no better than flipping a coin thus validating that accuracy alone is not enough to

evaluate a model.

Adaboost Random Forest

Figure 12: Area under ROC for Combined Features for Adware vs Benign

33

4.3.2 Results for Scenario B

Once the results showed that combined featureset gave better results in detecting

adware, the next experiment was to identify the minimum number of features needed

for detection. We used Recursive Feature Elimination on the combined 37 feature set

which was trained on different models like random forest, adaboost and SVC without

cross-validation. The results as shown in the Figure 13 indicates that the accuracy

does not improve after 12 features when using adaboost, around 88%. SVC based

RFE does not suit for identifying the important features and with random forest, the

accuracy though is the highest at 87.4% for 17 features but it does not give consistent

results like adaboost. Also, the accuracy is high when trained with 12 features and

remains fairly stable with lower accuracy after that for adaboost.

Figure 13: RFE on Combined Features

34

4.3.3 Results for Scenario C

In addition to a binary classification, we evaluated the performance of a two level

classifier with combined features where, the first model was trained to detect adware

as in Scenario A and the second classifier was trained to identify the family an app

belongs to. Multiclass classifiers like One vs Rest and One vs One were used where,

the former trains one classifier per class and the latter trains classifiers for each pair

of classes. The results in Figure 14 show that the family of an app can be detected

with an accuracy of 99% when one vs rest strategy is used for adaboost and random

forest.

Figure 14: Accuracy of identifying family of apps using combined features

35

4.3.4 Results for Scenario D

This section describes the results obtained by training a model to detect each of

the adware families from benign apps with and without ads. Specifically, we discuss

the results from classifying each family with benign apps with ads as both kinds fetch

ads but one is benign and the other is adware. The graph in Figure 15 shows the

accuracy of classifying each family against the benign apps with ads. We can see

that MLP identifies each family with the highest accuracy, that is above 84% when

combined feature set is used. Next, tree-based ensemble techniques like random forest

and adaboost produce comparative results but more towards the lower side. On the

other hand, linear model like SVC did not perform well. Combined features accurately

classifies benign apps with ads from individual family while dynamic features can help

in detecting apps from judy, marswin, hamob and origin family. Detecting humming

bad with dynamic features alone is insufficient. Static features though gives good

results for all families we do not recommend it as the dataset used is small and thus

model might is doing better. A similar graph for detecting apps from a particular

family from benign apps is given in Appendix A.

4.4 Discussion

From the experiments, we infer that detecting adware can be tricky as several

benign apps also display ads using ad libraries. Our results show that it is better to use

combined features than using static or network-based dynamic features individually

to avoid bias. Adware can be identified with an accuracy of 84% using tree-based

ensemble techniques when using combined features and with an accuracy of 88%

when suing only 12 features instead of all 37 for adaboost. The important features

are shown in Table 4 for adaboost and in Table 5 for random forests. Ensemble

36

based techniques when used as a second level classifier plays a vital role in identifying

the family label each app belongs to with higher accuracy than the linear models or

neural networks. MLP can effectively separate each adware family from apps with ads

with higher accuracy compared to other models, but when all the apps are combined

together it’s accuracy decreases. This may be due to the fact that the neural network

model does not have enough data to learn from.

Table 4: Important Features by Adaboost

Number Feature Name Importance
1 numberOfPermissions 0.238420
2 numberOfActivities 0.143715
3 httpCount 0.092341
4 numberOfContentProviders 0.074321
5 dnsMaxAnswerLength 0.073395
6 flowCount 0.061364
7 maxIdleTime 0.049825
8 ratioOfRBySPkts 0.039481
9 numberOfServices 0.037938
10 noOfPkts 0.035264
11 maxPayloadHttp 0.032320
12 ratioOfRBySIP 0.015808

37

Table 5: Important Features by Random Forest

Number Feature Name Importance
1 numberOfPermissions 0.101284
2 numberOfActivities 0.088013
3 flowCount 0.076565
4 noOfPktsSent 0.064180
5 avgPayloadHttp 0.052946
6 numberOfContentProviders 0.050890
7 maxIdleTime 0.047395
8 avgIdleTime 0.044745
9 dnsAvgAnswerLength 0.042894
10 maxPayloadHttp 0.042866
11 httpCount 0.039604
12 dnsResCount 0.035854
13 noOfPkts 0.034824
14 numberOfBroadcastReceivers 0.034635
15 numberOfServices 0.027704
16 noOfPktsReceived 0.026180
17 dnsMaxAnswerLength 0.020036

38

Copycat Ghostclicker

Hamob HummingBad

Judy Marswin

Origin

Figure 15: Accuracy of classifying each family vs benign apps with ad

39

CHAPTER 5

Conclusion and Future Work

To keep up with the growth in the mobile and the advertising industry it is

important to prevent fraudulent attacks to ensure that the right content reaches the

user to gain a return on investment from the advertisements. In the mobile front

the first step is to detect adware from benign apps and once the malicious apps are

detected it is important to remove them from being available to the general public to

prevent billion-dollar losses. In this experiment, we analyzed the importance of static

and dynamic features for classifying the adware and static features turned out to

be the winner when used with ensemble models. Thus machine learning approaches

provide a good mechanism to detect and classify adware and it also fares well when

it encounters adware in real time.

From the experiments conducted, we conclude that dynamic features alone are

not sufficient to detect and classify adware, a combination of static and dynamic

features performs better. As the next step, we can evaluate the above experiments on

a larger dataset. Features related to system calls and UI components could also be

used for detection. Periodicity can also be considered to detect adware as some adware

frequently tries to connect to the C&C center for further processing. Another frontier

to test would be to determine the difficulty in segregating malware from adware.

One could extract information by running the apps on a real smartphone instead

of using an emulator as malware developers sometimes disable malicious routines on

emulators.

40

LIST OF REFERENCES

[1] “Sampi: Chinese programmatic ads — 6 most common types of ad fraud in
China,” https://sampi.co/6-most-common-types-ad-fraud-in-china/.

[2] “Android for all: Android architecture,” https://letsknowaboutandroid.
wordpress.com/about/, June 2013.

[3] “Random Forest based Classification (YouTube video),” https://www.youtube.
com/watch?v=ajTc5y3OqSQ, June 2016.

[4] A. Honkela, “Multilayer perceptrons,” http://www.helsinki.fi/~ahonkela/dippa/
node41.html, 2001.

[5] “ADG Efficiency: Forecasting UK imbalance price using a multilayer percep-
tron neural network,” http://adgefficiency.com/forecasting-uk-imbalance-price-
using-a-multilayer-perceptron/, December 2016.

[6] M. Tomita, “Marketo: 7 reasons digital advertising wins,” https:
//blog.marketo.com/2015/11/join-the-big-league-7-reason-to-go-digital-with-
your-advertising.html, September 2016.

[7] “Statista: Distribution of free and paid Android apps 2017,” https://www.
statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/,
January 2018.

[8] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud in An-
droid applications,” in Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 2014, pp. 123–134.

[9] “Whatis.com: What is ad fraud?” http://whatis.techtarget.com/definition/ad-
fraud.

[10] “Whatis.com: What is adware?” https://searchsecurity.techtarget.com/
definition/adware.

[11] “Sizmek: Impressions that inspire,” https://www.sizmek.com/media/filer_
public/eb/13/eb13ee88-972e-441a-a879-8e641609b4c2/casestudy_060514_
fraud.pdf.

[12] “TrendLabs Security Intelligence Blog: GhostClicker adware is a phantomlike An-
droid click fraud,” http://blog.trendmicro.com/trendlabs-security-intelligence/
ghostclicker-adware-is-a-phantomlike-android-click-fraud/, August 2017.

41

https://sampi.co/6-most-common-types-ad-fraud-in-china/
https://letsknowaboutandroid.wordpress.com/about/
https://letsknowaboutandroid.wordpress.com/about/
https://www.youtube.com/watch?v=ajTc5y3OqSQ
https://www.youtube.com/watch?v=ajTc5y3OqSQ
http://www.helsinki.fi/~ahonkela/dippa/node41.html
http://www.helsinki.fi/~ahonkela/dippa/node41.html
http://adgefficiency.com/forecasting-uk-imbalance-price-using-a-multilayer-perceptron/
http://adgefficiency.com/forecasting-uk-imbalance-price-using-a-multilayer-perceptron/
https://blog.marketo.com/2015/11/join-the-big-league-7-reason-to-go-digital-with-your-advertising.html
https://blog.marketo.com/2015/11/join-the-big-league-7-reason-to-go-digital-with-your-advertising.html
https://blog.marketo.com/2015/11/join-the-big-league-7-reason-to-go-digital-with-your-advertising.html
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
http://whatis.techtarget.com/definition/ad-fraud
http://whatis.techtarget.com/definition/ad-fraud
https://searchsecurity.techtarget.com/definition/adware
https://searchsecurity.techtarget.com/definition/adware
https://www.sizmek.com/media/filer_public/eb/13/eb13ee88-972e-441a-a879-8e641609b4c2/casestudy_060514_fraud.pdf
https://www.sizmek.com/media/filer_public/eb/13/eb13ee88-972e-441a-a879-8e641609b4c2/casestudy_060514_fraud.pdf
https://www.sizmek.com/media/filer_public/eb/13/eb13ee88-972e-441a-a879-8e641609b4c2/casestudy_060514_fraud.pdf
http://blog.trendmicro.com/trendlabs-security-intelligence/ghostclicker-adware-is-a-phantomlike-android-click-fraud/
http://blog.trendmicro.com/trendlabs-security-intelligence/ghostclicker-adware-is-a-phantomlike-android-click-fraud/

[13] “CheckPoint Blog: The Judy malware — possibly the largest malware campaign
found on Google Play,” https://blog.checkpoint.com/2017/05/25/judy-malware-
possibly-largest-malware-campaign-found-google-play/, May 2017.

[14] “CheckPoint Blog: How the CopyCat malware infected Android devices
around the world,” https://blog.checkpoint.com/2017/07/06/how-the-copycat-
malware-infected-android-devices-around-the-world/, July 2017.

[15] “CheckPoint Blog: HummingBad — a persistent mobile chain attack,”
https://blog.checkpoint.com/2016/02/04/hummingbad-a-persistent-mobile-
chain-attack/, March 2017.

[16] J. Geater, “How to remove Android:Hamob-D,” https://www.solvusoft.com/en/
malware/potentially-unwanted-application/android-hamob-d/.

[17] “Naked Security: The Google Play adware apps that just won’t die,”
https://nakedsecurity.sophos.com/2017/06/16/the-google-play-adware-apps-
that-just-wont-die/, June 2017.

[18] L. Zhang and Y. Guan, “Detecting click fraud in pay-per-click streams of on-
line advertising networks,” in The 28th International Conference on Distributed
Computing Systems, ser. ICDCS’08. IEEE, 2008, pp. 77–84.

[19] A. Metwally, D. Agrawal, and A. El Abbadi, “Detectives: detecting coalition
hit inflation attacks in advertising networks streams,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 241–250.

[20] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and character-
izing ad fraud in mobile apps,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’14. USENIX
Association, 2014, pp. 57–70.

[21] B. Miller, P. Pearce, C. Grier, C. Kreibich, and V. Paxson, “What’s clicking
what? Techniques and innovations of today’s clickbots,” in Proceedings of the
8th International Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, ser. DIMVA’11. Springer-Verlag, 2011, pp. 164–183.

[22] D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck, “Drebin: Effective and
explainable detection of android malware in your pocket,” 2014.

[23] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis
of mobile in-app advertisements,” in Proceedings of the fifth ACM conference
on Security and Privacy in Wireless and Mobile Networks. ACM, 2012, pp.
101–112.

42

https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://blog.checkpoint.com/2017/05/25/judy-malware-possibly-largest-malware-campaign-found-google-play/
https://blog.checkpoint.com/2017/07/06/how-the-copycat-malware-infected-android-devices-around-the-world/
https://blog.checkpoint.com/2017/07/06/how-the-copycat-malware-infected-android-devices-around-the-world/
https://blog.checkpoint.com/2016/02/04/hummingbad-a-persistent-mobile-chain-attack/
https://blog.checkpoint.com/2016/02/04/hummingbad-a-persistent-mobile-chain-attack/
https://www.solvusoft.com/en/malware/potentially-unwanted-application/android-hamob-d/
https://www.solvusoft.com/en/malware/potentially-unwanted-application/android-hamob-d/
https://nakedsecurity.sophos.com/2017/06/16/the-google-play-adware-apps-that-just-wont-die/
https://nakedsecurity.sophos.com/2017/06/16/the-google-play-adware-apps-that-just-wont-die/

[24] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker,” in Proceed-
ings of the 10th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys’12, 2012.

[25] V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns for contrasting
clean and malicious Android applications,” Future Generation Computer Sys-
tems, vol. 36, pp. 122–132, 2014.

[26] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones,” ACM Transactions on
Computer Systems, vol. 32, no. 2, p. 5, 2014.

[27] L.-K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis.” in USENIX Security
Symposium, 2012, pp. 569–584.

[28] D. Sharma, “Android malware detection using decision trees and network traffic,”
International Journal of Computer Science and Information Technologies, vol. 7,
no. 4, pp. 1970–1974, 2016.

[29] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A. Ghor-
bani, “Towards a network-based framework for android malware detection and
characterization,” in Proceeding of the 15th International Conference on Privacy,
Security and Trust, ser. PST’17, 2017.

[30] A. Arora and S. K. Peddoju, “Minimizing network traffic features for android
mobile malware detection,” in Proceedings of the 18th International Conference
on Distributed Computing and Networking, ser. ICDCN ’17. ACM, 2017, pp.
32:1–32:10.

[31] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classification
using convolutional neural network for representation learning,” in 2017 Inter-
national Conference on Information Networking (ICOIN), 2017, pp. 712–717.

[32] R. K. Rahul, T. Anjali, V. K. Menon, and K. P. Soman, “Deep learning for net-
work flow analysis and malware classification,” in Communications in Computer
and Information Science Security in Computing and Communications: Proceed-
ings of the 5th International Symposium on Security in Computing and Commu-
nications, ser. SSCC 2017, 2017, pp. 226–235.

[33] T. L. Wang, “Blackhat: AI based antivirus: Detecting android malware
variants with a deep learning system,” https://www.blackhat.com/docs/eu-
16/materials/eu-16-Wang-AI-Based-Antivirus-Can-Alphaav-Win-The-Battle-
In-Which-Man-Has-Failed.pdf.

43

https://www.blackhat.com/docs/eu-16/materials/eu-16-Wang-AI-Based-Antivirus-Can-Alphaav-Win-The-Battle-In-Which-Man-Has-Failed.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Wang-AI-Based-Antivirus-Can-Alphaav-Win-The-Battle-In-Which-Man-Has-Failed.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Wang-AI-Based-Antivirus-Can-Alphaav-Win-The-Battle-In-Which-Man-Has-Failed.pdf

[34] M. Stamp, Introduction to Machine Learning with Applications in Information
Security. Boca Raton: Chapman and Hall/CRC, 2017.

[35] “Statista: Multilayer perceptrons,” http://www.helsinki.fi/~ahonkela/dippa/
node41.html, January 2018.

[36] M. Styk, “Github: Martinstyk/apkanalyzer,” https://github.com/MartinStyk/
ApkAnalyzer.

[37] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and A. A. Ghorbani, “Characteriza-
tion of Tor traffic using time based features,” Proceedings of the 3rd International
Conference on Information Systems Security and Privacy, 2017.

[38] “Scapy,” http://www.secdev.org/projects/scapy/.

44

http://www.helsinki.fi/~ahonkela/dippa/node41.html
http://www.helsinki.fi/~ahonkela/dippa/node41.html
https://github.com/MartinStyk/ApkAnalyzer
https://github.com/MartinStyk/ApkAnalyzer
http://www.secdev.org/projects/scapy/

APPENDIX

Results for Adware vs Benign Classification

Figure A.16: Area under ROC with combined features for SVC

45

Figure A.17: RFE of Static Features

Figure A.18: RFE of Dynamic Features

46

Copycat
Ghostclicker

Hamob HummingBad

Judy Marswin

Origin

Figure A.19: Accuracy of Classifying each Family against Benign Apps without Ads

47

	Analyzing Android Adware
	Recommended Citation

	Introduction
	Background
	Overview of Advertising in the Web Domain
	Overview of Advertising in the Mobile Domain
	Overview of Android
	Android Adware
	GhostClicker
	Judy
	Copycat
	HummingBad
	Hamob
	MarsDaemon/Marswin
	Origin

	Related Work
	Machine Learning Models
	Random Forest
	Adaboost
	Support Vector Machines
	Deep Learning

	Methodology
	Dataset
	Feature Collection and Extraction
	Static Features
	Dynamic Features

	Recursive Feature Elimination

	Experiments
	Experiments Conducted
	Scenario A
	Scenario B
	Scenario C
	Scenario D

	Evaluation Metrics
	Results
	Results for Scenario A
	Results for Scenario B
	Results for Scenario C
	Results for Scenario D

	Discussion

	Conclusion and Future Work
	LIST OF REFERENCES
	Results for Adware vs Benign Classification

