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ABSTRACT

Visual Question Answering

by Pankti Kansara

There has been immense progress in the fields of computer vision, object detec-

tion and natural language processing (NLP) in recent years. Artificial Intelligence

(AI) systems, such as question answering models, use NLP to provide a "comprehen-

sive" capability to the machine. Such a machine can answer natural language queries

about any portion of an unstructured text. An extension of this system is to com-

bine NLP with computer vision to accomplish the task of Visual Question Answering

(VQA), which is to build a system that can answer natural language queries about

images. A number of systems have been proposed for VQA that use deep-learning

architectures and learning algorithms.

This project introduces a VQA system that gains deep understanding from im-

ages by using a deep convolutional neural network (CNN) that extracts image features.

More specifically, the feature embeddings from the output layer of the VGG19 [1]

model are used for this purpose. Our system achieves complex reasoning capabilities

and understanding of natural language, so that it can correctly interpret the query

and return an appropriate answer. The InferSent [2] model is used for obtaining sen-

tence level embeddings to extract features from the question. Different architectures

are proposed to merge the image and language models. Our system achieves results

comparable to the baseline systems on the VQA dataset.
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CHAPTER 1

Introduction

Artificial Intelligence (AI) technology has been widely used to build elements of

larger systems since the late 1990s, with applications in varied fields. Progress in deep

learning has led to an exponential growth in the number of AI applications. Deep

learning can be thought of as a subset of AI. It is used in a variety of AI tasks such

as machine comprehension, machine translation, computer vision, object recognition

etc.

Tremendous research has been going on in solving problems which combine differ-

ent domains of AI. These can be viewed as multi-disciplinary tasks. A simple example

of this can be "image captioning". It combines simple techniques of computer vision

(CV) to obtain a high-level understanding of what is being depicted in the image

with basic natural language understanding (NLU) methods like n-grams to generate

a simple caption for that image. Although image captioning is a multi-disciplinary

AI task, it does not require the system to understand the intrinsic details in the im-

age, nor does it require advanced understanding of natural language to generate the

captions.

One of the challenges that requires a very advanced and in-depth understand

of natural language is the task of question answering (QA). It is a concept under

computer science, machine learning and deep learning which uses natural language

processing (NLP), text analysis and information retrieval to build a system that can

answer questions asked in natural language. Answering a query about any reading

material (e.g.: passage, articles, blogs etc.) requires modeling complex interactions
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between the context and the query. The working of QA systems is analogous to

the way humans comprehend and hence it is known as "machine comprehension."

Most of the current state-of-the-art QA systems make use of advanced deep-learning

architectures to gain a detailed understanding of the semantics behind the reference

text and the query and then use a variety of methods to capture the relation between

the two. [3] Sometimes it also becomes important that the model gain understanding

about general knowledge or "common sense" so as to be able to answer the query

correctly.

Another research area that has gained a lot of interest and excitement in the

recent years is visual question answering (VQA). VQA can be thought of as an ex-

tension to the concept of machine comprehension. It is also a multi-disciplinary AI

task which combines advanced techniques of computer vision and natural language

processing to build a system that can answer a query about an image. The model

attempts to understand the underlying meaning and semantics behind the image and

answer questions based on its "understanding." Unlike image captioning, where basic

knowledge of computer vision and NLP is sufficient to build AI models, tasks like

VQA require an in-depth knowledge of advanced techniques in both these domains.

Until recently, most of the AI systems built failed to match humans in high-level

vision tasks due to the lack of capacity for deeper reasoning. But with the ongoing

research in this field it has become possible to now attempt and build a system that is

supposed to succeed at tasks like VQA. Such a system typically needs more detailed

understanding of the image and complex reasoning capabilities. A more advanced

version of this system would also possess factual knowledge to be able to comprehend

and answer questions whose answers are not directly depicted in the image.

VQA is a relatively new and exciting concept. Most of the extensive research
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going on in this field, makes use different deep learning architectures and learning

algorithms in the domains of computer vision, object recognition and natural language

processing to accomplish the goal. Most of the existing VQA datasets and the models

built on them generally focus on questions which are answerable by direct analysis

of the input image. If we look at the general problem, we see that tasks like VQA

pose a very diverse set of problems and challenges to overcome under the umbrella of

vision, language as well as semantic representation of knowledge. With the existing

research in these individual areas, it is possible to build different components of a

VQA system and then integrate them in order to solve the task at hand.

This project focuses on building such a VQA system. In this report, we formulate

the problem followed by a discussion about existing models, related research work

and open datasets available for VQA. We then provide an overview of our proposed

systems, experiments done and results obtained.
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CHAPTER 2

Problem Definition

Building an AI system that can answer natural language queries about a given

image is one of the most trending research areas in the recent years. Consider the

image shown below:

Figure 1: Sample Image

Ideally, the system should be able to answer questions about this image. Some

examples of questions that can be asked are:

∙ How many books are on the shelf?

∙ What is the cat playing with?

∙ What color are the books?
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Most of these questions can be answered by humans without any major challenges

or difficulties. For a question like "How many books are on the shelf?" it is not a

difficult task for humans to actually count the books and return the answer "2". But

for an AI system, it is an extremely challenging task to be able to comprehend the

meaning of the question, parse and understand the semantics of the image, identify

the connection between the query and the image and then attempt to answer the

question.

However, with emerging research in the field of deep learning, both in the domains

of computer vision and natural language processing, it is now possible to build such

a system which has the understanding and capability of answering these questions

correctly and with great results.

Overall, the general problem of visual question answering (VQA) can be defined

as building a system/algorithm that takes (ideally) any image and a question asked

in natural language about that image and provides a natural language answer to that

question with reference to the image as the output. A high-level view of such a system

is shown in Figure 2.

Figure 2: High-level view of a VQA system
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CHAPTER 3

Terminology

3.1 Neural Network Architectures

An artificial neural network (ANN) is a network that is composed of many artifi-

cial neurons that are linked together according to a specific network architecture. The

objective of the neural network is to transform the inputs into meaningful outputs.

An ANN architecture consists of one input layer, one output layer and a number

of hidden layers. See Figure 3.

Figure 3: Example of simple neural network with one hidden layer

∙ Recurrent Neural Network:

Reccurent Neural Networks (RNN) are those which perform the same task for

every element of the input sequence. The output of an RNN depends on the

current element as well as the previous computations. RNNs have a "memory"

to capture all the information it has seen previously. A simple RNN unfolding

in time is shown in Figure 4.
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Figure 4: Example of a simple RNN unfolding in time

∙ Long short-term memory:

Long short-term memory (LSTM) block or network is a simple recurrent neu-

ral network which can be used as a building component or block (of hidden

layers) for an eventually bigger recurrent neural network. The LSTM block is

itself a recurrent network because it contains recurrent connections similar to

connections in a conventional recurrent neural network.

An LSTM block is composed of four main components: a cell, an input gate,

an output gate and a forget gate. The cell is responsible for "remembering"

values over arbitrary time intervals; hence the word "memory" in LSTM. Each

of the three gates can be thought of as a "conventional" artificial neuron, as in a

multi-layer (or feedforward) neural network: that is, they compute an activation

(using an activation function) of a weighted sum.

∙ Convolution:

Convolution is a mathematical operation which is performed on two functions

taken as input. It typically gives an integral of the point-wise product of the

two input functions. Intuitively, it can be thought of as a modified version of

one of the original functions with respect to the other function.

Consider a 5x5 (Figure 5) matrix with entries as 0s or 1s (black and image
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image). Another matrix with dimensions 3x3 (Figure 6), also consisting of 0s

and 1s, is used as a filter. These two matrices can be thought of as the two inputs

to the convolution function. After performing element-wise multiplication by

sliding the filter over the original image, we get the convolved feature which is

shown in Figure 7.

Figure 5: Original image

Figure 6: Convolution filter

∙ Convolutional Neural Networks:

Convolutional Neural Networks (CNNs) are nothing but multiple layers of con-

8



Figure 7: Convolved image

volutions stacked on one another with non-linear activation functions like tanh

or ReLU. In a traditional fully-connected neural network, each node in the

current layer is connected to every node in the next layer. However in CNNs

convolutional filters are used to slide over the nodes in the input layer and then

compute the output. In contrast to simple multi-layer perceptrons, the concept

of sliding convolutions over nodes in the input layer results in regions of the

input layer being connected to each node in the output layer. Each layer in the

network uses different convolutional filters to compute the output. When the

network sees the training data, it automatically learns which filters are to be

used. See Figure 8 for a simple example of CNN with pooling.

Figure 8: Example of CNN
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3.2 Activation Functions

In neural networks, the role of an activation function is to determine the output

of a particular node given an input set of nodes from the previous layer. There are

many different commonly used activation functions, both linear and non-linear. Some

of them relevant to this project are listed below.

∙ Hyperbolic tangent or tanh:

The hyperbolic tangential function is a non-linear activation function given by:

𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

Figure 9: tanh activation function

tanh is a very commonly used activation function. The reason for its popu-

larity is that it has a steep gradient, which makes it a better choice for back-

propagation in the network. The first order derivative of tanh is given by:

𝑓 ′(𝑥) = 1− 𝑓(𝑥)2

∙ Rectified Linear Unit or ReLU :

This activation function is defined as the just the positive part of the input.

Mathematically, it is represented as:

𝑓(𝑥) = 0 𝑓𝑜𝑟 𝑥 < 0

10



𝑓(𝑥) = 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0

Figure 10: ReLU activation function

ReLU is also the most widely used activation function for deep networks, since

it has been proven that its usage has resulted in improved performance of deep

learning models.

∙ Softmax:

The softmax activation function is typically used in the final output layer of the

network, generally built for multi-class classification. The output of the softmax

function is a probability distribution over the number of target variables and

the class with the highest probability value in this distribution is predicted as

the final output. Mathematically, it transforms any distribution over n classes

into a probability distribution in the range of (0, 1) over the same n classes.

3.3 Feature Engineering

In systems like VQA the inputs are provided in the form of raw text and images.

Typically images are represented by matrices depicting pixel values at each location.

Raw inputs in these forms cannot be used as features to train AI models. Hence it

becomes important to use "domain knowledge" and transform these input into a set

11



of features that are representative of the original input. This process is called feature

extraction or feature engineering. Feature engineering is a very essential step in the

process of building any AI model. The number of features and their quality highly

influence the training and learning process, and therefore it has a great impact on

the overall performance of the system.

3.4 Evaluation Metrics

For any machine learning model built and trained, it is extremely important to

evaluate its performance. Different types of models need to be evaluated in different

ways and there are various metrics defined that help us to evaluate how good a

model is. Generally, for classification problems the most commonly used metrics are

accuracy, precision, recall and F1 score. The definitions for each of them are listed

below.

∙ Accuracy:

For any classification model, accuracy is defined as the number of times that

the model predicts the correct class for inputs that it did not see during training

out of the total number of inputs provided.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

∙ Precision:

Precision is the fraction of correctly predicted positives among all the positive

predictions. Extending this for multi-class classification, precision for each class

is the fraction of correct predictions for that particular class out of the total

predictions that predicted that class.

12



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

∙ Recall:

Recall is the fraction of correctly predicted positives among all the actual pos-

itives. Extending this for multi-class classification, recall for each class is the

fraction of correct predictions for that particular class out of the total testing

instances provided for that class.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

∙ F1 Score:

F1 score is used to measure the performance of the model taking into consider-

ation both the precision and recall. Mathematically, it is computed as:

𝐹1 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+ 1
𝑅𝑒𝑐𝑎𝑙𝑙

= 2.
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
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CHAPTER 4

Existing Techniques and Related Work

4.1 Datasets

Machine Learning (ML) is a subset of AI in which data is extremely important

to train the model and obtain good results. Deep learning algorithms, in particular,

have a large number of parameters and hyper-parameters that require tuning. This

tuning happens during the training process, where the model is still in the initial

"learning" phase. The more data it gets trained on, the more generalized the model

can be. Good quality data is therefore a very important requirement to implement

any machine learning algorithm. Most VQA models also use deep learning. This

implies that a lot of good quality data is required to train the models. Multiple

datasets for VQA have been created since 2014. Most of these datasets are open for

academic research purposes. A few of these datasets are:

∙ VQA:

This is the most widely known and used dataset for visual question answering [4].

It was created in 2015 as a part of a VQA challenge. The dataset is split into

two different parts:

– Real-world images

– Abstract clip-art scenes

The use of clip-art images eliminates the need to pre-process and clean noisy

images. They can be used directly to perform complex reasoning. Each image

in the dataset also has a list of question-answer pairs associated with it. These

14



were collected by crowdsourcing. In all, the VQA dataset has more than 250,000

images and around 800,000 questions.

∙ Visual7W:

The Visual7W dataset [5] was released in 2016. This dataset contains images

obtained from the MS-COCO dataset. The questions dataset was created by

asking 7 "w" questions: what, where, when, why, who, how, which. The ques-

tions were multiple-choice questions and each question had 4 answer options.

Every object mentioned in the question-answer pairs was marked by bound-

ing boxes in the images. The question-answer pairs and object-level groundings

were collected by crowd-sourcing using Amazon Mechanical Turks (AMT). This

dataset contains approximately 47,000 images and more than 320,000 associated

questions.

∙ DAQUAR:

The DAtaset for QUestion Answering on Real-world images (DAQUAR) [6]

was also released in 2015. It was the first dataset ever released (even before

the original VQA dataset) for this task. The authors collected the images for

this dataset from the NYU-Depth V2 dataset. Every image in the dataset is

labelled based on the objects present in the image. The objects can belong to

one of the possible 894 object classes. The dataset is comparatively small. It

only contains a total of around 1500 images. The question-answer pairs were

auto-generated using 9 pre-defined templates for the questions. The answers to

these questions were obtained directly from the NYU-Depth V2 dataset.
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4.2 Feature Engineering

Feature engineering is the process of using domain knowledge of the data to

create features that make machine learning algorithms work. Feature engineering is

extremely vital since it is the features of the data that mainly influence the training

and eventually, the predictions. The quality of input features has a significant impact

on the quality of the model.

∙ Feature Engineering for Images:

To obtain feature vectors for images, there are many open-source pre-

trained models available. In 2014, Google proposed one such model called

GoogLeNet [7]. Since then, it has been widely used to encode images and

obtain high-quality feature vectors to be fed in any deep learning model. It is a

convolutional neural network (CNN) with 22 layers and has been trained on the

ImageNet dataset. Another similar model is VGGNet [1], which is also a CNN.

It is 16-19 layers deep and uses very small convolution filters (size of 3x3).

∙ Feature Engineering for Text:

There are pre-trained models available to obtain feature vectors from raw text

data. These feature vectors are called word vectors. There are pre-trained

models available publicly to obtain corresponding word vectors from input text

data. The most commonly used word vectors are GloVe (Global Vectors for

word representation) [8] and Word2Vec [9].

4.3 Memory

∙ Long short-term memory (LSTM):

LSTMs are a special type of Recurrent Neural Networks (RNNs) which can

16



learn and identify long-term dependencies. LSTMs use a "gating" mechanism

to define how much of the current input or output we actually want to let

through to the next layer. For VQA, LSTMs are generally used to obtain word

embeddings from the text question. The dimensionality of the word embeddings

depends on the architecture of the LSTM. Both the image feature vectors and

word embeddings can also be combined to obtain a single embedding using a

deep LSTM.

∙ Gated recurrent units (GRU):

GRUs are quite similar to LSTMs. The internal mechanism is slightly different.

Unlike LSTMs, GRUs do not have internal memory which is different from the

hidden state. The use case for GRUs is the same as that of LSTMs. They can be

used to obtain question embedding as well as to provide âĂĲrememberingâĂİ

capability to the model. In [9] GRUs are used to build a dynamic memory

network specifically for visual question answering systems.

∙ Attention models:

Attention models are used to solve the problem of long-term dependencies more

efficiently than simple LSTMs. Simple LSTMs require that we encode the en-

tire text as input to the network. But in models that incorporate attention

mechanism, there is no need to encode the entire text as input to the model.

Instead, the model pays "attention" to specific parts of the input which are

more important with respect to the current context and gives higher weightage

to those parts at every stage of computing the output. Many VQA systems have

attempted to incorporate attention mechanism in their architecture, and the re-

sults have shown significant improvement when compared to simple LSTMs or

GRUs. In most of the cases, question-based attention was used to encode image
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features. This means that more attention was given to those parts of the image

which were more relevant to the question being asked.

4.4 Related Work

As mentioned already, the task of VQA has gained immense popularity due to the

promising results of deep learning techniques on various problems involving computer

vision and natural language processing. The state-of-the-art performance shown by a

lot of these deep-learning models has led the researchers to take this direction while

proposing a solution for VQA. Although there have been models built using traditional

machine learning approaches, most of the research done in this field is inclined towards

deep learning. Some of the models built also use graphical representations to depict

the elements of the image and the question and then perform graph computations to

identify the relation between the two to eventually answer the question.

Kafle et al. [10] propose a VQA system using a classical algorithm that uses

Bayesian probability to predict the probability of the answer type given the input

question and image. This answer type is then used to generate the actual answer.

The model uses Bayes’ probability rule to compute the probability. They use skip-

thought vectors [11] to compute feature embeddings for questions.

In 2016, Teney et al. [12] proposed a VQA system that used graphs to represent

the images and questions. A deep neural network was then built over this graph to

identify the connection between the image and question from the graphical repre-

sentation. The input image was encoded as a graph where each node in the graph

represented the objects in the image and the edges between these nodes represented

the relative positions of those objects in the image. The question tokens were also

encoded in a graph that represented the sequential connections and syntactic depen-
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dencies between the words in the question.

Most of the other deep learning models proposed for VQA typically make use

of the CNN/LSTM approach. CNNs are used to transform input images into their

corresponding vector representations and extract meaningful insights from the images

which can be used to train the model. One of the most popular models used for

feature extraction from images is the VGGNet system proposed by Simonyan et al. [1]

Similarly pre-trained word embeddings are obtained to transform the question into its

vector form. The most widely used word embeddings are Word2Vec [9] and GloVe [8].

(Refer Section 4.2) These embeddings are then merged using different techniques to

train the model on the combination of the image and question and then provide an

answer.

In more recent times, another concept that has gained increased popularity within

the field of deep learning is attention mechanism (Refer Section 4.3). Networks using

attention mechanism are built for solving problems like machine translation, text

question answering, generating image captions etc. For the task of VQA, attention

mechanism is utilized to emphasize or focus more on relevant parts of the image

based on what the question is asking and then provide an answer. In 2016, Shih et al.

proposed an attention-based model for VQA called "Where to Look" [13]. VGGNet

was used to obtain image embeddings and the embedding for question was computed

by finding the average of word vectors for each word in the question. These two

embeddings are then fused together and an attention vector is calculated to identify

which region in the image are more relevant to the question so that the model can pay

attention only on those regions. Some of the other attention models developed for

VQA are "Ask, Attend and Answer" by Xu et al. [14], "Stacked Attention Networks"

by Yang et al., [15], "Hierarchical co-attention for VQA" by Lu et al. [16]
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CHAPTER 5

Proposed Method for Visual Question Answering

5.1 Data Loader

The first step of building any machine learning model is to clean and preprocess

the data to convert it into the required format. For this project, the VQA dataset is

used for training and evaluation. The structure of the dataset is shown in Figure 11.

Figure 11: Structure of VQA Dataset

The VQA v1.0 training dataset which is a dataset of Abstract images contains 20k

images in the "Images" folder. The "Questions" folder has a JSON file which contains

60k questions mapped to the images. The VQA v2.0 training dataset which is a

dataset of Real images contains 82k images in the "Images" folder, with approximately

440k questions mapped to these images. The structure of the JSON file is as follows:
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{

"info" : info,

"task_type" : str,

"data_type": str,

"data_subtype": str,

"questions" : [question],

"license" : license

}

question

{

"question_id" : int,

"image_id" : int,

"question" : str

}

The "Annotations" folder has a JSON file which provides answers to all the questions

based on the image that they are mapped to. The structure of this file is as follows:

{

"info" : info,

"data_type": str,

"data_subtype": str,

"annotations" : [annotation],

"license" : license

}

annotation{
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"question_id" : int,

"image_id" : int,

"question_type" : str,

"answer_type" : str,

"answers" : [answer],

"multiple_choice_answer" : str

}

answer{

"answer_id" : int,

"answer" : str,

"answer_confidence": str

}

For this project, we only use the questions with multiple-choice answers and

formulate the task as a classification problem. To do this, we first identify the top

k multiple choice answers that answer the most number of training questions. These

answers are treated as classes and the final task is to map any new input question

about an input image into one of these classes.

All other questions whose answers do not belong to one of these k answers are

discarded and not used in the training process. A combined dataset is now created

that maps the selected questions to its corresponding images with the correct answer.

This combined dataset is also in JSON format and a snippet of this file is shown

below.

[{"question": "Is the bench a toy?",

"image_file": "Dataset/Images/scene_img_abstract_v002_train2015/
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abstract_v002_train2015_000000000000.png",

"image_id": 0,

"answer": "no",

"question_id": 2}, ... ]

The questions and images from this dataset are now used to perform feature

engineering and obtain vector representations for each image and question.

5.2 Feature Engineering

5.2.1 Feature Engineering for Images

To obtain feature vectors for images, the model that is used is VGGNet [1], which

is a CNN. It is 16-19 layers deep and uses very small convolution filters (size of 3x3).

The model is trained on the ImageNet dataset [17] and it performs extremely well on

classification task of images.

Architecture and Configuration: The model takes an RGB image as input,

with dimensions 224x224 pixels. This image matrix is then passed through convolu-

tional layers. In each of these layers, the output for the next layer is computed by

using very small convolutional filters of size 3x3. This is the smallest filter size that is

required if we need to capture the surrounding features of a pixel from all directions.

The filters are moved with a stride of 1.

Some of the convolutional layers are also followed by max-pooling for which a

window of size 2x2 is used. This window is moved with a stride of 2.

The model used in this project to encode images is VGG19. It contains 19 weight

layers, 16 of which are convolutional layers followed by 3 fully-connected layers. The

number of nodes in the first 2 fully-connected layers is 4096 and the final layer is a
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Table 1: VGG19 Configuration

Number of convolutional layers Number of channels in each layer
Input RGB image with dimensions 224x224 pixels

2 64
Maxpooling

2 128
Maxpooling

4 256
Maxpooling

4 512
Maxpooling

2 (Fully-connected) 4096
1 (Fully-connected) 1000

Softmax activation

softmax distribution over 1000 image classes and hence it has 1000 nodes. This means

that the input image of dimensions 224x224 pixels is now converted to a vector of

4096 dimensions, which we obtain from the second to last layer of the model. Each

of the 19 hidden layers in the network use ReLU as their activation function.

Table 1 shows the configuration of the entire network.

Training: Each image in the training dataset was first rescaled to match the

input dimensions of the model (224x224). The model is then trained using mini-batch

gradient descent approach with back-propagation to optimize the objective of logistic

regression. Regularization was done using L2 technique.

Encoding Images: Each image from the VQA training and testing dataset

was encoded into a 1000 dimensional vector. These 1000 dimensions are the image

features extracted by the VGG19 model. Keras applications provides this VGG19

model which is pre-trained on the ImageNet dataset.
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The input images are first rescaled to match the input dimensions of VGG19.

Each image is then fed in to the pre-trained model to obtain its encoding. The

transformation is done for all the required images in the dataset. Since the dataset

was too large to fit in the memory, it was done in batches of size 100. (Refer code

below)

def encode_image(image):

model = VGG19(weights=’imagenet’, include_top=True, pooling=’avg’)

img_em = np.zeros((1, 1000))

im = cv2.resize(cv2.imread(image), (224, 224))

im = np.expand_dims(im, axis=0)

img_em[0,:] = model.predict(im)[0]

embedding = img_em

return embedding

5.2.2 Feature Engineering for Text

There are pre-trained models available to obtain feature vectors from raw text

data. Most of these models provide word-level embeddings. The most commonly used

word vectors are GloVe (Global Vectors for word representation) [8] and Word2Vec [9].

However, it is a difficult task to understand the dependencies between the words and

interpret the semantics behind each sentence. Therefore, it becomes necessary to de-

sign a system that captures these dependencies and semantics and provide sentence-

level embeddings which can further be used in our question-answering system. The

simplest way to obtain sentence-level embeddings, provided we already have vec-

tors for each word, is to average all the vectors representing each word in that sen-

tence. GloVe provides 300-dimensional vectors for each word and it is trained on
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the Wikipedia corpus. If these vectors are used to represent words in our text, then

our sentence-level embeddings averaged from word-vectors will also have 300 dimen-

sions. This is a very naive approach to get sentence representations. Averaging of

word-vectors to obtain a single vector for each sentence generally results in loss of in-

formation. We only obtain a high-level idea of what is being said in the sentence, but

we might miss important intrinsic details. For our task of visual question answering,

it is very important that we capture as much information as possible from the ques-

tion, to be able to answer the question correctly. For this reason, we need to use much

more complex models which capture details from the text such as word dependencies,

relative importance of the words in the sentence etc. Kiros et al. [11] published their

research on Skip-thought vectors which used unsupervised learning to obtain sentence

encoders. Alexis et al. [2] from Facebook research studied techniques to obtain uni-

versal representation of sentences. In our project, their pre-trained model InferSent

is used to obtain vector representations for natural-language questions asked about

images.

Model Architecture: The model uses a bidirectional LSTM (BiLSTM) with

either max-pooling or mean-pooling. For any given sentence consisting of T words,

each word in that sentence is first represented by its GloVe vector.

A forward LSTM first computes a set of T vectors:

−→
ℎ 𝑡 =

−−−−→
𝐿𝑆𝑇𝑀 𝑡(𝑤1, ..., 𝑤𝑇 )

Then a backward LSTM computes a set of T vectors:

←−
ℎ 𝑡 =

←−−−−
𝐿𝑆𝑇𝑀 𝑡(𝑤1, ..., 𝑤𝑇 )
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The final set of vectors computed by the BiLSTM is thus:

ℎ𝑡 = [
−→
ℎ 𝑡,
←−
ℎ 𝑡]

Each sentence now has a set of T vectors. To deal with varying number of words

in sentences, these vectors are now combined either by max-pooling or mean-pooling.

The final result is a 4096-dimensional vector for each sentence. (See Figure 2)

Figure 12: BiLSTM encoder with max-pooling

Training: The model is trained using the Stanford Natural Language Inference

(SNLI) dataset which is a manually labeled dataset. Stochastic gradient descent

algorithm is used to train the model with a learning rate of 0.1 and mini-batch size

of 64.

Encoding Questions: Each question from the VQA training and test dataset

was encoded into a 4096 dimensional vector. These 4096 dimensions are the sentence

features extracted by the InferSent model. Each question is fed in to the pre-trained
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model to obtain its corresponding sentence embedding. (Refer code below)

def encode_questions(train_questions):

infersent = torch.load(’infersent.allnli.pickle’, map_location=lambda

storage, loc: storage)

glove_path = ’GloVe/glove.840B.300d.txt’

infersent.set_glove_path(glove_path)

infersent.build_vocab(train_questions, tokenize=True)

embeddings = infersent.encode(train_questions, tokenize=True)

return embeddings

5.3 VQA Model Architectures

The encodings of images and questions are both stored in separate files to be used

as inputs to the classifiers. The simplest way of combining them is to concatenate the

vectors of each question with its corresponding image, resulting in a 5096 dimensional

vector (4096 dimensions from question embedding + 1000 dimensions from image

embedding). These 5096 dimensions are now used as features for our classification

task. Experiments were performed on different model architectures, both traditional

machine learning models as well as deep-learning models.

5.3.1 Traditional Support Vector Machine

SVMs are one of the most commonly used classification algorithms on supervised

data. They have a lot of advantages over other classification algorithms. In this

project, experimenting with an SVM was suitable because one of the most important

advantages they have is that they perform effectively even if we have a very high

dimensional feature set. Figure 13 shows an overview of this architecture. The use
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of SVM is also efficient in terms of memory because they do not use all the training

points in the decision function. Only those training points which are close to the

support vectors are considered, the rest are discarded.

Figure 13: Linear SVM for VQA

Training: For training, first the entire dataset of 8192 dimensions was fed in

to an SVM. For further experiments, we also performed dimensionality reduction

using Singular Vector Decomposition (SVD) and reduced the size of feature matrix

from 8192 to 1000 and 100. The hyperparameters were chosen using the technique

of randomized search over the values of C and gamma. This set of experiments was

carried out for both linear and non-linear (with RBF kernel) SVMs.

5.3.2 Simple Multilayer Perceptron

A multilayer perceptron (MLP) is a fully-connected artificial neural network

which is commonly used for classification. It can be perceived as a network that uses

logistic regression algorithm to transform the fed input into a non-linear transforma-

tion, which it learns while training. It is a simple feed-forward network, but it also

uses back-propagation to change the network parameters based on the error encoun-

tered in the previous iteration. For this experiment, we use the encodings obtained

for the images and questions as inputs to the network. The training dataset of con-

catenated image + question embeddings of 8192 dimensions is fed into a simple MLP,
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which has 3 fully-connected dense layers and 1024 nodes in each of those layers. Each

of these layers use the tanh activation function with a dropout value of 0.5. The final

output layer uses softmax to perform classification. Figure 14 shows an overview of

this architecture.

Training: Training was done in 100 epochs and each epoch was trained using

mini-batches of size 128.

Figure 14: Simple MLP Architecture
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5.3.3 Deeper network with normalized embeddings

The idea behind this architecture was to transform the embeddings to 1000

dimensions so as to reduce the size of the feature matrix. This transformation was

done using a fully-connected dense layer with non-linear tanh activation function.

The combined vector is now obtained by calculating the dot product of both the

1000 dimensional vectors each corresponding to the question and the image. The

difference between this architecture and the simple MLP is that we use a concatenated

question + image vector which has 8192 dimensions in the MLP, whereas here we use a

1000 dimensional vector obtained by element-wise product of the question and image

embedding. Figure 15 shows an overview of this architecture.

Training: Training was done in 300 epochs and each epoch was trained using

mini-batches of size 128.
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Figure 15: Deep network with normalized embeddings
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CHAPTER 6

Experimental Results

For all the experiments, the training and testing splits from the VQA dataset were

used. A virtual machine (VM) instance was created on the Google Cloud platform.

The configuration of the VM was as follows:

∙ 8 CPU cores

∙ 52 GB memory

∙ 100 GB SSD

Table 2 shows the size of datasets used for training each model. For the Yes/No

subcategory, only the questions with answer-type "yes/no" were chosen to train and

test the models. For experiments on the Other subcategory, top 10, 50 and 100

answers that occurred most frequently in the entire VQA dataset were chosen. Then

the questions corresponding only to those answers were put in a subset which was

then used for training and evaluation. All other questions whose answers did not

belong to any of the top occurring ones were discarded.

Table 2: Data used for training and validation

Yes/No Other (k=100)
Images Questions Images Questions

Abstract Training 15643 24396 12999 17824
Abstract Validation 7859 12321 6503 8961

Real Training 69797 166882 76208 219269
Real Validation 33940 80541 26007 47029
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Table 3: Accuracy values for Yes/No and Other multiple-choice questions on VQA
dataset for abstract images

Model Yes/No k=10 k=50 k=100
KNN 70.65 52.16 46.64 43.91

Linear SVM 63.68 60.94 54.32 50.27
SVM with RBF kernel 58.26 55.03 46.72 46.63

Simple MLP 68.83 59.93 53.03 52.52
MLP with normalized embeddings 72.76 64.76 58.97 57.54

All the proposed architectures were utilized to build models and these models

were trained on the VM instance created in Google Cloud. Table 3 shows the re-

sults (accuracy) of all these architectures trained and tested on the VQA dataset for

abstract images. Figure 16 shows precision scores for the top 10 answers from the

abstract images dataset.

Figure 16: Precision values for the top 10 answers on the VQA validation dataset for
abstract images on "Other" category (Results from normalized MLP model)

Table 4 shows the results (accuracy) of all the architectures trained and tested

on the VQA dataset for real images. Figure 17 shows precision scores for the top 10
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Table 4: Accuracy values for Yes/No and Other multiple-choice questions on VQA
dataset for real images

Model Yes/No k=10 k=100 k=1000
VQA Baseline KNN 71.94 – – 33.56
KNN (Our model) 73.94 52.16 43.91 –

Simple MLP (Our model) 74.83 50.61 46.73 –
VQA Baseline LSTM Q + Norm I 80.52 – – 53.01

MLP with normalized embeddings (Our model) 82.06 60.26 59.47 –

answers from the real images dataset. These results are compared with the baseline

accuracies provided by VQA.

Figure 17: Precision values for the top 10 answers on the VQA validation dataset for
real images on "Other" category (Results from normalized MLP model)

From the results in Table 3 and Table 4, we see that the deep learning model

where the question embeddings are normalized outperforms the other models, both in

Yes/No and Other subcategories of questions. Traditional machine learning models

like linear and non-linear SVMs also performed considerably well, with not much

difference between their accuracy scores and the accuracy scores of both the deep-
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learning models. But the advantage of using SVMs is that they are extremely efficient

in terms of memory utilization and time taken for training. If optimal performance

is required in terms of resources consumed and efficiency is more important than

accuracy, then these models are definitely the right choice since the trade-off on

accuracy does not result in a huge degradation of performance.

However, one of the reasons why the normalized MLP performs considerable

better than the other models could be that the network learns the relation between

the input question and image way better compared to the others. This could be

because the embeddings of the image and question are fused together by element-wise

multiplication and every element of the image embedding is, in a way, overlapped with

every element in the question embedding.

A few examples of predicted answers on both subcategories of questions on ab-

stract images are shown below.

Figure 18: Examples of predicted answers from the "Yes/No" subcategory

Figure 18 shows questions about two different input images from the Yes/No

subcategory of the validation dataset and their predicted answers. As it can be seen,

the answer to the question about the first image was predicted correctly, but one
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of the questions about the second image was answered incorrectly (answer shown in

red).

Figure 19: Examples of predicted answers from the "Other" subcategory with the
top 10 answers provided as multiple choices

Figure 19 shows questions about two different input images from the Other sub-

category of the validation dataset and their predicted answers. The top 10 most

frequent answers were provided as multiple choices for each question. As it can be

seen, the answer to the question about the first image was predicted correctly, but

the answer to the question about the second image was predicted incorrectly (answer

shown in red). The model predicted the color of the rug fringes as "brown" but the

ground-truth answer for this question was "yellow".

Figure 20 shows predictions on different real images with questions asked on both

Yes/No and Other subcategories. The input images were clicked by ourselves and

were never seen by the model during the training or testing phase. Most questions
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Figure 20: Examples of predicted answers on real images

about colors in the pictures were predicted correctly, both on the abstract and real

images.
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CHAPTER 7

Conclusion and Future Work

VQA is a relatively new field that needs in-depth understanding of both images

and text. Looking at the current research scenario in the area of deep learning, it can

be expected that VQA systems will definitely improve over time, both in terms of

optimality and accuracy. Deep learning has already showed an exponential increase

in the performance of various computer vision and language models. Utilizing these

individual components to build a system that combines them will drastically improve

results seen for tasks like VQA.

In terms of metrics used to measure the performance of a VQA system, the most

widely used metrics are accuracy and F1 score. This is because all the current systems

built for VQA treat it as a classification problem. They assume that the answer to any

natural language question asked about an image will potentially belong to one of the

"answer classes" that the model is trained upon. An extension to this could be propose

a system that uses a generative model to actually generate a meaningful answer based

on the image. This perspective directs the technique away from pure classification,

thus requiring the need to introduce new metrics for performance evaluation. But it

seems extremely likely that new datasets along with new metrics will be introduced

soon and this will allow researchers to look into the problem from a completely new

and fresh perspective.

Taking into consideration all the existing systems (including this project) there

are still ongoing discussions about several issues regarding the techniques with which

the models are trained and evaluated. One of the most common and open-ended
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debate is whether these VQA systems that are trained and evaluated on questions

with multiple choice answers in the datasets, can actually be considered systems

with "good performance" in real-life scenarios. In most datasets, the questions that

are used for training the model are gathered by crowdsourcing. Are these questions

enough to represent all potential questions that the system will most likely encounter?

The formulation of questions also has a huge impact on feature engineering and hence

on the overall predictive ability of the system.

The current state-of-the-art systems on VQA are still far-fetched from human

performance on the same datasets. But with the availability of published research

and emerging tools and technologies, there is a huge scope for improvement in the

results.
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