
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2018

Anomaly Detection for Application Log Data Anomaly Detection for Application Log Data

Aarish Grover
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Grover, Aarish, "Anomaly Detection for Application Log Data" (2018). Master's Projects. 635.
DOI: https://doi.org/10.31979/etd.znsb-bw4d
https://scholarworks.sjsu.edu/etd_projects/635

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/635?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ANOMALY DETECTION FOR APPLICATION LOG DATA

Anomaly Detection for Application Log Data

A Thesis

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements of the Class

CS298

By

Aarish Grover

May 2018

ANOMALY DETECTION FOR APPLICATION LOG DATA

 1

© 2018
Aarish Grover

ALL RIGHTS RESERVED

ANOMALY DETECTION FOR APPLICATION LOG DATA

 2

The Designated Thesis Committee Approves the Thesis Titled

Anomaly Detection For Application Log Data

by

Aarish Grover

APPROVED FOR THE DEPARTMENT OF COMPUTER

SCIENCE SAN JOSE STATE UNIVERSITY

May 2018

Dr. Robert Chun Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Mr. Uma Panda NetApp, Inc.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 3

ABSTRACT

In software development, there is an absolute requirement to ensure that a system once

developed, functions at its best throughout its lifetime. Application log data is critical to

maintaining application performance and thus techniques to parse, understand and detect

anomalies in application log data are critical to ensuring efficiency in software development.

While initially hampered by limited hardware and lack of quality datasets, anomaly detection

techniques have recently received a surge of interest with advancements in machine learning

technology and especially neural networks. In this paper, we explore anomaly detection,

historical techniques to detect anomalies and recent advancements in neural networks, which

promise to revolutionize anomaly detection in application log data. Further, we analyze the most

promising anomaly detection techniques and propose a hybrid model combining LSTM Neural

Network and Auto Encoder which improves upon existing techniques.

Index Terms – Anomaly Detection, Application logs, Machine Learning, Neural Networks

ANOMALY DETECTION FOR APPLICATION LOG DATA

 4

ACKNOWLEDGEMENTS

I would like to thank Dr. Robert Chun for his continued support and providing me the

guidance necessary to work on this project. I would like to thank my advisor Dr. Robert Chun

and committee members Dr. Katerina Potika and Mr. Uma Panda for teaching me core skills

needed to succeed and reviewing my project. And finally, I would like to thank my parents for

their patience and advice they gave me throughout my life.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 5

TABLE OF CONTENTS

I.	 INTRODUCTION	..	10	

II.	 ANOMALIES	IN	LOG	DATA	..	12	

A.	 Unstructured	Plain	text	and	Variation	...	12	

B.	 Redundant	Runtime	Information	..	13	

C.	 Large	Unbalanced	Data	...	13	

III.	 TYPES	OF	ANOMALIES	..	13	

A.	 Point	Anomaly	..	13	

B.	 Contextual	Anomaly	..	14	

C.	 Collective	Anomaly	...	15	

IV.	 EVOLUTION	OF	ANOMALY	DETECTION	TECHNIQUES	..	16	

A.	 Statistical/Distribution	Based	Anomaly	Detection	...	16	

B.	 Depth-based	Anomaly	Detection	...	17	

C.	 Clustering	Based	Anomaly	Detection	(Unsupervised	Machine	Learning)	17	

D.	 Distance-Based	Anomaly	Detection	...	18	

E.	 Density	Based	Anomaly	Detection	(Unsupervised	Machine	Learning)	18	

F.	 Spectral	Decomposition	..	19	

G.	 Supervised	Machine	Learning	Based	Anomaly	Detection	...	19	

H.	 Classic	Neural	Network	Based	Anomaly	Detection	..	20	

V.	 NEURAL	NETWORK	BASED	MODELS	FOR	ANOMALY	DETECTION	20	

A.	 Anomaly	Detection	with	LSTM	Neural	Network	..	21	

ANOMALY DETECTION FOR APPLICATION LOG DATA

 6

B.	 Anomaly	Detection	with	Auto	Encoder	..	22	

VI.	 SUMMARY	OF	THE	CURRENT	STATE-OF-ART	...	23	

VII.	 HYPOTHESIS	AND	CONTRIBUTION	..	25	

VIII.	EXPERIMENT	SETUP	..	25	

A.	 Datasets	..	25	

B.	 Implementation	Details	...	26	

C.	 Data	Preprocessing	...	27	

D.	 Evaluation	Metrics	..	28	

IX.	 EXPERIMENTS	AND	ANALYSIS	...	30	

A.	 Experiment	1:	Unsupervised	Machine	Learning	(K-Means	Clustering)	30	

a)	 Results	..	30	

b)	 Analysis	...	31	

B.	 Experiment	2:	Unsupervised	Machine	Learning	(K-NN	Global	Density	based)	31	

a)	 Results	..	32	

b)	 Analysis	...	33	

C.	 Experiment	3:	LSTM	Neural	Network	...	33	

a)	 Results	..	34	

b)	 Analysis	...	35	

D.	 Experiment	4:	LSTM	Auto	Encoder	(LSTM-AE)	...	35	

a)	 Results	..	37	

b)	 Analysis	...	38	

X.	 SUMMARY	OF	RESULTS	..	38	

ANOMALY DETECTION FOR APPLICATION LOG DATA

 7

XI.	 CONCLUSION	..	40	

XII.	 FUTURE	WORK	...	40	

REFERENCES	..	42	

ANOMALY DETECTION FOR APPLICATION LOG DATA

 8

LIST OF FIGURES

Figure 1. Conceptual map of literature review ..11	
Figure 2. Azure Application Log Data ..12	
Figure 3. HDFS Application Log Data ..12	
Figure 4. Point Anomalies [27] ..14	
Figure 5. Point Anomaly in HDFS Log Data ..14	
Figure 6. Contextual Anomaly in HDFS Log Data ...15	
Figure 7. Contextual Anomaly [27] ...15	
Figure 8. Collective Anomalies [27] ..16	
Figure 9. Collective Anomaly in HDFS Log Data ..16	
Figure 10. Clustering based Anomaly Detection [27] ...18	
Figure 11. Density Based Anomaly Detection [28] ...19	
Figure 12: Recurrent neural network architecture comparison with forward neural network [29]21	
Figure 13. LSTM Architecture [32] ...22	
Figure 14. Auto Encoder Learning [33] ...23	
Figure 15. Experiment Implementation Flow ..26	
Figure 16. Precision and Recall [31] ..29	
Figure 17. Harmonic mean (F1 Score) Formula [31] ..29	
Figure 18. Results for K-Means Algorithm with HDFS and BGL datasets ..31	
Figure 19: Results for K-NN Algorithm with HDFS and BGL datasets ...32	
Figure 20. Organization of the two LSTM Layers and Layer Detail ...33	
Figure 21. Single LSTM Layer Structure [30] ...34	
Figure 22. Results for LSTM with HDFS and BGL datasets ..35	
Figure 23: LSTM-AE Abstraction ...36	
Figure 24. Results for LSTM-AE with HDFS and BGL datasets ..37	
Figure 25. Summary of Results for all experiments ..39	

ANOMALY DETECTION FOR APPLICATION LOG DATA

 9

LIST OF TABLES

Table 1. Dataset Details [25] ...25	
Table 2. K-Means HDFS Dataset Results ..30	
Table 3. K-Means BGL Dataset Results ..30	
Table 4. K-NNs HDFS Dataset Results ...32	
Table 5. K-NNs BGL Dataset Results ...32	
Table 6. LSTM HDFS Dataset Results ..34	
Table 7. LSTM BGL Dataset Results ..34	
Table 8. LSTM HDFS Dataset Results ..37	
Table 9. LSTM BGL Dataset Results ..37	

ANOMALY DETECTION FOR APPLICATION LOG DATA

 10

I. INTRODUCTION

Applications generate massive amounts of log data, which automatically produced

timestamped data that represents every single system and user event for all users of the

application [1]. This data is generated throughout the lifetime of an application and tends to be

time-series, incredibly unstructured, textual, poorly formatted and is generated at an incredible

rate as the application scales and adds more users [2]. Walmart has generated 2.5 Million

Petabytes of data for their flagship cloud computing application [1].

Log data also contains anomalies which represent potential system faults and are thus

critical to debugging application performance and errors. The details and timestamps of the

anomaly offer a starting point for discovering when, how and where errors in the application

occurred [12]. Any debugging process requires a developer or support engineer to parse this

data manually, reading through line by line until an anomaly is located. Log data also changes

completely from application to application as the exact formatting, level of detail and

verbosity are defined by the application developer’s development style which varies widely

across the industry [3]. Because of growing demands, companies are forced to deploy an

increasing number of engineers to manage log data, and even then, a vast number of anomalies

such as error messages, warning notifications and network intrusion attempts are not detected.

One possible solution for addressing application log anomaly detection is to autonomously

detect anomalies in application log data [12].

In this paper, we explore anomalies in log data and existing anomaly detection techniques

[3]. We then seek to provide insight into the questions:

• What are the types of anomalies?

ANOMALY DETECTION FOR APPLICATION LOG DATA

 11

• Which methods exist for anomaly detection?

• Are Neural Networks appropriate for application log data anomaly detection?

• Which Anomaly Detection method gives the best results and can we improve upon

them?

We have analyzed scientific research fundamental to Anomaly Detection which is

represented as a conceptual map in Fig. 1.

Figure 1. Conceptual map of literature review

ANOMALY DETECTION FOR APPLICATION LOG DATA

 12

II. ANOMALIES IN LOG DATA

Anomalies in application log data are considered to be patterns or characteristics which

do not follow the average or normal behavior during perfect operation [4]. As described by

Grubbs [13] ‘an outlying observation, or “outlier”, is one that appears to deviate markedly

from other members of the sample in which it occurs.’ Such anomalies can be initiated

through malicious actors, system level bugs or incorrect user operation and are often

symptoms of imminent system failure or breach. Anomaly detection for application log data

is particularly challenging whether automated or done manually for the following reasons.

A. Unstructured Plain Text

B. Redundant Runtime Information

C. Large Unbalanced Data

A. Unstructured Plain text and Variation

An application log as shown in Fig. 2 is unstructured and stored as plain text. This lack

of structure complicates data analysis, which is further exacerbated by logging formats which

vary completely between applications. Fig. 2 shows Azure Application log data which varies

completely both in content as well as structure when compared to Fig. 3 HDFS Application

log data.

Figure 2. Azure Application Log Data

Figure 3. HDFS Application Log Data

ANOMALY DETECTION FOR APPLICATION LOG DATA

 13

B. Redundant Runtime Information

As can be seen in Fig. 3 Application logs contain runtime information such as IP Address

of servers. This data changes during execution and varies from server to server and is hence

redundant for the purpose of anomaly detection. Also as shown in Fig. 3, application log data

contains domain-specific data such as "blockMap updated” for HDFS logs, which combined with

redundant runtime information increases the complexity of anomaly detection.

C. Large Unbalanced Data

Application log data is designed to record all changes to an application and hence

contains data that is heavily unbalanced in favor of non-anomalous execution. The data

generated by HDFS in [26] contains only 16,838 anomalies (only 1.5%) out of over

11,175,629 log events. The size and unbalanced nature of log data thus complicate the

anomaly detection process.

III. TYPES OF ANOMALIES

A. Point Anomaly

A point anomaly is data which deviates significantly from the average or normal

distribution of the rest of the data [14]. Such data is often system generated, and the significant

deviation is restricted to specific data points and shares little context with the rest of average or

normal data [4].

Point anomalies are the simplest to detect and multiple techniques exist to automate point

anomaly detection [14]. Point anomalies can be quickly discovered and fixed, and thus rarely

have a significantly detrimental effect on applications [4,14]. Fig. 4 and Fig. 5 are examples of

point anomalies.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 14

Figure 4. Point Anomalies [27]

Figure 5. Point Anomaly in HDFS Log Data

B. Contextual Anomaly

A contextual anomaly is identified as anomalous behavior restricted to a specific context,

and normal according to other contexts [4, 14]. This type of anomaly also referred to as

conditional anomaly, is often difficult to detect as it requires deep domain knowledge to

understand the context within which the anomaly arises [4]. Fig. 6 shows a contextual anomaly

in HDFS log data. Here, a ‘received block’ log would not be an anomaly on its own, but in the

context of occurring between 60 deletions, it is treated as an anomaly.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 15

Figure 6. Contextual Anomaly in HDFS Log Data

Figure 7. Contextual Anomaly [27]

C. Collective Anomaly

Unlike contextual and point anomalies, collective anomalies appear as a group of

anomalous values in data [4,15]. Collective anomalies are anomalous behavior of a collection of

data instances with respect to the complete dataset. Individual data instances might not represent

an anomaly, however, presence in the collective anomaly data instances is an indicator of

anomalous behavior [15]. It must be noted however that on its own, a data instance does not

represent collective anomalies and must appear in a collection of data to be collectively

anomalous [4]. Fig. 9 shows a collective anomaly in HDFS log data. While adding to an ‘invalid

ANOMALY DETECTION FOR APPLICATION LOG DATA

 16

set' may not be an anomaly on its own, several similar consecutive additions to an ‘invalid set'

represent a collective anomaly in HDFS log data.

Figure 8. Collective Anomalies [27]

Figure 9. Collective Anomaly in HDFS Log Data

IV. EVOLUTION OF ANOMALY DETECTION TECHNIQUES

Anomaly detection techniques have evolved with the advent of big data and machine

learning. Initially approached using statistical techniques, anomaly detection quickly evolved

into a field of its own encompassing statistical, depth, density, clustering, distance, machine

learning and neural network based approaches.

A. Statistical/Distribution Based Anomaly Detection

In order to leverage Statistical Anomaly Detection, the log dataset is organized in terms of

its overall statistic distribution and the data points which stand out or do not conform to this

distribution are removed or examined [5]. These approaches are simple to implement but are

ANOMALY DETECTION FOR APPLICATION LOG DATA

 17

complicated by ever-changing definitions for anomalies in different domains [5, 16]. A

transaction of $1 Million would be anomalous for personal finance applications but not for

Investment banking applications. Thus, such approaches require prior knowledge of the dataset

without which detecting contextual or collective anomalies can be incredibly challenging,

especially for application log data which varies from application to application [5, 16].

B. Depth-based Anomaly Detection

The depth-based approach works around the requirement to organize data by its statistical

distribution and instead leverages convex hulls and flag objects to compute anomalies in the

outermost layers [5]. This, however, requires heavy computation, is unable to detect contextual

anomalies and is not suitable for high volume, high-velocity datasets such as application logs [5].

C. Clustering Based Anomaly Detection (Unsupervised Machine Learning)

Clustering, considered to be the Swiss army knife of statistical modeling generates clusters

out of similarities in datasets thus removing data points which don't conform to these clusters as

anomalies [5]. K Means is the most popular technique in use and can be effective at detecting

contextual and collective anomalies.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 18

Figure 10. Clustering based Anomaly Detection [27]

D. Distance-Based Anomaly Detection

This category of anomaly detection method detects the distance of an element from a

subset closest to it. Although this method, works well in many situations, it fails when applied to

datasets with an unpredictable distribution with both sparse and dense regions. This is also

referred to as the multi-density problem, which rules out detecting collective anomalies [5].

E. Density Based Anomaly Detection (Unsupervised Machine Learning)

Density-based anomaly detection techniques are explicitly designed to get around the

multi-density problems that distance-based methods suffer from. Density-based methods

leverage the local outlier factor (LOF). The LOF is a quantification of how much each dataset

lies outside the normal behaviors, which itself, depends on the local density of its neighborhood.

As Density-based methods include density alongside distance, density based methods can work

ANOMALY DETECTION FOR APPLICATION LOG DATA

 19

much better with unpredictable distributions of sparse and dense regions.

Figure 11. Density Based Anomaly Detection [28]

F. Spectral Decomposition

Spectral decomposition is a mathematical technique to artificially lower the dimensionality

of the dataset. Spectral decomposition techniques based on Principal Component Analysis(PCA)

[24] work by splitting the dataset space into normal, noise and anomaly subspaces allowing for

simpler and more effective anomaly detection. [25].

G. Supervised Machine Learning Based Anomaly Detection

In order to solve by classification, the problem is redesigned as an identification problem

where the entire dataset is classified into anomalous or non-anomalous data [21]. This process

ANOMALY DETECTION FOR APPLICATION LOG DATA

 20

happens in two parts, starting with training a model on a subset of the data and leveraging this

trained model to test the rest of the data [5]. As log data is incredibly verbose and highly

imbalanced, classification learning overfits the model. Unless datasets are well balanced,

classification learning struggles to generalize and accurately classify anomalies [21].

H. Classic Neural Network Based Anomaly Detection

Classic Neural Network anomaly detection techniques behave in a similar way to Machine

learning approaches and thus mandate well-balanced datasets [23]. Recent advances in Neural

Networks related to Recurrent Neural Networks, Long Short-Term Memory Neural Networks,

and Auto-Encoders have been used extensively to solve a myriad array of problems related to

anomaly detection such as Network intrusion detection, sensor data anomaly analysis, ECG time

series anomaly detection as well multiple other domains [23]. These more recent advances are

able to handle contextual and collective anomalies particularly well due to hidden layer based

memory mechanisms which makes a good fit for accurate and generalizable anomaly detection,

even with imbalanced datasets [22].

V. NEURAL NETWORK BASED MODELS FOR ANOMALY DETECTION

Recurrent Neural Networks (RNN) alter standard neural networks by allowing output from

hidden layers of neurons to serve as inputs to the next layer [18, 23]. This allows for

incorporation of feedback at every stage and thus the network is able to leverage history to make

classification decisions [6, 18]. This approach makes RNNs desirable for Anomaly detection as

retaining context in log events is critical to discovering contextual anomalies.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 21

Figure 12: Recurrent neural network architecture comparison with forward neural network [29]

RNNs are extensively used for Anomaly detection with approaches varying from

clustering, classification to reconstruction [18]. Recent Neural Network based anomaly detection

research has revolved around Long Short-Term Memory Neural Networks and Auto-Encoders,

both of which often leverage recurrent Neural Networks [18].

A. Anomaly Detection with LSTM Neural Network

Long Short-Term Memory (LSTM) Neural networks are a subcategory of Recurrent Neural

Networks especially suited towards learning long-term dependencies between the input data.

LSTM architecture is represented by memory blocks which themselves are essentially,

recurrently connected structures [6].

ANOMALY DETECTION FOR APPLICATION LOG DATA

 22

Figure 13. LSTM Architecture [32]

B. Anomaly Detection with Auto Encoder

Auto-Encoders are artificial neural networks designed to induce a representation for

datasets by learning approximations of the dataset's identity function [19]. They are generally

paired with a Decoder which is used to recreate the initial dataset using the representation

defined by autoencoders. In terms of architecture, an autoencoder can be as simple as a feed-

forward Neural Network which may or may not be recurrent [19].

The input and output layers are connected to each other with hidden layers. The basic

approach to using Auto-Encoders revolves around using an Encoder to map an approximation of

the dataset, which is then reconstructed by the decoder [19]. This reconstructed representation

contains the most important features, at which point a reconstruction error is calculated to

decipher anomalies.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 23

Figure 14. Auto Encoder Learning [33]

VI. SUMMARY OF THE CURRENT STATE-OF-ART

Machine learning, LSTM Neural Networks, and Auto-Encoders are designed to be used

with data that is unbalanced, unstructured, unlabeled and domain specific. The heavy research in

these areas combined with the ubiquity of commodity hardware has made these techniques

accessible, powerful and very effective for anomaly detection [19].

Kumari et al leverage unsupervised K-Means Clustering on network traffic data to

successfully detect anomalies with much improved accuracy over existing approaches [34].

Olsson et al. [8] developed an unsupervised learning approach to detect collective

anomalies by deriving an “anomalous score” for each anomaly. They evaluate their model using

an artificial dataset as well as two industrial datasets and successfully detect anomalies in

moving crane data as well as fuel consumption data over time [8].

In [9], Malhotra et al. leverage LSTM Neural Networks for solving time series anomaly

detection. Stacked LSTM were trained on non-anomalous data and this trained model was used

to predict the next n number of time steps. This was compared with actual data for the next n

ANOMALY DETECTION FOR APPLICATION LOG DATA

 24

time steps to successfully derive anomalies.

Marchi et al. [10,11] combined non-linear predictive denoising autoencoders (DA) with

LSTM cells to successfully identify anomalous signals in audio data. They leveraged previous

frames to predict auditory spectral features for the next short-term frame. This combined model

was tested using acoustic recorders with non-anomalous signals showing up average

reconstruction error and anomalous signals showing up higher reconstructive errors. An anomaly

score was then created using reconstruction error and a threshold was identified to indicate

anomalies above it. Using public datasets, their model outperformed competing, existing models.

[10,11]

Sakurada et al. [20] use auto encoders as dimensionality reduction tools to detect anomalies

in both real world and artificial datasets. The datasets used are time series based and results from

their Auto Encoder architecture are compared in detail with legacy spectral decomposition

techniques such as PCA. Sakurada et al. [20] also compared their results with denoising

autoencoder and compared results with both the standard Auto Encoder and PCA techniques. In

their experiments, Auto-Encoders successfully detected subtle anomalies which were missed out

by PCA. Further, denoising Auto-Encoders provided greater accuracy as well as successful

detection of subtle anomalies [20]. The authors also noted that as opposed to kernel PCA

techniques, Auto-Encoders require fewer computational cycles [20].

As our literature review shows, Unsupervised machine learning, LSTM Neural Networks,

and Auto-Encoders are well suited to detecting point, collective and contextual anomalies in

application log data. Further, these state of the art techniques are being used independently and

across domains to successfully detect anomalies in datasets that share characteristics with

application log data.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 25

VII. HYPOTHESIS AND CONTRIBUTION

Combining the reconstruction properties of Auto-Encoders with the contextual efficacy of

LSTM Neural Networks can lead to improvements in application log data anomaly detection.

Our contribution is to develop a combined LSTM-AE architecture for application log anomaly

detection, that can improve on existing state of the art in terms of accuracy and generalization.

The LSTM-AE (LSTM Auto Encoder) must be very accurate in order to avert system

failure or slowdown. It is also imperative that the combined LSTM-AE generalize well over

application log data for different applications. The experiments will thus measure accuracy and

generalization of our LSTM-EA and benchmark against existing techniques such as

unsupervised machine learning and LSTM Neural networks.

VIII. EXPERIMENT SETUP

A. Datasets

As our work is related to application log data, it becomes critical to ensure high-quality

production datasets for conducting experiments. However, live application Log Data can be

challenging to obtain due to a multitude of privacy and security concerns. By perusing the

literature on the subset, we were able to identify public Log Datasets. We have selected two

distinct datasets for our experiments in order to measure generalization as well as accuracy.

Application Range Dataset
Size

 Log
Message
Count

Identified
Anomalies

HDFS 38.7 Hours 1.55 G 11,175,629 16,838

BGL 7 Months 708 M 4,747,963 348,460
Table 1. Dataset Details [25]

ANOMALY DETECTION FOR APPLICATION LOG DATA

 26

The HDFS Dataset has been obtained from a production Amazon EC2 system and is well

suited for anomaly detection. Not only does it contain 11,175,629 log messages with 16,838

anomalies, the dataset is also pre-labeled by domain experts, which will be useful for identifying

correctness of algorithms [25]. The dataset varies significantly from BGL log dataset both in

terms of total size of the dataset as well as the proportion of anomalies.

The BGL Dataset has also been obtained from a production system and is inherently well

suited for anomaly detection. Not only does it contain 4,747,964 log messages with 348,460

anomalies, the dataset is also pre-labeled by domain experts, which is critical for evaluation. This

dataset is more balanced than the HDFS dataset which will aid our analysis and allow testing for

generalization. It is also smaller in size to the HDFS dataset which positions it perfectly to test

generalization with a lower quantity of data.

B. Implementation Details

Figure 15. Experiment Implementation Flow

ANOMALY DETECTION FOR APPLICATION LOG DATA

 27

The first step of our experiment implementation is Data preprocessing, where the raw log

data is transformed into Features that can be ingested by our Anomaly detection algorithms. Raw

data is used as input to the Log Parsing phase. Log parsing removes extraneous or execution

specific detail from the raw data and the output is used as input for the Feature extraction phase.

At this stage, parsed log data is converted to numerical features which are used as input into our

anomaly detection algorithm, which then identifies anomalies based on the technique in use [25].

These anomalies are then cross-validated with the domain expert labeled list of anomalies for

each dataset to identify false positives, false negatives, true positives and true negatives in order

to derive precision, recall, and F1 score metrics.

C. Data Preprocessing

As can be seen below, the initial Dataset contains unstructured time series data, which need

to consolidate into single events based on common criterion (block number for HDFS and

timestamp for BGL). This is done as follows:

1) Raw Log Data is used as input for Log Parsing.

081109 204015 308 INFO dfs.DataNode$PacketResponder: PacketResponder 0 for block
blk_8229193803249955061 terminating

081109 205019 308 INFO dfs.DataNode$DataXceiver: Received block blk_8229193803249955061
from /10.252.194.69

081109 206017 308 INFO dfs.DataBlockScanner: Verification succeeded for block
blk_8229193803249955061

The log parsing stage removes runtime details such as IP address, log type(INFO) and

thread ID (308). The Logs now contain only constant data, no runtime variables and are ready to

be used as input to the Feature extraction phase of data preprocessing as follows.

081109 204015: PacketResponder * for block * terminating
081109 205019: Received block * from *
081109 206017: Verification succeeded for block *

ANOMALY DETECTION FOR APPLICATION LOG DATA

 28

2) Log events created during parsing are grouped together and used as input to
Feature extraction.

081109 204015: PacketResponder * for block * terminating
081109 205019: Received block * from *
081109 206017: Verification succeeded for block *

Once we have isolated all log events for a particular block, we count the frequency of these

events to create an event count vector.

3) Numerical Features are created using frequency of events

For block 8229193803249955061 the event vector is [3,2,2,0,0,0,0,0,0,0…].

This is a numerical representation of three Packetresponder events, two received block

events and two verification succeeded events for block 8229193803249955061. The zeroes

represent events which did not take place for block 8229193803249955061. This process is

repeated for the entire dataset and event vectors are created for input to the anomaly detection

algorithm.

D. Evaluation Metrics

Our primary focus for this work will be on accuracy and generalization. Keeping this in

mind, three metrics have been chosen to best evaluate performance on both these parameters.

The metrics are as follows

• Precision: precision gives us information about a model’s performance with

respect to false positives. Our purpose is to perform anomaly detection to

capture the right anomalies and as few false positives as possible. Precision is

designed to measure this and is a domain specific metric.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 29

Figure 16. Precision and Recall [31]

• Recall: Recall gives us information about a model’s performance with respect

to false Negatives. Our purpose is to perform anomaly detection to ensure we

capture most or all anomalies and as few false Negatives as possible. Recall is

designed to measure this and is a domain specific metric.

• F1 Score Indicates the Harmonic mean of Precision and recall and represents a

conservative average less affected by extreme values. The F1 Score is a

combination of Precision and recall and represents the tradeoff between

precision and recall values, thus providing an effective, domain-specific

metric for our evaluation. The harmonic mean is calculated as follows.

Figure 17. Harmonic mean (F1 Score) Formula [31]

Precision, recall and F1 Score suit the best for our experiments due to the unbalanced

nature of our dataset and are also specific to the domain of classification of which anomaly

detection is a subset

ANOMALY DETECTION FOR APPLICATION LOG DATA

 30

IX. EXPERIMENTS AND ANALYSIS

A. Experiment 1: Unsupervised Machine Learning (K-Means Clustering)

This algorithm starts K-Means clustering with K equal to one. The algorithm then

iteratively increases K (clusters) until the desired K is reached. At each iteration, we compare

anomalies identified with actual anomalies in the dataset. The number of clusters is increased

until the accuracy metrics peak, hence the chosen K value represents the cluster size at which

accuracy metrics are highest and start dropping as cluster size is increased further. Once

complete, the identified anomalies are compared with total anomalies to derive a confusion

matrix from which the following results follow.

a) Results

K Precision Recall F1
1 0.55 0.60 0.57
2 0.60 0.63 0.61
3 0.69 0.69 0.69
4 0.69 0.69 0.69
5 0.75 0.70 0.72
6 0.74 0.69 0.71
7 0.74 0.68 0.71

Table 2. K-Means HDFS Dataset Results

Table 3. K-Means BGL Dataset Results

K Precision Recall F1
1 0.65 0.70 0.67
2 0.70 0.73 0.71
3 0.75 0.76 0.75
4 0.78 0.79 0.78
5 0.78 0.77 0.77

ANOMALY DETECTION FOR APPLICATION LOG DATA

 31

Figure 18. Results for K-Means Algorithm with HDFS and BGL datasets

b) Analysis

The accuracy metrics for the K-Means algorithm are highest for HDFS Dataset with F1

score of 0.72 and for BGL Dataset with F1 score of 0.78. This acts as a baseline accuracy for

further experiments to improve upon. As can be seen from Fig 18, the K-Means algorithm does

not generalize well across datasets. The F1 score is 8.3% lower for the HDFS dataset than the F1

Score for the BGL dataset which means that the algorithm's effectiveness varies with the dataset

and is less effective for the HDFS dataset. Also, the F1 Score is highest at cluster size 5 for

HDFS dataset and highest at cluster size 4 for BGL dataset which also means that the algorithm

needs to be customized for each dataset and hence does not generalize well.

B. Experiment 2: Unsupervised Machine Learning (K-NN Global Density based)

In the absence of Labelled data for training, we cannot determine an appropriate K value

through experimentation. Instead, we perform the experiment for values of K from 10 to 50 and

combine all unique anomalies identified with each K value. We limit the K value to 50 as any

0.75 0.78

0.7

0.79
0.72

0.78

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HDFS	 BGL

Precision Recall F1	Score

ANOMALY DETECTION FOR APPLICATION LOG DATA

 32

further increase does not result in improved results as per Table 4, Table 5. These combined

anomalies are compared with total anomalies to derive the following results.

a) Results

K Precision Recall F1
10 0.66 0.7 0.68
20 0.7 0.72 0.71
30 0.71 0.73 0.72
40 0.74 0.77 0.75
50 0.74 0.77 0.75

Avg (10=< K <=50) 0.71 0.74 0.72
Table 4. K-NNs HDFS Dataset Results

K Precision Recall F1
10 0.61 0.66 0.63
20 0.68 0.71 0.68
30 0.7 0.74 0.70
40 0.75 0.76 0.75
50 0.75 0.76 0.75

Avg (10=< K <=50) 0.70 0.73 0.71
Table 5. K-NNs BGL Dataset Results

Figure 19: Results for K-NN Algorithm with HDFS and BGL datasets

0.71 0.7
0.74 0.730.72 0.71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HDFS BGL

Precision Recall F1	Score

ANOMALY DETECTION FOR APPLICATION LOG DATA

 33

b) Analysis

As we can see from Fig. 19, the F1 score for HDFS dataset of 0.72 is the same as that

achieved with K-Means and that the F1 score for BGL dataset of 0.71 is lower than that achieved

by K-Means by 10%. Thus KNN results in lower accuracy metrics as compared to K-Means.

As we can also see from Fig. 19 the KNN algorithm improves generalization over the K-

Means algorithm. The F1 score is 1.4% lower for the HDFS dataset than the F1 Score for the

BGL dataset which means that the KNN algorithm’s effectiveness varies little across datasets

compared to the K-Means algorithm. As a part of the KNN Algorithm, results across multiple K

values are averaged together, which also means that the algorithm does not require customization

compared with K-Means.

C. Experiment 3: LSTM Neural Network

We use LSTM Neural Network for anomaly detection in time series. A two-layer

unidirectional LSTM neural network is trained on non-anomalous data and used as a predictor.

<Distribution><1.5 funda> The resulting prediction errors are used to assess the likelihood of the

anomalous behavior. We also vary Neurons in each of the two layers to determine the

combination that achieves the highest accuracy.

Figure 20. Organization of the two LSTM Layers and Layer Detail

Input	Layer

LSTM	Layer

LSTM	Layer

Output	Layer

NN	Cells	varied	
from	15	to	35

NN	Cells	varied	
from	15	to	35

ANOMALY DETECTION FOR APPLICATION LOG DATA

 34

Figure 21. Single LSTM Layer Structure [30]

a) Results

NN Cells (Layer 1) –
NN Cells (Layer 2)

Precision Recall F1

35-35 0.83 0.83 0.83
35 - 25 0.85 0.83 0.84
25 - 35 0.81 0.79 0.80
15-30 0.82 0.82 0.82
30-15 0.82 0.80 0.81

Table 6. LSTM HDFS Dataset Results

NN Cells (Layer 1) –
NN Cells (Layer 2)

Precision Recall F1

35-35 0.85 0.84 0.84
35 - 25 0.89 0.86 0.87
25 - 35 0.83 0.82 0.82
15-30 0.82 0.82 0.82
30-15 0.81 0.80 0.80

Table 7. LSTM BGL Dataset Results

ANOMALY DETECTION FOR APPLICATION LOG DATA

 35

Figure 22. Results for LSTM with HDFS and BGL datasets

b) Analysis

As we can see from Fig. 22, the F1 score for HDFS dataset of 0.84 is the highest we’ve

achieved and improves upon the KNN and K-Means score (0.72) by 16.7%. The same is true for

the BGL dataset with an F1 Score of 0.87 representing an increase of 11.5% from K-Means.

Also as we can see from Table 6 and Table 7, the highest F1 scores are obtained on the same

architecture with 35 – 25 NN Cells, which means that just like KNN, the LSTM Neural Network

does not require customization compared with K-Means. As we can also see from Fig. 22 the

LSTM Neural Network does not improve generalization over the K-NN algorithm. The F1 score

is 3.6% lower for the HDFS dataset than the F1 Score for the BGL dataset which means that the

algorithm’s effectiveness varies with the dataset and is less effective for the HDFS dataset.

D. Experiment 4: LSTM Auto Encoder (LSTM-AE)

An encoder learns a vector representation of the input features and the decoder uses this to

0.85
0.89

0.83 0.860.84 0.87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HDFS BGL

Precision Recall F1	Score

ANOMALY DETECTION FOR APPLICATION LOG DATA

 36

reconstruct the time-series. The LSTM-based encoder-decoder is trained to reconstruct instances

of ‘normal' time series with the target time-series being the input time-series itself. Then, the

reconstruction error at any future time instance is used to compute the likelihood of anomaly at

that point. In order to accomplish this, we use a two-layer LSTM as used earlier and interface it

with LSTM Auto Encoder Decoders. We also vary Neural Network Cells in each of the two

layers to determine the combination that achieves the highest accuracy.

Figure 23: LSTM-AE Abstraction

An encoder-decoder model learned using only the normal sequences can be used for

detecting anomalies in multi-sensor time-series: The intuition here is that the encoder-decoder

pair would only have seen normal instances during training and learned to reconstruct them.

When given an anomalous sequence, it is not able to reconstruct it well, and hence leads to

x
L
S
T
M
L
a
y

L
S
T
M
L
a
y

L
S
T
M
L
a
y

L
S
T
M
L
a
y

L
S
T
M
L
a
y

L
S
T
M
L
a
y

x

x

x

x

x

x

LSTM	Neural	Network Auto	Encoder	Decoder Inputs

ANOMALY DETECTION FOR APPLICATION LOG DATA

 37

higher reconstruction errors compared to the reconstruction errors for the normal sequences.

Analyzing these reconstruction errors leads to the following accuracy results.

a) Results

NN Cells (Layer 1) –
NN Cells (Layer 2)

Precision Recall F1

35-35 0.88 0.87 0.88
35 - 25 0.89 0.88 0.88
25 - 35 0.83 0.80 0.81
15-30 0.86 0.83 0.85
30-15 0.85 0.81 0.83

Table 8. LSTM HDFS Dataset Results

NN Cells (Layer 1) –
NN Cells (Layer 2)

Precision Recall F1

35-35 0.87 0.88 0.87
35 - 25 0.89 0.89 0.89
25 - 35 0.85 0.81 0.83
15-30 0.86 0.82 0.84
30-15 0.85 0.81 0.83

Table 9. LSTM BGL Dataset Results

Figure 24. Results for LSTM-AE with HDFS and BGL datasets

0.89 0.890.88 0.890.88 0.89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HDFS BGL

Precision Recall F1	Score

ANOMALY DETECTION FOR APPLICATION LOG DATA

 38

b) Analysis

As we can see from Fig. 24, the F1 score for HDFS dataset of 0.88 is the highest we’ve

achieved and improves upon the LSTM score by 4.7%. The same is true for the BGL dataset

with an F1 Score of 0.89 representing an increase of 2.2% from LSTM.

Also as we can see from Table 8 and Table 9, the highest F1 scores are obtained on the

same architecture with 35 – 25 NN Cells, which means that just like LSTM, the LSTM-AE

Neural Network does not require customization, unlike K-Means. As we can also see from Fig.

24 the LSTM Auto Encoder Neural Network improves generalization over the LSTM Neural

Network. The F1 score is only 1.1% lower for the HDFS dataset than the F1 Score for the BGL

dataset which means that the algorithm’s effectiveness varies the least across datasets compared

to the rest of our algorithms.

X. SUMMARY OF RESULTS

In our experiments, we compared the accuracy and generalization of four anomaly

detection approaches including Unsupervised K-Means, Unsupervised K-NN, LSTM, and

LSTM-AE. The LSTM-AE scored the highest accuracy for HDFS (Precision: 0.89, Recall: 0.88,

F1: 0.88) and BGL (Precision: 0.89, Recall: 0.89, F1: 0.89). LSTM-AE also generalized the best

across our two datasets with only 1.1% variation between results on both datasets.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 39

Figure 25. Summary of Results for all experiments

In [25] Shillin et al use Unsupervised Machine Learning, with the same input datasets of

HDFS and BGL. Their Invariant Mining approach [25] outperformed our LSTM-AE with

respect to accuracy, achieving for HDFS (Precision: 0.88, Recall: 0.95, F1: 0.91) and BGL

(Precision: 0.83, Recall: 0.99, F1: 0.91). However, LSTM-AE generalizes better than [25].

LSTM-AE has only 1.1% variation between the Precision and Recall of HDFS and BGL datasets

as opposed to a variation of 6% between Precision and recall for the invariant Mining approach

used in [25] also using the same HDFS and BGL datasets.

In [26] Du et al use Deep LSTM Neural Networks with online validation and the same

input datasets of HDFS and BGL. Their Deep Learning approach [26] outperformed LSTM-AE

in accuracy, achieving for HDFS (Precision: 0.95, Recall: 0.96, F1: 0.96) and BGL (Precision:

0.82, Recall: 1.0, F1: 0.90). However, LSTM-AE generalizes better than [26]. LSTM-AE has

only 1.1% variation between the Precision and Recall of HDFS and BGL datasets as opposed to

a variation of 8% between Precision and recall for the Deep Learning approach used in [26] also

0.89 0.87

0.71
0.78

0.88
0.84

0.72 0.72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LSTM-AE LSTM K-Means KNN

BGL HDFS

ANOMALY DETECTION FOR APPLICATION LOG DATA

 40

using the same HDFS and BGL datasets.

XI. CONCLUSION

Over the course of this study, we answered our research questions by investigating

anomalies and anomaly detection methods. We also explored Neural networks and state of the

art techniques to detect anomalies in application log data. Leveraging this research, we

hypothesized a hybrid LSTM Auto Encoder model with the aim of achieving improvements in

accuracy and generalization. We conducted experiments of existing state of the art K-Means

Unsupervised, KNN Unsupervised, LSTM and compared the accuracy and generalization with

our contribution of LSTM-AE. Through these experiments and their analysis, we discovered that

the LSTM-AE does improve accuracy and generalization. We also compared our results with

those obtained by the scientific community using the same input datasets. In this case, we noted

that although the LSTM-AE did not improve accuracy, it did deliver improved generalization.

XII. FUTURE WORK

The primary aspect of future work revolves around increasing the accuracy of our LSTM-

AE implementation while ensuring that generalization is maintained. This can be achieved by

experimenting with Bidirectional LSTM Neural Networks as opposed to our existing

Unidirectional implementation, increasing the number of LSTM layers to take advantage of

Deep learning, or even incorporating online learning as has been done in [26].

Apart from this, a primary objective of future work would be to catalog and measure

computation time for each of our experiments to determine real-world effectiveness alongside

accuracy and generalization. The purpose of this research area is to minimize time and resources

spent on application log anomaly detection and thus a comprehensive review should be

ANOMALY DETECTION FOR APPLICATION LOG DATA

 41

undertaken of space complexity, runtime complexity, resource utilization and time taken during

execution.

Another aspect of future work would be testing our LSTM-AE architecture across multiple

datasets to determine if the generalization ability holds across a wider variety of Application log

data.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 42

REFERENCES

[1] A. Katal, M. Wazid, and R. H. Goudar. "Big data: issues, challenges, tools and good

practices." in Contemporary Computing (IC3), 2013 Sixth International Conference on, pp. 404-

409. IEEE, 2013.

[2] IM. Chen, S. Mao, and Y. Liu. "Big data: A survey.", in Mobile Networks and

Applications 19, no. 2 (2014): pp. 171-209, 2014.

[3] H. Zawawy, K. Kontogiannis, and J. Mylopoulos. "Log filtering and interpretation for

root cause analysis.", in Software Maintenance (ICSM), 2010 IEEE International Conference on,

pp. 1-5. IEEE, 2010.

[4] Ahmed, Mohiuddin, Abdun Naser Mahmood, and Md Rafiqul Islam. "A survey of

anomaly detection techniques in financial domain." Future Generation Computer Systems 55

(2016): 278-288.

[5] Martí, Luis, Nayat Sanchez-Pi, José Manuel Molina, and Ana Cristina Bicharra Garcia.

"Anomaly detection based on sensor data in petroleum industry applications." Sensors 15, no. 2

(2015): 2774-2797.

[6] Nanduri, Anvardh, and Lance Sherry. "Anomaly detection in aircraft data using

Recurrent Neural Networks (RNN)." In Integrated Communications Navigation and Surveillance

(ICNS), 2016, pp. 5C2-1. IEEE, 2016.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 43

[7] Bontemps, Loïc, James McDermott, and Nhien-An Le-Khac. "Collective Anomaly

Detection Based on Long Short-Term Memory Recurrent Neural Networks."

In International Conference on Future Data and Security Engineering, pp. 141-152. Springer

International Publishing, 2016.

[8] Olsson, T., Holst, A.: A probabilistic approach to aggregating anomalies for unsupervised

anomaly detection with industrial applications. In: FLAIRS Conference. pp. 434–439 (2015)

[9] Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short-term memory networks for

anomaly detection in time series. In: Proceedings. p. 89. Presses universitaires de Louvain (2015)

[10] Marchi, E., Vesperini, F., Eyben, F., Squartini, S., Schuller, B.: A novel approach for

automatic acoustic novelty detection using a denoising autoencoder with bidirectional lstm

neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). pp. 1996–2000. IEEE (2015)

[11] Marchi, E., Vesperini, F., Weninger, F., Eyben, F., Squartini, S., Schuller, B.: Non-linear

prediction with lstm recurrent neural networks for acoustic novelty detection. In: 2015

International Joint Conference on Neural Networks (IJCNN). pp. 1–7. IEEE (2015)

[12] Gunter, Dan, Brian L. Tierney, Aaron Brown, Martin Swany, John Bresnahan, and

Jennifer M. Schopf. "Log summarization and anomaly detection for troubleshooting distributed

systems." In Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,

pp. 226-234. IEEE Computer Society, 2007.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 44

[13] Grubbs, Frank E. "Procedures for detecting outlying observations in samples."

Technometrics 11, no. 1 (1969): 1-21.

[14] Gogoi, Prasanta, D. K. Bhattacharyya, Bhogeswar Borah, and Jugal K. Kalita. "A survey

of outlier detection methods in network anomaly identification." The Computer Journal 54, no. 4

(2011): 570-588.

[15] Zheng, Yu, Huichu Zhang, and Yong Yu. "Detecting collective anomalies from multiple

spatio-temporal datasets across different domains." In Proceedings of the 23rd SIGSPATIAL

International Conference on Advances in Geographic Information Systems, p. 2. ACM, 2015.

[16] Markou, Markos, and Sameer Singh. "Novelty detection: a review—part 1: statistical

approaches." Signal processing 83, no. 12 (2003): 2481-2497.

[17] Agyemang, Malik, Ken Barker, and Rada Alhajj. "A comprehensive survey of numeric

and symbolic outlier mining techniques." Intelligent Data Analysis 10, no. 6 (2006): 521-538.

[18] Kozma, R., M. Kitamura, M. Sakuma, and Y. Yokoyama. "Anomaly detection by neural

network models and statistical time series analysis." In Neural Networks, 1994. IEEE World

Congress on Computational Intelligence., 1994 IEEE International Conference on, vol. 5, pp.

3207-3210. IEEE, 1994.

[19] Andrews, Jerone TA, Edward J. Morton, and Lewis D. Griffin. "Detecting anomalous

data using auto-encoders." International Journal of Machine Learning and Computing 6, no. 1

(2016): 21.

ANOMALY DETECTION FOR APPLICATION LOG DATA

 45

[20] Sakurada, Mayu, and Takehisa Yairi. "Anomaly detection using autoencoders with

nonlinear dimensionality reduction." In Proceedings of the MLSDA 2014 2nd Workshop on

Machine Learning for Sensory Data Analysis, p. 4. ACM, 2014.

[21] Steinwart, Ingo, Don Hush, and Clint Scovel. "A classification framework for anomaly

detection." Journal of Machine Learning Research 6, no. Feb (2005): 211-232.

[22] Nanduri, Anvardh, and Lance Sherry. "Anomaly detection in aircraft data using

Recurrent Neural Networks (RNN)." In Integrated Communications Navigation and Surveillance

(ICNS), 2016, pp. 5C2-1. IEEE, 2016.

[23] Ringberg, H.; Soule, A.; Rexford, J.; Diot, C. Sensitivity of PCA for traffic anomaly

detection. In ACM SIGMETRICS Performance Evaluation Review; ACM: New York, NY,

USA, 2007; Volume 35, pp. 109–120.

[24] Fujimaki, R.; Yairi, T.; Machida, K. An approach to spacecraft anomaly detection

problem using kernel feature space. Proceedings of the Eleventh ACM SIGKDD International

Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA, 21–24 August

[25] S. He, J. Zhu, P. He and M. R. Lyu, "Experience Report: System Log Analysis for

Anomaly Detection," 2016 IEEE 27th International Symposium on Software Reliability

Engineering (ISSRE), Ottawa, ON, 2016, pp. 207-218. doi: 10.1109/ISSRE.2016.21

ANOMALY DETECTION FOR APPLICATION LOG DATA

 46

[26] Du, Min, F. Li, G. Zheng, and V. Srikumar. "DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning." In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, pp. 1285-1298. ACM, 2017.

 [27] Hayes, Michael A., and Miriam AM Capretz. "Contextual anomaly detection framework

for big sensor data." Journal of Big Data 2, no. 1 (2015): 2.

[28] Kriegel, Hans-Peter, P. Kröger, E. Schubert and A. Zimek. “LoOP: local outlier

probabilities.” CIKM (2009).

[29] D. Mulder, Wim, S. Bethard, and M. Moens. "A survey on the application of recurrent

neural networks to statistical language modeling." Computer Speech & Language 30, no. 1

(2015): 61-98.

[30] Guo, Liang, N. Li, F. Jia, Y. Lei, and J. Lin. "A recurrent neural network based health

indicator for remaining useful life prediction of bearings." Neurocomputing 240 (2017): 98-109.

[31] Ji, Xiaonan, and Po-Yin Yen. "Using MEDLINE elemental similarity to assist in the

article screening process for systematic reviews." JMIR medical informatics 3, no. 3 (2015).

[32] Twinanda, A. P., D. Mutter, J. Marescaux, M. de Mathelin, and N. Padoy. "Single-and

Multi-Task Architectures for Surgical Workflow Challenge at M2CAI 2016." arXiv:

1610.08844 (2016).

ANOMALY DETECTION FOR APPLICATION LOG DATA

 47

[33] A. Ben Said, A. Mohamed, T. Elfouly, K. Harras and Z. J. Wang, "Multimodal Deep

Learning Approach for Joint EEG-EMG Data Compression and Classification," 2017 IEEE

Wireless Communications and Networking Conference (WCNC), CA, 2017, pp. 1-6

[34] Kumari, R., M. K. Singh, R. Jha, and N. K. Singh. "Anomaly detection in network traffic

using K-mean clustering." In Recent Advances in Information Technology (RAIT), 2016 3rd

International Conference on, pp. 387-393. IEEE, 2016.

	Anomaly Detection for Application Log Data
	Recommended Citation

	Microsoft Word - CS298_Aarish.editedg.docx

