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ABSTRACT 

In software development, there is an absolute requirement to ensure that a system once 

developed, functions at its best throughout its lifetime. Application log data is critical to 

maintaining application performance and thus techniques to parse, understand and detect 

anomalies in application log data are critical to ensuring efficiency in software development. 

While initially hampered by limited hardware and lack of quality datasets, anomaly detection 

techniques have recently received a surge of interest with advancements in machine learning 

technology and especially neural networks. In this paper, we explore anomaly detection, 

historical techniques to detect anomalies and recent advancements in neural networks, which 

promise to revolutionize anomaly detection in application log data. Further, we analyze the most 

promising anomaly detection techniques and propose a hybrid model combining LSTM Neural 

Network and Auto Encoder which improves upon existing techniques.  

 

 

Index Terms – Anomaly Detection, Application logs, Machine Learning, Neural Networks 
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I. INTRODUCTION 

Applications generate massive amounts of log data, which automatically produced 

timestamped data that represents every single system and user event for all users of the 

application [1]. This data is generated throughout the lifetime of an application and tends to be 

time-series, incredibly unstructured, textual, poorly formatted and is generated at an incredible 

rate as the application scales and adds more users [2]. Walmart has generated 2.5 Million 

Petabytes of data for their flagship cloud computing application [1]. 

Log data also contains anomalies which represent potential system faults and are thus 

critical to debugging application performance and errors. The details and timestamps of the 

anomaly offer a starting point for discovering when, how and where errors in the application 

occurred [12]. Any debugging process requires a developer or support engineer to parse this 

data manually, reading through line by line until an anomaly is located. Log data also changes 

completely from application to application as the exact formatting, level of detail and 

verbosity are defined by the application developer’s development style which varies widely 

across the industry [3]. Because of growing demands, companies are forced to deploy an 

increasing number of engineers to manage log data, and even then, a vast number of anomalies 

such as error messages, warning notifications and network intrusion attempts are not detected. 

One possible solution for addressing application log anomaly detection is to autonomously 

detect anomalies in application log data [12]. 

In this paper, we explore anomalies in log data and existing anomaly detection techniques 

[3]. We then seek to provide insight into the questions:  

 

• What are the types of anomalies? 
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• Which methods exist for anomaly detection?  

• Are Neural Networks appropriate for application log data anomaly detection?  

• Which Anomaly Detection method gives the best results and can we improve upon 

them?  

We have analyzed scientific research fundamental to Anomaly Detection which is 

represented as a conceptual map in Fig. 1.  

 

Figure 1. Conceptual map of literature review 
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II. ANOMALIES IN LOG DATA 

Anomalies in application log data are considered to be patterns or characteristics which 

do not follow the average or normal behavior during perfect operation [4]. As described by 

Grubbs [13] ‘an outlying observation, or “outlier”, is one that appears to deviate markedly 

from other members of the sample in which it occurs.’ Such anomalies can be initiated 

through malicious actors, system level bugs or incorrect user operation and are often 

symptoms of imminent system failure or breach. Anomaly detection for application log data 

is particularly challenging whether automated or done manually for the following reasons. 

A. Unstructured Plain Text 

B. Redundant Runtime Information 

C. Large Unbalanced Data 

A. Unstructured Plain text and Variation 

An application log as shown in Fig. 2 is unstructured and stored as plain text. This lack 

of structure complicates data analysis, which is further exacerbated by logging formats which 

vary completely between applications. Fig. 2 shows Azure Application log data which varies 

completely both in content as well as structure when compared to Fig. 3 HDFS Application 

log data.

 

Figure 2. Azure Application Log Data 

 

Figure 3. HDFS Application Log Data 
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B. Redundant Runtime Information 

As can be seen in Fig. 3 Application logs contain runtime information such as IP Address 

of servers. This data changes during execution and varies from server to server and is hence 

redundant for the purpose of anomaly detection. Also as shown in Fig. 3, application log data 

contains domain-specific data such as "blockMap updated” for HDFS logs, which combined with 

redundant runtime information increases the complexity of anomaly detection.  

C. Large Unbalanced Data 

Application log data is designed to record all changes to an application and hence 

contains data that is heavily unbalanced in favor of non-anomalous execution. The data 

generated by HDFS in [26] contains only 16,838 anomalies (only 1.5%) out of over 

11,175,629 log events. The size and unbalanced nature of log data thus complicate the 

anomaly detection process. 

III. TYPES OF ANOMALIES 

A. Point Anomaly 

A point anomaly is data which deviates significantly from the average or normal 

distribution of the rest of the data [14]. Such data is often system generated, and the significant 

deviation is restricted to specific data points and shares little context with the rest of average or 

normal data [4]. 

Point anomalies are the simplest to detect and multiple techniques exist to automate point 

anomaly detection [14]. Point anomalies can be quickly discovered and fixed, and thus rarely 

have a significantly detrimental effect on applications [4,14]. Fig. 4 and Fig. 5 are examples of 

point anomalies. 
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Figure 4. Point Anomalies [27] 

 

Figure 5. Point Anomaly in HDFS Log Data 

B. Contextual Anomaly 

A contextual anomaly is identified as anomalous behavior restricted to a specific context, 

and normal according to other contexts [4, 14]. This type of anomaly also referred to as 

conditional anomaly, is often difficult to detect as it requires deep domain knowledge to 

understand the context within which the anomaly arises [4]. Fig. 6 shows a contextual anomaly 

in HDFS log data. Here, a ‘received block’ log would not be an anomaly on its own, but in the 

context of occurring between 60 deletions, it is treated as an anomaly. 
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Figure 6. Contextual Anomaly in HDFS Log Data 

 

Figure 7. Contextual Anomaly [27] 

C. Collective Anomaly 

Unlike contextual and point anomalies, collective anomalies appear as a group of 

anomalous values in data [4,15]. Collective anomalies are anomalous behavior of a collection of 

data instances with respect to the complete dataset. Individual data instances might not represent 

an anomaly, however, presence in the collective anomaly data instances is an indicator of 

anomalous behavior [15]. It must be noted however that on its own, a data instance does not 

represent collective anomalies and must appear in a collection of data to be collectively 

anomalous [4]. Fig. 9 shows a collective anomaly in HDFS log data. While adding to an ‘invalid 
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set' may not be an anomaly on its own, several similar consecutive additions to an ‘invalid set' 

represent a collective anomaly in HDFS log data.  

 

Figure 8. Collective Anomalies [27] 

 

Figure 9. Collective Anomaly in HDFS Log Data 

IV. EVOLUTION OF ANOMALY DETECTION TECHNIQUES 

Anomaly detection techniques have evolved with the advent of big data and machine 

learning. Initially approached using statistical techniques, anomaly detection quickly evolved 

into a field of its own encompassing statistical, depth, density, clustering, distance, machine 

learning and neural network based approaches. 

 
A. Statistical/Distribution Based Anomaly Detection 

In order to leverage Statistical Anomaly Detection, the log dataset is organized in terms of 

its overall statistic distribution and the data points which stand out or do not conform to this 

distribution are removed or examined [5]. These approaches are simple to implement but are 
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complicated by ever-changing definitions for anomalies in different domains [5, 16]. A 

transaction of $1 Million would be anomalous for personal finance applications but not for 

Investment banking applications. Thus, such approaches require prior knowledge of the dataset 

without which detecting contextual or collective anomalies can be incredibly challenging, 

especially for application log data which varies from application to application [5, 16]. 

B. Depth-based Anomaly Detection 

The depth-based approach works around the requirement to organize data by its statistical 

distribution and instead leverages convex hulls and flag objects to compute anomalies in the 

outermost layers [5]. This, however, requires heavy computation, is unable to detect contextual 

anomalies and is not suitable for high volume, high-velocity datasets such as application logs [5]. 

C. Clustering Based Anomaly Detection (Unsupervised Machine Learning) 

Clustering, considered to be the Swiss army knife of statistical modeling generates clusters 

out of similarities in datasets thus removing data points which don't conform to these clusters as 

anomalies [5]. K Means is the most popular technique in use and can be effective at detecting 

contextual and collective anomalies. 
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Figure 10. Clustering based Anomaly Detection [27] 

D. Distance-Based Anomaly Detection 

This category of anomaly detection method detects the distance of an element from a 

subset closest to it. Although this method, works well in many situations, it fails when applied to 

datasets with an unpredictable distribution with both sparse and dense regions. This is also 

referred to as the multi-density problem, which rules out detecting collective anomalies [5]. 

E. Density Based Anomaly Detection (Unsupervised Machine Learning) 

Density-based anomaly detection techniques are explicitly designed to get around the 

multi-density problems that distance-based methods suffer from. Density-based methods 

leverage the local outlier factor (LOF). The LOF is a quantification of how much each dataset 

lies outside the normal behaviors, which itself, depends on the local density of its neighborhood. 

As Density-based methods include density alongside distance, density based methods can work 
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much better with unpredictable distributions of sparse and dense regions. 

 

Figure 11. Density Based Anomaly Detection [28] 

F. Spectral Decomposition 

Spectral decomposition is a mathematical technique to artificially lower the dimensionality 

of the dataset. Spectral decomposition techniques based on Principal Component Analysis(PCA) 

[24] work by splitting the dataset space into normal, noise and anomaly subspaces allowing for 

simpler and more effective anomaly detection. [25]. 

G. Supervised Machine Learning Based Anomaly Detection 

In order to solve by classification, the problem is redesigned as an identification problem 

where the entire dataset is classified into anomalous or non-anomalous data [21]. This process 
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happens in two parts, starting with training a model on a subset of the data and leveraging this 

trained model to test the rest of the data [5]. As log data is incredibly verbose and highly 

imbalanced, classification learning overfits the model. Unless datasets are well balanced, 

classification learning struggles to generalize and accurately classify anomalies [21].  

H. Classic Neural Network Based Anomaly Detection 

Classic Neural Network anomaly detection techniques behave in a similar way to Machine 

learning approaches and thus mandate well-balanced datasets [23]. Recent advances in Neural 

Networks related to Recurrent Neural Networks, Long Short-Term Memory Neural Networks, 

and Auto-Encoders have been used extensively to solve a myriad array of problems related to 

anomaly detection such as Network intrusion detection, sensor data anomaly analysis, ECG time 

series anomaly detection as well multiple other domains [23]. These more recent advances are 

able to handle contextual and collective anomalies particularly well due to hidden layer based 

memory mechanisms which makes a good fit for accurate and generalizable anomaly detection, 

even with imbalanced datasets [22]. 

V. NEURAL NETWORK BASED MODELS FOR ANOMALY DETECTION 

Recurrent Neural Networks (RNN) alter standard neural networks by allowing output from 

hidden layers of neurons to serve as inputs to the next layer [18, 23]. This allows for 

incorporation of feedback at every stage and thus the network is able to leverage history to make 

classification decisions [6, 18]. This approach makes RNNs desirable for Anomaly detection as 

retaining context in log events is critical to discovering contextual anomalies. 
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Figure 12: Recurrent neural network architecture comparison with forward neural network [29] 

 
RNNs are extensively used for Anomaly detection with approaches varying from 

clustering, classification to reconstruction [18]. Recent Neural Network based anomaly detection 

research has revolved around Long Short-Term Memory Neural Networks and Auto-Encoders, 

both of which often leverage recurrent Neural Networks [18].  

A. Anomaly Detection with LSTM Neural Network 

Long Short-Term Memory (LSTM) Neural networks are a subcategory of Recurrent Neural 

Networks especially suited towards learning long-term dependencies between the input data. 

LSTM architecture is represented by memory blocks which themselves are essentially, 

recurrently connected structures [6]. 
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Figure 13. LSTM Architecture [32] 

B. Anomaly Detection with Auto Encoder 

Auto-Encoders are artificial neural networks designed to induce a representation for 

datasets by learning approximations of the dataset's identity function [19]. They are generally 

paired with a Decoder which is used to recreate the initial dataset using the representation 

defined by autoencoders. In terms of architecture, an autoencoder can be as simple as a feed-

forward Neural Network which may or may not be recurrent [19]. 

The input and output layers are connected to each other with hidden layers. The basic 

approach to using Auto-Encoders revolves around using an Encoder to map an approximation of 

the dataset, which is then reconstructed by the decoder [19]. This reconstructed representation 

contains the most important features, at which point a reconstruction error is calculated to 

decipher anomalies. 
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Figure 14. Auto Encoder Learning [33] 

VI. SUMMARY OF THE CURRENT STATE-OF-ART 

Machine learning, LSTM Neural Networks, and Auto-Encoders are designed to be used 

with data that is unbalanced, unstructured, unlabeled and domain specific. The heavy research in 

these areas combined with the ubiquity of commodity hardware has made these techniques 

accessible, powerful and very effective for anomaly detection [19]. 

Kumari et al leverage unsupervised K-Means Clustering on network traffic data to 

successfully detect anomalies with much improved accuracy over existing approaches [34]. 

Olsson et al. [8] developed an unsupervised learning approach to detect collective 

anomalies by deriving an “anomalous score” for each anomaly. They evaluate their model using 

an artificial dataset as well as two industrial datasets and successfully detect anomalies in 

moving crane data as well as fuel consumption data over time [8].  

In [9], Malhotra et al. leverage LSTM Neural Networks for solving time series anomaly 

detection. Stacked LSTM were trained on non-anomalous data and this trained model was used 

to predict the next n number of time steps. This was compared with actual data for the next n 
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time steps to successfully derive anomalies. 

Marchi et al. [10,11] combined non-linear predictive denoising autoencoders (DA) with 

LSTM cells to successfully identify anomalous signals in audio data. They leveraged previous 

frames to predict auditory spectral features for the next short-term frame. This combined model 

was tested using acoustic recorders with non-anomalous signals showing up average 

reconstruction error and anomalous signals showing up higher reconstructive errors. An anomaly 

score was then created using reconstruction error and a threshold was identified to indicate 

anomalies above it. Using public datasets, their model outperformed competing, existing models. 

[10,11]  

Sakurada et al. [20] use auto encoders as dimensionality reduction tools to detect anomalies 

in both real world and artificial datasets. The datasets used are time series based and results from 

their Auto Encoder architecture are compared in detail with legacy spectral decomposition 

techniques such as PCA. Sakurada et al. [20] also compared their results with denoising 

autoencoder and compared results with both the standard Auto Encoder and PCA techniques. In 

their experiments, Auto-Encoders successfully detected subtle anomalies which were missed out 

by PCA. Further, denoising Auto-Encoders provided greater accuracy as well as successful 

detection of subtle anomalies [20]. The authors also noted that as opposed to kernel PCA 

techniques, Auto-Encoders require fewer computational cycles [20].  

As our literature review shows, Unsupervised machine learning, LSTM Neural Networks, 

and Auto-Encoders are well suited to detecting point, collective and contextual anomalies in 

application log data. Further, these state of the art techniques are being used independently and 

across domains to successfully detect anomalies in datasets that share characteristics with 

application log data. 
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VII. HYPOTHESIS AND CONTRIBUTION 

Combining the reconstruction properties of Auto-Encoders with the contextual efficacy of 

LSTM Neural Networks can lead to improvements in application log data anomaly detection. 

Our contribution is to develop a combined LSTM-AE architecture for application log anomaly 

detection, that can improve on existing state of the art in terms of accuracy and generalization. 

The LSTM-AE (LSTM Auto Encoder) must be very accurate in order to avert system 

failure or slowdown. It is also imperative that the combined LSTM-AE generalize well over 

application log data for different applications. The experiments will thus measure accuracy and 

generalization of our LSTM-EA and benchmark against existing techniques such as 

unsupervised machine learning and LSTM Neural networks. 

VIII. EXPERIMENT SETUP 

A. Datasets 
 

As our work is related to application log data, it becomes critical to ensure high-quality 

production datasets for conducting experiments. However, live application Log Data can be 

challenging to obtain due to a multitude of privacy and security concerns. By perusing the 

literature on the subset, we were able to identify public Log Datasets. We have selected two 

distinct datasets for our experiments in order to measure generalization as well as accuracy. 

Application Range Dataset 
Size 

 Log 
Message 
Count 

Identified 
Anomalies 

HDFS 38.7 Hours 1.55 G 11,175,629 16,838 

BGL 7 Months 708 M 4,747,963 348,460 
Table 1. Dataset Details [25] 
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The HDFS Dataset has been obtained from a production Amazon EC2 system and is well 

suited for anomaly detection. Not only does it contain 11,175,629 log messages with 16,838 

anomalies, the dataset is also pre-labeled by domain experts, which will be useful for identifying 

correctness of algorithms [25]. The dataset varies significantly from BGL log dataset both in 

terms of total size of the dataset as well as the proportion of anomalies. 

The BGL Dataset has also been obtained from a production system and is inherently well 

suited for anomaly detection. Not only does it contain 4,747,964 log messages with 348,460 

anomalies, the dataset is also pre-labeled by domain experts, which is critical for evaluation. This 

dataset is more balanced than the HDFS dataset which will aid our analysis and allow testing for 

generalization. It is also smaller in size to the HDFS dataset which positions it perfectly to test 

generalization with a lower quantity of data. 

B. Implementation Details 
 

 
Figure 15. Experiment Implementation Flow 
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The first step of our experiment implementation is Data preprocessing, where the raw log 

data is transformed into Features that can be ingested by our Anomaly detection algorithms. Raw 

data is used as input to the Log Parsing phase. Log parsing removes extraneous or execution 

specific detail from the raw data and the output is used as input for the Feature extraction phase. 

At this stage, parsed log data is converted to numerical features which are used as input into our 

anomaly detection algorithm, which then identifies anomalies based on the technique in use [25]. 

These anomalies are then cross-validated with the domain expert labeled list of anomalies for 

each dataset to identify false positives, false negatives, true positives and true negatives in order 

to derive precision, recall, and F1 score metrics. 

C. Data Preprocessing 
 

As can be seen below, the initial Dataset contains unstructured time series data, which need 

to consolidate into single events based on common criterion (block number for HDFS and 

timestamp for BGL). This is done as follows: 

1) Raw Log Data is used as input for Log Parsing.  

081109 204015 308 INFO dfs.DataNode$PacketResponder: PacketResponder 0 for block 
blk_8229193803249955061 terminating 

 
081109 205019 308 INFO dfs.DataNode$DataXceiver: Received block blk_8229193803249955061 
from /10.252.194.69 
 
081109 206017 308 INFO dfs.DataBlockScanner: Verification succeeded for block 
blk_8229193803249955061 
 
The log parsing stage removes runtime details such as IP address, log type(INFO) and 

thread ID (308). The Logs now contain only constant data, no runtime variables and are ready to 

be used as input to the Feature extraction phase of data preprocessing as follows. 

081109 204015: PacketResponder * for block * terminating 
081109 205019: Received block * from * 
081109 206017: Verification succeeded for block *  
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2) Log events created during parsing are grouped together and used as input to 
Feature extraction. 

 
081109 204015: PacketResponder * for block * terminating 
081109 205019: Received block * from * 
081109 206017: Verification succeeded for block *  
 
Once we have isolated all log events for a particular block, we count the frequency of these 

events to create an event count vector. 

 
3) Numerical Features are created using frequency of events 

For block 8229193803249955061 the event vector is [3,2,2,0,0,0,0,0,0,0…].  

This is a numerical representation of three Packetresponder events, two received block 

events and two verification succeeded events for block 8229193803249955061. The zeroes 

represent events which did not take place for block 8229193803249955061. This process is 

repeated for the entire dataset and event vectors are created for input to the anomaly detection 

algorithm. 

D. Evaluation Metrics 

Our primary focus for this work will be on accuracy and generalization. Keeping this in 

mind, three metrics have been chosen to best evaluate performance on both these parameters. 

The metrics are as follows 

• Precision:  precision gives us information about a model’s performance with 

respect to false positives. Our purpose is to perform anomaly detection to 

capture the right anomalies and as few false positives as possible. Precision is 

designed to measure this and is a domain specific metric. 
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Figure 16. Precision and Recall [31] 

• Recall:  Recall gives us information about a model’s performance with respect 

to false Negatives. Our purpose is to perform anomaly detection to ensure we 

capture most or all anomalies and as few false Negatives as possible. Recall is 

designed to measure this and is a domain specific metric. 

• F1 Score Indicates the Harmonic mean of Precision and recall and represents a 

conservative average less affected by extreme values. The F1 Score is a 

combination of Precision and recall and represents the tradeoff between 

precision and recall values, thus providing an effective, domain-specific 

metric for our evaluation. The harmonic mean is calculated as follows. 

 

Figure 17. Harmonic mean (F1 Score) Formula [31] 

Precision, recall and F1 Score suit the best for our experiments due to the unbalanced 

nature of our dataset and are also specific to the domain of classification of which anomaly 

detection is a subset 
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IX. EXPERIMENTS AND ANALYSIS 

A. Experiment 1: Unsupervised Machine Learning (K-Means Clustering) 

This algorithm starts K-Means clustering with K equal to one. The algorithm then 

iteratively increases K (clusters) until the desired K is reached. At each iteration, we compare 

anomalies identified with actual anomalies in the dataset. The number of clusters is increased 

until the accuracy metrics peak, hence the chosen K value represents the cluster size at which 

accuracy metrics are highest and start dropping as cluster size is increased further. Once 

complete, the identified anomalies are compared with total anomalies to derive a confusion 

matrix from which the following results follow. 

a) Results 

K Precision Recall F1 
1 0.55 0.60 0.57 
2 0.60 0.63 0.61 
3 0.69 0.69 0.69 
4 0.69 0.69 0.69 
5 0.75 0.70 0.72 
6 0.74 0.69 0.71 
7 0.74 0.68 0.71 

Table 2. K-Means HDFS Dataset Results 
 
 
 
 
 
 
 
 

 
Table 3. K-Means BGL Dataset Results 

 

K Precision Recall F1 
1 0.65 0.70 0.67 
2 0.70 0.73 0.71 
3 0.75 0.76 0.75 
4 0.78 0.79 0.78 
5 0.78 0.77 0.77 
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Figure 18. Results for K-Means Algorithm with HDFS and BGL datasets 

 
b) Analysis 

The accuracy metrics for the K-Means algorithm are highest for HDFS Dataset with F1 

score of 0.72 and for BGL Dataset with F1 score of 0.78. This acts as a baseline accuracy for 

further experiments to improve upon. As can be seen from Fig 18, the K-Means algorithm does 

not generalize well across datasets. The F1 score is 8.3% lower for the HDFS dataset than the F1 

Score for the BGL dataset which means that the algorithm's effectiveness varies with the dataset 

and is less effective for the HDFS dataset. Also, the F1 Score is highest at cluster size 5 for 

HDFS dataset and highest at cluster size 4 for BGL dataset which also means that the algorithm 

needs to be customized for each dataset and hence does not generalize well. 

B. Experiment 2: Unsupervised Machine Learning (K-NN Global Density based) 

In the absence of Labelled data for training, we cannot determine an appropriate K value 

through experimentation. Instead, we perform the experiment for values of K from 10 to 50 and 

combine all unique anomalies identified with each K value. We limit the K value to 50 as any 
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further increase does not result in improved results as per Table 4, Table 5. These combined 

anomalies are compared with total anomalies to derive the following results.  

a) Results 

K Precision Recall F1 
10 0.66 0.7 0.68 
20 0.7 0.72 0.71 
30 0.71 0.73 0.72 
40 0.74 0.77 0.75 
50 0.74 0.77 0.75 

Avg (10=< K <=50) 0.71 0.74 0.72 
Table 4. K-NNs HDFS Dataset Results 

K Precision Recall F1 
10 0.61 0.66 0.63 
20 0.68 0.71 0.68 
30 0.7 0.74 0.70 
40 0.75 0.76 0.75 
50 0.75 0.76 0.75 

Avg (10=< K <=50) 0.70 0.73 0.71 
Table 5. K-NNs BGL Dataset Results 

 

Figure 19: Results for K-NN Algorithm with HDFS and BGL datasets 
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b) Analysis 

As we can see from Fig. 19, the F1 score for HDFS dataset of 0.72 is the same as that 

achieved with K-Means and that the F1 score for BGL dataset of 0.71 is lower than that achieved 

by K-Means by 10%. Thus KNN results in lower accuracy metrics as compared to K-Means. 

As we can also see from Fig. 19 the KNN algorithm improves generalization over the K-

Means algorithm. The F1 score is 1.4% lower for the HDFS dataset than the F1 Score for the 

BGL dataset which means that the KNN algorithm’s effectiveness varies little across datasets 

compared to the K-Means algorithm. As a part of the KNN Algorithm, results across multiple K 

values are averaged together, which also means that the algorithm does not require customization 

compared with K-Means. 

C. Experiment 3: LSTM Neural Network 

We use LSTM Neural Network for anomaly detection in time series. A two-layer 

unidirectional LSTM neural network is trained on non-anomalous data and used as a predictor. 

<Distribution><1.5 funda> The resulting prediction errors are used to assess the likelihood of the 

anomalous behavior. We also vary Neurons in each of the two layers to determine the 

combination that achieves the highest accuracy.  

 

Figure 20. Organization of the two LSTM Layers and Layer Detail 

Input	Layer 

LSTM	Layer 

LSTM	Layer 

Output	Layer 

NN	Cells	varied	
from	15	to	35 

NN	Cells	varied	
from	15	to	35 
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Figure 21. Single LSTM Layer Structure [30] 

a) Results 

 

NN Cells (Layer 1) – 
NN Cells (Layer 2) 

Precision Recall F1 

35-35 0.83 0.83 0.83 
35 - 25 0.85 0.83 0.84 
25 - 35 0.81 0.79 0.80 
15-30 0.82 0.82 0.82 
30-15 0.82 0.80 0.81 

Table 6. LSTM HDFS Dataset Results 

NN Cells (Layer 1) – 
NN Cells (Layer 2) 

Precision Recall F1 

35-35 0.85 0.84 0.84 
35 - 25 0.89 0.86 0.87 
25 - 35 0.83 0.82 0.82 
15-30 0.82 0.82 0.82 
30-15 0.81 0.80 0.80 

Table 7. LSTM BGL Dataset Results 
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Figure 22. Results for LSTM with HDFS and BGL datasets 

b) Analysis 

As we can see from Fig. 22, the F1 score for HDFS dataset of 0.84 is the highest we’ve 

achieved and improves upon the KNN and K-Means score (0.72) by 16.7%. The same is true for 

the BGL dataset with an F1 Score of 0.87 representing an increase of 11.5% from K-Means. 

Also as we can see from Table 6 and Table 7, the highest F1 scores are obtained on the same 

architecture with 35 – 25 NN Cells, which means that just like KNN, the LSTM Neural Network 

does not require customization compared with K-Means. As we can also see from Fig. 22 the 

LSTM Neural Network does not improve generalization over the K-NN algorithm. The F1 score 

is 3.6% lower for the HDFS dataset than the F1 Score for the BGL dataset which means that the 

algorithm’s effectiveness varies with the dataset and is less effective for the HDFS dataset. 

D. Experiment 4: LSTM Auto Encoder (LSTM-AE) 

An encoder learns a vector representation of the input features and the decoder uses this to 
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reconstruct the time-series. The LSTM-based encoder-decoder is trained to reconstruct instances 

of ‘normal' time series with the target time-series being the input time-series itself. Then, the 

reconstruction error at any future time instance is used to compute the likelihood of anomaly at 

that point.  In order to accomplish this, we use a two-layer LSTM as used earlier and interface it 

with LSTM Auto Encoder Decoders. We also vary Neural Network Cells in each of the two 

layers to determine the combination that achieves the highest accuracy. 

 

Figure 23: LSTM-AE Abstraction 

An encoder-decoder model learned using only the normal sequences can be used for 

detecting anomalies in multi-sensor time-series: The intuition here is that the encoder-decoder 

pair would only have seen normal instances during training and learned to reconstruct them.  

When given an anomalous sequence, it is not able to reconstruct it well, and hence leads to 
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higher reconstruction errors compared to the reconstruction errors for the normal sequences. 

Analyzing these reconstruction errors leads to the following accuracy results. 

a) Results 

NN Cells (Layer 1) – 
NN Cells (Layer 2) 

Precision Recall F1 

35-35 0.88 0.87 0.88 
35 - 25 0.89 0.88 0.88 
25 - 35 0.83 0.80 0.81 
15-30 0.86 0.83 0.85 
30-15 0.85 0.81 0.83 

Table 8. LSTM HDFS Dataset Results 

NN Cells (Layer 1) – 
NN Cells (Layer 2) 

Precision Recall F1 

35-35 0.87 0.88 0.87 
35 - 25 0.89 0.89 0.89 
25 - 35 0.85 0.81 0.83 
15-30 0.86 0.82 0.84 
30-15 0.85 0.81 0.83 

Table 9. LSTM BGL Dataset Results 

 

Figure 24. Results for LSTM-AE with HDFS and BGL datasets 
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b) Analysis 

As we can see from Fig. 24, the F1 score for HDFS dataset of 0.88 is the highest we’ve 

achieved and improves upon the LSTM score by 4.7%. The same is true for the BGL dataset 

with an F1 Score of 0.89 representing an increase of 2.2% from LSTM. 

Also as we can see from Table 8 and Table 9, the highest F1 scores are obtained on the 

same architecture with 35 – 25 NN Cells, which means that just like LSTM, the LSTM-AE 

Neural Network does not require customization, unlike K-Means. As we can also see from Fig. 

24 the LSTM Auto Encoder Neural Network improves generalization over the LSTM Neural 

Network. The F1 score is only 1.1% lower for the HDFS dataset than the F1 Score for the BGL 

dataset which means that the algorithm’s effectiveness varies the least across datasets compared 

to the rest of our algorithms. 

X. SUMMARY OF RESULTS 

In our experiments, we compared the accuracy and generalization of four anomaly 

detection approaches including Unsupervised K-Means, Unsupervised K-NN, LSTM, and 

LSTM-AE. The LSTM-AE scored the highest accuracy for HDFS (Precision: 0.89, Recall: 0.88, 

F1: 0.88) and BGL (Precision: 0.89, Recall: 0.89, F1: 0.89). LSTM-AE also generalized the best 

across our two datasets with only 1.1% variation between results on both datasets.  
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Figure 25. Summary of Results for all experiments 

In [25] Shillin et al use Unsupervised Machine Learning, with the same input datasets of 

HDFS and BGL. Their Invariant Mining approach [25] outperformed our LSTM-AE with 

respect to accuracy, achieving for HDFS (Precision: 0.88, Recall: 0.95, F1: 0.91) and BGL 

(Precision: 0.83, Recall: 0.99, F1: 0.91). However, LSTM-AE generalizes better than [25]. 

LSTM-AE has only 1.1% variation between the Precision and Recall of HDFS and BGL datasets 

as opposed to a variation of 6% between Precision and recall for the invariant Mining approach 

used in [25] also using the same HDFS and BGL datasets. 

In [26] Du et al use Deep LSTM Neural Networks with online validation and the same 

input datasets of HDFS and BGL. Their Deep Learning approach [26] outperformed LSTM-AE 

in accuracy, achieving for HDFS (Precision: 0.95, Recall: 0.96, F1: 0.96) and BGL (Precision: 

0.82, Recall: 1.0, F1: 0.90). However, LSTM-AE generalizes better than [26]. LSTM-AE has 

only 1.1% variation between the Precision and Recall of HDFS and BGL datasets as opposed to 

a variation of 8% between Precision and recall for the Deep Learning approach used in [26] also 
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using the same HDFS and BGL datasets. 

XI. CONCLUSION 

Over the course of this study, we answered our research questions by investigating 

anomalies and anomaly detection methods. We also explored Neural networks and state of the 

art techniques to detect anomalies in application log data. Leveraging this research, we 

hypothesized a hybrid LSTM Auto Encoder model with the aim of achieving improvements in 

accuracy and generalization. We conducted experiments of existing state of the art K-Means 

Unsupervised, KNN Unsupervised, LSTM and compared the accuracy and generalization with 

our contribution of LSTM-AE. Through these experiments and their analysis, we discovered that 

the LSTM-AE does improve accuracy and generalization. We also compared our results with 

those obtained by the scientific community using the same input datasets. In this case, we noted 

that although the LSTM-AE did not improve accuracy, it did deliver improved generalization.   

XII. FUTURE WORK 

The primary aspect of future work revolves around increasing the accuracy of our LSTM-

AE implementation while ensuring that generalization is maintained. This can be achieved by 

experimenting with Bidirectional LSTM Neural Networks as opposed to our existing 

Unidirectional implementation, increasing the number of LSTM layers to take advantage of 

Deep learning, or even incorporating online learning as has been done in [26].  

Apart from this, a primary objective of future work would be to catalog and measure 

computation time for each of our experiments to determine real-world effectiveness alongside 

accuracy and generalization. The purpose of this research area is to minimize time and resources 

spent on application log anomaly detection and thus a comprehensive review should be 
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undertaken of space complexity, runtime complexity, resource utilization and time taken during 

execution.  

Another aspect of future work would be testing our LSTM-AE architecture across multiple 

datasets to determine if the generalization ability holds across a wider variety of Application log 

data.  
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