
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-18-2018

Virtual Robot Climbing using Reinforcement Learning Virtual Robot Climbing using Reinforcement Learning

Ujjawal Garg
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Garg, Ujjawal, "Virtual Robot Climbing using Reinforcement Learning" (2018). Master's Projects. 658.
DOI: https://doi.org/10.31979/etd.u9xe-s6yw
https://scholarworks.sjsu.edu/etd_projects/658

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/658?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Virtual Robot Climbing using Reinforcement Learning

A Project Presented to

The Faculty of Department of Computer Science

San Jose State University

In Partial Fulfilment of

the Requirements for the Degree

Master of Science

By

Ujjawal Garg

December 2018

© 2018

Ujjawal Garg

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Master’s Project Titled

Virtual Robot Climbing using Reinforcement Learning

By

Ujjawal Garg

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2018

Dr. Christopher Pollett

Dr. Robert Chun

Dr. Katerina Potika

Department of Computer Science

Department of Computer Science

Department of Computer Science

ABSTRACT

Virtual Robot Climbing using Reinforcement Learning

By Ujjawal Garg

Reinforcement Learning (RL) is a field of Artificial Intelligence that has gained a lot of

attention in recent years. In this project, RL research was used to design and train an

agent to climb and navigate through an environment with slopes. We compared and

evaluated the performance of two state-of-the-art reinforcement learning algorithms for

locomotion related tasks, Deep Deterministic Policy Gradients (DDPG) and Trust

Region Policy Optimisation (TRPO). We observed that, on an average, training with

TRPO was three times faster than DDPG, and also much more stable for the locomotion

control tasks that we experimented. We conducted experiments and finally designed an

environment using insights from transfer learning to successfully train an agent to climb

slopes up to 36°.

ACKNOWLEDGEMENTS

 I would like to express my sincerest gratitude to Dr. Christopher Pollett for his

patience and his pertinent guidance throughout the duration of my project. I consider

myself to be extremely fortunate to have had an opportunity to work with someone as

brilliant as him.

I am also grateful to my committee members, Dr. Robert Chun and Dr. Katerina

Potika for providing their valuable feedback and guidance.

And finally, I thank my wonderful friends and parents for always having my

back and making my journey every bit memorable.

6

TABLE OF CONTENTS

CHAPTER

1. Introduction . 9

1.1. Problem Statement . 9

1.2. Related Work .11

1.3. Contribution .12

2. Background .13

2.1. Reinforcement Learning . 13

2.2. Formal Definitions .14

2.3. Q-Learning .16

2.4. Deep Reinforcement Learning .17

2.4.1. Deep Deterministic Policy Gradients .18

2.4.2. Trust Region Policy Optimisation . 21

2.5. Transfer Learning .23

3. Experimental Design and Implementation . 24

3.1. Libraries Setup .24

3.2. Gym Environment Setup . 25

3.3. Baseline Algorithm Parameters .26

3.4 Cloud Setup . 28

4. Experiments and Results . 29

5. Conclusion and Future Work . 49

References . 51

7

LIST OF FIGURES

Figure	1:	Reinforcement	Learning	framework	...	14	
Figure	2:	Evaluation	of	trained	Tic-Tac-Toe	agent	..	17	
Figure	3:	A	MJCF	body	element	for	one-legged	hopper	agent	25	
Figure	4:	Signature	of	a	MuJoCo	environment	python	class	26	
Figure	5:	Neural	Network	for	Critic	..	27	
Figure	6:	Neural	Network	architecture	for	Actor	...	28	
Figure	7:	Simulation	images	after	training	hopper	using	TRPO	for	591	epochs	30	
Figure	8:	Simulation	images	after	training	hopper	using	DDPG	for	216	epochs	30	
Figure	9:	MuJoCo	simulation	of	a	wall	with	rock-climbing	holds	31	
Figure	10:	Simulation	images	after	training	humanoid-RockClimb	using	TRPO	

for	1M	time-steps	..	33	
Figure	11:	Simulation	images	after	training	humanoid-RockClimb	using	DDPG	

for	1M	time-steps	..	33	
Figure	12:	Simulation	images	after	training	human-walk	using	TRPO	for	1M	

time-steps	..	35	
Figure	13:	Simulation	images	after	training	human-walk	using	DDPG	for	0.5M	

time-steps	..	35	
Figure	14:	Simulation	images	after	training	ant-walk	using	DDPG	for	1M	time-

steps	..	36	
Figure	15:	Simulation	images	after	training	ant-walk	using	TRPO	for	1M	time-

steps	..	37	
Figure	16:	Simulation	images	after	training	ant-steps	using	TRPO	for	1M,	time-

steps	with	step	size	0.5cm	...	38	
Figure	17:	Simulation	images	after	training	ant-steps	using	DDPG	for	0.5M	

time-steps	with	step	size	0.5cm	..	39	
Figure	18:	Simulation	images	after	training	ant-steps	using	DDPG	for	0.5M	

time-steps	with	step	size	0.25	cm	..	39	
Figure	19:	Simulation	images	after	training	ant-steps	using	TRPO	for	1M	time-

steps	with	step	size	0.25	cm	..	40	
Figure	20:	Simulation	images	after	training	ant-steps	using	TRPO	for	0.5M	

time-steps	with	step	size	0.25	cm	with	modified	terminating	
condition	...	40	

Figure	21:	Simulation	images	after	training	ant-slope	using	TRPO	for	10M	time-
steps	for	slope	equal	to	9°	...	41	

Figure	22:	Simulation	images	after	training	ant-slope	using	TRPO	for	10M	time-
steps	for	slope	equal	to	18°	...	41	

Figure	23:	Simulation	images	after	training	ant-slope	using	TRPO	for	10M	time-
steps	for	slope	equal	to	27°	...	42	

8

Figure	24:	Simulation	images	after	training	ant-grooved-slope	using	TRPO	for	
5M	time-steps	for	slope	equal	to	18°	..	43	

Figure	25:	Simulation	images	after	training	ant-grooved-slope	using	TRPO	for	
5M	time-steps	for	slope	equal	to	27°	..	43	

Figure	26:	Simulation	images	after	training	ant-grooved-slope-18°	using	TRPO	
for	5M	time-steps	and	running	on	environment	with	slope	equal	to	
27°	...	44	

Figure	27:	Simulation	images	after	training	ant-grooved-multiple-slopes	using	
TRPO	for	10M	time-steps	considering	both	upward	and	forward	
velocity	..	45	

Figure	28:	Simulation	images	after	training	ant-grooved-multiple-slopes	using	
TRPO	for	10M	time-steps	considering	only	forward	velocity	46	

Figure	29:	Graphs	showing	the	rate	of	training	as	episode	count	versus	the	
steps,	heights	and	distances	per	episode	..	47	

Figure	30:	Simulation	images	for	a	model	trained	using	TPRO	for	Experiment	
4.9	...	48	

9

CHAPTER 1

Introduction

1.1 Problem Statement

One of the long-standing goals of Artificial Intelligence is to achieve an

intelligent machine which is able to perform any intellectual task that a human is

capable of. This is sometimes referred to as Artificial General Intelligence (AGI). AGI

models the human intellect in a software such that, given an unfamiliar task, the

software is able to come up with a solution to perform the task. Physical control tasks

like walking, opening a door, etc. are performed naturally by the human mind but still

remain as one of the biggest tasks that we have not yet been able to model for practical

use in robotics. These tasks give rise to highly complex control challenges, making it

impractical to program all the aspects of this problem by hand. However, recent interest

and advancements in the field of Deep Reinforcement Learning have been a tremendous

boon for robotics research. The goal for this project is to use Deep Reinforcement

Learning to train a quadruped agent to learn climbing on a variety of slope based

environments. The final trained agent is shown to be performing remarkably well and

was able to climb slopes of up to 36°.

Advancements in the field of robotics will enable humans to build more capable

robots so that they can be used in society. These robots might be used to replace humans

for dangerous tasks like mountain exploration and rescue missions. According to [1],

the K2 mountain range has a fatality rate as high as 25% and nearly 300 people have

died on Mount Everest [2] in the last 100 years. With the advancements in technology

and robotics, we have the potential to deploy intelligent robotic systems for these kinds

of explorations. Such deployment evades the need for humans to perform life-

threatening exploration and avoid the loss of human life. Another use case for robotic

intelligence in terrain exploration can be for interplanetary exploration. On November

10

26, 2018, NASA successfully landed project Insight [3] onto the Martian surface.

However, the Insight probe is stationary and cannot move around the Martian surface.

Thus, it is able to collect the data only at the site of the landing. Such extra-terrestrial

expeditions cost billions of dollars and thus we need to make the most efficient use of

the resources available. With current advancements in reinforcement learning methods,

we have the potential to train a system that can learn to navigate the slopes of various

Martian terrain and climb even the most treacherous terrains easily. This can help in

exploring the uncharted challenging terrains of Mars. There are numerous other

strenuous tasks that can be fulfilled by intelligent robotics advancements. With the

current advancements in intelligent systems ranging from autonomous cars to smarter

gaming bots, we need systems that can explore possibilities beyond human capabilities.

The Google DeepMind project published a paper [4] and video [5] showing

simulated agents trained to navigate through a set of challenging terrains. These agents

were trained using reinforcement learning. Initially, the goal was to similarly train a

humanoid simulation to successfully climb a rock wall. However, it became apparent

that such a task was infeasible given the current constraints on computation resources

and tools available. In fact, the task of generalized object grasping remains a

fundamental problem that is not easy to solve. Works like [6] show promising results

but require feedback in terms of visual input or other sensory data [7] [8]. These works

also require working on a physical robot instead of a simulation and require a significant

amount of domain knowledge. Thus, we decided to reduce the scope of the project to

train an agent to climb a slope-based environment.

11

1.2 Related Work

Related work in climbing robots have considered climbing as a problem of gait

control [9], or made use of dedicated grasping effectors [10], [11] on a physical robot.

Other works consider the climbing problem as a planning problem [12]. Even though

recent works show remarkable progress in highly complex control tasks, to our

knowledge this type of task as a physical control problem has not been solved using

only the Reinforcement Learning algorithms. In [8], they train a humanoid simulation

to perform a variety of control tasks through imitation learning using the Motion

Capture (MoCap) data available from [13]. One of the tasks is to train the agent to climb

a set of stairs. However, such MoCap or visual data may not be available for any custom

designed robot, and generating the data itself is a difficult task as it requires specialized

domain knowledge.

Moreover, most research work is focused on training to perform a specific task

at hand and the trained models fail to work when the parameters of the tasks are

changed. Recent advances in the field of transfer learning [14] [15] [16] for neural

networks have focused on improving the training time and performance of the trained

models. These techniques usually work by learning a source task first and then using

the trained representation to speed up the learning of the target task. Adopting these

transfer learning techniques for robotics can prove to be very useful because it can help

in reducing the time and efforts spent during the exploration phase of the training.

However, applying these techniques to the Reinforcement Learning algorithms is a

difficult task [17]. This is because specific aspects of the source and target problem

need to be matched to make the transfer successful. Moreover, other transfer learning

issues like negative transfer, etc. are observed in Reinforcement Learning adopted

frameworks as well.

12

1.3 Contribution

 The primary contribution of this project is to evaluate the effectiveness of two

Deep Reinforcement Learning algorithms, namely Trust Region Policy Optimisation

(TRPO) [18] and Deep Deterministic Policy Gradient (DDPG) [19] algorithms, to train

an agent to learn the locomotion behaviors needed to climb a slope based environment.

We also observed that utilizing the concept of transfer learning, we can significantly

improve the effectiveness of the trained agent. We designed an environment, that had

the concept of transfer learning built into the environment itself. The environment was

designed as a series of sequential climbing tasks with increasingly steeper slopes. In our

experiments, using such an environment has shown a significant increase in the

effectiveness and efficiency of the training.

 The project report is organized into chapters as follows: Chapter 2 defines the

common concepts and terms used in Reinforcement Learning. Chapter 3 define the

design and implementation of our project and the setup we used to conduct the

experiments. Chapter 4 describes the experiments we conducted and their results.

Finally, in Chapter 5 we have our conclusion.

13

CHAPTER 2

Background

 In this chapter, we provide background information related to reinforcement

learning and other related concepts. This background information is crucial to

understand the algorithms and techniques used in the project. Section 2.1 defines the

RL framework, and Section 2.2 provides definitions for common terms and concepts

used in RL. Section 2.3 introduces Q-Learning, which is a simple learning algorithm

for RL. Section 2.4 defines how Deep Learning is used to augment RL techniques and

presents the two state-of-the-art algorithms evaluated in this project. Finally, in Section

2.5, the concept of transfer learning and how it can be used to improve the training

process in RL.

2.1 Reinforcement Learning

Unlike supervised learning, where we use some training data as input, in

reinforcement learning, we only have access to an environment and an agent (aka actor)

which can perform only a specific set of actions. The goal for Reinforcement Learning

is to train this agent to automatically determine the ideal sequence of actions to perform

for maximum efficiency in solving the required task for the given environment. The

environment is assumed to be a Markov Decision Process (MDP). An MDP is a process

which can be defined using a set of states and a transition function. This transition

function defines the probability of moving from one state to another. For any given

environment in Reinforcement Learning, we assume that we do not have any knowledge

of the transition function and the set of states. The agent needs to explore the

environment and gain knowledge about the states and the transitions. As the training

progresses, the agent starts to learn about the environment and can use this knowledge

to take actions which are more favorable. This is known as exploitation. Fig. 1 shows

the reinforcement learning framework [20].

14

Figure 1: Reinforcement Learning framework

2.2 Formal Definitions

State Space: Let ! = {$%, $', . . . , $)}	be the set of possible states in the

environment. This is known as state space.

Action Space: Let , = {-%, -, . . . , -.} be the set of actions that the agent can

perform. This is known as an action space.

Transition Probability: Let the agent perform action -/, while it is in state

$/!. Let the new state it arrives be $′/!. Then the transition probability is denoted as

1 $′ $, - .

Reward Function and Reward: As mentioned earlier, the agent learns from the

results of its actions. To compare the results, it needs a metric. This metric is termed as

a reward. If an agent performs action -/, while in state $/!, then the reward received

from this environment is denoted by 2	($, -). The function which models the reward

values for a particular environment is known as reward function. This function is always

contextual and depends on the task being solved in the environment.

15

Policy: A policy, often denoted by 56, is a rule or mapping from each state $/!,

to an optimal action -/,	for the given environment 7. An optimal policy is one in which

if we follow the actions determined by such a policy, then the total expected reward will

be maximum. A stochastic policy gives a probability distribution for the next optimal

action, and is denotes by 56 - $ = 	Ρ[-|$; 7]. A deterministic policy, on the other

hand, gives a single action that should be taken.

Value and Q-Value: The reward for performing an action gives us information

about only its immediate effect. A value, often denoted by =>($), on the other hand,

provides us information regarding the advantage of being in state $ in the long run. The

Q-value, denoted by ?>($, -), represents the total amount of reward the agent can

expect for performing action -	in state $, if the agent follows policy 5 to determine its

future actions. For a given policy 5, the value equation is given as:

=> $ = @>{ AB
C

BDE

FGHBH%|$G = $}

Here, @> I denotes the expected value of random variable x, if policy 5 is follows by

the agent. Also, A is the discount factor and F is the immediate reward.

Model-Based and Model-free: A reinforcement learning algorithm may be

model-based or model-free. A model-based algorithm tries to learn the transition

function 1 and the reward function 2 to create a model of the given environment. This

model can then be used to determine optimal actions. On the other hand, a model-free

algorithm does not try to learn anything regarding the underlying dynamics of the

environment. Instead, it estimates either the value function or the policy and uses them

to determine the optimal actions.

Off-policy and On-policy: A reinforcement learning algorithm which estimates

the policy may be either off-policy or on-policy. As mentioned earlier, while training

the agent, it needs to explore the environment. An off-policy algorithm will choose the

actions from a behaviour policy that is different from the policy being trained on. While

an on-policy algorithm will use the same policy for exploration and exploitation.

16

2.3 Q-Learning

Q-Learning [21] is a model-free, off-policy learning algorithm, where we model

the value function as a Bellman equation, and the reward for performing an action a is

calculated as the instant reward for entering the new state plus the maximum discounted

future reward that can be obtained in the new state. This equation is given as:

? I, - = 	2J - + 	γ	M-INO?(I
P, -P)

Here, ? is the function that we want to learn, 2J is the instant scalar reward for

performing action - in state I, γ is the discount factor, and I′ is the next state. The

estimated Q-values are stored in a look-up table known as Q-table. As the algorithm

trains the agent, this table is updated with values which are more correct. The discount

factor serves two purposes. First, it makes future rewards worth less than the immediate

rewards. Second, it ensures that the sum is finite and the model can converge.

A simple Tic-Tac-Toe agent was implemented to gain a better understanding of

the Q-Learning algorithm. For training the agent, two python scripts were created. The

first script was used to train the agent against a programmed bot and generated a model

file which contained the Q-table. The second script simulated the gameplay against a

human player and was used for evaluation. The agent was trained using the first script

for 50000 random gameplays. This training generated more than 5000 entries in the Q-

table. During the evaluation, the agent performed well and won 14 out of 15 games on

an average. Fig. 2 shows the result of this evaluation.

17

Figure 2: Evaluation of trained Tic-Tac-Toe agent

2.4 Deep Reinforcement Learning

 The Q-Learning algorithm using look-up table works well for the Tic-Tac-Toe

example because there are only 5812 legal states and our agent explored most of these

states. However, for a more complex task like a chess game such exploration and

creation of a look-up table is not practical, both in terms of time and space constraints.

Deep Reinforcement Learning (DRL) uses the recent advancements and interest in

Deep Learning to solve this problem. In [22], Deep Q-Learning (DQN) algorithm is

used to train a model to play Atari video games. In DQN, instead of lookup tables, a

neural network like a Convolutional Neural Network (CNN) is used to estimate the Q-

value function. Such function approximators are the core concept of Deep learning.

One additional issue with traditional Q-Learning techniques is that the

underlying data distribution changes as agent learns new behaviors. DQN solves this

problem using a technique known as experience replay. In this technique, instead of

using data only from current iteration, a randomly sampled mini-batch from previous

18

iterations is used to update the weights in the network. This technique allows us to make

the most efficient use of previous experience.

 While DQN solved the issue of high observation spaces, it is not practical for

physical control tasks like grasping, object manipulation etc. This is due to the fact that

these tasks have continuous and high-dimensional action spaces, and DQN can only

handle discrete and low-dimensional action spaces. Policy Iteration methods with deep

function approximators like Trust Region Policy Optimisation (TRPO) [18] have shown

remarkable results for a variety of physical control tasks. These methods learn to

estimate the policy directly instead of the Q-value function. In addition, a combination

of policy and value estimation like Deep Deterministic Policy Gradients (DDPG) [19]

are also quite commonly used to train models for such tasks.

2.4.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy, actor-

critic approach based on the DPG (Deterministic Policy Gradient) [23] method. In an

actor-critic approach, the actor represents the policy function and specifies the action to

be performed given the current state of the environment. The critic represents the value

function which specifies the resultant reward and produces a signal error to criticize the

actions made by the actor. There are two network instances of actor and critic. The first

instances, known as target policies, are the networks that are being trained. The other

two instances, known as behavior policies, are used to generate the trajectory. The

deterministic part comes from the fact that while the behavior policies are still

stochastic, the target policies are deterministic.

In algorithms like DQN, we use a stochastic policy and learn to select the action

based on the following equation:

	-G = M-IN	?∗ ∅($G , -; 	7)

19

But this equation is not practical for continuous action spaces. Using a

deterministic policy allows us to use the equation:

-G = 	S($G|7T)

Similar to DQN, a replay buffer 2 is used to sample the episode data from

previously generated trajectories. This data is then used for training. Also, a random

noise process U is used to ensure sufficient exploration:

-G = 	S $G 7T +	UG

 The final algorithm is shown in Algorithm 1. Here the algorithm runs for

V	W	1	time-steps. For each time-step, the algorithm generates the trajectories or

transitions according to the current policy. To do so, the agent performs an action based

on the current actor policy S and exploration noise U and then stores the resulting

transitions in a replay buffer 2.	The noise process selected for our experiments is the

Ornstein-Uhlenbeck process.

At the end of each time-step, the algorithm updates the networks using a

randomly sampled mini-batch from the replay buffer 2. In [23], Silver, et al. proved

that the equation given in (1.1) is the policy gradient, i.e., we will get the maximum

expected reward as long as we update the model parameters using the gradient formula

given in the equation.

20

Algorithm 1: Deep Deterministic Policy Gradient

Initialization:
Initialize critic ? $, - 7X and actor S $G 7T 	with random weights 7X and 7T.
Initialize target network ?′and S′ with weights 7XO ← 7X, 7TO ← 7T
Initialize replay buffer 2

Training:
for episode 1 to M do:
 Initialize a random noise process U
 Receive initial observation state $%
 for time-step 1 to T do:
 Generate Trajectories:
 Execute action -G = 	S $G 7T +	UG
 Receive reward FG and new state $GH%
 Store transition ($G, -G, $GH%, -GH%) in 2
 Update networks:
 Sample a random mini-batch of length N from R:
 ($Z, -Z, $ZH%, -ZH%), 1 ≤] ≤ ^
 Get the resultant value of state $Z	according to target critic ?′:
 _Z = 	 FZ + 	A?′($ZH%, S′($ZH%|7T

O
)|	7XO)

 Get the resultant value of state $Z	according to critic ?:
 IZ = 	?($Z, -G |	7X)
 Update critic ? by minimizing loss L:
 ` = 	 %

)
	 (_Z −	IZ)'Z

 Update the actor S using the policy gradient:
 ∇6cd ≈

%

)
∇NZ ? $, -	 7X)|fDfg,NDT fg ∇6cS $ 7T |fg (1.1)

 Apply soft-update to the target networks:
 7X

O
← h7X + 1 − 	h 7XP

 7TO ← h7T + 1 − 	h 7TP

21

2.4.2 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) is a model-free, on-policy, actor-

critic approach based on Natural Policy Gradient (NPG) [24] method. The policy being

trained is a stochastic policy. Thus, TRPO can work on both continuous and discrete

action spaces. The major contribution of this algorithm is that it uses insights from

optimization theory which provides guaranteed monotonic improvement. In particular,

the algorithm uses a trust region [25] to constraint the update size during training. This

constraint size is determined by the Kullback-Leibler (KL) divergence between the old

policy and the new policy. I.e.,

@	[ijk(56lmn(. |$)| 56opq . $ ≤ 	r,

where,

 ijk	is the KL divergence,

 r	is the constraint region

TRPO uses the advantage estimation ,G to define the policy gradient s as:

s = 	ΕG	[∇6uvs56 -G $G ,G]

 where,

 , = 	? $, - − =>($)

However, the advantage estimate can be noisy and is prone to making the loss

function explode or implode. Schulman, et al., proved that the objective function can

be modified to:

max
6
Ε >z(N{|f{)

>zlmn(N{|f{)
,G 	, constrained to ΕG	[ijk(56lmn . $ 	||	56opq . $)] ≤ 	r

 where,

 ijk	is the mean KL divergence over the state space.

22

 To calculate the gradient direction, we need to calculate |B
}%
sB, where |B is

the Hessian product or Fisher Information Matrix. Calculating the inverse Hessian is

computationally very expensive. So, TPRO uses the conjugate gradient [26] to

approximate the inverse. The final algorithm is given as Algorithm 2.

Like the DDPG algorithm, TRPO also maintains two network instances for

actors and critics each. The first actor-critic pair of networks belongs to the current

policy that we want to refine. The second pair belongs to the policy that we last used

to collect the samples.

Algorithm 2. Trust Region Policy Optimisation

Initialization:

Initialize the actor & critic networks corresponding to initial policies and the
constraint size r.

Training:
 for k = 0 to M do
 Generate the rollout set ~B	with N trajectories using policy 5B = 	5(7B)
 Estimate the advantage function ,Bfor all time-steps in ~B
 Calculate the policy gradient sBand KL divergence Hessian |B
 Use conjugate-gradients to obtain IB ≈ 	|B

}%
sB

 Compute the step size ΔB ≈ 	
'	Ä

JÅ
ÇÉÅJÅ

IB

 7BH% = 	7B +	ΔÑ

2.4 Transfer Learning

Deep learning techniques have shown remarkable success in learning a very

accurate mapping from inputs to outputs. Achieving this success requires a huge amount

of training and hyperparameter tuning. In transfer learning, we seek to transfer the

knowledge learned from pre-trained models to a new task. For example, researchers

have spent hundreds of hours to train Convolutional Neural Networks (CNNs) on

23

ImageNet [27] data-set so that the trained model can do various image classification

tasks. In [28], the authors use such previously trained CNNs to speed up the learning

process and achieve state-of-the-art results for different data-sets as well.

One approach to apply transfer learning is to freeze the weights of the pre-trained

network in all the layers except the output layer. The training is done keeping only the

output layer trainable. The number of outputs in the layer and the training data is

modified according to the new task. This approach has proved to be very effective in

speeding up the training process for similar tasks in Deep Learning.

Traditional techniques for transfer learning works very well on CNNs but

adopting them for Reinforcement Learning is a difficult task. In [29], Hierarchal

learning is suggested as one of the approaches to adopt transfer learning for

Reinforcement Learning. In this approach, a single large task is divided into a series of

sequential sub-tasks. As model learns these sub-task, it will start to move towards

achieving success in large task as well. In this project, we use a similar approach to

model our learning environment to facilitate Reinforcement Learning.

24

CHAPTER 3

Design and Implementation

 In this chapter, we provide the design and implementation details about our

project. Section 3.1 describes the tools and libraries used for the experiments. Section

3.2 defines how we used these libraries to create the environments for training the

agents. In Section 3.3, we provide details about the algorithms we used. Finally, in

Section 3.4, we describe the cloud machine that was used to conduct the experiments.

3.1 Libraries Setup

 To conduct the experiments, we used the OpenAI gym [30] [31] and baseline

[32] libraries to define the environment and train the models. Both these libraries are

open source and implemented in Python 3 programming language. The gym library is a

framework for reinforcement learning which provides a uniform interface for building

reinforcement learning environments, and running the agents. The baseline library

contains standard implementations for popular reinforcement learning algorithms. In

particular, we use the baseline implementations of trpo_mpi and ddpg algorithms to

train our models. Using the standardised framework and algorithms will make our

results replicable. Both the gym and baseline libraries were installed from GitHub

source using pip.

 The gym library uses the MuJoCo physics engine [34] [35] to render the

environment and simulate the actions and physical systems. This physics engine is

implemented in C++ programming language. The gym library uses mujoco-py [33],

which provides the python bindings for the MuJoCo physics engine. At the time of this

writing, the MuJoCo library required a paid license, which costs $500 for personal non-

commercial use. However, MuJoCo also offers a one-month trial license and a free

student license for one year. The trial license can be used on 3 different machines, while

the student license can be used only on one machine. Initially, we used the trial license

to evaluate the library on our local machine (a core-i5 MacBook) and on a Google

25

Compute Engine (GCE) instance. Once we were satisfied that this setup was working

we obtained a student license and registered it for our GCE instance.

3.2 Gym Environment Creation

For each experiment, we created a gym environment. Each gym environment

requires an XML file, which represents the MuJoCo model of the simulation. The XML

file format is known as MJCF and contains the data about the joints configurations,

actuator and gear information, and how the different parts of the robot are connected

together. Each MJCF file contains an XML tree created by nested body elements. Each

body element has geoms attached to it, which define the geometric shape and structure

of the body. Fig. 3 shows a snippet of MJCF XML file for a one-legged hopper agent.

For each joint, an actuator element defines the motor object to control the joint. The

XML file is parsed using the mujoco-py library for rendering and physics simulation.

Some experiments required the XML file to be dynamically generated. For such

experiments, we used the elementTree python module to generate the XML file.

Figure 3: A MJCF body element for one-legged hopper agent

Apart from the XML file, the gym environment is implemented as a python class

which extends the MujocoEnv parent class defined in the gym framework. Fig. 4 shows

the signature and brief description of the methods for such a class file. Each

environment needs to implement the step method, which takes the action to be

performed as input, performs the action using MuJoCo library, and returns the

26

calculated reward based on the new state of the environment. Each environment is

registered with gym framework with a specific name so that it can be used for training.

Figure 4: Signature of a MuJoCo environment python class

3.3 Baseline algorithms

Both the trpo_mpi and ddpg algorithms in the baseline library takes some

parameters that define how the algorithm will train the model. The network argument

passed to the algorithm defines the neural network to be used for actors and critics.

Tensorflow library is used to implement the networks. For our experiments, we use a

multi-layer perceptron (MLP) for both actors and critics. Unless otherwise specified,

we use an MLP with 2 fully-connected hidden layers, having 64 units in each layer. The

tanh function is used for activation. The input and output layers for actor and critic are

different. For actors, the input layer is the observations from the environment and the

output layer provides the actions to be performed. For critics, the input layer is the the

27

observations from the environment and the last hidden layer takes actions taken by

agent as additional inputs. The final output of the citric is a signal value which is used

to make the training updates.

 Fig. 5 shows the complete network architecture for actor and Fig. 6 shows the

network architecture for Critic. The number of observable units and the number of

actions is determined by the environment.

Figure 5: Neural Network for Critic

28

Figure 6: Neural Network architecture for Actor

3.4 Cloud Setup

Apart from a few initial experiments, most of the experiments were run on a

Google Compute Engine (GCE) instance with 24 cores and 20GB memory. Both of the

algorithms available in the baseline library have support for parallel computation using

OpenMP framework. This enables us to make full utilization of the available computing

resources.

29

CHAPTER 4

 Experimental Results

 In this chapter, we provide details about each experiment we conducted

and show the results and observations. For each trial, the agent was trained inside the

registered gym environment for a fixed number of simulation time-steps. After training,

we evaluate the agent and observe the results achieved in each experiment. We use these

observations to design the next trial.

4.1 Hopper

 The aim of this experiment was to familiarize our self with the libraries and the

training procedure. For this experiment, we decided to train a two-dimensional one-

legged robot [36] to hop forward as fast as possible. It is one of the simplest physical

control task available in the gym framework. There are only 3 joints to be controlled

and the state space has 20 variables. We conducted two experiments using the DDPG

and TPRO algorithms respectively. The training was done for 216 epochs using DDPG

algorithm and 591 epochs using TRPO algorithm. At the time of this experiment, the

baseline library used epochs instead of time-steps to specify the training duration. This

has been now changed to accept time-steps as it provides more consistent training times.

Both the experiments were done on an Apple MacBook-Pro 2015 laptop and training

took a little more than 10 hours for both experiments run together. The following reward

function was used:

FÖÜ-Fá = 	àâäã − 10}ç é
'
+ 1.0

Here,

àâäã = forward velocity

é = vector of joint torques

èZêë = impact forces

30

In the above equation, the addition of a constant offset value of 1.0 is used to

encourage longer episodes. Otherwise, the training will lead to a policy that ends

episodes as quickly as possible. The torque vector penalty is to discourage big changes,

and the forward velocity provides the actual reward for that time-step. These values are

the defaults for OpenAI gym Hopper-v2 environment. Fig. 7 and Fig. 8 show the

simulation images for an episode after training using DDPG and TRPO algorithms

respectively.

Figure 7: Simulation images after training hopper using TRPO for 591 epochs

Figure 8: Simulation images after training hopper using DDPG for 216 epochs

 It was observed that both models trained the simulation to hop successfully and

move forward. The model trained using DDPG was able to reach larger distance but

was slower to move forward as compared model trained using TRPO. Also, training

done using the DDPG algorithm was observed to be slower as it only reached 216

epochs in 10 hours, while the TRPO algorithm covered 591 epochs.

31

4.2 Humanoid-Rock-Climbing

 The aim of this set of experiments was to train a humanoid simulation to climb

a wall that simulated the rock-climbing. For this experiment, we created an environment

with a wall that had various types of rock-climbing holds. [37] describes different hand

configurations for rock-climbing holds. Fig. 9 shows an instance of the environment.

MuJoCo does not support creating objects of arbitrary shapes. However, it does allow

us to include meshes in our environment. The mesh files for rock-climbing holds were

found from websites like [38]. Usually, such files are made for 3-D printing and

required some pre-processing using the MeshLab tool to make them compatible with

the MuJoCo engine.

Figure 9: MuJoCo simulation of a wall with rock-climbing holds

We realized early on that training the simulation to grasp the holds would be too

complex using the resources we had. So, we tried to simulate the grasping using various

types of joint constraints in the MuJoCo physics engine, namely the distance, weld and

equality constraints. Out of these, only the weld joint was successful in sticking the

32

humanoid to the wall. However, creating dynamic weld joints was not possible using

the MuJoCo library. So, we decided to train the humanoid simulation using the

constraint that if contact forces between the wall and the humanoid agent’s hands or

legs are greater than a specified threshold, we set the weld joint constraint to enabled,

else the constraint was disabled. The design for the humanoid agent was taken from

OpenAI’s Humanoid-v2 [39] gym environment. The training was done on the GCE

instance as described in Section 3, using TRPO for 12 hours and using DDPG for 42

hours. The following reward function was used:

FÖÜ-Fá = 	àíë − 10}% é
'
− 10}ì èZêë

'
+ 5.0 − ïñóíò − ïãZfG

Here,

àíë = upward velocity

é = vector of joint torques

èZêë = impact forces

 ïñóíò = glue penalty (5.0 if number of weld joints less than 2 else 0)

 ïãZfG = penalty based on distance from rock wall

In the above equation, the addition of a constant offset value of 5.0 is to

encourage longer episodes. Otherwise, the training will lead to a policy that ends

episodes as quickly as possible. The torque vector penalty is to discourage big changes

and impact force penalty is used to make the simulation more realistic. The glue penalty

and distance penalty were added to discourage agent from falling down. The agent was

trained for using both TRPO and DDPG algorithms. Fig. 10 and Fig. 11 shows the

simulation images for an episode for both the trained agents respectively.

33

Figure 10: Simulation images after training humanoid-RockClimb using TRPO for
1M time-steps

Figure 11: Simulation images after training humanoid-RockClimb using DDPG for
1M time-steps

As can be seen, the trained model only learned to stick to the wall and move legs

upwards. It might be possible that training for longer duration could have led to better

results. We also tried other configurations by increasing the gear values in the actuator

inside the MJCF model and by modifying the reward function but were unable to train

the agent to climb. Based on the negative results from this experiments, we decided to

take a step back and decided to replicate DeepMind’s result for humanoid walking.

34

4.3. Humanoid Walking

 The aim of this experiment was to train a humanoid simulation to walk using the

Humanoid-v2 [39] gym environment. Two experiments were conducted using the

DDPG and TRPO algorithms respectively. The model training with TPRO was done

for 1 million time-steps. While for DDPG, the training was done for 0.5 million time-

steps. Both the experiments were done on the GCE instance described in Section 3. The

following reward function was used:

FÖÜ-Fá = 	àâäã − 10}% é
'
− 10}ì èZêë

'
+ 5.0

Here,

àâäã = forward velocity

é = vector of joint torques

èZêë = impact forces

In the above equation, the addition of a constant offset value of 5.0 is to

encourage longer episodes. Otherwise, the model will lead to a policy that ends episodes

as quickly as possible. The torque vector penalty is to discourage big changes and

impact force penalty are used to make the simulation more realistic. These values are

the defaults for OpenAI gym Humanoid-v2 Environment. The episodes were terminated

when the center of mass of the body falls below 1.0m or above 2.0m. The model training

for TRPO took a little more than 12 hours. Over the whole course of that training, data

from 200,000 episodes were collected. On the other hand, training using DDPG took

32 hours and ran 50,000 episodes in total. Fig. 12 and Fig. 13 shows the initial and final

images for the model after training with DDPG and TRPO respectively.

35

Figure 12: Simulation images after training human-walk using TRPO for 1M time-steps

Figure 13: Simulation images after training human-walk using DDPG for 0.5M time-
steps

As can be seen, the trained model was not able to learn to walk with either of

these algorithms and kept falling down. This could be explained by the fact that the

humanoid model has a huge observation and action space. There are 47 state dimensions

in the humanoid model and each joint has 17 actuated degrees of freedom. Exploring

such a large state space will require a lot more training and computing resources.

Furthermore, training using DDPG was observed to be much slower as compared to

TRPO.

36

4.4. Ant Walking

The aim of this experiment was to make a quadrupedal simulation to walk using

the Ant-v2 [40] gym environment. This simulation looks visually similar to an ant. Two

experiments were conducted using DDPG and TRPO algorithms respectively. Both the

models were trained for 1 million time-steps on the GCE instance as described before.

The training took a little less than 10 hours using the TRPO algorithm. Using the DDPG

algorithm, the training time was a little over 31 hours. Following reward function was

used in both the experiments:

FÖÜ-Fá = 	àâäã − 0.5 ∗ é
'
− 0.5 ∗ 	10}ì èZêë

'
+ 1.0

Here,

àâäã = forward velocity

é = vector of joint torques

èZêë = impact forces

The values for impact costs and survival reward offset were obtained from

OpenAI gym Ant-v2 environment. The episodes were terminated when the center of

mass of the body fell below 0.2m or above 1.0m. Fig. 14 and Fig. 15 shows the initial

and final images of the model after training with DDPG and TRPO respectively.

Figure 14: Simulation images after training ant-walk using DDPG for 1M time-steps

37

Figure 15: Simulation images after training ant-walk using TRPO for 1M time-steps

As can been seen, TRPO performs much better than DDPG for training the

model. In fact, when the training was terminated, the DDPG model only learned to make

small jumps, instead of walking, and the agent kept flipping on its back. This can be

explained by the fact that since DDPG is an off-policy algorithm, it takes sample data

from greedy exploration while exploring the possible solution state space. Since

jumping gives a quick reward, it contains much more data from those actions. TRPO,

on the other hand, explores within the specified trust region only. Thus, training with

TRPO is much more stable than DDPG. We also observed that, on an average, training

with TRPO was three times faster than DDPG. Even after just 0.5 million time-steps of

TRPO training, the model was behaving fairly well. Based on the success of this

experiment over the previous ones, we realized that training a humanoid agent is a too

complex task due to its much larger state space. Thus, we decided to run further

experiments on the ant environment only.

38

4.5. Ant Steps climbing

The aim of this experiment was to teach the ant simulation to climb a set of steps.

Two experiments were conducted with step sizes 0.5cm, and 0.25cm respectively. The

episodes were terminated when the simulation had reached the top or when the torso of

the body (sphere) got in contact with anything. The reward function was modified to

consider upward velocity àíë	as well.

FÖÜ-Fá = 	àíë +	àâäã − 0.5 ∗ é
'
− 0.5 ∗ 	10}ì èZêë

'
+ 1.0

Here,

 àíë = upward velocity

àâäã = forward velocity

é = vector of joint torques

èZêë = impact forces

The values for impact costs and survival rewards were obtained from OpenAI

gym Ant-v2 environment. The model training with TRPO was done for 1 million time-

steps, which took a little more than 10 hours. The DDPG model was trained for 0.5

million time-steps and took a little more than 25 hours. Fig. 16-19 shows the initial and

final images after training.

Figure 16: Simulation images after training ant-steps using TRPO for 1M, time-steps
with step size 0.5cm

39

Figure 17: Simulation images after training ant-steps using DDPG for 0.5M time-steps
with step size 0.5cm

Figure 18: Simulation images after training ant-steps using DDPG for 0.5M time-steps
with step size 0.25 cm

As can be seen, both the models failed in both the experiments to climb even one

step. The models only learned to make the agent jump, and not walk or climb. Also, the

model trained using DDPG was observed to be much less stable and more prone to

flipping on its back. To solve this problem, we decided to run another experiment by

changing the terminating condition so that episodes will terminate when all four legs

are in the air. This was done to prevent the jumping behavior. This experiment was done

for step size 0.25cm only and the model was trained using TRPO for 0.5 million time-

steps. Fig. 20 shows the result of this experiment. In this experiment, model learned to

stop jumping, but still did not learn to climb the step.

40

Figure 19: Simulation images after training ant-steps using TRPO for 1M time-steps
with step size 0.25 cm

Figure 20: Simulation images after training ant-steps using TRPO for 0.5M time-steps
with step size 0.25 cm with modified terminating condition

Based on these observations, since it did not achieve the determined goal for any

of these experiments, we concluded that this task may be too complex in this

environment. It was realized that we need to make changes to the environment itself so

that it is feasible to train the model. Also, it takes a long time to run these experiments

and we had limited computing resources in terms of Google GCE. So, we decided to

drop the DDPG experiments and focus on only TRPO as the latter was observed to be

much more stable and faster.

41

4.6. Ant Slope Climbing

Based on our previous results, we decided to modify the environment to have a

slope instead of steps. Three experiments were conducted with slopes equal to 9°, 18°,

27° respectively. Once again, the final goal for all the experiments was to reach the top.

The episodes were terminated when the simulation had reached the top or when the

torso of the body got in contact with anything. Also, the friction coefficient value was

set to 1.5. This value was chosen by conducting a set of early experiments. The reward

function used was the same as in Experiment 4.5. The model was trained for 10 million

time-steps for each experiment. Each experiment took a little less than 78 hours. Fig.

21-23 shows the initial and final images for the three experiments.

Figure 21: Simulation images after training ant-slope using TRPO for 10M time-steps
for slope equal to 9°

Figure 22: Simulation images after training ant-slope using TRPO for 10M time-steps
for slope equal to 18°

42

Figure 23: Simulation images after training ant-slope using TRPO for 10M time-steps
for slope equal to 27°

As can be seen, the model trained for slope equal to 9° works well and is able to

climb the slope successfully. However, it fails for environments with greater slopes and

the simulation just gets as close to the slope and moves back and forth near it. It was

observed during the training that for higher slopes the agent was not able to stick its

legs on the slope and kept toppling down. Based on these observations, we realized that

the agent needs some way to stick its legs to the slope. Increasing the friction coefficient

could have helped, but it was not considered because having such a large value is not

reasonable according to physics.

Additional experiments which used soft joint constraints like weld joint and

distance joint in MuJoCo physics engine were conducted, but did not give the desired

results.

43

4.7. Ant Grooved Slope Climbing

For this experiment, we modified the previous environments to have grooves on

the slope. These grooves facilitated the required friction and can be used by the agent

to stick its legs on the slope. Here, experiments were conducted with slopes equal to

18° and 27° respectively. The terminating conditions and other parameters were kept

the same as in the previous experiment. The model was trained for 5 million time-steps

for each experiment, and each experiment took a little over 22 hours. Fig. 24 and Fig.

25 shows the initial and final images for the two experiments.

Figure 24: Simulation images after training ant-grooved-slope using TRPO for 5M
time-steps for slope equal to 18°

Figure 25: Simulation images after training ant-grooved-slope using TRPO for 5M
time-steps for slope equal to 27°

As can be seen, the model trained with TRPO works well for 18°. However, the

models trained for greater slope environments are only able to climb a few steps. It is

possible that training the model for longer duration might work.

44

One interesting observation was made when we ran the agent trained for 18°

slope environment on the environment with 27° slope. It was observed that the trained

model was able to successfully climb the harder environment as well. This result is

shown in Fig. 26.

Figure 26: Simulation images after training ant-grooved-slope-18° using TRPO for 5M
time-steps and running on environment with slope equal to 27°

Based on this observation, we realized that since the tasks are quite similar, the

policy learned for an easy task may be used as the base to learn a more difficult task.

This observation led us to explore transfer learning and we decided to design the next

experiment to facilitate such transfer of knowledge.

.

45

4.8. Ant Grooved Multiple Slopes Climbing

For this experiment, we built a large environment with increasingly difficult

slopes after every few intervals. The intuition here is that the main task is to climb as

high as possible, while sub-tasks would be to climb each slope. In particular, there were

five slopes 9°, 18°, 27°, 36°, and 45° in the environment. Each consecutive slope had a

flat surface of 6m length between them. Two experiments were conducted using slightly

different reward functions. To consider random initializations, we conducted two trials

for both these experiment. Each trial was run for 10 million iterations, with initial

weights as random. The trial which performed best for each set of experiment was

considered. Also, the max episode length was set to 5000 for both trials. The reward

functions and other parameters were kept the same as in the previous experiment.

For the first set of experiments, both forward and upward velocity were

considered in the reward function. For the second set of experiments, only the forward

velocity was considered in the reward function. Figure 16 and Figure 17 shows the

initial and final images of an episode after training for both these experiments.

Figure 27: Simulation images after training ant-grooved-multiple-slopes using TRPO
for 10M time-steps considering both upward and forward velocity

46

Figure 28: Simulation images after training ant-grooved-multiple-slopes using TRPO
for 10M time-steps considering only forward velocity

 When trained using only forward velocity, the agent was able to climb the

slopes till 27°. After reaching the end of 27° slope, it was not able to proceed further.

However, when trained using both forward and upward velocity, it was able to climb

till 36°.

Also, instead of saving just the final model, the intermediate models were saved

every 100 iterations, along with the max height and the max distance achieved per

episode. Figure 18 shows the graphs for the rate of training in both experiments as

episode count versus the maximum heights and distances achieved per episode. As can

be seen, considering both the forward velocity as well as upward velocity results in a

faster training of the model. Max distance traveled was 41.7m was for the second

experiment. This distance means that simulation was able to reach the start of the 45°

slope. While for the first experiment, a max distance of 34.5m was observed. This

means that simulation was able to reach the ending point of the 27° slope.

47

Figure 29: Graphs showing the rate of training as episode count versus the steps,
heights and distances per episode

48

4.9. Ant Grooved Multiple Slopes Climbing with Potholes

 For this experiment, we wanted to test the agent trained in Experiment 4.8 on

learning new task. So, we introduce potholes (depressions) on the slopes inside the

environment and trained the model to avoid the potholes. We used a combination of

transfer learning and residual learning techniques to train the agent with additional

objective that it should learn to avoid potholes. Using transfer learning, we used the

previously trained model as base, and only made the weights of output layer as trainable.

In other words, we freeze the initial layers which correspond to the pre-trained model

so that the weights received from the pre-trained model are not modified. This way, we

preserve the intermediate representation of the environment learned previously. Similar

to residual learning technique, we also provide direct observations from the

environment to the trainable layers. Thus, the trainable part of the network gets a

combined input of both the learned representation of pre-trained model, and also the

direct observations from the environment.

 For this experiment, the reward function and all other parameters were kept the

same as in the previous experiment. The model was trained for 10 million time-steps

using TRPO algorithm. Fig. 30 shows the simulation images for an episode after

training.

Figure 30: Simulation images for model trained using TPRO for Experiment 4.9

 As can be seen, the trained model was not able to learn to move further than the

second slope (18°). We expected that using knowledge from previously trained model,

we might achieve good results. However, model was not able to learn from the

knowledge.

49

CHAPTER 5

Conclusion and Future Work

 The goal of this project was to evaluate the potential of Reinforcement Learning

to train a robot simulation to climb slope based environments. For this purpose, we

identified and explored two state-of-the-art algorithms for Deep Reinforcement

Learning, DDPG and TRPO. We evaluated the performance and effectiveness of these

algorithms to train the agents for this task. We observed that, on an average, training

with TRPO was three times faster than DDPG, and also much more stable for the

locomotion control tasks that we experimented.

 We conducted multiple experiments to train an agent to climb the steep slope

using TRPO algorithm. We found that the it takes a lot of time and resources to properly

train the agent. Although that agent was able to learn climbing actions for slopes till

18°, it failed to train properly for steeper slopes. We used insights from transfer learning

to improve our results. We observed that if we design our environment to facilitate

transfer learning, the agents were trained much more effectively and efficiently. Our

final trained agent was able to climb slopes till 36°. This proved that transfer learning

applied to reinforcement learning acts fruitful in effective results.

 One way to improve this project would be to combine the results for our project

and the potential of Convolutional Neural Networks (CNNs) for image recognition.

CNNs are already used in DQNs to train agents to play Atari games. The agents trained

in this project take observations in terms of force vectors applied on its body. If we can

somehow supply visual simulation information from MuJoCo engine, we can use a

CNN to generate a visual representation of the environment. This has the potential to

train better models.

50

References

[1] AdventureStats - by Explorersweb. (n.d.). Retrieved December 1, 2018, from
http://www.adventurestats.com/tables/k2routes.shtml

[2] How To Remove Dead Bodies From Mount Everest? (n.d.). Retrieved December 1, 2018,
from https://explorersweb.com/2018/05/11/how-to-remove-dead-bodies-from-mount-everest/

[3] Mars New Home 'a Large Sandbox' – NASA's InSight Mars Lander. (n.d.). Retrieved
December 1, 2018, from https://mars.nasa.gov/news/8395/mars-new-home-a-large-
sandbox/?site=insight

[4] Heess, N., Sriram, S., Lemmon, J., Merel, J., Wayne, G., Tassa & Silver, D. (2017).
Emergence of locomotion behaviours in rich environments. arXiv preprint
arXiv:1707.02286.

[5] Emergence of Locomotion Behaviours in Rich Environments. (2017, July 14). Retrieved
December 1, 2018, from https://youtu.be/hx_bgoTF7bs

[6] Quillen, D., Jang, E., Nachum, O., Finn, C., Ibarz, J., & Levine, S. (2018). Deep
Reinforcement Learning for Vision-Based Robotic Grasping: A Simulated Comparative
Evaluation of Off-Policy Methods. arXiv preprint arXiv:1802.10264.

[7] Ju, E., Won, J., Lee, J., Choi, B., Noh, J., & Choi, M. G. (2013). Data-driven control of
flapping flight. ACM Transactions on Graphics (TOG), 32(5), 151.

[8] Merel, J., Tassa, Y., Srinivasan, S., Lemmon, J., Wang, Z., Wayne, G., & Heess, N.
(2017). Learning human behaviors from motion capture by adversarial imitation. arXiv
preprint arXiv:1707.02201.

[9] Nagakubo, A., & Hirose, S. (1994, May). Walking and running of the quadruped wall-
climbing robot. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International
Conference on (pp. 1005-1012). IEEE.

[10] Sitti, M., & Fearing, R. S. (2003, September). Synthetic gecko foot-hair micro/nano-
structures for future wall-climbing robots. In Robotics and Automation, 2003. Proceedings.
ICRA'03. IEEE International Conference on (Vol. 1, pp. 1164-1170). IEEE.

[11] Yano, T., Suwa, T., Murakami, M., & Yamamoto, T. (1997, September). Development
of a semi self-contained wall climbing robot with scanning type suction cups. In Intelligent
Robots and Systems, 1997. IROS'97., Proceedings of the 1997 IEEE/RSJ International
Conference on (Vol. 2, pp. 900-905). IEEE.

[12] Libeau, B., Micaelli, A., & Sigaud, O. (2009, May). Transfer of knowledge for a
climbing virtual human: A reinforcement learning approach. In Robotics and Automation,
2009. ICRA'09. IEEE International Conference on (pp. 2119-2124). IEEE.

51

[13] Carnegie Mellon University - CMU Graphics Lab - motion capture library. (n.d.).
Retrieved December 2, 2018, from http://mocap.cs.cmu.edu/

[14] Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of Research on
Machine Learning Applications and Trends: Algorithms, Methods, and Techniques (pp. 242-
264). IGI Global.

[15] Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M.
(2016). Deep convolutional neural networks for computer-aided detection: CNN
architectures, dataset characteristics and transfer learning. IEEE transactions on medical
imaging, 35(5), 1285.

[16] Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer
learning. Journal of Big Data, 3(1), 9.

[17] Taylor, M. E., & Stone, P. (2009). Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(Jul), 1633-1685.

[18] Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region
policy optimization. In International Conference on Machine Learning (pp. 1889-1897).

[19] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D.
(2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

[20] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

[21] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-292.

[22] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

[23] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014, June).
Deterministic policy gradient algorithms. In ICML.

[24] Kakade, S. M. (2002). A natural policy gradient. In Advances in neural information
processing systems (pp. 1531-1538).

[25] Sun, W., & Yuan, Y. X. (2006). Optimization theory and methods: nonlinear
programming (Vol. 1). Springer Science & Business Media.

[26] Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear
systems (Vol. 49, No. 1). Washington, DC: NBS.

[27] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on (pp. 248-255). Ieee.

52

[28] Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops (pp. 806-813).

[29] Taylor, M. E., & Stone, P. (2009). Transfer learning for reinforcement learning domains:
A survey. Journal of Machine Learning Research, 10(Jul), 1633-1685.

[30] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &
Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[31] Openai. (n.d.). Openai/gym. Retrieved December 1, 2018, from
https://github.com/openai/gym

[32] Openai. (n.d.). Openai/baselines. Retrieved December 1, 2018, from
https://github.com/openai/baselines

[33] Openai. (n.d.). Openai/mujoco-py. Retrieved December 2, 2018, from
https://github.com/openai/mujoco-py/

[34] Todorov, E., Erez, T., & Tassa, Y. (2012, October). Mujoco: A physics engine for
model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on (pp. 5026-5033). IEEE.

[35] MuJoCo. (n.d.). Retrieved December 1, 2018, from https://www.roboti.us/index.html

[36] Hopper. (n.d.). Retrieved December 1, 2018, from https://gym.openai.com/envs/Hopper-
v2

[37] Watts, P. B. (2004). Physiology of difficult rock climbing. European journal of applied
physiology, 91(4), 361-372.

[38] Thingiverse.com. (n.d.). Rock Wall hold 1.0 by Jeremy007007. Retrieved December 1,
2018, from https://www.thingiverse.com/thing:34331/#collections

[39] OpenAI. (n.d.). Humanoid-v2. Retrieved December 1, 2018, from
https://gym.openai.com/envs/Humanoid-v2/

[40] OpenAI. (n.d.). Ant-v2. Retrieved December 1, 2018, from
https://gym.openai.com/envs/Ant-v2/

	Virtual Robot Climbing using Reinforcement Learning
	Recommended Citation

	Report_outline

