
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 12-18-2018 

Virtual Robot Climbing using Reinforcement Learning Virtual Robot Climbing using Reinforcement Learning 

Ujjawal Garg 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Garg, Ujjawal, "Virtual Robot Climbing using Reinforcement Learning" (2018). Master's Projects. 658. 
DOI: https://doi.org/10.31979/etd.u9xe-s6yw 
https://scholarworks.sjsu.edu/etd_projects/658 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/658?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


 

 

Virtual Robot Climbing using Reinforcement Learning 

 

 

A Project Presented to 

The Faculty of Department of Computer Science 

San Jose State University 

 

 

 

In Partial Fulfilment of 

the Requirements for the Degree 

Master of Science 

 

 

 

By  

Ujjawal Garg 

December 2018 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018  

Ujjawal Garg 

ALL RIGHTS RESERVED 



 

 

 

The Designated Project Committee Approves the Master’s Project Titled 

 

Virtual Robot Climbing using Reinforcement Learning 

By 

Ujjawal Garg 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

SAN JOSE STATE UNIVERSITY 

December 2018 

 

 

 

Dr. Christopher Pollett   

Dr. Robert Chun   

Dr. Katerina Potika  

  

Department of Computer Science 

Department of Computer Science 

Department of Computer Science 

 

 

 



 

ABSTRACT 

 

Virtual Robot Climbing using Reinforcement Learning 
 

By Ujjawal Garg 
   

 

Reinforcement Learning (RL) is a field of Artificial Intelligence that has gained a lot of 

attention in recent years. In this project, RL research was used to design and train an 

agent to climb and navigate through an environment with slopes. We compared and 

evaluated the performance of two state-of-the-art reinforcement learning algorithms for 

locomotion related tasks, Deep Deterministic Policy Gradients (DDPG) and Trust 

Region Policy Optimisation (TRPO). We observed that, on an average, training with 

TRPO was three times faster than DDPG, and also much more stable for the locomotion 

control tasks that we experimented. We conducted experiments and finally designed an 

environment using insights from transfer learning to successfully train an agent to climb 

slopes up to 36°. 
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CHAPTER 1  

Introduction 

 

1.1 Problem Statement 

 

One of the long-standing goals of Artificial Intelligence is to achieve an 

intelligent machine which is able to perform any intellectual task that a human is 

capable of. This is sometimes referred to as Artificial General Intelligence (AGI). AGI 

models the human intellect in a software such that, given an unfamiliar task, the 

software is able to come up with a solution to perform the task. Physical control tasks 

like walking, opening a door, etc. are performed naturally by the human mind but still 

remain as one of the biggest tasks that we have not yet been able to model for practical 

use in robotics. These tasks give rise to highly complex control challenges, making it 

impractical to program all the aspects of this problem by hand. However, recent interest 

and advancements in the field of Deep Reinforcement Learning have been a tremendous 

boon for robotics research. The goal for this project is to use Deep Reinforcement 

Learning to train a quadruped agent to learn climbing on a variety of slope based 

environments. The final trained agent is shown to be performing remarkably well and 

was able to climb slopes of up to 36°. 

 

Advancements in the field of robotics will enable humans to build more capable 

robots so that they can be used in society. These robots might be used to replace humans 

for dangerous tasks like mountain exploration and rescue missions. According to [1], 

the K2 mountain range has a fatality rate as high as 25% and nearly 300 people have 

died on Mount Everest [2] in the last 100 years. With the advancements in technology 

and robotics, we have the potential to deploy intelligent robotic systems for these kinds 

of explorations. Such deployment evades the need for humans to perform life-

threatening exploration and avoid the loss of human life. Another use case for robotic 

intelligence in terrain exploration can be for interplanetary exploration. On November 
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26, 2018, NASA successfully landed project Insight [3] onto the Martian surface. 

However, the Insight probe is stationary and cannot move around the Martian surface. 

Thus, it is able to collect the data only at the site of the landing. Such extra-terrestrial 

expeditions cost billions of dollars and thus we need to make the most efficient use of 

the resources available. With current advancements in reinforcement learning methods, 

we have the potential to train a system that can learn to navigate the slopes of various 

Martian terrain and climb even the most treacherous terrains easily. This can help in 

exploring the uncharted challenging terrains of Mars. There are numerous other 

strenuous tasks that can be fulfilled by intelligent robotics advancements. With the 

current advancements in intelligent systems ranging from autonomous cars to smarter 

gaming bots, we need systems that can explore possibilities beyond human capabilities.   

 

The Google DeepMind project published a paper [4] and video [5] showing 

simulated agents trained to navigate through a set of challenging terrains. These agents 

were trained using reinforcement learning. Initially, the goal was to similarly train a 

humanoid simulation to successfully climb a rock wall. However, it became apparent 

that such a task was infeasible given the current constraints on computation resources 

and tools available. In fact, the task of generalized object grasping remains a 

fundamental problem that is not easy to solve. Works like [6] show promising results 

but require feedback in terms of visual input or other sensory data [7] [8]. These works 

also require working on a physical robot instead of a simulation and require a significant 

amount of domain knowledge. Thus, we decided to reduce the scope of the project to 

train an agent to climb a slope-based environment. 
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1.2 Related Work 

 

Related work in climbing robots have considered climbing as a problem of gait 

control [9], or made use of dedicated grasping effectors [10], [11] on a physical robot. 

Other works consider the climbing problem as a planning problem [12]. Even though 

recent works show remarkable progress in highly complex control tasks, to our 

knowledge this type of task as a physical control problem has not been solved using 

only the Reinforcement Learning algorithms. In [8], they train a humanoid simulation 

to perform a variety of control tasks through imitation learning using the Motion 

Capture (MoCap) data available from [13]. One of the tasks is to train the agent to climb 

a set of stairs. However, such MoCap or visual data may not be available for any custom 

designed robot, and generating the data itself is a difficult task as it requires specialized 

domain knowledge. 

 

Moreover, most research work is focused on training to perform a specific task 

at hand and the trained models fail to work when the parameters of the tasks are 

changed. Recent advances in the field of transfer learning [14] [15] [16] for neural 

networks have focused on improving the training time and performance of the trained 

models. These techniques usually work by learning a source task first and then using 

the trained representation to speed up the learning of the target task. Adopting these 

transfer learning techniques for robotics can prove to be very useful because it can help 

in reducing the time and efforts spent during the exploration phase of the training. 

However, applying these techniques to the Reinforcement Learning algorithms is a 

difficult task [17]. This is because specific aspects of the source and target problem 

need to be matched to make the transfer successful. Moreover, other transfer learning 

issues like negative transfer, etc. are observed in Reinforcement Learning adopted 

frameworks as well. 
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1.3 Contribution 

 

 The primary contribution of this project is to evaluate the effectiveness of two 

Deep Reinforcement Learning algorithms, namely Trust Region Policy Optimisation 

(TRPO) [18] and Deep Deterministic Policy Gradient (DDPG) [19] algorithms, to train 

an agent to learn the locomotion behaviors needed to climb a slope based environment. 

We also observed that utilizing the concept of transfer learning, we can significantly 

improve the effectiveness of the trained agent. We designed an environment, that had 

the concept of transfer learning built into the environment itself. The environment was 

designed as a series of sequential climbing tasks with increasingly steeper slopes. In our 

experiments, using such an environment has shown a significant increase in the 

effectiveness and efficiency of the training. 

 

    The project report is organized into chapters as follows: Chapter 2 defines the 

common concepts and terms used in Reinforcement Learning. Chapter 3 define the 

design and implementation of our project and the setup we used to conduct the 

experiments. Chapter 4 describes the experiments we conducted and their results. 

Finally, in Chapter 5 we have our conclusion.  
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CHAPTER 2 

Background 

 
 In this chapter, we provide background information related to reinforcement 

learning and other related concepts. This background information is crucial to 

understand the algorithms and techniques used in the project. Section 2.1 defines the 

RL framework, and Section 2.2 provides definitions for common terms and concepts 

used in RL. Section 2.3 introduces Q-Learning, which is a simple learning algorithm 

for RL. Section 2.4 defines how Deep Learning is used to augment RL techniques and 

presents the two state-of-the-art algorithms evaluated in this project. Finally, in Section 

2.5, the concept of transfer learning and how it can be used to improve the training 

process in RL. 

 
2.1 Reinforcement Learning 

 
Unlike supervised learning, where we use some training data as input, in 

reinforcement learning, we only have access to an environment and an agent (aka actor) 

which can perform only a specific set of actions. The goal for Reinforcement Learning 

is to train this agent to automatically determine the ideal sequence of actions to perform 

for maximum efficiency in solving the required task for the given environment. The 

environment is assumed to be a Markov Decision Process (MDP). An MDP is a process 

which can be defined using a set of states and a transition function. This transition 

function defines the probability of moving from one state to another. For any given 

environment in Reinforcement Learning, we assume that we do not have any knowledge 

of the transition function and the set of states. The agent needs to explore the 

environment and gain knowledge about the states and the transitions. As the training 

progresses, the agent starts to learn about the environment and can use this knowledge 

to take actions which are more favorable. This is known as exploitation. Fig. 1 shows 

the reinforcement learning framework [20]. 
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Figure 1: Reinforcement Learning framework 

 

2.2 Formal Definitions 

 

State Space: Let ! = {$%, $', . . . , $)}	be the set of possible states in the 

environment. This is known as state space.  

 

Action Space: Let , = {-%, -, . . . , -.} be the set of actions that the agent can 

perform. This is known as an action space. 

 

Transition Probability: Let the agent perform action -/, while it is in state 

$/!. Let the new state it arrives be $′/!. Then the transition probability is denoted as 

1 $′ $, - . 

 

Reward Function and Reward: As mentioned earlier, the agent learns from the 

results of its actions. To compare the results, it needs a metric. This metric is termed as 

a reward. If an agent performs action -/, while in state $/!, then the reward received 

from this environment is denoted by 2	($, -). The function which models the reward 

values for a particular environment is known as reward function. This function is always 

contextual and depends on the task being solved in the environment.  
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Policy: A policy, often denoted by 56, is a rule or mapping from each state $/!, 

to an optimal action -/,	for the given environment 7. An optimal policy is one in which 

if we follow the actions determined by such a policy, then the total expected reward will 

be maximum. A stochastic policy gives a probability distribution for the next optimal 

action, and is denotes by  56 - $ = 	Ρ[-|$; 7]. A deterministic policy, on the other 

hand, gives a single action that should be taken. 

 

Value and Q-Value: The reward for performing an action gives us information 

about only its immediate effect. A value, often denoted by =>($), on the other hand, 

provides us information regarding the advantage of being in state $ in the long run. The 

Q-value, denoted by ?>($, -), represents the total amount of reward the agent can 

expect for performing action -	in state $, if the agent follows policy 5 to determine its 

future actions. For a given policy 5, the value equation is given as: 

=> $ = @>{ AB
C

BDE

FGHBH%|$G = $} 

Here, @> I  denotes the expected value of random variable x, if policy 5 is follows by 

the agent. Also, A is the discount factor and F is the immediate reward. 

 

Model-Based and Model-free: A reinforcement learning algorithm may be 

model-based or model-free. A model-based algorithm tries to learn the transition 

function 1 and the reward function 2 to create a model of the given environment. This 

model can then be used to determine optimal actions. On the other hand, a model-free 

algorithm does not try to learn anything regarding the underlying dynamics of the 

environment. Instead, it estimates either the value function or the policy and uses them 

to determine the optimal actions. 

 

Off-policy and On-policy: A reinforcement learning algorithm which estimates 

the policy may be either off-policy or on-policy. As mentioned earlier, while training 

the agent, it needs to explore the environment. An off-policy algorithm will choose the 

actions from a behaviour policy that is different from the policy being trained on. While 

an on-policy algorithm will use the same policy for exploration and exploitation. 
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2.3 Q-Learning  

 

Q-Learning [21] is a model-free, off-policy learning algorithm, where we model 

the value function as a Bellman equation, and the reward for performing an action a is 

calculated as the instant reward for entering the new state plus the maximum discounted 

future reward that can be obtained in the new state. This equation is given as: 

 

? I, - = 	2J - + 	γ	M-INO?(I
P, -P) 

 

Here, ? is the function that we want to learn, 2J is the instant scalar reward for 

performing action - in state I, γ is the discount factor, and I′ is the next state. The 

estimated Q-values are stored in a look-up table known as Q-table. As the algorithm 

trains the agent, this table is updated with values which are more correct. The discount 

factor serves two purposes. First, it makes future rewards worth less than the immediate 

rewards. Second, it ensures that the sum is finite and the model can converge.  

 

A simple Tic-Tac-Toe agent was implemented to gain a better understanding of 

the Q-Learning algorithm.  For training the agent, two python scripts were created. The 

first script was used to train the agent against a programmed bot and generated a model 

file which contained the Q-table.  The second script simulated the gameplay against a 

human player and was used for evaluation. The agent was trained using the first script 

for 50000 random gameplays. This training generated more than 5000 entries in the Q-

table. During the evaluation, the agent performed well and won 14 out of 15 games on 

an average. Fig. 2 shows the result of this evaluation. 
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Figure 2: Evaluation of trained Tic-Tac-Toe agent 

 

2.4 Deep Reinforcement Learning 

 

 The Q-Learning algorithm using look-up table works well for the Tic-Tac-Toe 

example because there are only 5812 legal states and our agent explored most of these 

states. However, for a more complex task like a chess game such exploration and 

creation of a look-up table is not practical, both in terms of time and space constraints. 

Deep Reinforcement Learning (DRL) uses the recent advancements and interest in 

Deep Learning to solve this problem. In [22], Deep Q-Learning (DQN) algorithm is 

used to train a model to play Atari video games. In DQN, instead of lookup tables, a 

neural network like a Convolutional Neural Network (CNN) is used to estimate the Q-

value function. Such function approximators are the core concept of Deep learning. 

 

One additional issue with traditional Q-Learning techniques is that the 

underlying data distribution changes as agent learns new behaviors. DQN solves this 

problem using a technique known as experience replay. In this technique, instead of 

using data only from current iteration, a randomly sampled mini-batch from previous 
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iterations is used to update the weights in the network. This technique allows us to make 

the most efficient use of previous experience. 

 
 While DQN solved the issue of high observation spaces, it is not practical for 

physical control tasks like grasping, object manipulation etc. This is due to the fact that 

these tasks have continuous and high-dimensional action spaces, and DQN can only 

handle discrete and low-dimensional action spaces. Policy Iteration methods with deep 

function approximators like Trust Region Policy Optimisation (TRPO) [18] have shown 

remarkable results for a variety of physical control tasks. These methods learn to 

estimate the policy directly instead of the Q-value function. In addition, a combination 

of policy and value estimation like Deep Deterministic Policy Gradients (DDPG) [19] 

are also quite commonly used to train models for such tasks. 

 
2.4.1 Deep Deterministic Policy Gradient 

 

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy, actor-

critic approach based on the DPG (Deterministic Policy Gradient) [23] method. In an 

actor-critic approach, the actor represents the policy function and specifies the action to 

be performed given the current state of the environment. The critic represents the value 

function which specifies the resultant reward and produces a signal error to criticize the 

actions made by the actor. There are two network instances of actor and critic. The first 

instances, known as target policies, are the networks that are being trained. The other 

two instances, known as behavior policies, are used to generate the trajectory. The 

deterministic part comes from the fact that while the behavior policies are still 

stochastic, the target policies are deterministic. 

 

In algorithms like DQN, we use a stochastic policy and learn to select the action 

based on the following equation: 

	-G = M-IN	?∗ ∅($G , -; 	7) 
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But this equation is not practical for continuous action spaces. Using a 

deterministic policy allows us to use the equation: 

 

-G = 	S($G|7T) 

 

Similar to DQN, a replay buffer 2 is used to sample the episode data from 

previously generated trajectories. This data is then used for training. Also, a random 

noise process U is used to ensure sufficient exploration: 

 

-G = 	S $G 7T +	UG 

 

 The final algorithm is shown in Algorithm 1. Here the algorithm runs for 

V	W	1	time-steps. For each time-step, the algorithm generates the trajectories or 

transitions according to the current policy. To do so, the agent performs an action based 

on the current actor policy S and exploration noise U and then stores the resulting 

transitions in a replay buffer 2.	The noise process selected for our experiments is the 

Ornstein-Uhlenbeck process. 

 

At the end of each time-step, the algorithm updates the networks using a 

randomly sampled mini-batch from the replay buffer 2. In [23], Silver, et al. proved 

that the equation given in (1.1) is the policy gradient, i.e., we will get the maximum 

expected reward as long as we update the model parameters using the gradient formula 

given in the equation. 
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Algorithm 1: Deep Deterministic Policy Gradient 
 
Initialization:  
Initialize critic ? $, - 7X  and actor S $G 7T 	with random weights 7X and 7T. 
Initialize target network ?′and S′ with weights 7XO ← 7X, 7TO ← 7T 
Initialize replay buffer 2 
 
Training: 
for episode 1 to M do: 
 Initialize a random noise process U 
 Receive initial observation state $% 
 for time-step 1 to T do: 
  Generate Trajectories: 
   Execute action -G = 	S $G 7T +	UG  
   Receive reward FG and new state $GH% 
   Store transition ($G, -G, $GH%, -GH%) in 2  
  Update networks: 
   Sample a random mini-batch of length N from R: 
    ($Z, -Z, $ZH%, -ZH%), 1 ≤ ] ≤ ^ 
   Get the resultant value of state $Z	according to target critic ?′: 
    _Z = 	 FZ + 	A?′($ZH%, S′($ZH%|7T

O
)|	7XO)  

   Get the resultant value of state $Z	according to critic ?: 
    IZ = 	?($Z, -G |	7X) 
   Update critic ? by minimizing loss L: 
    ` = 	 %

)
	 (_Z −	IZ)'Z  

   Update the actor S using the policy gradient: 
    ∇6cd ≈

%

)
∇NZ ? $, -	 7X)|fDfg,NDT fg ∇6cS $ 7T |fg  (1.1) 

   Apply soft-update to the target networks: 
    7X

O
← h7X + 1 − 	h 7XP 

 7TO ← h7T + 1 − 	h 7TP 
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2.4.2 Trust Region Policy Optimization 

 

Trust Region Policy Optimization (TRPO) is a model-free, on-policy, actor-

critic approach based on Natural Policy Gradient (NPG) [24] method. The policy being 

trained is a stochastic policy. Thus, TRPO can work on both continuous and discrete 

action spaces. The major contribution of this algorithm is that it uses insights from 

optimization theory which provides guaranteed monotonic improvement. In particular, 

the algorithm uses a trust region [25] to constraint the update size during training. This 

constraint size is determined by the Kullback-Leibler (KL) divergence between the old 

policy and the new policy. I.e., 

 

@	[ijk(56lmn(. |$)| 56opq . $ ≤ 	r, 

where, 

 ijk	is the KL divergence, 

 r	is the constraint region 

 

TRPO uses the advantage estimation ,G to define the policy gradient s as: 

 

s = 	ΕG	[	∇6uvs56 -G $G ,G]  

  where, 

     , = 	? $, - − =>($)  

 

However, the advantage estimate can be noisy and is prone to making the loss 

function explode or implode. Schulman, et al., proved that the objective function can 

be modified to: 

 

max
6
Ε >z(N{|f{)

>zlmn(N{|f{)
,G 	, constrained to ΕG	[ijk(56lmn . $ 	||	56opq . $ )] ≤ 	r 

 where, 

 ijk	is the mean KL divergence over the state space. 
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 To calculate the gradient direction, we need to calculate |B
}%
sB, where |B is 

the Hessian product or Fisher Information Matrix. Calculating the inverse Hessian is 

computationally very expensive. So, TPRO uses the conjugate gradient [26] to 

approximate the inverse. The final algorithm is given as Algorithm 2.  

 

Like the DDPG algorithm, TRPO also maintains two network instances for 

actors and critics each. The first actor-critic pair of networks belongs to the current 

policy that we want to refine. The second pair belongs to the policy that we last used 

to collect the samples. 

 

 

Algorithm 2. Trust Region Policy Optimisation 
 
Initialization: 

Initialize the actor & critic networks corresponding to initial policies and the 
constraint size r. 
 

Training: 
 for k = 0 to M do 
  Generate the rollout set ~B	with N trajectories using policy 5B = 	5(7B) 
  Estimate the advantage function ,Bfor all time-steps in ~B 
  Calculate the policy gradient sBand KL divergence Hessian |B 
  Use conjugate-gradients to obtain IB ≈ 	|B

}%
sB 

   Compute the step size ΔB ≈ 	
'	Ä

JÅ
ÇÉÅJÅ

IB 

  7BH% = 	7B +	ΔÑ 
 

 

2.4 Transfer Learning 

 

Deep learning techniques have shown remarkable success in learning a very 

accurate mapping from inputs to outputs. Achieving this success requires a huge amount 

of training and hyperparameter tuning. In transfer learning, we seek to transfer the 

knowledge learned from pre-trained models to a new task. For example, researchers 

have spent hundreds of hours to train Convolutional Neural Networks (CNNs) on 
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ImageNet [27] data-set so that the trained model can do various image classification 

tasks. In [28], the authors use such previously trained CNNs to speed up the learning 

process and achieve state-of-the-art results for different data-sets as well.  

 

One approach to apply transfer learning is to freeze the weights of the pre-trained 

network in all the layers except the output layer. The training is done keeping only the 

output layer trainable. The number of outputs in the layer and the training data is 

modified according to the new task. This approach has proved to be very effective in 

speeding up the training process for similar tasks in Deep Learning. 

 

Traditional techniques for transfer learning works very well on CNNs but 

adopting them for Reinforcement Learning is a difficult task. In [29], Hierarchal 

learning is suggested as one of the approaches to adopt transfer learning for 

Reinforcement Learning. In this approach, a single large task is divided into a series of 

sequential sub-tasks. As model learns these sub-task, it will start to move towards 

achieving success in large task as well. In this project, we use a similar approach to 

model our learning environment to facilitate Reinforcement Learning. 
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CHAPTER 3 

Design and Implementation 

 
 In this chapter, we provide the design and implementation details about our 

project. Section 3.1 describes the tools and libraries used for the experiments. Section 

3.2 defines how we used these libraries to create the environments for training the 

agents. In Section 3.3, we provide details about the algorithms we used. Finally, in 

Section 3.4, we describe the cloud machine that was used to conduct the experiments. 

 

3.1 Libraries Setup 

 

 To conduct the experiments, we used the OpenAI gym [30] [31] and baseline 

[32] libraries to define the environment and train the models. Both these libraries are 

open source and implemented in Python 3 programming language. The gym library is a 

framework for reinforcement learning which provides a uniform interface for building 

reinforcement learning environments, and running the agents. The baseline library 

contains standard implementations for popular reinforcement learning algorithms. In 

particular, we use the baseline implementations of trpo_mpi and ddpg algorithms to 

train our models. Using the standardised framework and algorithms will make our 

results replicable. Both the gym and baseline libraries were installed from GitHub 

source using pip. 

 

 The gym library uses the MuJoCo physics engine [34] [35] to render the 

environment and simulate the actions and physical systems. This physics engine is 

implemented in C++ programming language. The gym library uses mujoco-py [33], 

which provides the python bindings for the MuJoCo physics engine. At the time of this 

writing, the MuJoCo library required a paid license, which costs $500 for personal non-

commercial use. However, MuJoCo also offers a one-month trial license and a free 

student license for one year. The trial license can be used on 3 different machines, while 

the student license can be used only on one machine. Initially, we used the trial license 

to evaluate the library on our local machine (a core-i5 MacBook) and on a Google 
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Compute Engine (GCE) instance. Once we were satisfied that this setup was working 

we obtained a student license and registered it for our GCE instance.   

 

3.2 Gym Environment Creation 

 

For each experiment, we created a gym environment. Each gym environment 

requires an XML file, which represents the MuJoCo model of the simulation. The XML 

file format is known as MJCF and contains the data about the joints configurations, 

actuator and gear information, and how the different parts of the robot are connected 

together. Each MJCF file contains an XML tree created by nested body elements. Each 

body element has geoms attached to it, which define the geometric shape and structure 

of the body. Fig. 3 shows a snippet of MJCF XML file for a one-legged hopper agent. 

For each joint, an actuator element defines the motor object to control the joint. The 

XML file is parsed using the mujoco-py library for rendering and physics simulation. 

Some experiments required the XML file to be dynamically generated. For such 

experiments, we used the elementTree python module to generate the XML file. 

 

 
Figure 3: A MJCF body element for one-legged hopper agent 

 
Apart from the XML file, the gym environment is implemented as a python class 

which extends the MujocoEnv parent class defined in the gym framework. Fig. 4 shows 

the signature and brief description of the methods for such a class file. Each 

environment needs to implement the step method, which takes the action to be 

performed as input, performs the action using MuJoCo library, and returns the 
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calculated reward based on the new state of the environment. Each environment is 

registered with gym framework with a specific name so that it can be used for training.  

 

 

 
Figure 4: Signature of a MuJoCo environment python class 

 

 

3.3 Baseline algorithms 

 

Both the trpo_mpi and ddpg algorithms in the baseline library takes some 

parameters that define how the algorithm will train the model.  The network argument 

passed to the algorithm defines the neural network to be used for actors and critics. 

Tensorflow library is used to implement the networks. For our experiments, we use a 

multi-layer perceptron (MLP) for both actors and critics. Unless otherwise specified, 

we use an MLP with 2 fully-connected hidden layers, having 64 units in each layer. The 

tanh function is used for activation. The input and output layers for actor and critic are 

different. For actors, the input layer is the observations from the environment and the 

output layer provides the actions to be performed. For critics, the input layer is the the 
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observations from the environment and the last hidden layer takes actions taken by 

agent as additional inputs. The final output of the citric is a signal value which is used 

to make the training updates. 

 Fig. 5 shows the complete network architecture for actor and Fig. 6 shows the 

network architecture for Critic. The number of observable units and the number of 

actions is determined by the environment.   

 

 
Figure 5: Neural Network for Critic 
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Figure 6: Neural Network architecture for Actor 

 

3.4 Cloud Setup 

 
Apart from a few initial experiments, most of the experiments were run on a 

Google Compute Engine (GCE) instance with 24 cores and 20GB memory. Both of the 

algorithms available in the baseline library have support for parallel computation using 

OpenMP framework. This enables us to make full utilization of the available computing 

resources. 
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CHAPTER 4 

 Experimental Results 

 
 In this chapter, we provide details about each experiment we conducted 

and show the results and observations. For each trial, the agent was trained inside the 

registered gym environment for a fixed number of simulation time-steps. After training, 

we evaluate the agent and observe the results achieved in each experiment. We use these 

observations to design the next trial. 

 
4.1 Hopper 

 
 The aim of this experiment was to familiarize our self with the libraries and the 

training procedure. For this experiment, we decided to train a two-dimensional one-

legged robot [36] to hop forward as fast as possible. It is one of the simplest physical 

control task available in the gym framework. There are only 3 joints to be controlled 

and the state space has 20 variables. We conducted two experiments using the DDPG 

and TPRO algorithms respectively. The training was done for 216 epochs using DDPG 

algorithm and 591 epochs using TRPO algorithm. At the time of this experiment, the 

baseline library used epochs instead of time-steps to specify the training duration. This 

has been now changed to accept time-steps as it provides more consistent training times. 

Both the experiments were done on an Apple MacBook-Pro 2015 laptop and training 

took a little more than 10 hours for both experiments run together. The following reward 

function was used: 

FÖÜ-Fá = 	àâäã − 10}ç é
'
+ 1.0 

Here,  

àâäã   = forward velocity 

é        = vector of joint torques 

èZêë = impact forces 
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In the above equation, the addition of a constant offset value of 1.0 is used to 

encourage longer episodes. Otherwise, the training will lead to a policy that ends 

episodes as quickly as possible. The torque vector penalty is to discourage big changes, 

and the forward velocity provides the actual reward for that time-step. These values are 

the defaults for OpenAI gym Hopper-v2 environment. Fig. 7 and Fig. 8 show the 

simulation images for an episode after training using DDPG and TRPO algorithms 

respectively. 

 

 
Figure 7: Simulation images after training hopper using TRPO for 591 epochs 

 

 

 
Figure 8: Simulation images after training hopper using DDPG for 216 epochs 

 

 It was observed that both models trained the simulation to hop successfully and 

move forward. The model trained using DDPG was able to reach larger distance but 

was slower to move forward as compared model trained using TRPO. Also, training 

done using the DDPG algorithm was observed to be slower as it only reached 216 

epochs in 10 hours, while the TRPO algorithm covered 591 epochs. 
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4.2 Humanoid-Rock-Climbing 

 

 The aim of this set of experiments was to train a humanoid simulation to climb 

a wall that simulated the rock-climbing. For this experiment, we created an environment 

with a wall that had various types of rock-climbing holds. [37] describes different hand 

configurations for rock-climbing holds. Fig. 9 shows an instance of the environment. 

MuJoCo does not support creating objects of arbitrary shapes. However, it does allow 

us to include meshes in our environment. The mesh files for rock-climbing holds were 

found from websites like [38]. Usually, such files are made for 3-D printing and 

required some pre-processing using the MeshLab tool to make them compatible with 

the MuJoCo engine.  

 

 

 
Figure 9: MuJoCo simulation of a wall with rock-climbing holds 

 

We realized early on that training the simulation to grasp the holds would be too 

complex using the resources we had. So, we tried to simulate the grasping using various 

types of joint constraints in the MuJoCo physics engine, namely the distance, weld and 

equality constraints. Out of these, only the weld joint was successful in sticking the  
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humanoid to the wall. However, creating dynamic weld joints was not possible using 

the MuJoCo library. So, we decided to train the humanoid simulation using the 

constraint that if contact forces between the wall and the humanoid agent’s hands or 

legs are greater than a specified threshold, we set the weld joint constraint to enabled, 

else the constraint was disabled. The design for the humanoid agent was taken from 

OpenAI’s Humanoid-v2 [39] gym environment. The training was done on the GCE 

instance as described in Section 3, using TRPO for 12 hours and using DDPG for 42 

hours. The following reward function was used: 

 

FÖÜ-Fá = 	àíë − 10}% é
'
− 10}ì èZêë

'
+ 5.0 − ïñóíò − ïãZfG 

Here, 

àíë   = upward velocity 

é        = vector of joint torques 

èZêë = impact forces 

 ïñóíò   = glue penalty (5.0 if number of weld joints less than 2 else 0) 

 ïãZfG    = penalty based on distance from rock wall 

 

In the above equation, the addition of a constant offset value of 5.0 is to 

encourage longer episodes. Otherwise, the training will lead to a policy that ends 

episodes as quickly as possible. The torque vector penalty is to discourage big changes 

and impact force penalty is used to make the simulation more realistic. The glue penalty 

and distance penalty were added to discourage agent from falling down. The agent was 

trained for using both TRPO and DDPG algorithms. Fig. 10 and Fig. 11 shows the 

simulation images for an episode for both the trained agents respectively.  
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Figure 10: Simulation images after training humanoid-RockClimb using TRPO for 
1M time-steps 

 

 
Figure 11: Simulation images after training humanoid-RockClimb using DDPG for 
1M time-steps 

 

As can be seen, the trained model only learned to stick to the wall and move legs 

upwards. It might be possible that training for longer duration could have led to better 

results. We also tried other configurations by increasing the gear values in the actuator 

inside the MJCF model and by modifying the reward function but were unable to train 

the agent to climb. Based on the negative results from this experiments, we decided to 

take a step back and decided to replicate DeepMind’s result for humanoid walking. 
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4.3. Humanoid Walking 

 
 The aim of this experiment was to train a humanoid simulation to walk using the 

Humanoid-v2 [39] gym environment. Two experiments were conducted using the 

DDPG and TRPO algorithms respectively. The model training with TPRO was done 

for 1 million time-steps. While for DDPG, the training was done for 0.5 million time-

steps. Both the experiments were done on the GCE instance described in Section 3. The 

following reward function was used: 
 

FÖÜ-Fá = 	àâäã − 10}% é
'
− 10}ì èZêë

'
+ 5.0 

Here,  

àâäã   = forward velocity 

é        = vector of joint torques 

èZêë = impact forces 

 

In the above equation, the addition of a constant offset value of 5.0 is to 

encourage longer episodes. Otherwise, the model will lead to a policy that ends episodes 

as quickly as possible. The torque vector penalty is to discourage big changes and 

impact force penalty are used to make the simulation more realistic. These values are 

the defaults for OpenAI gym Humanoid-v2 Environment. The episodes were terminated 

when the center of mass of the body falls below 1.0m or above 2.0m. The model training 

for TRPO took a little more than 12 hours. Over the whole course of that training, data 

from 200,000 episodes were collected. On the other hand, training using DDPG took 

32 hours and ran 50,000 episodes in total. Fig. 12 and Fig. 13 shows the initial and final 

images for the model after training with DDPG and TRPO respectively. 
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Figure 12: Simulation images after training human-walk using TRPO for 1M time-steps 

 

 

 
Figure 13: Simulation images after training human-walk using DDPG for 0.5M time-
steps 

 

As can be seen, the trained model was not able to learn to walk with either of 

these algorithms and kept falling down. This could be explained by the fact that the 

humanoid model has a huge observation and action space. There are 47 state dimensions 

in the humanoid model and each joint has 17 actuated degrees of freedom. Exploring 

such a large state space will require a lot more training and computing resources. 

Furthermore, training using DDPG was observed to be much slower as compared to 

TRPO. 
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4.4. Ant Walking 

 
The aim of this experiment was to make a quadrupedal simulation to walk using 

the Ant-v2 [40] gym environment. This simulation looks visually similar to an ant. Two 

experiments were conducted using DDPG and TRPO algorithms respectively. Both the 

models were trained for 1 million time-steps on the GCE instance as described before. 

The training took a little less than 10 hours using the TRPO algorithm. Using the DDPG 

algorithm, the training time was a little over 31 hours. Following reward function was 

used in both the experiments: 

 

FÖÜ-Fá = 	àâäã − 0.5 ∗ é
'
− 0.5 ∗ 	10}ì èZêë

'
+ 1.0 

 

Here,  

àâäã   = forward velocity 

é        = vector of joint torques 

èZêë = impact forces 

 

The values for impact costs and survival reward offset were obtained from 

OpenAI gym Ant-v2 environment. The episodes were terminated when the center of 

mass of the body fell below 0.2m or above 1.0m. Fig. 14 and Fig. 15 shows the initial 

and final images of the model after training with DDPG and TRPO respectively. 

 

 
Figure 14: Simulation images after training ant-walk using DDPG for 1M time-steps 
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Figure 15: Simulation images after training ant-walk using TRPO for 1M time-steps 

 

As can been seen, TRPO performs much better than DDPG for training the 

model. In fact, when the training was terminated, the DDPG model only learned to make 

small jumps, instead of walking, and the agent kept flipping on its back. This can be 

explained by the fact that since DDPG is an off-policy algorithm, it takes sample data 

from greedy exploration while exploring the possible solution state space. Since 

jumping gives a quick reward, it contains much more data from those actions. TRPO, 

on the other hand, explores within the specified trust region only. Thus, training with 

TRPO is much more stable than DDPG. We also observed that, on an average, training 

with TRPO was three times faster than DDPG. Even after just 0.5 million time-steps of 

TRPO training, the model was behaving fairly well. Based on the success of this 

experiment over the previous ones, we realized that training a humanoid agent is a too 

complex task due to its much larger state space. Thus, we decided to run further 

experiments on the ant environment only. 
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4.5. Ant Steps climbing 

 
The aim of this experiment was to teach the ant simulation to climb a set of steps. 

Two experiments were conducted with step sizes 0.5cm, and 0.25cm respectively. The 

episodes were terminated when the simulation had reached the top or when the torso of 

the body (sphere) got in contact with anything. The reward function was modified to 

consider upward velocity àíë	as well. 

 

FÖÜ-Fá = 	àíë +	àâäã − 0.5 ∗ é
'
− 0.5 ∗ 	10}ì èZêë

'
+ 1.0 

Here,  

 àíë     = upward velocity 

àâäã   = forward velocity 

é        = vector of joint torques 

èZêë = impact forces 

 

The values for impact costs and survival rewards were obtained from OpenAI 

gym Ant-v2 environment. The model training with TRPO was done for 1 million time-

steps, which took a little more than 10 hours. The DDPG model was trained for 0.5 

million time-steps and took a little more than 25 hours. Fig. 16-19 shows the initial and 

final images after training.  

 

 
Figure 16: Simulation images after training ant-steps using TRPO for 1M, time-steps 
with step size 0.5cm 
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Figure 17: Simulation images after training ant-steps using DDPG for 0.5M time-steps 
with step size 0.5cm 

 

 
Figure 18: Simulation images after training ant-steps using DDPG for 0.5M time-steps 
with step size 0.25 cm 

 
As can be seen, both the models failed in both the experiments to climb even one 

step. The models only learned to make the agent jump, and not walk or climb. Also, the 

model trained using DDPG was observed to be much less stable and more prone to 

flipping on its back. To solve this problem, we decided to run another experiment by 

changing the terminating condition so that episodes will terminate when all four legs 

are in the air. This was done to prevent the jumping behavior. This experiment was done 

for step size 0.25cm only and the model was trained using TRPO for 0.5 million time-

steps. Fig. 20 shows the result of this experiment. In this experiment, model learned to 

stop jumping, but still did not learn to climb the step. 
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Figure 19: Simulation images after training ant-steps using TRPO for 1M time-steps 
with step size 0.25 cm 

 

 
Figure 20: Simulation images after training ant-steps using TRPO for 0.5M time-steps 
with step size 0.25 cm with modified terminating condition 

 

Based on these observations, since it did not achieve the determined goal for any 

of these experiments, we concluded that this task may be too complex in this 

environment. It was realized that we need to make changes to the environment itself so 

that it is feasible to train the model. Also, it takes a long time to run these experiments 

and we had limited computing resources in terms of Google GCE. So, we decided to 

drop the DDPG experiments and focus on only TRPO as the latter was observed to be 

much more stable and faster. 



41 
 

4.6. Ant Slope Climbing 

 
Based on our previous results, we decided to modify the environment to have a 

slope instead of steps. Three experiments were conducted with slopes equal to 9°, 18°, 

27° respectively. Once again, the final goal for all the experiments was to reach the top. 

The episodes were terminated when the simulation had reached the top or when the 

torso of the body got in contact with anything. Also, the friction coefficient value was 

set to 1.5. This value was chosen by conducting a set of early experiments. The reward 

function used was the same as in Experiment 4.5. The model was trained for 10 million 

time-steps for each experiment. Each experiment took a little less than 78 hours. Fig. 

21-23 shows the initial and final images for the three experiments.  

 

 
Figure 21: Simulation images after training ant-slope using TRPO for 10M time-steps 
for slope equal to 9° 

 

 
Figure 22: Simulation images after training ant-slope using TRPO for 10M time-steps 
for slope equal to 18° 
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Figure 23: Simulation images after training ant-slope using TRPO for 10M time-steps 
for slope equal to 27° 

 

As can be seen, the model trained for slope equal to 9° works well and is able to 

climb the slope successfully. However, it fails for environments with greater slopes and 

the simulation just gets as close to the slope and moves back and forth near it. It was 

observed during the training that for higher slopes the agent was not able to stick its 

legs on the slope and kept toppling down. Based on these observations, we realized that 

the agent needs some way to stick its legs to the slope. Increasing the friction coefficient 

could have helped, but it was not considered because having such a large value is not 

reasonable according to physics. 

 

Additional experiments which used soft joint constraints like weld joint and 

distance joint in MuJoCo physics engine were conducted, but did not give the desired 

results. 
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4.7. Ant Grooved Slope Climbing 

 
For this experiment, we modified the previous environments to have grooves on 

the slope. These grooves facilitated the required friction and can be used by the agent 

to stick its legs on the slope. Here, experiments were conducted with slopes equal to 

18° and 27° respectively. The terminating conditions and other parameters were kept 

the same as in the previous experiment. The model was trained for 5 million time-steps 

for each experiment, and each experiment took a little over 22 hours. Fig. 24 and Fig. 

25 shows the initial and final images for the two experiments. 

 

 

 
Figure 24: Simulation images after training ant-grooved-slope using TRPO for 5M 
time-steps for slope equal to 18° 

 

 
Figure 25: Simulation images after training ant-grooved-slope using TRPO for 5M 
time-steps for slope equal to 27° 

 

As can be seen, the model trained with TRPO works well for 18°. However, the 

models trained for greater slope environments are only able to climb a few steps. It is 

possible that training the model for longer duration might work.  
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One interesting observation was made when we ran the agent trained for 18° 

slope environment on the environment with 27° slope. It was observed that the trained 

model was able to successfully climb the harder environment as well. This result is 

shown in Fig. 26. 

 

 
Figure 26: Simulation images after training ant-grooved-slope-18° using TRPO for 5M 
time-steps and running on environment with slope equal to 27° 

 

Based on this observation, we realized that since the tasks are quite similar, the 

policy learned for an easy task may be used as the base to learn a more difficult task. 

This observation led us to explore transfer learning and we decided to design the next 

experiment to facilitate such transfer of knowledge. 

.  
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4.8. Ant Grooved Multiple Slopes Climbing 

 
For this experiment, we built a large environment with increasingly difficult 

slopes after every few intervals. The intuition here is that the main task is to climb as 

high as possible, while sub-tasks would be to climb each slope. In particular, there were 

five slopes 9°, 18°, 27°, 36°, and 45° in the environment. Each consecutive slope had a 

flat surface of 6m length between them. Two experiments were conducted using slightly 

different reward functions. To consider random initializations, we conducted two trials 

for both these experiment. Each trial was run for 10 million iterations, with initial 

weights as random. The trial which performed best for each set of experiment was 

considered. Also, the max episode length was set to 5000 for both trials. The reward 

functions and other parameters were kept the same as in the previous experiment. 

 

For the first set of experiments, both forward and upward velocity were 

considered in the reward function. For the second set of experiments, only the forward 

velocity was considered in the reward function. Figure 16 and Figure 17 shows the 

initial and final images of an episode after training for both these experiments. 

 

 
Figure 27: Simulation images after training ant-grooved-multiple-slopes using TRPO 
for 10M time-steps considering both upward and forward velocity 
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Figure 28: Simulation images after training ant-grooved-multiple-slopes using TRPO 
for 10M time-steps considering only forward velocity 

 

 When trained using only forward velocity, the agent was able to climb the 

slopes till 27°. After reaching the end of 27° slope, it was not able to proceed further. 

However, when trained using both forward and upward velocity, it was able to climb 

till 36°. 

 

Also, instead of saving just the final model, the intermediate models were saved 

every 100 iterations, along with the max height and the max distance achieved per 

episode. Figure 18 shows the graphs for the rate of training in both experiments as 

episode count versus the maximum heights and distances achieved per episode. As can 

be seen, considering both the forward velocity as well as upward velocity results in a 

faster training of the model. Max distance traveled was 41.7m was for the second 

experiment. This distance means that simulation was able to reach the start of the 45° 

slope. While for the first experiment, a max distance of 34.5m was observed. This 

means that simulation was able to reach the ending point of the 27° slope. 
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Figure 29: Graphs showing the rate of training as episode count versus the steps, 
heights and distances per episode 
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4.9. Ant Grooved Multiple Slopes Climbing with Potholes 

 

 For this experiment, we wanted to test the agent trained in Experiment 4.8 on 

learning new task. So, we introduce potholes (depressions) on the slopes inside the 

environment and trained the model to avoid the potholes. We used a combination of 

transfer learning and residual learning techniques to train the agent with additional 

objective that it should learn to avoid potholes. Using transfer learning, we used the 

previously trained model as base, and only made the weights of output layer as trainable. 

In other words, we freeze the initial layers which correspond to the pre-trained model 

so that the weights received from the pre-trained model are not modified. This way, we 

preserve the intermediate representation of the environment learned previously. Similar 

to residual learning technique, we also provide direct observations from the 

environment to the trainable layers. Thus, the trainable part of the network gets a 

combined input of both the learned representation of pre-trained model, and also the 

direct observations from the environment.  

 
 For this experiment, the reward function and all other parameters were kept the 

same as in the previous experiment. The model was trained for 10 million time-steps 

using TRPO algorithm. Fig. 30 shows the simulation images for an episode after 

training. 

 

 
Figure 30: Simulation images for model trained using TPRO for Experiment 4.9 

 As can be seen, the trained model was not able to learn to move further than the 

second slope (18°).  We expected that using knowledge from previously trained model, 

we might achieve good results. However, model was not able to learn from the 

knowledge. 
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CHAPTER 5 

Conclusion and Future Work 

 
 The goal of this project was to evaluate the potential of Reinforcement Learning 

to train a robot simulation to climb slope based environments. For this purpose, we 

identified and explored two state-of-the-art algorithms for Deep Reinforcement 

Learning, DDPG and TRPO. We evaluated the performance and effectiveness of these 

algorithms to train the agents for this task. We observed that, on an average, training 

with TRPO was three times faster than DDPG, and also much more stable for the 

locomotion control tasks that we experimented. 

 

 We conducted multiple experiments to train an agent to climb the steep slope 

using TRPO algorithm. We found that the it takes a lot of time and resources to properly 

train the agent. Although that agent was able to learn climbing actions for slopes till 

18°, it failed to train properly for steeper slopes. We used insights from transfer learning 

to improve our results. We observed that if we design our environment to facilitate 

transfer learning, the agents were trained much more effectively and efficiently. Our 

final trained agent was able to climb slopes till 36°. This proved that transfer learning 

applied to reinforcement learning acts fruitful in effective results. 

 

 One way to improve this project would be to combine the results for our project 

and the potential of Convolutional Neural Networks (CNNs) for image recognition. 

CNNs are already used in DQNs to train agents to play Atari games. The agents trained 

in this project take observations in terms of force vectors applied on its body. If we can 

somehow supply visual simulation information from MuJoCo engine, we can use a 

CNN to generate a visual representation of the environment. This has the potential to 

train better models.  
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