
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-16-2019

Declassification of Faceted Values in JavaScript Declassification of Faceted Values in JavaScript

Shreya Gangishetty
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Gangishetty, Shreya, "Declassification of Faceted Values in JavaScript" (2019). Master's Projects. 674.
DOI: https://doi.org/10.31979/etd.d9xd-7yjq
https://scholarworks.sjsu.edu/etd_projects/674

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/674?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F674&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Declassification of Faceted Values in JavaScript

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shreya Gangishetty

May 2019

© 2019

Shreya Gangishetty

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Declassification of Faceted Values in JavaScript

by

Shreya Gangishetty

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2019

Prof. Thomas Austin Department of Computer Science

Prof. Ben Reed Department of Computer Science

Prof. Fabio Di Troia Department of Computer Science

ABSTRACT

Declassification of Faceted Values in JavaScript

by Shreya Gangishetty

This research addresses the issues with protecting sensitive information at the

language level using information flow control mechanisms (IFC). Most of the IFC

mechanisms face the challenge of releasing sensitive information in a restricted or

limited manner. This research uses faceted values, an IFC mechanism that has shown

promising flexibility for downgrading the confidential information in a secure manner,

also called declassification.

In this project, we introduce the concept of first-class labels to simplify the

declassification of faceted values. To validate the utility of our approach we show

how the combination of faceted values and first-class labels can build various

declassification mechanisms.

Keywords- Data confidentiality, Declassification, Downgrading poli-

cies, Dimensions of declassification

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Thomas Austin for continuously

motivating me and guiding me in the right path. I would also like to thank Professor

Fabio Di Troia and Professor Ben Reed for their constant support in completing the

project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Information Flow . 3

2.1.1 Explicit Flow . 3

2.1.2 Implicit Flow . 4

2.2 Overview of Information Flow Control (IFC) 4

2.3 Information Flow Control Types 5

2.3.1 Static Information Flow Control 5

2.3.2 Dynamic Information Flow Control 5

2.4 Information Flow Control Techniques 6

2.5 Declassification for Dynamic Information Flow Control 7

3 Faceted Language . 9

3.1 Faceted Values . 9

3.1.1 Classification of data . 10

3.1.2 Defacet of data . 10

3.2 Grammar and Semantics for Faceted Language 11

3.2.1 Grammar . 11

3.2.2 Operational Semantics . 12

4 Declassification . 16

4.1 Declassification mechanisms . 16

vi

vii

4.1.1 Dimensions of Declassification 16

5 Implementation . 19

5.1 Faceted Language . 19

5.1.1 Dynamic label creation . 20

5.1.2 Classification of private data into a faceted value 20

5.1.3 Defaceting of faceted value based on the labels 21

5.2 Implementation of declassification scenarios in faceted values . . . 22

5.2.1 Non-interference . 22

5.2.2 Declassification with no restrictions 22

5.2.3 Temporal dimension based declassification 23

5.2.4 Declassification to release hash of the password 24

5.2.5 Release last four digits for Credit Card 25

5.2.6 Who based Declassification example 26

5.2.7 Limitations of Declassification with faceted values 27

6 Conclusion and Future Work . 29

LIST OF REFERENCES . 30

LIST OF FIGURES

1 Example of information flow . 3

2 Example of an explicit flow . 3

3 Example of an implicit flow . 4

4 Example implementation of classification of data 10

5 Example implementation of defacet function in JavaScript 11

6 The Faceted Language . 12

7 Big-Step Semantics for Faceted Language 13

8 Notations . 14

9 Dynamic security label creation 20

10 Classification of data using first-class labels 20

11 Defacet function . 21

12 non-interference (No declassification) 22

13 Declassification with no restrictions 23

14 Time based declassification . 24

15 Declassification for releasing Hash of the password 25

16 Declassification for releasing last four digits of the credit card . . 26

17 Who based declassification . 27

viii

CHAPTER 1

Introduction

As technology is growing continuously, many third-party applications are also

increasing. These applications may misuse sensitive information like social security

numbers, passwords, credit cards, or browser history. Providing security to such

information on the internet is a challenging task. There is a risk for data confidentiality

with data leakage. Due to data leakage, 191 million voters of US [1] were affected.

Information flow control enforces the rules and policies to the flow of data within

the program or when the data is sent to a third party application [2]. It can secure

sensitive information by imposing rules within the architecture to prevent data leakage

from trusted sources to untrusted sources.

Several IFC mechanisms were introduced to ensure the confidentiality of data and

to provide non-interference [3][4]. Some of the mechanisms such as permissive-upgrade

[4] and no-sensitive-upgrade [5] guarantees non-interference property. However, these

techniques get stuck when data flows from a high level to a low level. Often relaxation

of non-interference property in secure conditions is needed in the real-world. For

example, sensitive information like credit card number (high level) needs to be disclosed

partially to validate a transaction. Often the last four digits of a credit card are

displayed to validate the payment. In this scenario, non-interference property is clearly

violated. But, this is necessary for a transaction to be successful. The relaxation of

the non-interference property by enforcing security rules and policies is termed as

declassification [6].

Determining whether it is safe to release sensitive information to a lower level

and to structure the rules is a major challenge in the declassification of data [7]. Some

of the dimensions to release information without compromising security are ‘what’,

‘when’, ‘where’, and ‘who’ [8]. Wing [7] has shown that faceted values are flexible to

1

downgrade the non-interference property. This project focuses on scenarios where

there is a need for declassification and how it can be achieved using a prominent IFC

mechanism - faceted values (faceted evaluation) [9].

The project is organized as follows: Chapter 2 gives a background on information

flow control, types and techniques of information flow control; Chapter 3 describes

the faceted language with the support of faceted values along with its operational

semantics; Chapter 4 describes declassification and various methods of releasing

sensitive information and dimensions; Chapter 5 shows an implementation for faceted

language with support for dynamic label creation, faceted values and declassification,

and examples of dimensions of declassification using faceted values in JavaScript;

Chapter 6 discusses the conclusion and future scope of this project.

2

CHAPTER 2

Background
2.1 Information Flow

Information flow is the transfer of information from a variable var1 to another

variable var2 (var1 → var2) in the program. Information about sensitive data

might propagate to a lower level data. In Figure 1, the information of a and b is

flowing through the conditional statement and this code leaks information about a

and b. It is easy to infer the value of a based on this code snippet. If the output is

0 then it is understood that a is greater than or equal to 20. Otherwise, the 20 -

output gives the value of a.

Figure 1: Example of information flow

2.1.1 Explicit Flow

Explicit flow can be described as the direct flow of information from a high-

security level to a low-security level[10]. Figure 2 represents explicit data leakage via

direct assignment of a high-security level (secret) to a low-security level (public).

The value of secret is assigned to public directly and the value of secret can

be easily interpreted.

Figure 2: Example of an explicit flow

3

2.1.2 Implicit Flow

In implicit flow, the high level information doesn't flow directly to a low level

information but high level value can be implicitly understood[10]. This flow can leak

partial information or complete information about the secret. In Figure 3, x is a high

level information, the value of x is determined with implicit flow of data. For example,

if the return value of function is false, that is z = false, this implies y = true,

this implies x = false.

Figure 3: Example of an implicit flow

2.2 Overview of Information Flow Control (IFC)

With the exponential growth of data, the risk of protecting it is an unceasing

problem. Sensitive personal data is often stored on computers. An easy and efficient

method is needed to ensure data security. Information flow control (IFC) secures

sensitive information by imposing information flow policies to prevent data flow from

a private or higher security level to a public or a lower security level. IFC is a viable

solution to protect data by preventing data leakage as it can track the outputs of a

program. In IFC, the system monitors the flow of data from one place to another

and regulates the data flow from a higher security level to a lower security level. IFC

guarantees non-interference by preventing implicit and explicit flows [10]. IFC uses

4

type-systems [11] and labels to secure data and enforces this via compile-time checking.

The elementary IFC model has a security label - ‘high (h)’or ‘low (l)’associated with

data where the system makes sure no data flows from high to low level. IFC can be

helpful in securing the manipulation of high level and low level data on both client

and server-side [10]. Hence, it can be used to protect data in web applications. IFC

tracks the data flow in the web application that gives possible data leakage locations.

2.3 Information Flow Control Types

Several information flow control techniques were introduced to avoid data leakage.

IFC techniques can be categorized into two types: Static IFC and Dynamic IFC

2.3.1 Static Information Flow Control

In static information flow control, the analysis of the source code is done during

compile time and rejects programs that do not satisfy the rules and policies [10]. Even

though this approach is effective and minimizes the run-time checking, it is restrictive

for dynamically typed languages such as JavaScript [7].

2.3.2 Dynamic Information Flow Control

Static information flow analysis is not well-suited for dynamic scripting languages

and does not guarantee secure information propagation. To overcome these limitations,

dynamic IFC is introduced. In Dynamic information flow control, the policies are

enforced during runtime to prevent implicit data leakage. Dynamic analysis is often

slower than static information flow control in terms of performance but still guarantees

non-interference [10] [7].

5

2.4 Information Flow Control Techniques

No-sensitive-upgrade (NSU) [12] [13], permissive-upgrade (PU) [14] [4], secure

multi-execution (SME) [15], and faceted evaluation (FE) [5] are some of the mech-

anisms of dynamic information flow control which deal with implicit flows. All

these mechanisms guarantee non-interference property (termination insensitive non-

interference TINI) which is the private data does not flow through the public data.

Even though NSU and PU guarantees TINI, both of them halt execution. The

execution gets stuck when subtle implicit flows are present in the code to avoid any

sensitive data leakage [9]. This abrupt termination is not due to a web application

violation, or the rules and policies defined, but it is due to the limitation of the

mechanism to track implicit flows. Therefore, in some cases even valid programs are

rejected in dynamic analysis. Therefore, an approach is needed that doesn’t terminate

the program when it encounters the unsafe implicit flows, instead it should show some

counterfeit data. The issue with this approach is that the output might be inconsistent

with the standard language semantics.

Devriese and Piessens [15] implemented a mechanism for IFC called secure multi-

execution (SME) in which the program is divided into multiple copies and each copy

is associated with a security level. In SME, all the copies are executed independently,

hence giving the non-interference property. However, the problem with this approach

is as two copies of the program are executed for each principal, that is it executes

about 2𝑛 copies of the same program for n principals. Wing [7] has explained that

since a program needs to run multiple times in SME, the computation is increased

by a huge margin thereby decreasing the performance. Additionally, as the copies

are executed independently, this provides non-interference property i.e, making it

impossible to get the original data. But in the real-world, there is a necessity to

release some of the sensitive information.

6

Austin and Flanagan [9] introduced faceted evaluation (FE) using faceted value

data structure to overcome the issue with SME. Faceted values represent multiple

states for a value at various security levels which guarantees non-interference. A

faceted value is a pair of two raw values which contain the private data and public

data. In faceted evaluation, a single process can mimic the two processes that were

needed in SME. The benefit of this mechanism is when two raw values are similar, the

mechanism combines the two executions into a single execution which reduces overhead.

This mechanism can be used for n principals or values rather than only two. This

mechanism also guarantees termination insensitive non-interference property(TINI)

partly along with avoiding stuck executions. The faster performance of FE over SME

is proven by Wing [7].

2.5 Declassification for Dynamic Information Flow Control

In practical scenarios non-interference is not suitable. Some amount of information

leak is often needed in real systems. For instance, when a person tries to login to

an application, the correctness of the password is known to everyone. This leads

to some leakage of data that is needed but the system could still be called secure.

Often, the non-interference property needs to be relaxed in the real world scenarios.

Downgrading the non-interference property to make the confidential data as a public

data in a secured and controlled manner is called declassification of data. For example,

in the password scenario, a hashing algorithm can be used to encrypt data with a key

that is not known to public. A controlled way of declassifying would be to release

only the details about the hash of the password instead of the password itself.

It is difficult to declassify data using SME [9] [7]. The two processes in SME needs

to be coordinated, which again reintroduces the stuck evaluation and termination

channel. In contrast, it is easy to declassify a faceted value. A single value contains

7

both private and public levels that can be restructured easily to move the data from

one level to another level supporting declassification [5].

The rules for determining the restructuring is challenging as declassifying without

any restrictions will eventually lead to no security guarantee. Declassification can be

broadly classified into dimensions. If dynamic flow control methods such as faceted

values can incorporate all the dimensions of declassification, this concept would

become state of the art in the field of data security using IFC [8]. This research

focuses on incorporating these dimensions in real life scenarios and test the feasibility

of implementing all the dimensions. This research also studies the effectiveness of

faceted evaluation in releasing the sensitive information when its inevitable.

8

CHAPTER 3

Faceted Language

This project combines faceted value data structure [16] and native programming

language features to construct a Faceted Language (FL). FL supports the native

features of a programming language and faceted values data structure. This language

creates first-class labels which are created dynamically when needed. These labels are

associated with a public and a private values which are wrapped in a faceted value.

In this context, labels serve a role similar to object capabilities [17], in that labels

grant the authority to defacet faceted values.

JavaScript is most widely used in client-side and server-side scripting. It supports

dynamic typing, and first-class functions. This language is implemented in JavaScript

as the previous work has shown promising support of faceted values with JavaScript

[9][16].

3.1 Faceted Values

A faceted value has a security label, a higher level information and a lower level

information [16].

Syntax: < label ? privateValue : publicValue >

The above syntax represents faceted value. ‘label’ is a security label that

represents the access privilege of a user. ‘privateValue’ represents a higher level

data. ‘publicValue’ represents a lower level data.The syntax of faceted values

is similar to that of a ternary operator. While a ternary operator is an expression,

faceted value is a data structure. Based on the security label evaluation, each faceted

value evaluates to either a lower level data or a higher level data.

Faceted values can be nested. A single value or variable has multiple facets based

on the security labels associated with it.

Example:<label1 ? <label2 ? high : low2 > : low1>

9

3.1.1 Classification of data

Classification is wrapping of sensitive data and its associated security labels

in a faceted value. Let’s consider a scenario of credit card number where admin

can view all the digits of credit card number and others can view just the last four

digits. Figure 4 represents classify function. For easier understanding, this use-case

is implemented in JavaScript instead of FL. This can also be implemented in FL.

Faceted value returned in this function can be represented as fv = <label ?

creditCardNum: lastFourDigits>

Figure 4: Example implementation of classification of data

3.1.2 Defacet of data

Defacet is unwrapping the faceted value with the help of security labels. Figure 5

represents the defacet function that takes label and a faceted value as the input and

returns either a private value or a public value. If an admin wants to see the credit

card number, upon calling the defacet function with admin label displays the entire

credit card number. For example, defacet("admin", fv) will return the credit

card number and defacet("user", fv) will return the last four digits.

10

Figure 5: Example implementation of defacet function in JavaScript

3.2 Grammar and Semantics for Faceted Language
3.2.1 Grammar

Figure 6 represents the grammar for FL. This language contains expressions

(e) and values (v). This language supports boolean values, integer values, strings,

faceted values, and labels. The expressions (e) of this language are similar to most

of the imperative language features such as variables, values, assignment operators,

conditional expressions, binary operators, and function (lambdas) application. These

features are helpful in implementing functional programming aspect of JavaScript.

This language supports additional expressions for built-in support of faceted

values. The createLabel expression is used to create a new label dynamically

for the faceted values. The developers has the control over this label. Developers

can assign these labels to users based on their access privileges. This language also

supports classification and declassification of data for boxing and unboxing the faceted

values with dynamically created labels.

11

𝑒 ::= Expressions
𝑥 variables
𝑣 values
𝑥 := 𝑒 assignment
if 𝑒 then 𝑒 else 𝑒 conditional expressions
𝑒 𝑒 function application
binop (𝑒, 𝑒) binary operators
createLabel() creates a label dynamically
classify(𝑒, 𝑒, 𝑒) classify as faceted value
defacet(𝑒, 𝑒) defacets an expression

𝑏𝑖𝑛𝑜𝑝 ::= + | − | * | / | > | >= | < | <= Binary Operators

𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑜𝑝 ::= && | || Logical Operators

𝑣 ::= Values
𝑏 Boolean
𝑓 Faceted value
𝑖 Integer
𝑠 String
𝑙 Label
𝜆𝑥.𝑒 Function

Figure 6: The Faceted Language

3.2.2 Operational Semantics

The runtime behavior of any programming language is described by operational

semantics. Operational semantics are of two types: big-step and small-step semantics

[18]. This project formulates evaluation rules of FL using big-step operational seman-

tics. Figure 7 shows all the evaluation rules followed to delevop this language.

12

Evaluation Rules: 𝑒, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎
′

[bs-val]
𝑣, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎

[bs-var]
𝑥, 𝜎 ⇓𝑝𝑐 𝜎(𝑥), 𝜎

[bs-assign]
𝑒, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎

′

𝑥 := 𝑒, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎
′[𝑥 := 𝑣]

[bs-op]

𝑒1, 𝜎 ⇓𝑝𝑐 𝑣1, 𝜎1 𝑒2, 𝜎1 ⇓𝑝𝑐 𝑣2, 𝜎2

𝑣 = 𝑣1 𝑜𝑝 𝑣2

𝑒1 𝑜𝑝 𝑒2, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎2

[bs-iftrue]
𝑒, 𝜎 ⇓𝑝𝑐 𝑡𝑟𝑢𝑒, 𝜎1 𝑒1, 𝜎1 ⇓𝑝𝑐 𝑣1, 𝜎2

if 𝑒 then 𝑒1 else 𝑒2, 𝜎 ⇓𝑝𝑐 𝑣1, 𝜎2

[bs-iffalse]
𝑒, 𝜎 ⇓𝑝𝑐 𝑓𝑎𝑙𝑠𝑒, 𝜎1 𝑒2, 𝜎1 ⇓𝑝𝑐 𝑣2, 𝜎2

if 𝑒 then 𝑒1 else 𝑒2, 𝜎 ⇓𝑝𝑐 𝑣2, 𝜎2

[bs-application]

𝑒1, 𝜎 ⇓𝑝𝑐 (𝜆𝑥.𝑒
′), 𝜎1 𝑒2, 𝜎1 ⇓𝑝𝑐 𝑣, 𝜎2

𝑒′[𝑥 ↦−→ 𝑣], 𝜎2 ⇓𝑝𝑐 𝑣
′, 𝜎′

𝑒1 𝑒2, 𝜎 ⇓𝑝𝑐 𝑣
′, 𝜎′

[bs-label]
𝑣 := 𝑛𝑒𝑤 𝑆𝑦𝑚𝑏𝑜𝑙()

𝑐𝑟𝑒𝑎𝑡𝑒𝐿𝑎𝑏𝑒𝑙, 𝜎 ⇓𝑝𝑐 𝑣, 𝜎

[bs-classify]

𝑒1, 𝜎 ⇓𝑝𝑐 𝑘, 𝜎1 𝑒2, 𝜎1 ⇓𝑝𝑐 𝑣1, 𝜎2

𝑒3, 𝜎2 ⇓𝑝𝑐 𝑣2, 𝜎3 𝑓𝑣 :=< 𝑘 ? 𝑣1 : 𝑣2 >

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑒1 𝑒2 𝑒3, 𝜎 ⇓𝑝𝑐 𝑓𝑣, 𝜎3

[bs-defacet]

𝑒1, 𝜎 ⇓𝑝𝑐 𝑙, 𝜎1 𝑒2, 𝜎1 ⇓𝑝𝑐 𝑣, 𝜎2

𝑣1 := 𝑑𝑒𝑓𝑎𝑐𝑒𝑡(𝑙, 𝑣)

𝐷𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑒1 𝑒2, 𝜎 ⇓𝑝𝑐 𝑣1, 𝜎2

Figure 7: Big-Step Semantics for Faceted Language

13

𝑒 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎𝑛 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
𝑥 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝜎 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎 𝑠𝑡𝑜𝑟𝑒 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
𝑘 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑙𝑎𝑏𝑒𝑙
𝑏 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒
𝑓 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎𝑓𝑎𝑐𝑒𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
𝑣 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒
𝜆𝑥 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Figure 8: Notations

The language uses program counter pc to effectively manage labels of faceted

values.

BS-VAL

This big-step semantics represents that a value always evaluates to a value.

BS-VAR

BS-VAR big step semantics represents the variables of faceted language. The

program checks if the variable exists in the store and returns its value. According to

the evaluation rule, the value of the variable x is returned after the lookup of x in

(𝜎) data store.

BS-ASSIGN

The expression x := e indicates that the value of e is assigned to a variable x.

Firstly, the expression (e) is evaluated to a value type that the language supports

and if the variable x is not present in the store it adds the variable along with its

value to the store.

BS-OP

This represents the binary operation of the language. This takes two expressions

as inputs and evaluates to its corresponding values. These two values are evaluated

with its operator and the result is returned.

14

BS-IFTRUE and BS-IFFALSE

These semantics represents the if else conditional statements. If the expression

e1 evaluates to true then the expression e2 is evaluated or else the expression e3 is

evaluated.

BS-APPLICATION

This evaluation rule is for function application. The expression 𝑒1 evaluates

to a function and the expression 𝑒2 evaluates to a value that is consistent with the

language. This value is the parameter for the function that can return any primitive

value or a function.

BS-LABEL

A new label is created each time createLabel function is called. To implement

the functionality of label, built-in JavaScript objects called Symbols are used. A

new value gets generated every time new Symbol() is invoked. This implies that

any two Symbols are always unequal.

BS-CLASSIFY

Classify takes a label, a private value, and its corresponding public value as the

input and wraps these values in a faceted value. The expression e1 always evaluates

to a label and e2, e3 evaluate to supported values of the FL.

BS-DEFACET

Declassify unboxes the faceted value and give a private value or a public value

based on the access label. Declassify takes two expressions as inputs. The expression

e1 evaluates to a label and expression e2 can evaluate to a faceted value or any other

primitive values supported by the language. If e2 evaluates to a value other than

faceted value then the defacet returns the value without declassifying. If e2 evaluates

to a faceted value then the function declassifies the faceted value and returns a private

or a public value based on the user scope and associated security labels.

15

CHAPTER 4

Declassification

The security properties confidentiality and integrity that are specified by infor-

mation flow policies can be formalized as non-interference. According to this property

the confidential data does not affect the public data [6][19]. Pure non-interference

properties allow programs to flow from a low security level to a high security level but

not vice-versa. In practice, following non-interference property is often not suitable

for real-world scenarios. Often data needs to flow from a high security level to a lower

security level by preserving the data confidentiality. For instance, average salary given

by a company needs to be displayed from the salaries database which is sensitive for

statistical purposes. In this scenario, the sensitive information (salary) is flowing from

high security level to low security level [8]. Hence, downgrading of security policies in

a controlled manner is often necessary. Downgrading is specification of information

flow from a high level to a low level which is also known as declassification.

4.1 Declassification mechanisms

Declassification can be broadly classified into four axes or dimensions [8]. They

are: what information is released, where in the system information is released, who

releases the information, and when the information can be released.

4.1.1 Dimensions of Declassification

Every dimension satisfies the following criteria [8][20]:

• Information can flow from low to high level directly

• Information cannot flow from high to low level directly

• Information can flow from high to declassifier and declassifier to low level where

declassifier restricts the information flow based on rules and policies

16

The following are the four dimensions of declassification [8]:

1. What information is released

This classifier is based on what kind of information is released. This dimension

guarantees that there is only partial release of information. Selective or partial release

can be specified on exactly what parts of the sensitive information could be released.

For instance, based on context the of leaking SSN or password, the ‘what’classifier is

password field or the SSN field and the constraints are hash of the password or the

last four digits of SSN.

2. When the information can be released

This classifier is based on the temporal dimension of the information to be

released. For example, bidding information of an auction can be released only when it

is completed. In this classification, the secret information is leaked only if it can be

executed in a non-polynomial time. There are three specifications for the when based

dimension. They are:

• Time-complexity based: This policy states that information can be released

only after a specified time.

• Probabilistic: This policy states that the if possibility of hacker being able to

distinguish among the true values of secret in less than some constant value

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 then the system is secure [8]. 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 is a threshold value which can be

chosen when a policy is defined.

• Relative: This policy explains about relating the time when declassification

may occur and other actions that are being done in the system. As an ex-

ample, only after the payment is confirmed, the payment information can be

released(declassified).

17

3. Where the information is released

This classifier is based on the location where the information is released in

the system. For example, the information can be released only in the conditional

statements where the data is evaluated. In this dimension, if a part of the system

is authorized to release the information it is assured that no other part can leak the

information apart from the authorized part. There are two types of locality that could

be possible based on the where dimension of information release.

• Code locality: Code locality are a set of policies that can explain possibilities

of information leakage in the code.

• Level locality: Levels where information would flow in comparison to the

security levels of the system are explained by these policies.

4. Who releases the information

This classifier is based on the access levels of the user. If a user has access

to the information, he/she can release the data and is considered a valid use case.

Information release of data is said to be safe if it is performed by owner who is exactly

recorded in the data security label. It is important to specify ‘who’ controls the release

of information. One can use security labels for explicit owner information. Myers

and Liskov [21] proposed a combination model of information flow control and access

control. This model is used in implementation of Java Jif compiler [22].

Zdancewic and Myers have proposed a technique called robust declassification

[23] which ensures that attackers cannot misuse the information. This model assures

that if a passive attacker is not able to identify where the secret data is altered in two

memories then active attacker also cannot distinguish between those two memories.

18

CHAPTER 5

Implementation

This project mainly considers three views of writers. The language writer is

responsible for writing the language and semantics for Faceted Language. The language

writer has a better understanding of security principles than the other writers. The

library writer is responsible for writing the libraries for wrapping and unwrapping

the sensitive information using faceted values. The library writer is responsible

for assigning the dynamically created security labels to sensitive information. The

application writer or developer uses the functions given by library writer to classify

or declassify sensitive information. The labels creation and usage are not known to

application writer.

This section shows the implementation code for supporting faceted values in

JavaScript (Node.js) and various scenarios where declassification is possible with

faceted values. Library writers can use these declassification functions and faceted

values to build their own rules and policies based on the context and situations.

5.1 Faceted Language

The below are the code snippets for supporting faceted values in JavaScript. This

code follows runtime evaluation rules that are implemented in Chapter 3.

19

5.1.1 Dynamic label creation

Figure 9 represents the code snippet for createLabel functionality in

JavaScript. createLabel creates a new Symbol each time it is invoked. The

developer who has explicit access to the label can view the label and also assign these

labels to users. The security label gets created during runtime and cannot be modified

by any other function thus meeting the criteria to be called as first-class labels. Each

high level data can have a single label or an array of labels associated with it.

Figure 9: Dynamic security label creation

5.1.2 Classification of private data into a faceted value

Figure 10 represents classification of data into faceted values using first-class labels.

The function createFacetedValue takes secret and public as the input and wraps

or classifies those values using a dynamically created label. createFacetedValue

returns a faceted value with a newly created label and its associated secret and public

data.

Figure 10: Classification of data using first-class labels

20

5.1.3 Defaceting of faceted value based on the labels

Figure 11 represents the function that returns a value to the users based on their

access privileges on that faceted value. The caller gives a label or array of labels as

the input to the defacet function along with the faceted value for which he/she wants

to get the private information. Based on the given label or labels defacet function

returns a private value (leftValue) or a public value (rightValue).

Figure 11: Defacet function

21

5.2 Implementation of declassification scenarios in faceted values

This section shows flexibility of faceted values by implementing some of the

real-world scenarios for declassification.

5.2.1 Non-interference

Figure 12 shows how non-interference can be achieved in FV. The function

tiniMkSecret takes private and public data as the input and returns a faceted

value. In this function, there is no way in which declassification is possible for the

faceted value created by makeFacetedValueNI as the scope of the label is within

the function. Hence, in this example, we can create faceted values but we cannot get

the private value back, thus guaranteeing non-interference.

Figure 12: non-interference (No declassification)

5.2.2 Declassification with no restrictions

Figure 13 represents a function that returns the private data to anyone who

has access to declassifyWithNoRestrictions function. Library writers can

create a function that returns makefacetedValueForWithNoRestrictions

and its corresponding declassification function declassifyWithNoRestrictions

without any rules or policies. As seen from the code, FV are flexible to declassify

without imposing any constraints.

22

Figure 13: Declassification with no restrictions

5.2.3 Temporal dimension based declassification

Figure 14 represents an example of time based declassification. Auction scenario

can be taken as an example for when based declassification. A policy that is relevant

to this scenario is “release the bid information only after the auction is completed”.

timebasedMkSecret takes private and public facets as input along with auction

closing time. The developer can design a function as Figure14 and give access to the

label to all the bidders. If anyone tries to access the bid data before the auction ends,

they won’t be able to see the actual bid information. However, once the auction ends,

everyone can view the bid information. Faceted values are functioning as required in

this scenario as well. There are no changes to the language semantics to perform this

type of declassification operation.

23

Figure 14: Time based declassification

5.2.4 Declassification to release hash of the password

A canonical example of what based declassification is release of password. The

password is still protected even if the hash is leaked. As hashing is a one-way

encryption, there is no way to get the password using the hash. A policy that

states “only hash of the password may be released when a user tries to login” can

be implemented using faceted values. Developers can use this function to create

faceted values for password with the help of makeFacetedValueForPassword

and also release the hash of the password with the help of hashPassword. If a

hacker/third-party system requests to view password or validate password, the hash

of the password is returned. Here, the password itself is not leaked. Hence, the system

is still secure.

24

Figure 15: Declassification for releasing Hash of the password

5.2.5 Release last four digits for Credit Card

This scenario is another example of what based declassification. Here, we need

to release the information about credit card but the policy is “release only the last

four digits to the authorized users”. This can be easily implemented using FV. Figure

16 represents the code snippet for this policy. makeCreditCardFacetedValue

gives the faceted value that represents the credit card number. The function

getLastFourDigits gives the last four digits of the credit card number if the user

has access to the security label, else an empty string is displayed.

25

Figure 16: Declassification for releasing last four digits of the credit card

5.2.6 Who based Declassification example

Figure 17 represents an example scenario of who based declassification. The

library writer explicitly specifies or stores the list of valid users who can classify and

declassify sensitive information. The function makeFacetedValues can be used for

creating faceted values and the function releaseData can be used for declassifying

the sensitive information.

26

Figure 17: Who based declassification

5.2.7 Limitations of Declassification with faceted values

Library writer bears an additional responsibility of carefully writing the rules of

declassification. If the functions written by library writer are compromised then the

system becomes vulnerable to attacks.

In the who based declassification mechanism implemented in this project, the

library writer explicitly specifies which user can classify or declassify the data. But,

ideally this is not a suitable approach and is prone to attacks. Zdancewic and Myers

[23] implemented Robust declassification system. Our implementation doesn’t support

this system as it needs an overhead of adding a new data structure pair which has a

pair of labels. Each pair has two labels. One label represents which user can modify

the sensitive information (Integrity) and the other label represents the authorization

of user to view the sensitive information (Confidentiality).

27

In this project, level locality of where based declassification is internally imple-

mented by nested faceted values. This project has not explored the code locality

where based declassification. This could be a future direction for this project.

JavaScript introspection exposes all the functions and properties associated with

FV object. We need a mechanism that doesn’t allow the introspection related function

calls. Our approach assumes that all the JavaScript Reflection function calls are not

allowed.

28

CHAPTER 6

Conclusion and Future Work

The necessity for an optimal data security mechanism is increasing with the

amount of data and huge number of web applications. This project explored declassi-

fication for information flow analysis specifically focusing on faceted values.

The combination of first-class labels and faceted values have shown promising

results for implementing different declassification scenarios. We validated our approach

by implementing different scenarios that covers the ‘what’ [8], ‘when’ [8], ‘who’ [8]

[23], non-interference, and unrestricted declassification for faceted values. With the

help of the implemented examples, we can infer that faceted values and first-class

labels are flexible for implementing most of the dimensions of declassification without

changing the semantics of the language.

Future work for this project is to combine multiple dimensions of declassification

to define a policy for practical scenarios. Another interesting direction could be

to implement Robust declassification [23] to make the who based declassification

secure. Another idea is to implement ‘where’ based declassification. Another idea is

to incorporate all the policies and rules for an entire web application. This would

give conclusive proof of the flexibility of faceted values for declassification as a whole.

This research can also be extended by formulating concrete mathematical proofs to

guarantee the security properties of the language design.

29

LIST OF REFERENCES

[1] ‘‘Top 10 biggest government data breaches of all time in the u.s.’’ 2015. [Online].
Available: https://digitalguardian.com/blog/top-10-biggest-us-government-data-
breaches-all-time

[2] A. Birgisson, A. Russo, and A. Sabelfeld, ‘‘Capabilities for information flow,’’ in
Proceedings of the ACM SIGPLAN 6th Workshop on Programming Languages
and Analysis for Security, ser. PLAS ’11. New York, NY, USA: ACM, 2011, pp.
5:1--5:15. [Online]. Available: http://doi.acm.org/10.1145/2166956.2166961

[3] J. A. Goguen and J. Meseguer, ‘‘Security policies and security models,’’ in 1982
IEEE Symposium on Security and Privacy, April 1982, pp. 11--11.

[4] T. H. Austin and C. Flanagan, ‘‘Permissive dynamic information flow analysis,’’
in Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, ser. PLAS ’10. New York, NY, USA: ACM, 2010, pp.
3:1--3:12. [Online]. Available: http://doi.acm.org/10.1145/1814217.1814220

[5] T. H. Austin, T. Schmitz, and C. Flanagan, ‘‘Multiple facets for
dynamic information flow with exceptions,’’ ACM Trans. Program. Lang.
Syst., vol. 39, no. 3, pp. 10:1--10:56, May 2017. [Online]. Available:
http://doi.acm.org/10.1145/3024086

[6] P. Li and S. Zdancewic, ‘‘Downgrading policies and relaxed noninterference,’’ in
Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’05. New York, NY, USA: ACM, 2005, pp.
158--170. [Online]. Available: http://doi.acm.org/10.1145/1040305.1040319

[7] T. Wing, ‘‘Secure declassification in faceted javascript (2016). master’s projects.
472.’’ M.S. Thesis. 472, San Jose State University, San Jose, CA, United States,
2016. [Online]. Available: http://scholarworks.sjsu.edu/etd_projects/472

[8] A. Sabelfeld and D. Sands, ‘‘Dimensions and principles of declassification,’’ in
18th IEEE Computer Security Foundations Workshop (CSFW’05), June 2005,
pp. 255--269.

[9] T. H. Austin and C. Flanagan, ‘‘Multiple facets for dynamic information
flow,’’ in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’12.
New York, NY, USA: ACM, 2012, pp. 165--178. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103677

30

https://digitalguardian.com/blog/top-10-biggest-us-government-data-breaches-all-time
https://digitalguardian.com/blog/top-10-biggest-us-government-data-breaches-all-time
http://doi.acm.org/10.1145/2166956.2166961
http://doi.acm.org/10.1145/1814217.1814220
http://doi.acm.org/10.1145/3024086
http://doi.acm.org/10.1145/1040305.1040319
http://scholarworks.sjsu.edu/etd_projects/472
http://doi.acm.org/10.1145/2103656.2103677

[10] A. Russo and A. Sabelfeld, ‘‘Dynamic vs. static flow-sensitive security analysis,’’
in 2010 23rd IEEE Computer Security Foundations Symposium, July 2010, pp.
186--199.

[11] V. Rajani, I. Bastys, W. Rafnsson, and D. Garg, ‘‘Type systems
for information flow control: The question of granularity,’’ ACM
SIGLOG News, vol. 4, no. 1, pp. 6--21, Feb. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3051528.3051531

[12] S. A. Zdancewic, ‘‘Programming languages for information security,’’ Ph.D.
dissertation, Ithaca, NY, USA, 2002, aAI3063751.

[13] T. H. Austin and C. Flanagan, ‘‘Efficient purely-dynamic information flow
analysis,’’ SIGPLAN Not., vol. 44, no. 8, pp. 20--31, Dec. 2009. [Online].
Available: http://doi.acm.org/10.1145/1667209.1667223

[14] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, ‘‘Generalizing
permissive-upgrade in dynamic information flow analysis,’’ in Proceedings of
the Ninth Workshop on Programming Languages and Analysis for Security,
ser. PLAS’14. New York, NY, USA: ACM, 2014, pp. 15:15--15:24. [Online].
Available: http://doi.acm.org/10.1145/2637113.2637116

[15] D. Devriese and F. Piessens, ‘‘Noninterference through secure multi-execution,’’
in 2010 IEEE Symposium on Security and Privacy, May 2010, pp. 109--124.

[16] A. Kalenda, ‘‘Implementation of faceted values in node.js, (2017). master’s
projects. 564.’’ M.S. Thesis. 564, San Jose State University, San Jose, CA, United
States, 2017. [Online]. Available: http://scholarworks.sjsu.edu/etd_projects/564

[17] M. S. Miller, K.-P. Yee, and J. Z. Shapiro, ‘‘Capability myths demolished,’’ 2003.
[Online]. Available: http://www.erights.org/elib/capability/duals/capmyths.txt

[18] C. Bach Poulsen and P. D. Mosses, ‘‘Deriving pretty-big-step semantics
from small-step semantics,’’ in Proceedings of the 23rd European Symposium
on Programming Languages and Systems - Volume 8410. New York, NY,
USA: Springer-Verlag New York, Inc., 2014, pp. 270--289. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-54833-8_15

[19] J. A. Goguen and J. Meseguer, ‘‘Security policies and security models,’’ 1982
IEEE Symposium on Security and Privacy, pp. 11--11, 1982.

[20] A. Askarov and A. Sabelfeld, ‘‘Localized delimited release: Combining the
what and where dimensions of information release,’’ in Proceedings of the
2007 Workshop on Programming Languages and Analysis for Security, ser.
PLAS ’07. New York, NY, USA: ACM, 2007, pp. 53--60. [Online]. Available:
http://doi.acm.org/10.1145/1255329.1255339

31

http://doi.acm.org/10.1145/3051528.3051531
http://doi.acm.org/10.1145/1667209.1667223
http://doi.acm.org/10.1145/2637113.2637116
http://scholarworks.sjsu.edu/etd_projects/564
http://www.erights.org/elib/capability/duals/capmyths.txt
http://dx.doi.org/10.1007/978-3-642-54833-8_15
http://doi.acm.org/10.1145/1255329.1255339

[21] A. C. Myers and B. Liskov, ‘‘Protecting privacy using the decentralized label
model,’’ ACM Trans. Softw. Eng. Methodol., vol. 9, no. 4, pp. 410--442, Oct.
2000. [Online]. Available: http://doi.acm.org/10.1145/363516.363526

[22] K. Pullicino, ‘‘Jif: Language-based information-flow security in java,’’ CoRR,
vol. abs/1412.8639, 2014. [Online]. Available: http://arxiv.org/abs/1412.8639

[23] S. Zdancewic and A. C. Myers, ‘‘Robust declassification,’’ in Proceedings of
the 14th IEEE Workshop on Computer Security Foundations, ser. CSFW ’01.
Washington, DC, USA: IEEE Computer Society, 2001. [Online]. Available:
http://dl.acm.org/citation.cfm?id=872752.873524

32

http://doi.acm.org/10.1145/363516.363526
http://arxiv.org/abs/1412.8639
http://dl.acm.org/citation.cfm?id=872752.873524

	Declassification of Faceted Values in JavaScript
	Recommended Citation

	Introduction
	Background
	Information Flow
	Explicit Flow
	Implicit Flow

	Overview of Information Flow Control (IFC)
	Information Flow Control Types
	Static Information Flow Control
	Dynamic Information Flow Control

	Information Flow Control Techniques
	Declassification for Dynamic Information Flow Control

	Faceted Language
	Faceted Values
	Classification of data
	Defacet of data

	Grammar and Semantics for Faceted Language
	Grammar
	Operational Semantics

	Declassification
	Declassification mechanisms
	Dimensions of Declassification

	Implementation
	Faceted Language
	Dynamic label creation
	Classification of private data into a faceted value
	Defaceting of faceted value based on the labels

	Implementation of declassification scenarios in faceted values
	Non-interference
	Declassification with no restrictions
	Temporal dimension based declassification
	Declassification to release hash of the password
	Release last four digits for Credit Card
	Who based Declassification example
	Limitations of Declassification with faceted values

	Conclusion and Future Work
	LIST OF REFERENCES

