
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-20-2019

Low Power MobileNets Acceleration In Cuda And OpenCL Low Power MobileNets Acceleration In Cuda And OpenCL

Nikhil Lahoti
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Lahoti, Nikhil, "Low Power MobileNets Acceleration In Cuda And OpenCL" (2019). Master's Projects. 680.
DOI: https://doi.org/10.31979/etd.5g5e-pvww
https://scholarworks.sjsu.edu/etd_projects/680

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/680?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F680&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A Writing Project Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

By

Nikhil Lahoti

Spring 2019

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

The Designated Project Committee Approves the Project Titled

Low Power MobileNets Acceleration In Cuda And OpenCL

By

Nikhil S. Lahoti

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

SPRING 2019

Dr. Robert Chun, Department of Computer Science

Dr. Hyeran Jeon, Department of Computer Engineering

Dr. Thomas Austin, Department of Computer Science

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

ABSTRACT

Convolutional Neural Network (CNN) has been used widely for the tasks of object recognition and facial

recognition because of their remarkable results on these common visual tasks. In order to evaluate the

performance of CNN for embedded devices effectively, it is essential to provide a comprehensive

benchmark evaluation environment. Even though there are many benchmark suites available for use, but

these benchmark suites require installation of various packages and proprietary libraries. This creates a

bottleneck in using them in applications which are executed on resource constraint devices like embedded

devices.

In this paper, we propose an evaluation platform which can be used for evaluation on any platform that

supports Cuda and OpenCL. This evaluation platform was executed on Nvidia TX2 Jetson board

embedded device and commodity hardware without needing any extra proprietary libraries to execute the

model. We also achieved 4.5-fold gain in execution speed of the Cuda and OpenCL model. The model

also exactly predicts images as the Python based with 100% accuracy. We also provide in-depth statistics

about the CNN network execution pattern by executing the model on embedded devices and commodity

hardware.

Index terms - CNN, Benchmark Suite, Embedded devices, Cuda, OpenCL, Deep Neural Network

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

ACKNOWLEDGEMENT

I would like to express my gratitude to my project advisor Dr. Robert Chun for his support and

guidance. I would not have been able to complete this project without Dr. Chun’s and Dr. Hyeran

Jeon’s valuable suggestions. I would also like to thank my committee members Dr. Hyeran Jeon

and Dr. Thomas Austin for their suggestions and time.

I am also thankful to my friends and family for all the moral support and constant encouragement.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

TABLE OF CONTENTS

I. Introduction ... 1

II. Hardware Implementation ... 4

A. FPGA ... 5

B. GPU .. 5

III. Convolution Neural Network .. 8

A. MobileNets Architecture ... 9

B. Depthwise Separable Convolution ... 9

C. Pointwise Separable Convolution .. 11

IV. Implementation ... 13

A. In Cuda... 13

B. In OpenCL ... 19

V. Experiments .. 21

A. Setup .. 21

B. Preprocessing .. 22

C. Experiment .. 23

VI. Conclusion ... 35

VI. References ... 36

i

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

TABLE OF FIGURES

Figure 1. FPGA Architecture .. 5

Figure 2. GPU Architecture .. 7

Figure 3. CNN Architecture .. 8

Figure 4. Depthwise Separable Convolution .. 10

Figure 5. Pointwise Separable Convolution ... 11

Figure 6. Standard Vs Depthwise Convolution .. 12

Figure 7. MobileNets Architecture .. 13

Figure 8. Cuda Version First Layer Execution Pattern ... 15

Figure 9. Cuda Version Fourth Layer Execution Pattern.. 16

Figure 10. Kernel Per Layer ... 16

Figure 11. Saving Keras Weight .. 23

Figure 12. Experiment Images ... 24

Figure 13. Execution Time Python Vs Cuda Model ... 26

Figure 14. Operation Percentage .. 27

Figure 15. Memory Stalls PSC ... 29

Figure 16. Memory Stalls DSC .. 30

Figure 17. Memory Stalls Average Pooling ... 31

Figure 18. Execution of Each Instruction ... 32

Figure 19. Execution Time Python Vs OpenCL Model .. 34

ii

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 1

I. Introduction

In recent years, the use of machine learning models especially the Deep Neural Network

(DNNs) has been the prime research focus area for visual tasks. Convolutional Neural Network

(CNNs), a type of DNN, have been able to achieve state of the art performance in common

visual tasks like object detection and facial recognition. In the past years, three well-known CNN

models – GoogLeNet, AlexNet, and VGGNet, which are all the winners of the annual ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) organized by the Stanford University, have

been able to achieve comparable results to a human being in the task of image recognition [1].

Image recognition has long been known to be a very difficult problem to solve for computers and

computer systems, but humans can perform these tasks with ease. Such noteworthy results

achieved by CNNs have been one of the reasons for their widespread use in all sorts of tasks

from number plate detection [2] to car classification [3].

CNNs history goes way back in 1960 when researchers D. H. Hubel and T. N. Wiesel [4]

proposed a new model that was inspired by the working of the visual system of mammals. Their

model was based on the visual cortex model of cats and monkeys. [4] They showed that the

visual system is made up of neurons and that the neurons are arranged in a layered architecture.

They also showed that neurons directly respond to the other neurons in their direct environment.

In 1980, researcher Fukushima [5] proposed a neural network model called “neocognitron”

which was based on hierarchy. The model was able to recognize patterns in the image by

identifying the different shapes inside of them. The working of the model was based on simple

and complex neurons. Simple neurons are only activated when they see a certain shape or form

at certain angles. Complex neurons have a much larger receptive field and hence are not sensitive

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 2

to such specific requirements. Despite these advancements, none of the models was able to

achieve reasonable results in the task of image recognition. In 1986, Yann Le Cun et al [6] were

the first to achieve any noteworthy results, when they developed a model with the use of CNNs

to recognize handwritten digits. Similar to the “neocognitron” model, this model was also

arranged in a hierarchical manner. The problem with this model was its significant computations

requirement to process, which at the time was impossible to employ. Since then there has been a

lot of focus in finding ways to satisfy the requirements of the CNNs.

In 2012, Alex Krizhevsky et al [14] successfully parallelized the CNN computation on a GPU

and were the first to utilize GPU in general purpose computing. They secured the first position in

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 and achieved a top-5

error rate of 15.3%, lower by more 10.8 percent than the runner up [23]. Because of these

amazing results, every model participating in the ImageNet competition since then have been

based on CNN. Since then new CNN model structures have been proposed to make efficient

CNN algorithms to make them applicable in day to day activities.

Other focus to make the CNN run efficiently and quickly have been in making better hardware

and computer architectures. In order for computer architects to verify the newer computer

architectures and optimizations, a comprehensive environment is needed for evaluation.

Benchmark suites are commonly used for this purpose. Such benchmark suites have been really

common for testing the effectiveness for the CPU architectures. For e.g. C. Cullinan et al [19]

from MathWorks and SPEC [20] benchmark is commonly known for testing efficiency of CPU

applications in the past.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 3

In the DNN world, such benchmark suites have been coming up regularly[21][22]. These

benchmarks, despite being comprehensive, have a few problems of their own. The problem with

these frameworks is that they require lot of other third-party installations and packages to

function properly (e.g. Keras [24], Tensorflow [25], and PyTorch [26]). Such computation and

resource intensive packages cannot be installed on low compute devices like embedded devices

and mobile phones due to their low constraints.

In addition to the computation requirement, these benchmarks also work with certain limited

number of packages which are proprietary products of institutions and individuals (e.g. CUBLAS

[27] and cuDNN [28] of Nvidia). Making optimizations and any modifications to these libraries

thus becomes impossible because of the proprietary nature. This puts a limitation for testing

newer frameworks and architectures which cannot be installed due to the resource limitations

and compatibility issues. Hence there is a need for a new benchmark suite for testing

applications, especially on embedded devices which suffer due to the resource requirements of

the existing benchmark suites.

In this paper, we provide a new benchmark suite with the MobileNets model which can be

executed on any architectures that can execute Cuda and OpenCL. Users can freely use the

benchmark to test their applications, modifications and newer architectures to evaluate the results

and get valuable information. The model is implemented without using any proprietary code, and

hence, modifications to the model code can be done without any problem and any cost.

Section II discusses the history of the hardware implementation that are tried in the past to

satisfy CNN requirement. In Section III, we talk about CNN & MobileNets architecture in

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 4

depth to understand the model. Section IV talks about the implementation details, and in

section V we discuss the results and experiments conducted.

II. Hardware Implementations

CNN model has a layered architecture. The output of one layer is then given as an input to the

layer ahead of it in the architecture. Each layer of the CNN model performs the same

mathematical computations over and over again. For the most part, these operations are a series

of dot product operations between the matrices (the weight and the input matrices) to get the

result matrix. The operations do not have any dependency within the same layer and hence they

can be performed in parallel. To cope with the computation requirements of the CNNs,

researchers have attempted to make use of various hardware implementations to satisfy the

needs. Following are the approaches:

i) FPGA

Field Programmable Gate Arrays (FPGAs) [5] are semiconductor devices which are arranged in

the form of a matrix. They are made up of configurable logic blocks (CLBs) which forms the

matrix nodes, and the CLBs are connected via a programmable interconnect. They can be

reprogrammed with many hardware languages like VHDL and Verilog to satisfy the needs of the

application functionality. A single board can have millions of such CLBs to satisfy the

programming needs. The CLBs can be grouped together to solve one set of tasks, while other

CLBs can be grouped to solve other set of tasks and so on. This way, all the tasks can run and be

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 5

executed in parallel. Fig. 1 shows the architecture of an FPGA.

 Figure 1: FPGA [11]

In 2002, Z. Nagy et al [11] made use of FPGAs for CNN computations. They used the

distributed arithmetic approach which optimized the FPGA architecture and achieved smaller

and faster arithmetic units than the conventional approach of multiplier cores and adder trees for

state computation of CNN arrays. Another approach of parallelizing using FPGA was used by C.

Huang et al [12] in 2017 when they optimized and deployed all the layers of the CNN model in a

pipelined architecture on the Xilinx FPGA board. Many such approaches involving the use of

FPGA have been proposed for CNN implementation.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 6

ii) GPU

Graphical Processing Units (GPUs) [13] are hardware units which perform rapid mathematical

calculations in parallel. They were primarily designed for rendering visuals onto the screen and

to offload the computations which were earlier performed on the CPU. A GPU has thousands of

single-purpose cores as opposed to the CPU which has limited multipurpose cores.

In 2012, A. Krizhevsky [14] made the first use of GPUs in general purpose computing when they

implemented a CNN model using the Cuda parallel platform. Cuda [15] is a parallel computing

platform provided by Nvidia corporation to program and run computations on a GPU. After this,

all the CNN models which have won the image recognition competitions have all been based on

the training on a GPU.

In 2017, S. Oh et al [16] made use of the GPU on the embedded devices to train the CNN

models. They were able to achieve about 65% accuracy from the model trained on a GPU than

the model trained on a CPU, but the model only consumed about 1.2 % of the total energy used

by the CPU model. This was a significant result for the CNN training on a GPU. Below is the

architecture of the GPU.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 7

 Figure 2: GPU Architecture [13]

In recent years, Graphical Processing Units (GPUs) have been used in training CNN models.

GPUs are made up of 1000’s of cores, each of which is capable of working independently and

performing mathematical operations in parallel. This is different from the Central Processing

Unit (CPU) which have a limited number of cores and which were used in the past for CNN

computations. As these operations can be performed in parallel, using a GPU has been

incorporated. Embedded devices and mobile phones are generally equipped with a GPU, and

hence, advantage can be taken by performing CNN computations on these GPUs.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 8

III. Convolutional Neural Networks

CNNs are a type of Deep Learning model which are made of neurons arranged in the form of

layers. This layered architecture is based on the working of the human brain where neurons are

connected to one another and pass information amongst them. CNNs are like the deep neural

networks except that the neurons in one layer are connected to only a few neurons in the

previous layer [7] rather than being connected to all the neurons. Neurons consist of weights and

biases which are the learnable parameters of the network. Below is the diagram of the

architecture of the convolutional neural network.

 Figure 3: Architecture of CNN[15]

As shown in the diagram, the initial layers are connected to only a few neurons of the previous

layer. The architecture also consists of a Pooling and Subsampling layer in the middle which is

used to exclude trivial information learned by the network. CNNs usually have a fully connected

layer at the end of the network just before the output layer.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 9

MobileNets Architecture

MobileNets are lightweight CNN model developed by A. Howard et al [17] at Google and was

published in 2017. They have achieved tremendous results in spite of the model having

substantially fewer parameters than the other well-known model. The MobileNets model [17],

has various versions available for use based on the hyperparameters selected by the user. The

largest MobileNets model has only 4.2 million parameters as opposed to the VGGNet which has

138 million parameters. A. Howard [17] showed that despite the reductions in the number of

parameters, the model performed strongly against the well-known models on the ImageNet

classification. MobileNets was able to achieve a top-1 error rate of 70.6 % against the VGGNet

which achieved 71.2 % accuracy. The top-5 error rate performance of the MobileNets is 88.4%

[17] while that of the VGGNet is 89.2%. The MobileNets model performed well and consumes

much less computation power and resources than the other well-known CNN models. Thus, this

model perfectly represents the kind of load and computation requirement that can be executed

on an embedded device.

Depthwise Separable Convolution lies at the heart of the model and hence we discuss about it in

this section.

Depthwise Separable Convolution

Depthwise Separable convolution divides a standard convolution operation into multiple steps,

namely depthwise convolution and pointwise convolution. It was first proposed by L. Sifre [18]

in this Ph.D. thesis work. A standard convolution applies the convolution operation across spatial

and temporal dimension, all in the same step, i.e. the same kernel is used to combine the

operations across multiple channels. Depthwise Separable convolution performs a two-step

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 10

operation. In the first step, it applies a single kernel operation across a single channel called as

the depthwise operation (operating on each depth separately), and in the second step, it combines

the results from multiple different channels to the final output. Overall, it achieves the same

effect on the input matrix but divides it into multiple steps, achieving a tremendous reduction in

the number of parameters in the process as we will see later.

A depthwise convolution takes as an input a matrix of size DF x DF x M, where DF is the width

and height of the input image and M is the number of channels in the input image (typically there

are 3 channels), N kernels of size DK x DK is applied to get DG x DG output matrix. Each of the N

kernels is applied separately on each channel. This is different from the standard convolution

where the kernel is applied across all the channels. The operation of the depthwise separable

convolution is as shown below:

 Figure. 4: Depthwise Separable Convolution [29]

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 11

Pointwise Separable Convolution

The output of the depthwise phase is given as an input to the pointwise phase. In the pointwise

phase, the output from all the channels is combined together to get the resultant matrix. The input

is of size DG x DG x M and is applied to N kernels each of size 1 x 1 x M to get the output as DG x

DG x N. The 1 x 1 operation combines different channels and hence the number of channels in

the kernel is the same as the number of channels in the input matrix. The entire operation can be

seen below.

 Figure. 5: Pointwise Separable Convolution [29]

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 12

Fig 6 shows the comparison between the standard convolution operation and the depthwise

separable convolution. One standard convolution is broken down into two steps which is able to

significantly reduce the number of parameters needed by the model.

Figure 6: Standard Convolution Vs Depthwise Separable Convolution [17]

The MobileNets model has 28 layers in total. The first and the final layers in the model are the

standard convolution fully connected layers where neurons on one layer are connected to all the

neurons in the previous layer. The middle layers consist of the depthwise and pointwise

convolution layers arranged one after the other. The model also contains a max pooling layer

which is used to remove the trivial information that the model has learned so far.

After each pointwise layer, the model also has a batch normalization layer. Batch normalization

is used so that each layer can learn the input and the relations a little bit by itself rather than

completely relying on the other layers in the network.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 13

The entire MobileNets architecture is as shown in Fig 7. There are in total 28 layers, with 2

Fully connected layers, 13 depthwise and 13 pointwise layers. Each layer also contains the stride

parameter which is shown in the first column.

Figure 7: MobileNets Architecture [17]

VI. Implementation

A) Implementation in Cuda

All the 28 layers of the MobileNets model are implemented in Cuda. Each layer requires the

values for its weight matrices in order to correctly predict the output. For this purpose, we

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 14

collected the weight matrix values into separate files, and these weight files are partitioned into

their appropriate folders. E.g. all the weight files required by the first layer are stored at

data/FirstLayer path relative to the root folder. The input files include the weight and batch

normalization parameter files (One input file each for Standard Deviation, Epsilon, Beta &

mean).

Each Cuda kernel is given an input of the above-mentioned parameters. For each output value,

we launch one thread which processes that portion of the output matrices. For the most part, each

layer in the model is launched with one kernel. However, we do have certain kernel layers for

which launching the required amount of thread is not possible because of the limitation in the

maximum amount of threads. To process such kernels, we divide our layer into multiple kernels.

For e.g. for the first layer of the model which is a fully connected layer, the input of this layer is

of size (224 x 224 x 3) (the input image), and we perform a 3D Convolution with the filter size

of (3 x 3 x 3) and having 32 such filters giving an output of (114 x 114 x 32). Hence, launching

kernels of size (114 x 114 x 32) is not possible in a single go. We, therefore, divide the layer

processing into 3 kernels, each processing a different part of the output matrix as shown below.

The blue part covers portion from 0-96 on x-axis and 0-96 on y-axis, the grey from 96 -112 on

the x-axis and 0 – 112 on the y-axis, and the green from 0 - 96 on the x-axis and 96 – 112 on the

y-axis. The output for the next layer needs to perform padding on the input matrix, so we decide

to handle the padding in this layer itself improving the performance and reducing the effort to

relaunch new kernels to achieve the same operation and results.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 15

Figure 8: Kernel Execution for First Layer

The reason for launching multiple kernels for processing a single layer was not only due to the

maximum thread limitation but was also to get the best performance of the underlying

architecture and following the best-known practices. It is commonly known for each kernel to

have threads in a multiple of 32 to get the best performance of the Nvidia Cuda architecture due

to the reason that threads in Nvidia Cuda architecture are launched in hardware in batches of 32.

Thus, to get the maximum performance and optimize our implementation to give the best results,

we also divided certain layers into multiple kernel calls. For example. consider the fourth kernel

which has an input of size (113 x 113 x 64) with the 2-dimensional convolution of a filter of size

(3 x 3) with 64 such filters, giving an output of size (56 x 56 x 64). We divide the kernel call into

4 parts each having the thread count in the multiple of 32 to get the best performance. The

execution pattern followed for the layer is as mentioned below in Fig. 9. As mentioned before,

we manage the padding code in this layer itself to get the matrix right for the next layer.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 16

Figure 9: Kernel Execution for Fourth Layer

The number of kernel call divisions for each layer are shown in the Fig. 10 below:

 Figure 10. Kernel Calls per Layer

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

17

Threads in Cuda and other parallel programming platforms are launched in grids and blocks.

Similar to the construct of a single process in a CPU, where threads within a single process share

resources and communicate with each other, threads within the same block are also able to share

resources and are able to communicate with one another. Blocks of threads are launched in the

form of a grid. Launching the threads in the grid and block format helps in indexing the threads

really effectively. The Cuda kernel configurations of each individual layer such as grid

dimension and block dimension are also shown below.

Table 1. Grid and Block Dimensions for Cuda model

 Grid Dimensions Block Dimensions

First Layer – A (32, 3, 3) (32, 32)

First Layer – B (32, 7) (16, 16)

First Layer – C (32, 6) (16, 16)

Second Layer – A (32, 3, 3) (32, 32)

Second Layer – B (32, 7) (16, 16)

Second Layer – C (32, 6) (16, 16)

Third Layer – A (64, 3, 3) (32, 32)

Third Layer – B (64, 7) (16, 16)

Third Layer – C (64, 6) (16, 16)

Fourth Layer – A (64, 1, 1) (32, 32)

Fourth Layer – B (64, 1, 1) (32, 24)

Fourth Layer – C (64, 1, 1) (24, 32)

Fourth Layer – D (64, 1, 1) (24, 24)

Fifth Layer – A (128, 1,1) (32, 32)

Fifth Layer – B (128, 1,1) (32, 24)

Fifth Layer – C (128, 1,1) (24, 32)

Fifth Layer – D (128, 1,1) (24, 24)

Sixth Layer – A (128, 1,1) (32, 32)

Sixth Layer – B (128, 1,1) (32, 24)

Sixth Layer – C (128, 1,1) (24, 32)

Sixth Layer – D (128, 1,1) (24, 24)

Seventh Layer – A (128, 1,1) (32, 32)

Seventh Layer – B (128, 1,1) (32, 24)

Seventh Layer – C (128, 1,1) (24, 32)

Seventh Layer – D (128, 1,1) (24, 24)

Eighth Layer (128, 1,1) (28, 28)

Ninth Layer (256, 1,1) (28, 28)

Tenth Layer (256, 1,1) (28, 28)

Eleventh Layer (256, 1,1) (28, 28)

Twelfth Layer (256, 1,1) (14, 14)

Thirteenth Layer (512, 1,1) (14, 14)

Fourteenth Layer (512, 1,1) (14, 14)

Fifteenth Layer (512, 1,1) (14, 14)

Sixteenth Layer (512, 1,1) (14, 14)

Seventeenth Layer (512, 1,1) (14, 14)

Eighteenth Layer (512, 1,1) (14, 14)

Nineteenth Layer (512, 1,1) (14, 14)

Twenty Layer (512, 1,1) (14, 14)

Twenty-One Layer (512, 1,1) (14, 14)

Twenty-Two Layer (512, 1,1) (14, 14)

Twenty-Three Layer (512, 1,1) (14, 14)

Twenty-Four Layer (512, 1,1) (14, 14)

Twenty-Five Layer (1024, 1,1) (7,7)

Twenty-Six Layer (1024, 1,1) (7,7)

Twenty-Seven Layer (1024, 1,1) (7,7)

Twenty-Eight Layer (1, 1,1) (32,32)

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 19

The operations were performed on three different types of hardware. The configurations of the

three hardware’s are as shown below in Table 2. The three hardware include a GPU server, a

commodity hardware laptop, and an embedded Nvidia Jetson board hardware unit.

Table 2: GPU Architectures

Parameters Nvidia Jetson board Commodity Hardware GPU Server

Architectures Tegra Maxwell Kepler

Global Memory 4 GB 8 GB 24 GB

Cuda Cores 256 640 2880

Shared/L1D 48KB 64KB per block 128 KB per block

OS Ubuntu 14.04.1

Intel Xeon E52623

Ubuntu 14.04.3 LTS

ARM Cortex – A57

Ubuntu 16.04 LTS

B) Implementation in OpenCL

Similar to the Cuda model, kernels in the OpenCL model are also launched in blocks and grids of

threads. But, the way in which these blocks and grids of threads is defined are different from the

Cuda version. We also took efficiency into consideration, and similar to the Cuda version

launched the layer operations in multiple kernels wherever required. Following are the grid and

block dimensions used in the OpenCL version.

Table 3: Grid and Block dimension OpenCL model

 Grid Dimensions
Block
Dimensions

First Layer – A (32, 96, 96) (1,32,32)

First Layer – B (32, 112, 16) (1,16, 16)

First Layer – C (32, 96, 16) (1,16, 16)

Second Layer – A (32, 96, 96) (1,32,32)

Second Layer – B (32, 112, 16) (1,16, 16)

Second Layer – C (32, 96, 16) (1,16, 16)

Third Layer – A (64, 96, 96) (1,32, 32)

Third Layer – B (64, 112, 16) (1,16, 16)

Third Layer – C (64, 96, 16) (1,16, 16)

Fourth Layer – A (64, 32, 32) (1,32, 32)

Fourth Layer – B (64, 32, 24) (1,32, 24)

Fourth Layer – C (64, 24, 32) (1,24, 32)

Fourth Layer – D (64, 24, 24) (1,24, 24)

Fifth Layer – A (128, 32, 32) (1,32, 32)

Fifth Layer – B (128, 32, 24) (1,32, 24)

Fifth Layer – C (128, 24, 32) (1,24, 32)

Fifth Layer – D (128, 24, 24) (1,24, 24)

Sixth Layer – A (128, 32, 32) (1,32, 32)

Sixth Layer – B (128, 32, 24) (1,32, 24)

Sixth Layer – C (128, 24, 32) (1,24, 32)

Sixth Layer – D (128, 24, 24) (1,24, 24)

Seventh Layer – A (128, 32, 32) (1,32, 32)

Seventh Layer – B (128, 32, 24) (1,32, 24)

Seventh Layer – C (128, 24, 32) (1,24, 32)

Seventh Layer – D (128, 24, 24) (1,24, 24)

Eighth Layer (128, 28, 28) (1,28, 28)

Ninth Layer (256, 28, 28) (1,28, 28)

Tenth Layer (256, 28, 28) (1,28, 28)

Eleventh Layer (256, 28, 28) (1,28, 28)

Twelfth Layer (256, 14,14) (1,14, 14)

Thirteenth Layer (512, 14,14) (1,14, 14)

Fourteenth Layer (512, 14,14) (1,14, 14)

Fifteenth Layer (512, 14,14) (1,14, 14)

Sixteenth Layer (512, 14,14) (1,14, 14)

Seventeenth Layer (512, 14,14) (1,14, 14)

Eighteenth Layer (512, 14,14) (1,14, 14)

Nineteenth Layer (512, 14,14) (1,14, 14)

Twenty Layer (512, 14,14) (1,14, 14)

Twenty-One Layer (512, 14,14) (1,14, 14)

Twenty-Two Layer (512, 14,14) (1,14, 14)

Twenty-Three Layer (512, 14,14) (1,14, 14)

Twenty-Four Layer (512, 14,14) (1,14, 14)

Twenty-Five Layer (1024, 7, 7) (1,7, 7)

Twenty-Six Layer (1024, 7, 7) (1,7, 7)

Twenty-Seven Layer (1024, 7, 7) (1,7, 7)

Twenty-Eight Layer (1, 32,32) (1,32,32)

VI. Experiments

A. Experimental Setup

Following are the steps for the software setup of the experiment

1. Install gcc compiler for compiling c programs

2. Install Python

3. Install Anaconda [https://www.anaconda.com/download/] and add Conda to the global

path variable

4. Install Nvidia Cuda [https://developer.nvidia.com/]

5. Create a new Anaconda virtual environment

https://developer.nvidia.com/

a. conda create -n env_name

b. activate env_name

c. pip install –ignore-installed –upgrade tensorflow / tensorflow-gpu

d. pip install –ignore-installed –upgrade keras

6. Following packages should be installed when installing anaconda. If they are not

installed, you can install using the following commands

a. Numpy: pip install numpy

b. Pandas: pip install pandas

c. Jupyter Notebook: pip install Jupyter-notebook

B. Preprocessing

The input to the model is an image of size (224 x 224 x 3). We convert our input image in

Python and then save that as text files which are then read in our Cuda and OpenCL models. In

order for our model to accurately predict, we normalize the input image. The process of

normalization is a trivial task in Python and hence we decided to do the task in Python. We make

use of the Keras and Numpy packages to achieve this task.

The Cuda and OpenCL models also need the learned weights and biases of the MobileNets

which contains all the information needed by the model to recognize the objects from the input

image. To get these weights, we use the model from the Keras package. Keras package provides

a way to save these weights in text files and similar to the input image, these weights are then

read by our Cuda and OpenCL models. Below is the syntax of the code to get the weights from

the Keras model:

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 23

Figure 11. Saving Keras Weights

Similar to the weight and biases, the model also needs the batch normalization parameters to be

saved in text file. These parameters are also saved into text files and are given as input to the

models.

C. Experiment

As a part of our implementation, we decided to work with 5 different images of common objects

and things to compare the accuracy of both the models in predicting the output. We decided to

work with image of a Car, a Cat, a Coffee, a Beagle Dog and a Lizard to compare the

predictions. Only the top 5 predictions for all the models are considered as we believe it is a very

fair comparison.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 24

Figure 12. Experiment Images

i) Predictions of Cuda model

Table 4: Python Vs Cuda Model Prediction

 Python Code Cuda Code

Beagle Dog 1 beagle

 2 English_foxhound

 3 Walker_hound

 4 redbone

 5 bluetick

 1 beagle

 2 English_foxhound

 3 Walker_hound

 4 redbone

 5 bluetick

Car 1 convertible

 2 sports_car

 3 car_wheel

 4 minivan

 5 grille

 1 convertible

 2 sports_car

 3 car_wheel

 4 minivan

 5 grille

Cat 1 tabby

 2 nipple

 3 Egyptian_cat

 4 bow_tie

 5 tiger_cat

 1 tabby

 2 nipple

 3 Egyptian_cat

 4 bow_tie

 5 tiger_cat

Coffee 1 cup

 2 espresso

 3 consomme

 4 eggnog

 5 strainer

 1 cup

 2 espresso

 3 consomme

 4 eggnog

 5 strainer

Lizard 1 agama

 2 banded_gecko

 3 African_chameleon

 4 whiptail

 5 frilled_lizard

 1 agama
 2 banded_gecko

 3 African_chameleon

 4 whiptail

 5 frilled_lizard

As we can see from the table above, our Cuda model is able to predict the top-5 labels with

100% accuracy. The results match exactly with the keras based Python model as can be seen

from the table 4.

Performance Analysis

In order for our model to represent effective benchmark standards, we measure various statistics

of the model. The comparison of different statistics is as shown in the Fig. 12.

a) Execution Time comparison

We compared the execution time of our Cuda model against the Python model to check if the

model matches the execution time of the currently used industry models. The time taken by each

model against the five different images is as shown below in Fig. 13. As we can see, the Cuda

model takes approximately 5 times less time to execute the Python model.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 26

Figure 13: Timing comparison between Python and Cuda models

b) Overall Performance

To measure the performance of the model, we measure the performance of the different types of

operations performed in each layer. The percentage of the time taken to perform each operation

is shown below in Fig 14. As we can see from the result, most of the time is taken by the

Pointwise Separable Convolution (PSC) layer with around 94.7% of the total time. This result of

the operations correctly match with the results of the model as proposed by A. Howard et al [17]

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 27

where the major focus was to shift the overall weight and calculations on the Pointwise

Separable Convolution layers while keeping the other part of the network compact.

Figure 14. Percentage of the total operations

c) Memory Stall Reason

To measure the performance bottleneck in the model execution, we calculated the memory stalls

reasons for each layer’s execution. We used nvprof [30] profiler provided by Nvidia and the

results were executed on the Nvidia 960M Maxwell architecture GPU.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 28

Memory stalls help in identifying the performance bottlenecks caused in the execution of the

different types of operations like standard convolution, depthwise convolution, and pointwise

convolution. Memory stall information can be used by the computer architects to improve upon

the performance of the CNN network like developing a specialized highly streamlined

application. The profiler provides memory stall information for many issues, but we only

highlight the significant operations only.

Fig. 16 shows the memory stall reasons for the pointwise separable convolution layers. Most of

the memory stall reasons are due to Other factors and Data Request. Other factors are problems

that are caused due to the compiler or hardware reasons. A developer does not have any control

over these stall problems.

As pointwise apply convolution on each channel of the input matrix, it is understandable that the

Data Request would take significant time. The GPU needs to fetch the data from each channel

and hence as expected constituted most of the memory stall reason.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

29

Figure 15. Memory Stall Reason for Pointwise Convolution

Fig. 17 shows the memory stall reasons for the depthwise convolutions. Most of the stall issue

with depthwise convolutions is related to the Data Dependency issue and Other reasons. This

result matches with the expected outcome because depthwise operations are performed on the

same input channels and hence there can be a lot of dependencies to perform the operation

between different kernel threads. As all the kernels operate in the same channel, Data Request

stall reason is very low for the depthwise convolution layers.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 30

Figure 16: Memory Stall Reason for Depthwise Conv

The memory stall for the Average pooling layer is as shown in Fig. 18. Most of the issues related

to Avg. Pooling layer is related to the Texture and Other reasons, while Data Request and

Execution Dependency constitutes minimal portion.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 31

Figure 17: Memory Stall Reason Average Pooling Operation

d) Instruction Breakdown

We also collected the information regarding the instructions that take the most time to execute by

the CNN model. This information is shown in the Fig. 19.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 32

Figure 18: Execution Time of Instructions

ii) Predictions of OpenCL model

The OpenCL model, similar to the Cuda model was also tested with the Python model. We were

able to achieve similar results for where the top-5 predictions for both matched exactly.

Predictions of the OpenCL model are as shown in the Table 5 below.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 33

Table 5: Python Vs OpenCL Model Prediction

 Python Code OpenCL Code

Beagle Dog 1 beagle

 2 English_foxhound

 3 Walker_hound

 4 redbone

 5 bluetick

 1 beagle

 2 English_foxhound

 3 Walker_hound

 4 redbone

 5 bluetick

Car 1 convertible

 2 sports_car

 3 car_wheel

 4 minivan

 5 grille

 1 convertible

 2 sports_car

 3 car_wheel

 4 minivan

 5 grille

Cat 1 tabby

 2 nipple

 3 Egyptian_cat

 4 bow_tie

 5 tiger_cat

 1 tabby

 2 nipple

 3 Egyptian_cat

 4 bow_tie

 5 tiger_cat

Coffee 1 cup

 2 espresso

 3 consomme

 4 eggnog

 5 strainer

 1 cup

 2 espresso

 3 consomme

 4 eggnog

 5 strainer

Lizard 1 agama

 2 banded_gecko

 3 African_chameleon

 4 whiptail

 5 frilled_lizard

 1 agama
 2 banded_gecko

 3 African_chameleon

 4 whiptail

 5 frilled_lizard

Performance Analysis

a) Execution Time comparison

The Fig. 20 below shows the comparison between the Python and the OpenCL model. As we can

see, the performance is similar to the Cuda version and the model is able to achieve almost 4

times better performance than the Python version of the model.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 34

Figure 19: Execution Time comparison between Python and OpenCL model

We do not have any OpenCL profiler which gives the statistics related to the performance of the

OpenCL model on a GPU. Hence, collecting those statistics were not possible.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

35

VI. Conclusion

In this project, we provide a benchmark suite which can be used to evaluate the performance of

any architecture which can be executed on the OpenCL and Cuda platforms. The benchmark

suite can be executed without any of the proprietary DNN libraries or installing resource

intensive convolution neural network frameworks. We tested the model on 3 different

hardware’s and collected different statistics regarding the execution of the CNN model.

We also provided various statistics which can be really useful for CNN accelerators. With the

Cuda and OpenCL version, we were also able to significantly reduce the execution time of the

model achieving a nearly 5-fold gain in execution speed than the Python model.

As there was no compiler available to collect the statistics for the OpenCL version, we would

want to collect that in the future. We would also want to collect statistics from GPU simulators

like GPGPU-Sim which can provide valuable statistics & results on the execution pattern of the

CNN models. We would also want to support FPGA platforms in the future so that the CNN

model execution can be tested on those architectures as well.

We currently only have MobileNets model implemented in Cuda and OpenCL, but in the

future, we would want to add a few other CNN models to the benchmark suite. This would

provide a comprehensive repository and allow more insights into the execution pattern for

researchers for different types of workloads.

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 36

VII. References

[1] R. Geirhos, “Comparing deep neural networks against humans: object recognition when the

signal gets weaker”. Available: https://arxiv.org/pdf/1706.06969.pdf

[2] S. Lee, K. Son, H. Kim and J. Park, "Car plate recognition based on CNN using embedded

system with GPU," 2017 10th International Conference on Human System Interactions (HSI),

Ulsan, 2017, pp. 239-241.doi: 10.1109/HSI.2017.8005037

[3] J. Liang, X. Chen, M. He, L. Chen, T. Cai and N. Zhu, "Car detection and classification using

cascade model," in IET Intelligent Transport Systems, vol. 12, no. 10, pp. 1201-1209, 12

2018.

doi: 10.1049/iet-its.2018.5270

[4] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cats straite cortex”

in J. Physiol. (1959) I48, 574-591 publication date: April, 1959. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/pdf/jphysiol01247-0121.pdf

[5] Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of

Pattern Recognition Unaffected by Shift in Position”, Biol. Cybernetics 36, 193 202 (1980

[6] Y. LeCun et al, “Backpropagation Applied to Handwritten Zip Code recognition”

http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf

https://arxiv.org/pdf/1706.06969.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/pdf/jphysiol01247-0121.pdf

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL 37

[7] Convolutional Neural Network, https://en.wikipedia.org/wiki/Convolutional_neural_network

[8] K. Simonyan et al, “Very Deep Convolutional Networks for Large Scale Image Recognition”,

Available: https://arxiv.org/pdf/1409.1556.pdf

[9] C. Szegedy et al, “Going Deeper with Convolutions”, Available:

https://arxiv.org/abs/1409.4842

[10] Field Programmable Gate Arrays, https://en.wikipedia.org/wiki/Field-

programmable_gate_array

[11] Z. Nagy et al, “Configurable multi-layer CNN-UM emulator on FPGA using distributed

arithmetic” Available: https://ieeexplore.ieee.org/document/1046481

[12] W. Xie, “An Energy-Efficient FPGA-Based Embedded System for CNN Application”,

Available: https://ieeexplore.ieee.org/document/8487057

[13] Graphical Processing Unit (GPUs), Available:

https://www.researchgate.net/figure/Schematic-of-NVIDIA-GPU-architecture-where-SM-

refers-to-streaming-multiprocessor_fig2_321958738

[14] A. Krizhevsky, “ImageNet Classification with Deep Convolutional Neural Networks”,

Available: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf

[15] Cuda, https://www.geforce.com/hardware/technology/cuda

[16] S. Oh et al, “Investigation on performance and energy efficiency of CNN-based object

detection on embedded device”, in IEEE, Bali, Indonesia, conference date: 8-10 Aug 2017

https://arxiv.org/pdf/1409.1556.pdf

LOW POWER MOBILENETS ACCELERATION IN CUDA AND OPENCL

38

[17] A. Howard et al, “MobileNets” Available: https://arxiv.org/abs/1704.04861

[18] L. Sifre, “Rigid-Motion scattering for Image Classification” Available:

https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf

[19] C. Cullinan et al, “Computing Performance Benchmarks among CPU, GPU, and FPGA”,

Available: https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-

123508/unrestricted/Benchmarking_Final.pdf

[20] Spec CPU Benchmark, https://www.spec.org/cpu/

[21] Baidu DNN Benchmark, https://github.com/baidu-research/DeepBench

[22] Dawn Benchmark, https://dawn.cs.stanford.edu/benchmark/

[23] AlexNet Wikipedia, https://en.wikipedia.org/wiki/AlexNet

[24] Keras Library, https://keras.io/

[25] Tensorflow Library, https://www.tensorflow.org/

[26] PyTorch Library, https://pytorch.org/

[27] Cublas Library, https://developer.nvidia.com/cublas

[28] cuDNN Library, https://developer.nvidia.com/cudnn

[29] CodeEmporium YouTube Channel, https://www.youtube.com/watch?v=T7o3xvJLuHk

[30] Nvprof, https://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-123508/unrestricted/Benchmarking_Final.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-030212-123508/unrestricted/Benchmarking_Final.pdf
https://www.spec.org/cpu/
https://github.com/baidu-research/DeepBench
https://dawn.cs.stanford.edu/benchmark/
https://en.wikipedia.org/wiki/AlexNet
https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://www.youtube.com/watch?v=T7o3xvJLuHk
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

	Low Power MobileNets Acceleration In Cuda And OpenCL
	Recommended Citation

	tmp.1558380277.pdf.zHVBB

