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ABSTRACT 
 

 

 

 

In the recent years, human activity recognition has been widely popularized by a lot of 

smartphone manufacturers and fitness tracking companies. It has allowed us to gain a deeper 

insight into our physical health on a daily basis. However, with the evolution of fitness tracking 

devices and smartphones, the amount of data that is being captured by these devices is growing 

exponentially. This paper aims at understanding the process of dimensionality reduction such as 

PCA so that the data can be used to make meaningful predictions along with novel techniques 

using autoencoders with different activation functions. The paper also looks into how using 

autoencoders allows us to better capture the relations between features in the data. It also covers 

some of the classification techniques such as k-Nearest Neighbors, SVM and Random forest that 

are currently being used for activity recognition that have shown promising results. 

 

Keywords – Classification, dimensionality reduction, neural networks, human activity 

recognition. 
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I. INTRODUCTION 

 

 

Human activity recognition (HAR) is an important research topic in the healthcare 

domain. It aims at the identification of different activities ranging from simple to complex, which 

are usually detected by wearable devices having sensors (e.g. smartwatches, fitness trackers, 

smartphones). It serves as an extremely useful application in the field of health monitoring and 

development of human-machine interfaces [1].  

Classical approaches towards tackling this problem included manually extracting features 

using time series data and training classification models using decision trees. This was a rather 

rudimentary approach towards solving an ever-evolving problem with the rapid evolution of data 

capturing devices in recent years. These devices can be used to collect vital data which can then 

be used to analyze and correctly classify each activity into a particular category. Some of the 

basic categories for HAR include lying, standing, climbing, walking and running [2]. Some of 

the important applications of HAR in healthcare are keeping track of the body vitals of patients 

in rehabilitation centers, people living in assisted living facilities and people that are diagnosed 

with chronic diseases [3]. 

Classifying human activities into categories with high-dimensional data is a challenging 

task. The devices used to monitor human activity measure vital information about a person using 

multiple sensors, thus generating high-dimensional features. A potential issue with having high 

dimensional data is over-fitting of data. This leads to a well-known issue commonly referred to 

as the curse of dimensionality [4]. As humans, it is not possible for us to visualize data in more  

than 3 dimensions. These device sensors collect data that has over 20 dimensions. Thus, 

dimensionality reduction helps us to compress this high dimensional data into lower dimensions  
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 (2-D) while retaining important information from all 20 dimensions. A possible solution to this 

problem is reducing the number of dimensions to a manageable number such that it can be 

projected onto a 2-D plane. This would allow us to make sense of the data. This can be done  

using PCA, but since it is an unsupervised method, it fails to take into account the labelled data.        

In this project, we explore the potential challenges in the field of dimensionality reduction and its 

importance in successfully classifying different human activities.  

 In this project, we try to provide some insight on how human activity data can be used in 

order to make predictions for the future, how this data is collected and used. We also aim to 

answer the question of whether we can use autoencoders with different activation functions to 

perform better dimensionality reduction and capture non-linear relations between features that 

will help us better classify human activities. 
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II. ACTIVITY RECOGNITION USING MULTIMODAL SENSORS 

 

Activity recognition using multimodal sensors involves identification of which activity is 

being performed at a particular moment based off of the data collected by multiple sensors 

fitted on the human body. Some of the processes in activity recognition include: 

 

A. Data Acquisition 

B. Data Preprocessing 

C. Dimensionality Reduction 

D. Training and Classification 

 

A. Data Acquisition 

 

Data acquisition is a critical part in HAR. The objective of HAR is analysis or 

interpretation of the data that is being tracked so as to derive insight from it. The study by 

Kumari et al. [5] suggests that acquiring data involves signal preprocessing which focuses 

on filtering and extracting the important features that will be required in order to train classifier. 

These features are extracted by placing sensors at predetermined places on the human body. The 

data that these sensors collect are then directed to two different systems, an online system that 

does the task of classifying the action immediately and an offline system which does not classify 

data instantly, typically used for applications that do not require immediate feedback and demand 

high computation.  
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A slightly different approach is suggested by Sebestyen et al. [6] which emphasizes on 

the use of smartphones and their capabilities of capturing data with the help of acceleration and 

localization sensors. These sensors measure acceleration in 3 directions which is useful in the 

state or type of activity that a person is performing. According to Sebestyen et al. [6] acceleration 

is an important feature that needs to be captured as it lets us determine whether a person is sitting 

or standing. It can also be used to determine whether the phone is in its usual place (pocket) and 

also the activity (walking, running or staying still) that the holder is doing.  

An important factor that affects the quality of data that is captured is the sampling rate. 

The sampling rate is the frequency with which different sensors capture data. Thus, while a 

higher sampling rate increases the quality of measurement, it also causes the sensors to get 

overloaded with the activity data and consequently increases power consumption. Placement of 

sensors has been discussed frequently and how it affects the data that is captured. A study by He 

et al. [7] suggests that the most effective information is captured using sensors that are placed 

inside a person’s trouser pocket. On the other hand, other studies suggest that the sensors placed 

on a person’s arms and legs can be used to accurately predict the activity [8]. 

Efficient data acquisition is critical when it comes to mobile devices as they have a 

limited energy source. A potential solution to this problem is to use a technique called 

windowing, in which the sensors capture data only during a small timeframe. The length of each 

window is decided in such a way that it can accurately determine each activity and at the same 

time enable energy preservation.  
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B. Data Preprocessing 

 

Often the data that is obtained from the real-world can be inconsistent or even  

incomplete. There is also a possibility of having errors in the data-types of the obtained data. 

Hence it is necessary to clean and preprocess data before it can be used to make predictions. One 

of the most commonly occurring error is that of missing values. There might be times where a 

particular sensor fails to register reading for a particular part of the human body.  

There are times when multiple sensors might fail to register the readings as well. One of 

the common ways to deal with missing values is to drop a particular row that has a missing 

reading for a feature. However, dropping a row means loss of data. It is possible that there are 

hundreds of rows that contain missing values. Dropping all of these rows will cause us to lose 

important feature information that can otherwise be retained in order to train our models for 

better prediction. Another way of dealing with missing values is to calculate an arithmetic mean, 

median or mode of the missing feature and replace it with the missing value.  

  

C. Dimensionality Reduction 

 

Sensors used to record human activity data is usually high in dimension. In order to train 

classifiers for recognizing human activity, it is necessary to transform the data in such a way that 

it reduces the dimensionality while still retaining useful and important information necessary for 

HAR. Dimensionality reduction aims at reducing the random variables that are under 

consideration [9]. Data is collected by multiple sensors such as accelerometer, gyroscope and 

magnetometer which collect data for 3 different axes (x-axis, y-axis, z-axis). As a result of this,  
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the number of features that are collected is way too large to be used for training any machine 

learning classifier.  

Even though this data can be used for training a classifier, it would most likely cause 

over-fitting of data. This leads to a well-known issue commonly referred to as the curse of 

dimensionality [4]. A study by Moudden et al. [9] demonstrates that the different features that are 

captured by sensors are of little interest and only a subset of the entire feature set contributes to 

the features that are worthy of interest. In order to obtain an effective and robust characterization 

of the domain, dimensionality reduction can prove to be a useful tool [10]. In order to make 

useful predictions regarding what activity is being done, the aim is to minimize the number of 

predictors and also make sure that these predictors are independent of each other. Xi et al. [11] 

also found that using only the most informative features that capture the maximum variance in 

data contribute towards higher accuracy of the model. 

 

D. Training and Classification 

 

In order to train a classifier that can predict a possible outcome, it needs to be trained 

using a supervised inference technique such that the classifier learns model parameters so that the 

classification error is minimized [11]. Once a classifier is trained on the training data, we can 

then use it in order to make predictions on unseen data. This is typically done by splitting the 

entire dataset into training and testing data. In this case, the testing data is used in order to 

validate the accuracy of the predictions made by our classifier. Classification can simply be 

defined as a task of identifying the class for a given set of data points. Classes are also commonly 

referred to as targets or labels. It is the task of learning a mapping function f(x) with the help of 

input variable x in order to predict the output variable y. In case of HAR, the input variables  
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would correspond to the various sensors (accelerometer, gyroscope, magnetometer) that are 

mounted on various parts of the body such as the chest, left-ankle and right-lower arm. Some of 

the commonly used algorithms for classification are decision trees, k-nearest neighbors [1], 

support vector machines [7], random forests [1].  
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III. DIMENSIONALITY REDUCTION APPROACHES 

 

Dimensionality Reduction 

 

Due to ease of availability of sensors in almost all electronic devices, the data that 

captured tends to be pretty high in dimensions and also more complex than conventional data 

[12]. Using this high dimensional data will result into noise and also the possibility of non-

related entities of data. Dimensionality reduction is thus used in order to avoid the curse of 

dimensionality [4], so that captured data can be used to make sense of and be used to derive 

insights from it. The curse of dimensionality refers to the formation of a machine learning model 

that over-fits the data. As a result, such a model is incapable of generalizing well with unseen or 

new data. Once the dimensionality of a dataset has been reduced, this data can then be used to 

train machine learning classifiers. 

 

A. Principal Component Analysis 

 

           Principal component analysis (PCA) is a technique that is used to transform a number of 

different and possible uncorrelated variables into a smaller set of variables that are uncorrelated 

[12].  It is a technique that uses variance in order to determine whether a certain feature is of 

interest to us or not, with the aim of finding vectors in the feature space that capture the 

maximum variance in the data. 
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Fig 1. Principal component analysis [12] 

 

PCA starts with standardization of the matrix. This is done because the values in certain 

columns might have values that are higher than the values in other attributes. This might cause such 

attributes to dominate the entire principal component matrix [13]. In order to achieve such 

standardization, by subtracting the mean of each column value from each of the attribute column and 

then dividing it by their standard deviation. Apart from this, standardization has additional benefits 

that allow for faster learning of neural networks. This can be extremely beneficial while training 

neural networks with huge amounts of data.



 18 

  
 

 

 

HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  

 

Next step in PCA is to obtain the covariance matrix from the standardized matrix. This is 

achieved by multiplying the standardized matrix (X) with its transform (XT) and normalizing it 

by 1/n-1 where n is the total number of features that present in the standardized matrix. 

Following the covariance matrix calculation, the eigenvectors of the covariance matrix is 

calculated. This results in an eigenvector matrix which contains columns in descending order 

which correspond to the first principal component, the second principal component and so on. 

Obtaining the PCA of a particular dataset, allows us to capture the maximum variability 

in the data without any loss of information [14]. PCA transformation is also a pretty convenient 

way of achieving dimensionality reduction since it extracts all of the meaningful feature 

information without us having to provide any additional information regarding the data source or 

domain knowledge regarding the problem that we are trying to solve [15].  

However, PCA can also be restrained by its limitation of being able to capture only linear 

transformations. As a result, if a particular dataset consists of features that have non-linear 

relations, then those relations will not be captured using PCA. 

 

B. Autoencoders 

 

 

Autoencoders (AEs) are essentially Artificial Neural Networks that have a symmetric 

structure. They are also known as associative neural networks [16], replicator neural networks 

[17] or diabolo networks [18]. The AEs consist of an input layer, a middle layer and an output  

layer. The middle layer in the AE is responsible for holding the encoding from the input layer 

[19]. The data that enters the AE from the input layer is encoded and the AE is then trained to  
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reconstruct the input data from this encoding. However, this reconstruction process is restrained 

with certain restrictions so that the data is not simply copied across the neural network.  

 

 

Fig 2: Autoencoder structure [19] 

       

As shown in Fig. 1, we can see the basic structure of an autoencoder which consists of 

the input data which is represented by x, which maps to the encoding represented by y. The 

encoding y is then mapped to the output of autoencoder which is represented by r, where f is the 

encoding function and g is the decoding function. 

The general structure of an autoencoder can also be captured in a feedforward neural 

network. The main objective of an autoencoder is to reproduce or replicate the original input 

data. As a result of which, the AE x and r are equal in the number of dimensions. The middle 

layer however, can be low-dimensional or high-dimensional depending on the objective. The 

layers within the AE are arranged in a symmetrical fashion on either side of the middle layer.  
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Fig 3: Neural network architecture for autoencoder [20] 

 

Since autoencoders are capable of reconstructing the data that they are fed, they have a 

very obvious application in the task of data compression. Although AEs are capable of 

encoding data and then reconstructing the input data, they provide us with an approximate  

reconstruction of the input data. Thus, the data compression that AEs provide is lossy. Hence, 

AEs should only be used in cases where lossy data compression is tolerable. AEs were used 

with images, however since lossy reconstruction of images is not acceptable, standards such as 

JPEG [22] are more popular in image compression. Del Testa et al. [23] suggest that the use of 

autoencoders has been successful in the case of biometric data compression (blood pressure or 

heart rate data), which was obtained using wearables. According to Miao and Blunsom, 

language compression is another application where autoencoders have shown promise, that  
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allow us to draw sentences from a AE modelled on a particular language.  Hsu [24] suggested 

that in the case of working with high-dimensional time series containing data related to 

electricity and water readings that were obtained from service grids, using autoencoders along 

with LSTM proved to be successful in compression.  

  

a) Autoencoders with Linear Activation 

 

Activation functions are biologically inspired by the human brain, where different 

neurons in our brain get activated by a certain stimulus. Activation functions are functions that 

are used in order to calculate the weighted sum of the inputs that the autoencoder receives, to 

which it adds a bias. This newly generated value is then used in order to decide whether a 

particular neuron will contribute towards the final solution (prediction). A neuron that is part of 

an artificial neural network is responsible for holding a value using which it can be decided  

whether or not the neuron should be activated. A neuron typically calculates the weighted sum of 

the inputs it receives from the source of the previous layer in the neural network. It then adds a 

bias to the value to decide whether the neuron should fire or not.  

Linear function is a straight-line function which is effectively proportional to its input. 

The value of Y can be anything between negative infinity to positive infinity. The neuron is 

unaware of the bounds and also does not have an idea as to when it should be activated. Hence, 

we used activation functions for the purpose of helping a neuron decide whether it should 

activate or not.  
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Fig 4: A linear activation function [19] 

b) Autoencoders with Sigmoid Activation 

 

 

The sigmoid activation function is another function that is commonly used in neural  

networks as an activation function. The sigmoid function is also commonly used for binary 

classification purposes. Thus, it performs well for indicating whether a particular neuron should 

be activated or not (a binary decision).  

 
 

Fig 5: A sigmoid activation function [25] 
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Mathematically speaking, the sigmoid function gets as input a real-valued number from 

the source. This number is then squashed between the range of 0 and 1. As a result of this, very 

large positive numbers are become 1 and very large negative numbers become 0. As a result, all 

the possible values that the function receives as input, are converted to values within the range of  

0 and 1. This allows the sigmoid function to have a good interpretation for firing rate of a 

neuron, i.e. the neuron fires if that output value is 1 and does not fire if the value is 0.  

However, an undesirable property of the sigmoid function is that of the gradients dying off due 

to saturation. As a result, during backpropagation if the gradient is very low, then there is a 

possibility that the neurons become saturated and the network does not learn.  

 

 The Vanishing Gradient Problem 

 

Vanishing gradient is a problem that arises when the gradient of a particular loss function 

approaches zero. As a result of which no value propagates through the network causing no 

learning. As a result, it becomes hard to train a neural network [26]. 

 During backpropagation, we calculate the derivative of a value in order to minimize the 

loss function. The sigmoid function when used, squishes any large or small value within the 

range of 0 and 1. As a result, for a particularly large or small value the derivative becomes close 

to zero. Thus, the value propagated back to the initial layers is very small causing no learning as 

weights and biases will not get updated during every epoch [27].  
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c) Autoencoders with Rectified Linear Unit  

 

  

       ReLU or Rectified linear unit is an activation function used in neural networks which 

became quite popular in recent years. It also gives a better performance since there is no complex 

math involved in the function, as a result of which it takes less time to train data [28].  

     When compared with the previously mentioned activation functions that include  

expensive operations such as the calculation of exponentials, ReLU was found to accelerate 

Stochastic Gradient Descent (SGD) and also train much faster, which might be because of its 

linear and non-saturating property [28].  ReLUs have been used a lot in activation functions for 

deep Convolutional Neural Networks (CNNs). One of the reasons that ReLU work well is due to 

the fact they perform well even with sparse data [29]. ReLUs have been used widely in 

Convolutional Neural Networks (CNNs) and have proved to have shown better performance 

during learning [30]. 

 

 

Fig 6: ReLU activation function [19] 
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IV. CLASSIFICATION TECHNIQUES 

 

 

A. Support Vector Machine 

 

 

Support Vector Machine (SVM) is a discriminative classifier that classifies by separating 

data with the help of a hyper-plane. In other words, given an input of labelled training data, the 

algorithm outputs an optimal hyper-plane that categorizes all of the input into different classes. 

It does so by finding an optimal boundary between different classes of data [31]. The separation 

should not pass too close to any data point on either side so as to generalize the classification 

better. The separation is based on the maximization of distance between separating classes. 

 

 

Fig 7: Support Vector Machine [33] 
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B. Random Forest Classifier 

 

Random forest classifier (RFC) is a combination or ensemble of different decision tree 

predictors wherein the output of each predictor depends on feature vectors that are sampled 

independently [33]. The classifier is called random forest as it generates forests with random 

amounts of trees.  Normal decision trees are based only on rules for prediction of any outcome. 

However, random forest classifier use information gain in order to split features from a particular 

node.  

 

Fig 8: Random Forest Classifier [33] 

 

It usually starts with the creation of many random decision trees where each one of those 

predicts a class from the features that are provided to it. These results are then used to get a 

majority vote to predict final class. 
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C. K Nearest Neighbors Classifier (K-NN) 

 

K-Nearest neighbors is an algorithm that is used for classification that is based on the 

similarity of its neighbors. It is called lazy since there is no training that is involved, instead all 

of the data points will only be used at the time of making a prediction [33]. The data that the K-

NN classifier gets can be scalars or even multidimensional vectors. All of the data points are 

assumed to be in the feature space, as a result of which there is a notion of distance. A 

commonly used metric for calculating distance between data points is Euclidean distance. K-

NN can be used for binary classification as well as multi-label classification. A number K needs 

to be specified in order to decide the number of neighbors that will effectively influence the 

decision.  

 

 
. Fig 9: K-Nearest Neighbor Classifier [33] 
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V. HYPOTHESIS AND CONTRIBUTION 

 

 

Using the dimensionality reduction property of the autoencoders along with that of the 

ReLU activation function, we can prevent the obstacle of dying neurons during training the 

neural network. Furthermore, we also look at a technique called xavier initialization that helps 

us to ensure that the weights in the neural network stay within the correct bounds for better 

learning and results. Our contribution would be to combine the property of the ReLU wherein it 

avoids neurons from dying during training with the autoencoder in order to achieve better 

dimensionality reduction that can help us improve the accuracy and better generalize the data in 

order to predict human activities based on sensor readings. 

The experiments performed will include performing PCA on the human activity data in 

order to perform dimensionality reduction. We will also perform the same task using 

autoencoders with linear, sigmoid, ReLU activations and xavier initialization and finally 

compare and contrast the results with an autoencoder with ReLU. The experiments will help us 

measure the accuracy and generalization with benchmark technique such as PCA.  
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VI. EXPERIMENT SETUP 

A. Dataset 

 

The dataset used for this experiment consists of body motion data collected from 

recordings of five log files containing data for individuals performing 12 different physical 

activities [37] [38] [39] consisting a total of 291,227 records. The data is gathered with the help 

of sensors that are placed on the subject’s chest, right wrist, and left ankle in order to record the 

motion that is experienced by the different parts of the body. Obtaining sensor data using 

multiple sensors placed on different body parts allows us to capture body dynamics. 

 

       Fig 10: Number of distinct activities 

 

Multiple sensors are placed on different parts of the subject’s body so as to better capture 

the acceleration, rate of turn and the magnetic field orientation. All of the modalities are recorded  
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at a sampling rate of 50 Hz which is considered enough for the purpose of recording human 

activities. The data collected from these sensors is found to generalize well to the common 

activities that people carry out throughout the day capturing the intensity of all the actions. All of 

the activities are recorded in an out of lab environment thus enforcing no constraints on the 

actions or activities. 

 

B. Choosing influential components 

 

Fig 11: Influential components from PCA 
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Before starting the implementation, we need to identify the most influential components 

from the total components that we have. We do this by plotting the variance ratio (variance of  

data) of the different components at hand. From the above figure, we observe that selecting 10 

components preserves around 95% of the total variance observed in the principal components. 

Thus, while calculating PCA for our data, we will only consider the first 10 dominant principal 

components. 

 

C. Implementation Details 

 

 

Fig 12: Experiment Implementation Flow 

 

The first step in the experiment implementation would be parse the raw log data dumped 

by the sensors and convert it to a structured format. This can be done with the help of scripts that 

can be used in order to parse the log file row by row to collect all of the samples and then 
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convert it into a structured format (CSV file). Once we have obtained the data in a structured 

format, we can then pass on the data to dimensionality reduction algorithms in order to reduce  

their dimensions and extract important features from the original data. This reduced data which 

is in the form of feature vectors is then fed to different classification algorithms that are used to 

train a model. We then evaluate and compare the accuracy of the results provided by each 

classification model to verify if our hypothesis holds true. 

 

D. Evaluation Metrics 

 

The primary focus of the experiments is to obtain features (reduced) and then train 

classification models that are accurate and generalize well. Thus, to best evaluate the 

performance of these models we use 3 metrics. The results obtained from either of these models 

can be arranged in a confusion matrix Mnxn for problems that have n total classes [39]. 

True Positives (TP): Number of positive instances that were correctly classified as positive. 

True Negative (TN): Number of negative instances that were correctly classified as negative. 

False Positive (FP): Number of negative instances that were wrongly classified as positive. 

False Negative (FN): Number of positive instances that were wrongly classified as negative. 

Accuracy: Accuracy of a particular model is a standard metric for evaluating its classification  

performance, which is defined as 

 

                                                     Fig 13: Accuracy formula [40]  
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Precision: It is also referred to as a positive predictive value, precision is the ratio of correctly 

classified positive instances to the total instances that were classified as positive [40]. 

 

Recall: It is also referred to as true positive rate, which is the ratio of correctly classified positive 

instances to the total positive instances [40]. 

 

   

Fig 14: Precision and recall formula [40] 

 

Although these metrics are defined for binary classification, they generalize well and can also be 

used for multi-label classification with n classes. i.e. any particular instance can be said to be 

positive or negative depending on a particular class. e.g. positives would be all instances of 

standing and the rest of the instances would be negatives. 
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VII. EXPERIMENTS AND ANALYSIS 

 

 

A. Experiment 1: Dimensionality reduction using Principal Component Analysis 

 

 

In the first experiment, we use PCA as a baseline algorithm. The input data is initially 

scaled between the range of 0 and 1 using MinMaxScaler operation. The algorithm then runs 

PCA on the scaled data which gives us the principal components of the data. Since we know that 

the first 10 principal components capture almost 95% of the information in our dataset, we use 

the first 10 principal components and then train multiple classifier such as SVM, k-NN and 

Random Forest in order to obtain accuracy, precision and recall for each of these classifiers. 

    K- Nearest neighbor  

K Accuracy Precision Recall 

10 0.66 0.68 0.66 

20 0.71 0.72 0.7 

30 0.76 0.77 0.75 

40 0.84 0.83 0.81 

50 0.85 0.85 0.83 

60 0.85 0.85 0.82 

 

Table 1: K-Nearest neighbor results 

    Random forest 

No. of trees Accuracy Precision Recall 

2 0.69 0.67 0.68 

4 0.78 0.77 0.78 

8 0.83 0.82 0.81 

16 0.87 0.86 0.85 

 

 

32 0.87 0.83 0.84 

 

Table 2: Random forest results 



 35 

 

 

HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  
 

    

 

 
        SVM                        KNN            Random Forest 

 
      Fig 15: Classification results for PCA using SVM, KNN and Random Forest 

 

Analysis 

From the results, we can see that the SVM and random forest perform the best by 

achieving an accuracy of 87%. From fig.10, we know that the first 10 principal components are 

the most amount of information in the dataset. In order to find the right value for K in the KNN 

algorithm we iterate over values starting from 10 to 50. We choose 50 as a cut off value since 

from Table 1. we observe that the accuracy does not change beyond 50. Similarly, we iterate 

over different values for the number of trees used in random forest algorithm. From Table 2. We 

observe that the accuracy does not increase beyond 16 trees. This experiment, using PCA for 

dimensionality reduction will be a baseline for comparison with the following experiments.  
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B. Experiment 2: Dimensionality reduction using linear Autoencoder 

 

Similar to the previous experiment, we first scale the input feature vectors using 

MinMaxScaler to scale the data between a range of 0 and 1. After we have scaled the feature  

vectors, the algorithm will then use these features to train a linearly activated autoencoder. The 

bottleneck layer of the autoencoder will consist of 10 neurons since the we need 10 most 

influential features from the input data. The encoded data that we obtain from the encoding phase 

of the autoencoder consists of reduced features that we then use to train multiple classifiers such 

as SVM, k-NN and Random Forest to obtain accuracy, precision and recall for each of the 

classifiers.  

 

 
                   SVM          KNN               Random Forest 

 

Fig 16: Classification results for Linear AE using SVM, KNN and Random Forest 

 

 

 

Analysis 

From fig.15 we can see that using the linearly activated autoencoders has not really 

improved the classification accuracy. The highest accuracy achieved is by the SVM and random  
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forest algorithm at 86% and the lowest accuracy at 84%. Using the linear activation function 

does not help us to capture the non - linear relations between features in the data, better than that 

of PCA. We observe that the result obtained using linear autoencoder are worse than that of 

PCA. This is because of the inherent non-linearity in the features obtained from the dataset. Next 

we will look at the effects of using non-linear functions in the autoencoder. 

 

C.  Experiment 3: Dimensionality reduction using sigmoid Autoencoders 

 

We scale the data from input feature vectors using MinMaxScaler to scale the data 

between 0 and 1. After scaling the data, the algorithm will then use these features to train an 

autoencoder that uses a sigmoid activation function instead of a linear activation function. 

Sigmoid activation function allows the model to capture non-linear relations between the 

features better than that of linear activation. The bottleneck layer of the autoencoder will consist 

of 10 neurons as we need the 10 most influential features while training the autoencoder. The 

encoded data obtained after training the autoencoder consists of learnt and reduced features that 

we then use to train different classifiers in order to obtain accuracy, precision and recall. 
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                  SVM          KNN   Random Forest 

Fig 17: Classification results for Sigmoid AE using SVM, KNN and Random Forest 

 

Analysis 

 From fig.16 we observe that the highest accuracy is achieved by SVM at 88% and the 

lowest by KNN at 87%. Using the sigmoid activation function, we try to learn the non-linear 

relations between the features in order to make better predictions. However, if the activation 

function receives a value closer to zero, then during back-propagation the updates to the weights 

in the previous layer will be extremely small. This can cause the neural network to stop learning 

as it induces dead neurons in the network. 

 

D. Experiment 4: Dimensionality reduction using ReLU Autoencoders 

 

 

We scale the data from the input feature vectors using MinMaxScaler to scale the data 

between 0 and 1. After scaling the data, the algorithm then uses these features to train an 

autoencoder that uses a ReLU activation function during training. The encoded data  
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obtained after training consists of learnt and reduced features that we then use in order to train 

classifiers in order to obtain accuracy, precision and recall.  

 

         
                 SVM         KNN               Random Forest 

Fig 18: Classification results for ReLU AE using SVM, KNN and Random Forest 

 

Analysis 

 From fig.17 we observe that we achieve the highest accuracy with SVM of 90% and the 

lowest accuracy of 88%. ReLU activation function has shown to improve performance in 

training CNNs [29]. We use the leaky ReLU (rectified linear unit) activation function which 

induces a small negative slope that helps in dealing with the vanishing gradient problem by not 

allowing the gradient value to become zero. This aims at addressing the dying neuron problem 

which stops the neural network from learning. Also, ReLUs in general converge faster compared 

to other activation functions as they are computationally efficient and simple. 
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E. Experiment 5: Xavier initialization 

 

An important aspect that affects learning in neural networks are weights. Ideally, we 

want the weights to be initialized with random values such that they have a mean of 0 and a 

standard deviation of 1. This ensures that the weights do not saturate and hinder the learning 

process. However, this initialization causes problems further in the network as the standard 

deviation of neurons in next layer becomes the sum of the standard deviations of all neurons in 

the current layer, thus leading to the problem of exploding gradients. Xavier initialization [41] 

is a technique that allows us to mitigate this issue. Instead of initializing the weights with a 

standard deviation of 1, we initialize them to have a standard deviation of 1/n, where n is the 

number of neurons in the previous layer. 

 

 

 
                 SVM         KNN                 Random Forest 

Fig 19: Classification results with Xavier initialization  
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Analysis 

 From fig.18, we observe that there is some improvement with the SVM and random 

forest classifier. Weights connecting neuron from one to the other have significant influence over 

the features that are learnt by the bottleneck layer. Using xavier initialization, we ensure that the 

value for each neuron has a mean of 0 and a standard deviation of 1. Using this sort of weight 

initialization helps improve accuracy in a significant way while using autoencoders that use 

ReLU activation function.  
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VIII. SUMMARY OF RESULTS 
 

 

  

                    PCA                 Linear AE      Sigmoid AE             ReLU AE                       Xavier 

 

Fig 20: Comparison of overall results 

 

 From fig. 19, we can see that using autoencoders with ReLU activation functions helps us 

achieve an accuracy of 90% with SVM classifier. We initially started our experiments by using 

PCA for dimensionality reduction. From fig. 10, we see that the initial 10 principal components 

contribute towards almost 95% of the information obtained from the features. Thus using 10 

principal components, we trained SVM, KNN and random forest classifier that we use as a 

baseline. We then proceeded with implementing the autoencoder with linear activation by 

encoding original features into a bottleneck layer of 10 neurons. However, linear activation 

functions fail to capture the non-linearity between the features. Using sigmoid activation for the 

autoenoder (Sigmoid AE) improves the accuracy over that of PCA, however it still suffers from 

the vanishing gradient problem caused due to values close to zero. ReLU AE, addresses this 

issue by inducing a small negative slope in the activation function, preventing the gradient from 

completely vanishing and thus prevents the network from aborting the learning process. The next 

possibility that we explored was that of xavier initialization which aims at correct weight  
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initialization that prevents the weights in the neural network to become very small or very large 

thus giving us better results. 
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IX. CONCLUSION AND FUTURE WORK 

 

 

Over the course of this project, we have addressed the research question of whether 

autoencoders can be used in order to effectively reduce the dimensions of the different features 

from HAR data and to capture the non-linearity between different features. We have leveraged 

the properties of different activation functions, more specifically that of the ReLU (which are 

commonly used in CNNs) and leaky ReLUs in order to better learn the abstract features that have 

helped us in effective dimensionality reduction and better classification for HAR. We also 

looked at the effects of xavier initialization as a weight initialization technique that ensures better 

results. Effectively we have achieved a data saving of 57% since we end up using only 10 

dominating features out of 23 to make our predictions. We also compared the results of the 

different experiments that we conducted with different activation functions with that of our 

baseline using PCA. 

The primary aspect of the future work would be that of feature engineering i.e. deriving 

more meaningful features from the data with the help of domain knowledge. Furthermore, 

dimensionality reduction itself can be improved upon by experimenting with different 

autoencoder architectures using the engineered features to develop an optimal architecture. 

Future work will also include measuring the real-world effectiveness of experiments and 

optimizing them for real-world scenarios. 

 

 

 

 

 

 

 



 45 

 

 

 
 

HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  

 

 

REFERENCES 
 

 

[1] H. Jouhari, I. Moudden, S. ElBernoussi, M. Ouzir, “Learned model for human 

activity recognition based on dimensionality reduction” 2nd Int. Conf. on Smart 

Applications and Data Analysis for Smart Cities (SADASC). 
 
[2] M. A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human 

physical activity from on-body accelerometers”, IEEE Sensors J., 10(2), 2010, pp. 1154–

1175. 
 
[3] J. Wannenburg and R. Malekian "Body sensor network for mobile health monitoring, a 

diagnosis and anticipating system", IEEE Sensors J., 15(12), 2015, pp. 6839-6852 
 
[4] P. Indyk and R. Motwani, "Approximate nearest neighbors: towards 

removing the curse of dimensionality" in Proc. 30th ACM Symp. on Theory 

of Computing, (ACM), 1998, pp. 604–613. 

 

[5] P. Kumari , L. Mathew, P. Syal , "Increasing trend of wearable and 

multimodal interface for human activity monitoring: A review", in 

Biosensors and Bioelectronics. vol. 90, 2017, pp. 298-307 

 

[6] G. Sebestyen, A. Tirea, R. Albert , "Monitoring human activity through 

portable devices" in Carpathian J. of Electronic and Computer 

Engineering. vol. 5, 2012, pp. 101-106  

 

[7] Z.-Y. He and L.-W. Jin, “Activity recognition from acceleration data using ar model 

  representation and svm,” in International Conference on Machine Learning and  

  Cybernetics, vol. 4, pp. 2245–2250, 2008. 

 

[8] E. M. Tapia, S. S. Intille, W. Haskell, K. Larson, J. Wright, A. King, and R. Friedman, 

 “Real-time recognition of physical activities and their intensities using wireless 

 accelerometers and a heart monitor,” in Proc. International Symposium on Wearable 

 Computers, 2007. 

 

[9] I. Moudden, M. Ouzir, B. Benyacoub, S. Bernoussi, "Mining human 

activity using dimensionality reduction and pattern recognition", 

Contemporary Engineering Sciences, 9(21), 2016, pp. 1031-1041 

 

[10] Bi, Jinbo, K. Bennett, M. Embrechts, C. Breneman and M. Song: 

 “Dimensionality Reduction via Sparse Support Vector Machine”, Journal of Machine  

 Learning Research 3, pp.1229-1243 (2003)  

 

 



 46 

 

 
 

 

 

HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  

 

 

[11] R. Xi , M. Li, M. Hou, M. Fu , H. Qu , D. Liu , and C.R. Haruna, “Deep Dilation on 

 Multimodality Time Series for Human Activity Recognition”, IEEE Access, pp (99)1-1, 

2018 

 

[12] Statquest, https://statquest.org/2015/08/13/pca-clearly-explained/, Accessed 22 March 

2019 

 

[13]  R. Sembiring, J. Zain, A. Embong, “Dimension Reduction of Health Data Clustering”, 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 

1(3): 1041-1050  

 

[14]  T. Manning-Dahan, “PCA and Autoencoders”, INSE 6220, Concorida University. 

 

[15] K. Basterretxea, J. Echanobe, and I. del Campo, “A wearable human activity recognition 

 system on a chip,” in Proc. Conf. Design Archit. Signal Image Process. (DASIP), Oct. 

 2014, pp. 1–8. 

 

[16] S. Balli, E. Sagbas, M. Peker, “Human activity recognition from smart watch sensor data 

 using a hybrid of principal component analysis and random forest algorithm”, 

 Measurement and Control 2019, Vol. 52(1-2) 37–45, DOI: 10.1177/0020294018813692 

 

[17] M. A. Kramer, “Nonlinear principal component analysis using auto associative neural 

 networks”, AIChE journal 37 (2) (1991) 233–243. DOI:10.1002/aic.690370209. 

 

[18] R. Hecht-Nielsen, “Replicator neural networks for universal optimal source coding”, 

 Science (1995) 1860–1863, DOI:10.1126/ science.269.5232.1860. 

 

[19] H. Schwenk, Y. Bengio, “Training methods for adaptive boosting of neural networks, in: 

  Advances in neural information processing systems”, 1998, pp. 647–653, DOI:10.1162/ 

 089976600300015178 

 

[20] Introduction to Autoencoders, https://www.jeremyjordan.me/autoencoders/, Accessed on 

 22 March 2019 

 

[21] D. Charte, F. Charte, S. Garcia, M. del Jesus, F. Herrera, “A practical tutorial on 

 autoencoders for nonlinear feature fusion: Taxonomy, models, software and guidelines”, 

 Information Fusion 44 (2018) 78-96, DOI: 10.1016/j.inffus.2017.12.007 

 

[22] G. K. Wallace, “The JPEG still picture compression standard”, IEEE transactions on 

 consumer electronics 38 (1) (1992) xviii– xxxiv. doi:10.1145/103085.103089. 

 

[23]  D. Del Testa, M. Rossi, “Lightweight lossy compression of biometric patterns via 

 denoising autoencoders”, IEEE Signal Processing Letters 22 (12) (2015) 2304–2308. 

 DOI:10.1109/LSP. 2015.2476667. 

 



 47 

 

 

 

 
HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  
 

 

[24] D. Hsu, “Time series compression based on adaptive piecewise recurrent autoencoder”, 

 arXiv preprint arXiv:1707.07961. 

 

[25] Simpliliearn, https://br.simplilearn.com/training-deep-neural-nets-tutorial, Accessed 22 

March 2019 

 

[26] Y. Miao, P. Blunsom, “Language as a latent variable: Discrete generative models for 

 sentence compression”, in: Proc of the 2016 Conf on Empirical Methods in Natural 

 Language Processing, 2016, pp. 319–328. 

 

[27]  X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward 

 neural networks. In AISTATS, 2010. 

 

[28]  A. Shah, E. Kadam, H. Shah, S. Shinde, S. Shingade, “Deep Residual Networks with 

Exponential Linear Unit” in Proc on VisionNet'16 Proceedings of the Third International 

Symposium on Computer Vision and the Internet 

 

[29]  A. Krizhevsky, I. Sutskever, G. Hinton, “ImageNet Classification with Deep 

 Convolutional Neural Networks”, Communications of the ACM, Volume 60 Issue 6, June 

 2017 pp. 84-90  

 

 

[30]  K. He, et al., “Delving deep into rectifiers: Surpassing human-level performance on 

 ImageNet classification”. In Proc. of the international conf. on computer vision, pp. 

 1026-1034, 2015. 

 

[31] B. Xu, N. Wang, T. Chen, M. Li, “Empirical Evaluation of Rectified Activations in 

 Convolutional Network”, ICML Deep Learning Workshop, Lille, France, 06-11 July 

  2015 

 

[32]  M. Zubair, K. Song, C. Yoon, “Human Activity Recognition Using Wearable 

Accelerometer Sensors” in 2016 IEEE International Conference on Consumer 

Electronics-Asia (ICCE-Asia), Seoul, South Korea, 01-15 Jan 2017 

 

[33] Scikit-learn documentation, https://scikit-learn.org/stable/modules/svm.html, Accessed 

22 March 2019. 

 

[34] D. Edla, K. Mangalorekar, G. Dhavalikar, S. Dodia, “Classification of EEG data for 

 human mental state analysis using Random Forest Classifier” in Intl Conf on 

 Computational Intelligence and Data Science (ICCIDS 2018) 

 

[35] D. Saraswathi, E. Srinivasan, “Performance Analysis of Mammogram CAD System using 

 SVM and KNN Classifier”, in Intl Conf on Inventive Systems and Control (ICISC-2017) 

 

 



 48 

 
 

 

HUMAN ACTIVITY RECOGNITION BASED ON MULTIMODAL BODY SENSING  

 

[36] Scikit-learn documentation, https://scikit-

learn.org/stable/auto_examples/neighbors/plot_classification.html, Accessed 22 March 

2019. 

 

[37] UCI Mhealth Dataset, https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset, 

Accessed 22 March 2019. 

 

[38] Banos, O., Garcia, R., Holgado, J. A., Damas, M., Pomares, H., Rojas, I., Saez, A., 

 Villalonga, C. mHealthDroid: a novel framework for agile development of mobile health 

 applications. Proceedings of the 6th International Work-conference on Ambient Assisted 

 Living an Active Ageing (IWAAL 2014), Belfast, Northern Ireland, December 2-5, 

  (2014) 

 

[39] Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado, J. A., Lee, S., 

 Pomares, H., Rojas, I. Design, implementation and validation of a novel open framework 

 for agile development of mobile health applications. BioMedical Engineering OnLine, 

 vol. 14, no. S2:S6, pp. 1-20 (2015). 

 

[40] O. Lara, M. Labrador, “A Survey on Human Activity Recognition using Wearable 

 Sensors” in IEEE Communications surveys and tutorials, Vol. 15, No. 3,  

 Third Quarter 2013 

 

[41] T. Sai, H. Lee, “Weight Initialization on Neural Network for Neuro PID Controller -Case 

study-” in 2018 Intl Conf on Information and Communication Technology Robotics (ICT-

ROBOT), Nov 2018, DOI: 10.1109/ICT-ROBOT.2018.8549904 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Human Activity Recognition Based on Multimodal Body Sensing
	Recommended Citation

	tmp.1558380896.pdf.PJ998

