
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2019 

CONTRACT BUILDER ETHEREUM APPLICATION CONTRACT BUILDER ETHEREUM APPLICATION 

Colin M. Fowler 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Information Security Commons, and the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Fowler, Colin M., "CONTRACT BUILDER ETHEREUM APPLICATION" (2019). Master's Projects. 686. 
DOI: https://doi.org/10.31979/etd.mv6q-e9bp 
https://scholarworks.sjsu.edu/etd_projects/686 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/686?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


  Colin Fowler CS298 

1 
 

 
 
 
 
 
 
 

CONTRACT BUILDER ETHEREUM APPLICATION  

 

 

A Project Presented to Dr. Robert Chun and 

The Faculty of the Department of Computer Science 

At San Jose State University 

 

 

 

 

In partial fulfillment of the 

requirements for the class 

CS298 

 

By 

Colin M. Fowler 

Spring 2019



  Colin Fowler CS298 

2 
 

The Designated Project Committee Approves the Project Titled 

CONTRACT BUILDER ETHEREUM APPLICATION  

By 

Colin M. Fowler 

 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

SAN JOSE STATE UNIVERSITY 

Spring 2019 

 

 

 

 

 

 

Dr. Robert Chun, Department of Computer Science 

Dr. Philip Heller, Department of Computer Science 

Brian Coleman, Perkins Coie LLP 

  



  Colin Fowler CS298 

3 
 

TABLE OF CONTENTS 

Abstract………………………………………………………………………………… Page 4 

Table of Figures………………………………………………………………………... Page 5 

Introduction……………………………………………………………………………. Page 6 

Background……………………………………………………………………………...Page 9 

Motivation………………………………………………………………………..…… Page 15 

Results……………………...…………………………………………………………. Page 30 

Discussion of Methodology………………………………………………..……….... Page 35 

Conclusion and Future Work…………………………………………………………Page 46 

References…………………………………………………………...…………………Page 48 

 

  



  Colin Fowler CS298 

4 
 

 
ABSTRACT 

 Developments in Blockchain, smart contract, and decentralized application (“dApps”) 

technology have enabled new types of software that can improve efficiency within law firms 

by increasing speed at which attorneys may draft and execute contracts. Smart contracts and 

dApps are self-executing software that reside on a blockchain. Custom smart contracts can 

be built in a modular manner in order to emulate contracts that are commonly generated and 

executed in law firms. Such contracts include those for the transfer of services, goods, and 

title. This article explores exactly how implementations of smart contracts for law firms may 

look.   

  



  Colin Fowler CS298 

5 
 

TABLE OF FIGURES 

Figure 1 is a flowchart illustrating transactions directed by a channel monitor to track fees. 

Figure 2 is a screenshot of the user interface to create blocks in a contract. 

Figure 3 is a screenshot of the user interface with two blocks. 

Figure 4 is a screenshot including the parties block with the relevant wallet addresses. 

Figure 5 is a screenshot including the exchange block filled out. 

Figure 6 is a screenshot of a contract address. 

Figure 7 is a screenshot of transaction records on Etherscan. 

Figure 8 is an Etherscan screenshot publicly displaying the code of the contract. 

Figure 9 is a contract signing interface. 

Figure 10 illustrates successful transfer. 

Figure 11 is an Etherscan screenshot including annotations labeling transactions. 

Figure 12 is an illustration of module selection. 

Figure 13 is block diagram of ST-20 token features 

Figure 14 is a block diagram of the proof of concept application. 

 

  



  Colin Fowler CS298 

6 
 

I. INTRODUCTION 

 Lawyers are expensive; I know, I am one.1 Lawyers typically bill every six minutes. 

Reducing the time a given task requires in a firm makes the firm’s services more attractive 

to clients and enables attorneys to increase the number of clients they may serve. There is a 

growing desire in the legal field to reduce the time attorneys spend performing repetitive 

tasks and focus time instead on advising and counseling. One area that remains time 

intensive, though still repetitive is the drafting, revising and consideration of contract 

language. Care needs to be taken in the choice of wording (in human languages) because 

variable interpretation of contracts leads to a significant amount of court litigation every 

year. 

 Unfortunately, contracts have been difficult to automate or streamline because of the 

variability included in their generation and the trust required to convert them to program 

code. While program code is not prone to interpretation like English, or other human 

languages, program code must be run on someone’s computer, and thus private execution of 

program code strains trust required for a contract negotiated at arm’s length.        

 Cryptocurrencies have opened up new space for software innovation. Starting with 

Bitcoin in 2011, numerous cryptocurrencies have iterated on the general concept of a 

decentralized immutable public ledger, also known as a “blockchain.” Each cryptocurrency 

operates on its own respective blockchain. The Bitcoin blockchain is largely intended as a 

means to track movement of digital currency. Within a short period, additional uses became 

apparent as users realized that documents could be inserted into transactions of Bitcoin. 

Storage of documents on the blockchain enabled users to prove that they had a given set of 

                                                 
1 https://www.perkinscoie.com/en/professionals/colin-m-fowler.html 

https://www.perkinscoie.com/en/professionals/colin-m-fowler.html


  Colin Fowler CS298 

7 
 

information (whatever was stored on the document) at a particular date and time. Other 

cryptographic currencies have iterated and expanded on the utility.  

 Recently, the Ethereum cryptocurrency has enabled on-blockchain processing using 

virtual machines as a type of public computer. Nodes that support the Ethereum blockchain 

provide unused processing power to execute open source software that is stored on the 

blockchain. This on-blockchain software is referred to as a smart contract or a decentralized 

application (“dApp”). Smart contracts are programmed to execute upon the satisfaction of 

one or more predetermined conditions. Smart contracts executing on a blockchain can be 

trustless and are secured by the immutable nature of the blockchain. As a result that Smart 

contracts are executed publicly, the requirement of additional trust for arm’s length parties 

of a contract created in program code is removed. 

 The legal industry can make direct use of smart contracts to improve efficiency and 

reduce litigation.2 Litigation is often a result of ambiguity in contracts and implementing 

such contracts in program code that follows strict rules for execution reduces ambiguity and 

may in turn reduce litigation. Streamlining administrative issues enables lawyers to direct 

greater focus to legal analysis of problems. Lawyers will transition from drafting traditional 

contracts to building standardized smart contract templates. The templates would use code 

modules that would plug in as necessary/selected. In appearance, the user interface would 

look similar to the standardized traditional contracts that one might find on LegalZoom (a 

do-it-yourself legal help service). In some cases, the old contracts will evolve into a hybrid 

of paper and digital content where contracts are verified via blockchain and substantiated by 

physical copy. 

                                                 
2 Rouse, Margaret, “Smart Contract”, last updated on April 2018, (available at 
http://searchcompliance.techtarget.com/definition/smart-contract and accessed 3/29/2019).   



  Colin Fowler CS298 

8 
 

 This research explores exactly how implementations of smart contracts for law firms 

may look. As noted, the researcher is, himself, a patent attorney with significant experience 

working in a large law firm environment (commonly referred to as “BigLaw”) and has billed 

hundreds of hours drafting and reviewing contracts. 

 

  



  Colin Fowler CS298 

9 
 

II. BACKGROUND    

 A. THE BLOCKCHAIN 

 Cryptocurrency networks operate on a distributed network architecture. Key to 

understanding cryptocurrency is the data structure upon which the entire network operates. 

The Bitcoin and Ethereum networks use what is referred to as a Blockchain.  

 The Blockchain includes a history of all transactions that have ever occurred on the 

network. Each full node in the distributed network holds a full copy of the Blockchain. To 

participate in the network at all, the Blockchain history must be consistent with the history 

of at least a majority of other nodes.  This consistency rule has an important effect of causing 

the Blockchain to be immutable. In order to effectively attack a Blockchain, one must control 

51%+ of the processing power of the entire network. Where the network is comprised of 

thousands of nodes, assembling the requisite 51% is exceedingly difficult.3  

 When a given node intends to generate a transaction, the transaction is propagated 

throughout the nodes until it reaches a node or group of nodes that can assemble that 

transaction and other transactions generated during a contemporaneous period of time into a 

block. The nodes that assemble blocks based on a collection of transactions are referred to 

as “miners.” When blocks are generated by miners, the miners receive a predetermined 

number of coins (in whichever currency’s blockchain the miner is operating on). The term 

“miner” originates from the idea that these users/machines are performing work to obtain 

                                                 
3 While it is true that many nodes often group together in pools that together work together to solve for nounces to 
propagate the Blockchain, the grouped nodes of the pool do not necessarily share common control. While they have 
agreed to pay any mined coins to a central pot that is shared amongst the pool, this is far and away from agreeing to 
make changes to the Blockchain.  



  Colin Fowler CS298 

10 
 

valuable resources. Until a transaction appears in a block it is not published or made public. 

Often a transaction isn’t considered confirmed until 6 additional blocks have been added.4 

 At the time of writing this article, Bitcoin blocks are limited to the size of 1 MB and 

are generated approximately every ten to fifteen minutes.5 This illustrates an important 

limitation of the Bitcoin network: that it only processes approximately 7 transactions per 

second. Conversely, Ethereum limits block size based on the amount of processing the 

contracts in the given block call for and blocks (including processed operations) are 

appended every five to fifteen seconds.6  While cryptocurrency networks technically begin 

processing transactions in real-time, and the existence of a block including a given 

transaction verifies that transaction’s authenticity, until that block is published to the 

Blockchain, the transaction is not verified. 

 This introduces the issue within the Bitcoin network at a given moment of “who has 

the money.” During the ten to fifteen-minute span between block generation transactions that 

have been submitted may not actually process. This would occur when a user spends money 

they didn’t have, or double spends. This is not to say the network has no verification 

mechanism between blocks. For example, when a given user attempts to pay another user, 

the system may easily query older blocks to inspect the given user’s balance as of at least 

the most recently published block. If the given user has sufficient funds, it is moderately safe 

to trust the transaction.  

 However, if the given user is attempting to double spend all of their money, only one 

of those transactions will publish in the next block. The other will be rejected (which is 

                                                 
4 Bitcoin Wiki “Confirmation” last updated March 16, 2018, available at https://en.bitcoin.it/wiki/Confirmation and 
accessed on 4/14/2018). 
5 Block Explorer available at https://blockchain.info/ and accessed 3/25/2018. 
6 Etherscan available at https://etherscan.io/ accessed 3/24/2019. 



  Colin Fowler CS298 

11 
 

rejected and which processes is subject of a race condition and not necessarily dependent on 

time of generation). When discussing trivial amounts of money (e.g., paying for coffee), this 

is not really a big concern, but when handling larger purchases that occur quickly (e.g. stock 

in a company), the amounts can become significantly greater, and a clearance time of ten to 

fifteen minutes is not ideal. 

 Thus far, Bitcoin has been discussed as a network for trading Bitcoins. However, 

Bitcoin transactions have additional utility in that they can embed additional data.  As 

contemplated above, Bitcoin can be used to purchase and record stock purchases. This is 

performed by including hashed data within an output field of a given transaction.  In this 

manner, the proof of existence for any document or recorded data may be embedded into the 

immutable history of the Blockchain. In this manner, nearly anything may be traded via the 

use of an immutable cryptocurrency public ledger.  

 Systems that utilize the Bitcoin blockchain to transfer the ownership of non-coin 

assets require software that is separate from, and merely relies upon the immutability of, the 

Blockchain. The separate software is not necessarily secure or immutable itself. This extra-

blockchain software is thus an inherent weak point in a system that relies upon the 

immutability of the blockchain to ensure security.  Ethereum takes the ability to buy and sell 

non-coin assets a step further. 

 Ethereum smart contracts are in effect software that runs on the Blockchain. That 

software is open source and subject to inputs that are related to the Blockchain itself. Of 

course, one can still write code including vulnerabilities, but the platform enables greater 

security and fewer weak links in the chain. 

 



  Colin Fowler CS298 

12 
 

 B. SMART CONTRACTS AND DAPPS 

 Smart contracts and dApps execute on an Ethereum virtual machine (“EVM”). The 

EVM is instantiated on available network nodes. Smart contracts and dApps are applications 

that execute; thus, the processing power to do so must come from hardware somewhere. 

Nodes must volunteer their processors to execute these operations based on the premise of 

being paid for the work in Etheruem coins, referred to as Ether, measured in “gas”.  Gas is 

the name for a unit of work in the EVM. The price of gas can vary, often because the price 

of Ether varies,7 and is specified within the smart contract/dApp.   

 Every operation that can be performed by a transaction or contract on the Ethereum 

platform costs a certain number of gas, with operations that require more computational 

resources costing more gas than operations that require few computational resources. For 

example, a multiplication instruction requires 5 gas, whereas an addition instruction requires 

3 gas. Conversely, more complex instructions, such as a Keccak256 cryptographic hash 

requires 30 initial gas and 6 additional gas for every 256 bits of data hashed.  

 The purpose of gas is pay for the processing power of the network on execution of 

smart contracts at a reasonably steady rate. That there is a cost at all ensures that the 

work/processing being performed is useful and valuable to someone.  Thus, the Ethereum 

strategy differs from the Bitcoin transaction fee, which is only dependent on the size in 

kilobytes of a transaction. As a result that Ethereum’s gas costs are rooted in computations, 

even a short segment of code can result in a significant amount of processing performed. The 

use of gas further incentivizes coders to generate efficient smart contracts/algorithms. 

                                                 
7 At the time of writing this, the price of Ether has varied by a factor of greater than 100 in the previous calendar 
year.  



  Colin Fowler CS298 

13 
 

Otherwise the cost of execution may spiral out of control. Unrestricted, an exponential 

function may bankrupt a given user.   

 While operations in the Ethereum virtual machine (EVM) have a gas cost, gas has a 

“gas price” measured in Ether. Transactions specify a given gas price in ether for each unit 

of gas. The fixing of price by transaction enables the market to decide the relationship 

between the price of ether and the cost of computing operations (as measured in gas). The 

total fee paid by a transaction is the gas used multiplied by gas price. 

 If a given transaction offers very little in terms of a gas price, that transaction will 

have low priority on the network. In some cases, the network miners may place a threshold 

on the gas price each is willing to execute/process for. If a given transaction is below that 

threshold for all miners, the process will never execute.  Where a transaction does not include 

enough ether attached (e.g., because the transaction results in so much computational work 

that the gas costs exceed the attached ether) the used gas is still provided to the miners. When 

the gas runs out, the miner will stop processing the transaction, revert changes made, and 

append to the blockchain with a "failed transaction." Failed transactions may occur because 

the miners do not directly evaluate smart contracts for efficiency. Miners will merely execute 

code with an appropriate gas price attached. Whether the code executes to completion or 

stalls out due to excessive computational complexity is of no matter to the miner.  

 Where a high gas price is attached to a transaction, the transaction will be given 

priority. Miners will process transactions in order of economic value. Priority on the 

Ethereum blockchain works similarly as with the Bitcoin blockchain. Where a user attaches 

more ether to a given transaction than necessary, the excess amount is refunded back to that 

user after the transaction is executed/processed. Miners only charge for the work that is 



  Colin Fowler CS298 

14 
 

performed. A useful analogy regarding gas costs and price is that the gas price is similar to 

an hourly wage for the miner, whereas the gas cost is like a timesheet of work performed.8 

 

  

                                                 
8 Coleman, Jeff, question answer on Stack Exchange, “What is meant by the term ‘gas’?” last edited on May 31, 
2017 (available at https://ethereum.stackexchange.com/questions/3/what-is-meant-by-the-term-gas and accessed on 
3/24/2018). 



  Colin Fowler CS298 

15 
 

III. MOTIVATION 

 There are a lot of different subjects that people and corporate entities use contracts to 

resolve. The relative cost of these sorts of contracts vary widely. Some are routine transfers 

that are generated and processed entirely by paralegals whereas others require a delicate 

selection of terms that delineate rights and processes of a transfer. Fundamentally, every 

contract is a transfer. Two or more sides bring some value (referred to as “consideration”) to 

the table, and the consideration9 is exchanged. 

 The aim of this article is to delineate a means of streamlining the drafting, review, 

interpretation, and execution of contract. To do so, I discuss a number of considerations that 

need to be made.       

 A. COMMON CONTRACTS 

 In a law firm most contracts generated are form based or “boilerplate”. Generating 

contracts is often an exercise in selecting groups of boilerplate language to include. Disputes 

are often based on one lawyer figuring out potential corner cases in another lawyer’s 

boilerplate provisions. 

    The circumstances of these disputes are a result of the inherent imprecision of the 

English language (or any spoken language for that matter). “Synonyms” in English will vary 

in breadth. As an illustrative example, the words “large”, “mammoth”, “gargantuan”, and 

“humongous” all mean “big” though each has some varied degree of “how big” each refers.  

It is further posited that one cannot, with complete certainty, rank these words in the order 

                                                 
9 Consideration is a legal term in contract law that refers to what one party is offering in the contract. For any 
contract to be enforceable, it must be supported on both (or all) sides by consideration. As a result of the way 
consideration is viewed under the law, it is best that no single module handles the consideration of both parties. Each 
party should to a contract should employ at least one code module for their respective consideration. This is because 
the consideration may vary wildly from contract to contract. implementations would require fewer modules in this 
construction. 



  Colin Fowler CS298 

16 
 

of magnitude to which they refer. Which is bigger, mammoth or humongous? The answer is 

open to interpretation. While varied synonyms of “big” are not necessarily common in legal 

contracts, they provide an able illustrative example of the failings of the English language.  

 Take for example a contract that includes an addendum to be executed after the 

contract ends, and another provision refers to exist for the duration of the whole contract. 

Does the “whole contract” include the execution of addendum? The addendum is technically 

written within the contract, but expressly says it takes function after the contract ends? The 

language does not solve this apparent contradiction on its face.  

 Enter program code -- program code is far more precise than English, or any other 

spoken language. A program executes according to its code and by no other rules. The code 

must inherently be precise to execute. This is a well-known characteristic of program code 

as compared to spoken language. This being the case, one may ask, “Why do legal contracts 

not substantially exist in software?” Aside from the fact that the legal profession notoriously 

slow to adopt technology, there are two primary issues: first, security, and second, the ability 

to function in a trustless environment.  

 In order to generate a self-executing contract, one must rely on secure variable inputs. 

A contract may only properly execute where there is trust in its respective triggering events 

(e.g., a signature of a party to the contract). If the execution of a contract can be triggered 

based on an imperfect premise, then the contract itself isn’t something that can be trusted.  

 Secondly, contracts are often generated in what is legally referred to as “at arm’s 

length.” This merely means that parties to the contract have competing interests and may not 

trust one another.  A first attempt at solving this issue is to cause the software contract to use 

open source code. However, there are then two follow up issues with the use of open source 



  Colin Fowler CS298 

17 
 

code:  reasonable assurance that the open source code is what is actually being executed and 

the anonymity of the parties. 

  To explain the first issue, another illustrative example is necessary. “Open source” 

code is a broad term that refers to many things. Commonly, code is posted to a repository 

such as GitHub; however, when a first user claims to execute that exact code on a computer 

a second user does not have direct access to, the second user has no ability to prove that the 

posted code they have reviewed and accepted is what is being executed. While somewhere 

there exists contract terms (e.g., code in the form of a contract) that the second user has 

agreed to, the second user does not know that this is the contract that is executed on the first 

user’s computer.  

 The issue of anonymity is related to that many legal contracts are executed in secret. 

If the code of a given contract is posted as open source, it becomes more difficult to remain 

anonymous.      

 What’s changed? Ethereum has enabled a system whereby the users can operate in a 

secure, trustless, and anonymous environment. A result of executing on a public EVM 

enables users to know exactly what code is being executed. Thus, the code is both open 

source, and users are assured that the open source code is being used. Users can further 

generate brand new digital wallets/Ethereum accounts for each requisite contract and thus 

remain anonymous from any users who aren’t expressly aware of the content of the contract 

(presuming of course that the inputs of the software contract do not betray the identity of a 

user). Finally, the inputs are often based off the status of cryptographic accounts that are 

verified by the immutability of the Blockchain and are thus secure. Therefore, Ethereum has 

generated an environment ripe to build self-executing software contracts.  



  Colin Fowler CS298 

18 
 

    With a suitable platform established, the next issue is to determine the sorts of 

contracts one wants to build, and how exactly those are to be implemented. The most 

notorious aspect of a contract is that they are signed. In order to do this, each party to the 

contract will have a public/private key pair. The signatory key pair may or may not be 

connected to any sort of monetary value, the key pair serves as a party’s signature. This is 

one of the weakest points of security with regards to any crypto system. Access to the key 

pair is external to the system. The party must ensure the security of their own respective 

private key. If the private key is compromised, the security of that party’s access to the 

system collapses.  

  With a system for signatures established, contracts are often for exchanging one of 

three things: services, goods, and/or title. These contracts are counterbalanced with monetary 

value (either immediately, or at a later date) or similarly with goods, services, or title. The 

inputs for each vary and merit analysis.    

 

 i. Services  

 A contract for services is the most common contract offered at a law firm. Lawyers 

sell their time.  Thus, an engagement letter is often the most common contract generated by 

a law firm. Every new client requires one. The features of such a contract include non-

executing language as well as executing language. An example of non-executing language is 

an advisory notice. Such a notice merely advises a client of their rights in a given 

circumstance. While this sort of language is an important element to an engagement letter, it 

is not the relevant portion to the function of this article. 



  Colin Fowler CS298 

19 
 

 Executing language concerns items such as a billable rate, services covered, and a 

means to trigger payment. A services contract can execute based on one, or both of two 

principles: acceptance of the buyer (client) and accounting of the provider (lawyer). In each 

of these circumstances, at minimum, a contract builder will require two digital wallets, one 

for the client and one for the lawyer (each having its own respective public private keypairs).  

 Acceptance of the buyer can be triggered after services are rendered. The client 

indicates the services have been performed and accepts the associated fee. Acceptance is 

determined based on client signature on a cryptographic transfer. Once a specific 

predetermined transaction has occurred using the buyer’s cryptographic wallet, services are 

flagged as accepted. While such a method can be used in multiple circumstances, the most 

easily illustrated is one based on a fixed or contingency fee basis, though each would require 

separate modules and inputs. 

  

 a. Fixed Fee 

 Fixed fee arrangements are based on the premise that the lawyer does a thing, and 

they are paid a fixed amount for that thing. The use of legal services here is merely 

illustrative. Legal services could just as easily be replaced with plumbing repair, 

accounting/financial services, painting, or any other service profession. In order to establish 

a fixed fee system a software module is established that includes the wallets of the client and 

the lawyer, though in addition, may include wallets that serve to merely to hold a condition 

(e.g., a Boolean). In order to alter the condition, one must have access to the necessary private 

key. Control over that private key is provided to the client. Thus, when the lawyer 

demonstrates the completion of a task, the client can use their private key to alter the 



  Colin Fowler CS298 

20 
 

condition to “accepted”. Money is then transferred between the client and lawyer’s wallets 

based on an amount established in the cryptocurrency contract.      

  

 b. Contingency Fee  

 Contingency fee arrangements are where the payment to the lawyer is a matter of their 

success (e.g., 40% of a judgment award or settlement). If there is no judgment award, then 

the lawyer does not get paid. In order to enable this arrangement, there is an additional 

contingent wallet. The key pair for the contingent wallet is held by the associated dApp. 

When monetary value is put into the contingent wallet, the wallet automatically divides the 

value according to the contingency fee and delivers to the client and lawyer wallets 

respectively.  

 Where the client’s acceptance comes in first with the signature accepting the 

agreement, and then subsequently with escalating fee arrangements based on phase or stage 

of the case. The exact percentage of a contingency fee is often a function of how far along a 

case is (e.g., complaint/answer, start of discovery, end of discovery, beginning of trail, etc.). 

At each of these, the attorney may query the client whether the client wishes to proceed. In 

doing so, the contingency fee percentage escalates. In order to enable this, the lawyer wallet 

may send query transactions to the client wallet using the respective public(client)/ private 

(lawyer) keys.        

       * * * 

 Conversely to acceptance of the buyer, accounting of the provider is often time based. 

The most common fee arrangement is one based on the billable hour (often measured in 

tenths of an hour or 6-minute intervals). Where the accounting is time based, the provider 



  Colin Fowler CS298 

21 
 

executes a specific predetermined transaction using the provider’s cryptocurrency wallet to 

start a clock, and a second specific predetermined transaction to end the timekeeping. Once 

timekeeping is ended, the client wallet is charged based on the hourly rate. The amount in 

the client wallet works similarly to a retainer.   

 Alternatively, the associated dApp charges the client wallet while the clock is active 

at each relevant interval. In practice, it is more likely that a law firm would employ a system 

wherein the lawyer was able to adjust their time down after the clock was turned off. An 

attorney’s time is spent in various levels of efficiency. Where the cost for a given task 

becomes too great, the attorney may wish to adjust their time down to account for periods of 

inefficiency. 

 Billing at an hourly rate is a relatively simplistic implementation -- the contract 

building dApp needs to be able to generate more flexible contracts. There is a preexisting 

system described in a U.S. Patent Application entitled “Cryptographically Managing 

Telecommunications Settlement” invented by George Melika and Akbar Thobhani 

(hereafter, “Melika”), that handles a service for service economy.10  Melika describes a 

system for settlement of communications channels between two telecommunications 

companies (a circumstance where lawyers would otherwise establish a contractual basis of 

operation).  

 When a user makes a phone call to another user, the respective companies of those 

users (e.g., Verizon and ATT) open up a communication channel therebetween. This channel 

may include multiple users. Often it is the case that one telecommunications company is 

                                                 
10 Cryptographically Managing Telecommunications Settlement, U.S. Pat. Pub No. 2017/0078493 invented by 
George Melika and Akbar Thobhani and filed on September 14, 2015 (Drafted by Colin Fowler, and available at 
https://patents.google.com/patent/US20170078493A1)    
 

https://patents.google.com/patent/US20170078493A1


  Colin Fowler CS298 

22 
 

being charged for the service by the other. However, as more callers enter the system, calling 

from the opposite direction, the service charges go the other way. The system of Melika uses 

what is referred to as a channel monitor to keep track of the relative service fees. The fees 

can either offset based on individualized rates held by each of the companies and relative 

time of service, or each company can change an amount held in escrow. 

 

FIG. 1 is a flowchart illustrating transactions directed by a channel monitor to track 

fees.11 

 The system of Melika was designed and disclosed prior to the release of Ethereum 

and thus was based on the premise that it would function with Bitcoin. The channel monitor 

                                                 
11 Cryptographically Managing Telecommunications Settlement, U.S. Pat. Pub No. 2017/0078493 invented by 
George Melika and Akbar Thobhani and filed on September 14, 2015 (Drafted by Colin Fowler, and available at 
https://patents.google.com/patent/US20170078493A1)    

https://patents.google.com/patent/US20170078493A1


  Colin Fowler CS298 

23 
 

is disclosed in an implementation-unspecific manner but was intended originally to function 

based on software maintained by one of the two telecommunications companies, or as 

software managed by a 3rd party service. However, the channel monitor is better 

implemented as a dApp on the Ethereum blockchain.  

 In order to adapt the channel monitor to the subject dApp of this article, the contract 

builder, the channel monitor would need to be broken down into element modules. 

Effectively plug and play pieces of boilerplate that when assembled in the right combination 

resulted in the channel monitor. To self-execute this complex contract, one needs to build 

the following modules: 

o a clock module controlled by a single party to the contract, the input is a 

Boolean (on or off), and the output is an amount of time; 

o a magnitude multiplier configured to multiply an input based on a second input 

(A, B); 

o a rate module configured to set a rate for a given input, X, and providing an 

output of an amount, Y; and 

o a price reconciliation module configured to reconcile charges from each party 

to the contract (Party1, Party2).  

 To assemble these, there are two of each of the clock module, the magnitude 

multiplier and the rate module, and a single reconciliation module. The selected modules 

then have to be linked such that the user on each side uses their respective private keys to 

affect the Boolean of the clock module; the output of the clock module is used as the input, 

X, of the rate module; the output of the rate module, Y, is connected to the magnitude module 

input, A, while the second input of the magnitude module is controlled by the opposite party, 



  Colin Fowler CS298 

24 
 

wherein the number of users at a given period of time is indicated; and the output of each 

respective magnitude module is provided to the price reconciliation module where the 

comparative amounts are compared to one another, and the remainder is charged to the party 

that has received the least service.  

 While these modules are expressly used to build the example of the 

telecommunications channel monitor, these same modules may be used in the construction 

of multiple other contracts. The modules are selected based on the specific needs of the 

clients.     

 

 ii. Goods 

 While a contract for goods is not necessarily one that a law firm itself is a party to, 

these contracts are still built by law firms. Contracts of this nature are often for supplies, or 

materials used to manufacture larger goods. For example, a cell phone includes many parts 

that are not manufactured by the cell phone developer. The cell phone manufacturer, will, 

for example, purchase processors from another company.  

 There are many concerns involved in this sort of contract beyond an amount of goods 

and the cost thereto. For example, such a contract may be a requirements contract, where the 

purchaser determines the number of units they wish to purchase based on their own business 

interests. Or alternatively, an output contract, where the purchaser agrees to purchase 100% 

of the output the manufacturer generates (and is thus based on manufacturing effectiveness). 

 To generate the two contracts described above, one would make use of a quantity 

module and a received goods module. In the case of a requirements contract, the buyer has 

control over the quantity module (e.g., the buyer’s private key enables them to input a 



  Colin Fowler CS298 

25 
 

quantity of a given good desired). The buyer additionally has control over the received goods 

module.  When the goods are received, the buyer provides necessary input into the received 

goods module, and the smart contract will cause payment to transfer between the buyer and 

manufacturer wallets. 

 In the case of an output contract, the quantity and the received goods modules are in 

control of different parties (e.g., the manufacturer has control of the quantity module, and 

the buyer has control over goods received module). The manufacturer indicates the amount 

of the given good they have generated, and subsequently the buyer indicates they have 

received the goods.  

 Goods contracts do not always execute ideally. Thus far, only a binary possibility of 

contract resolution has been described. Unlike services contracts, goods contracts may be 

partially fulfilled. Such a circumstance occurs when the manufacturer only sends some of 

the required/output amount of a good. The buyer has a number of responses to receiving only 

some of the expected quantity. The buyer may accept partial delivery and pay in kind, or the 

buyer may send the entire shipment back as a rejection. In each of these circumstances, the 

received goods module is configured to handle multiple inputs. To do this the received goods 

module is set up such that it receives input from the quantity module and can alter that 

quantity.        

 

 iii. Title 

 A contract for title may sometimes be similar to that for goods but includes an 

additional regulatory component. Traditionally title is something transferred between parties 

with respect to assets that cannot physically be moved (e.g., intellectual property, company 



  Colin Fowler CS298 

26 
 

ownership, real estate, etc.). However, title can also be applied to goods that can physically 

change hands (e.g., cars, boats, etc).  

 An important distinction between transfers of title and goods are that title is handed 

by a regulatory agency. Receipt of title is based on what the government agency is aware of, 

rather than what the owner is aware of (with some exceptions). In the future, it is theorized 

that most if not all title transactions will exist entirely on a blockchain type system. At the 

time of writing, these systems are largely localized databases managed by the relevant 

regulatory agency.   

 Accordingly, there is a module to identify the property in question and the relevant 

regulatory agency. For example, if the property is a car, a particular state’s DMV is 

identified. If the property is a patent, the USPTO is identified. If the property is a trademark, 

a different part of the USPTO is identified.  

 The module is programmed to interact with the relevant regulatory agency based on 

the structure of that agency’s website. This will require consistent updates because the 

relevant websites of the regulatory agencies are also updated frequently. Further, some 

agencies may not be accessible based on the use of CAPTCHAs. In such a circumstance, the 

dApp may instead be programed to generate paper documents that may be mailed to the 

relevant agency. 

 To execute a transfer in title one needs three primary inputs: an identification of the 

property (which in turn identifies the relevant regulatory agency), an identification of the 

type of conveyance (e.g., ownership or a security interest), and a signature of the current 

owner. Each of these three inputs is built into a title module. As with previous types of 



  Colin Fowler CS298 

27 
 

contracts, handling the consideration used in exchange for title should exist separate from 

the title module. 

 A similar module may be used to complete a settlement agreement. A settlement 

agreement may include the transfer of title, though the most common action in a settlement 

agreement is the dismissal of a pending lawsuit. Lawsuit dismissal is not precisely a title 

transaction, but deals with a regulatory agency (e.g., a court) none the less. The same 3 inputs 

are relevant: type of property (e.g., a lawsuit in a particular state/district), type of conveyance 

(e.g., dismissal of suit), and signature of the interested party.  

 

 B. COMPLEX CONTRACT COMPONENTS 

 Thus far, this article has referenced contracts for services, goods and title. These are 

not the only types of consideration a contract may be based on. Some contracts are based on 

more abstract concepts. Most other types of consideration would be viewed as non-executing. 

That is, the consideration offered in exchange is based on the premise of non-action (e.g., 

silence, agreement not to sue, agreement not to enforce particular rights, agreement not to 

compete, etc.). In such a case, the module is merely a print function with inputs that merely 

extract non-variable terms from other modules (e.g., subject matter covered). 

 In some circumstances, one may want to build modules that verify that the party has 

taken no action. There is an issue in verifying abstract conditions that the input sources may 

not be trusted. For example, if a contract includes a non-compete clause, there is not an 

objective way to verify whether the clause has been violated. Despite this, the dApp may 

include advisory inputs. Advisory inputs merely cause messages to propagate through the 

system. An example of such an input is analysis of a given user’s LinkedIn page. This 



  Colin Fowler CS298 

28 
 

particular example is somewhat problematic. The problem is that the dApp is all open source 

the party is aware that their LinkedIn page is under observation; thus, they need merely not 

edit the page to avoid triggering the advisory input.    

 Another important module that may exist separate of consideration terms is that of 

anonymity. In order to enable the anonymity of the parties to a contract, the dApp creates 

new Ethereum accounts for the entire smart contract. Additionally, the smart contract must 

be funded (and provided gas) in an anonymous manner. To some extent, each Ethereum 

wallet is already anonymous in the sense that the public key of the account is not inherently 

publicly tied to anyone. That said, the after repeated patterns of use, one can associate a 

particular entity to a particular Ethereum wallet. While those seeking anonymity should thus 

divest their holdings into multiple wallets in order to obscure patterns, the anonymity module 

can establish a form of open source cryptography whereby ether is moved between a random 

number of wallets and using random amounts and intervals of transaction. To further obscure 

the source of money, a third-party exchange may be utilized in order to convert the ether to 

a form of fiat currency and then back to ether in another wallet.    

 Similarly to the anonymity module, the parties may wish to not hold value in 

cryptocurrency. Cryptocurrencies are notoriously volatile in value. Accordingly, a 

conversion module may be slotted into smart contracts that uses a third-party exchange for 

all amounts that have finished transacting to convert from ether to a fiat currency. The 

module may be optimized for speed or to reduce exchange fees. At the time of writing this, 

the largest exchange in the US, Coinbase (via the GDAX platform) does not charge fees for 

posting trades but does charge fees for completing posted trades. In order to post a trade, the 



  Colin Fowler CS298 

29 
 

dApp can post a trade for the minimum required variance and wait until the trade completes, 

Alternatively, the conversion module can immediately execute a market order.   

 A sample complex contract that brings a number of the discussed concepts together 

is a contractor agreement12 for a software engineer. Fundamentally, a contractor agreement 

is an exchange of services, often for money. However, contractor agreements usually include 

a “work for hire” provision that states that all intellectual property generated by the employee 

while working belongs to the employer. A work for hire provision is a title transfer contract. 

 In order to build the contractor agreement, the employer first includes an acceptance 

module and a monetary payment module triggered by the output (Boolean) of the acceptance 

module. The title module is accessed by both parties. The contractor provides their signature, 

while the employer has delayed access to the type of property (e.g., trademark, copyright, or 

patent). The type of conveyance is entered immediately as an assignment. The contract may 

further include a clock module to enforce a lifespan of the work. 

 

  

                                                 
12 Contractor agreements are distinctly less complicated than employee agreements and thus are easier to generate in 
a self-executing manner.  



  Colin Fowler CS298 

30 
 

IV. RESULTS 

 While running a proof of concept application, I was able to generate and execute a 

sample Series A equity financing agreement contract in approximately five minutes. Granted, 

by the point the code was functional, I had long since memorized the process, and the speed 

at which I could run through the user interface was significantly higher than one who was 

taking careful consideration of their choices. That said, even on a first pass through, it does 

not take more than fifteen minutes to operate the interface.  

 Steps in operating include, generating a contract through adding blocks 

 

FIG. 2 is a screenshot of the user interface to create blocks in a contract. 

  

FIG.3 is a screenshot of the user interface with two blocks. 

    



  Colin Fowler CS298 

31 
 

 The user adds blocks by clicking the add block buttons (see FIG. 2, an illustration of 

an initialization interface). Here two blocks are implemented as required for the relevant 

contract (see FIG. 3, an illustration of two selected blocks). Once added, the blocks are filled 

out to include the exchange for capital (here, ETH coins) for both stock and stock options 

(represented by ERC20 tokens). Relevant parties to the contract are identified by their 

respective Ethereum wallet public addresses (see FIG. 4). The sides of the contract are 

  

FIG. 4  is a screenshot including the parties block with the relevant wallet addresses. 

  

FIG. 5 is a screenshot including the exchange block filled out.  



  Colin Fowler CS298 

32 
 

balanced on either side of the Exchange block. One user provides capital in exchange for 

“stock” and “stock options” (see FIG. 5).  When complete, the attorney clicks the submit 

button, and the contract is submitted to the Ethereum network and is provided a contract 

address (see FIG. 6) that may be inspected on etherscan.io13.    

  

       

FIG. 6 is a screenshot of a contract address. 

FIG. 7 is a screenshot of transaction records on Etherscan. 

 Shown in FIG. 7 a first transaction is generated on the blockchain that creates the 

contract (hash prefix: 0xed’), and a second transaction is performed by the “lawyer account” 

(hash prefix: 0x96’). Also available on Etherscan is the code for the contract (see FIG. 8). 

From this point onwards, the lawyers job is done. All that remains are for the relevant parties 

to act on the contract.  

                                                 
13 Notably, texts are run on the Rinkeby test blockchain in order to make reduce cost of operation. 
https://rinkeby.etherscan.io  

https://rinkeby.etherscan.io/


  Colin Fowler CS298 

33 
 

 

FIG. 8 is an Etherscan screenshot publicly displaying the code of the contract.  

Using a web interface, both parties identify the contract address and sign using their relevant 

interfaces. 

 

FIG. 9 is a contract signing interface. 

When the last signature is processed on the blockchain, the stock is exchanged for the capital 

(see FIG. 10). Though the smart contract continues to exist because a stock option 

 

FIG. 10 illustrates successful transfer. 

still exists. The stock option is executed in a separate interface that enables the VC to execute 

as long as the vesting date has been met, the amount of stock available has not been 



  Colin Fowler CS298 

34 
 

exhausted, and the price is set correctly. Once all of the contract has been executed, the 

record of all actions is present on Etherscan (see. FIG. 11).   

 

FIG. 11 is an Etherscan screenshot including annotations labeling transactions.  

 One may notice that the timestamps between transactions is approximately eleven 

minutes. This time is not reflective of the lawyer’s involvement. All of the time a lawyer 

spends occurs prior to the first transaction (contract creation).  

 A sampling of my associate colleagues who have drafted Series A round equity 

financing agreements averaged approximately 3 hours to draft and revise the relevant 

contract. The billing rates of my colleagues interviewed ranged from $435 an hour to 590$ 

(averaging to $530 an hour).  With each of these contracts, a partner reviewed for 

approximately fifteen to twenty minutes. Partners charge between $780 and $1115 per hour. 

However, the partner involved in each of the contracts reviewed charges $980 an hour. 

Therefore, the average series A equity contract costs approximately $1884.  

  A fifteen-minute operation time counts for 0.3 billed hours comparatively costs $159 

and additional partner review remains the same at $294. Use of the application saved $1431 

in billed time. It’s theoretically possible that the associate wouldn’t be involved in the 

generation of the contract at all and only the partner’s time would be necessary, but this 

would require further investigation after implementation.     

  



  Colin Fowler CS298 

35 
 

V. DISCUSSION OF METHODOLOGY 

 A. BUILDING THE LAW FIRM DAPP 

  The best way to build the relevant contracts is a modular approach. Due to the 

potential complexity of contracts, the best way to efficiently construct them is to do so in a 

piecemeal style. I’ve also noticed through my own legal practice that I usually draft contracts 

from an original shell that is “close” to the final product, copy-paste paragraphs from other 

contracts I’ve worked on, and then modify to fit the particular client’s circumstances. This 

approach is wildly inefficient in that it requires that the drafter remember where the 

paragraphs they want to draw from are located and doesn’t outline a set of variables that can 

be substituted for the current client. Making the changes in a text document such that the 

sections/clauses flow together and being certain that the “values” from the prior client are 

cleared out entirely is a time-consuming process. 

 However, the concept of picking and choosing from something one knew worked 

before is not bad. This is, after all, how a significant amount of software is written (e.g., 

drawing licensable libraries). Thus, an interface that enables users to choose from a selection 

of modules that are all in one place and includes easily edited values (that do not store the 

values of prior clients is useful. 

 Importantly, because a module-based contract builder is not actually constructing an 

English sentence it may represent the functions of the contract to be built abstractly. Aside 

from issues of precision in English, human languages often suffer from the ability to convey 

abstract concepts clearly. Conversely, mathematical expressions and program code have no 

issues in conveying abstract concepts with high levels of specificity. For purposes of being 

a data structure, human language is exceedingly inefficient.     



  Colin Fowler CS298 

36 
 

  

 

FIG. 12 is an illustration of module selection. 

 Users select the modules (see FIG. 12) that are relevant to their contract and build 

that contract. The selection interface is accessed by the attorney, while review and signature 

interfaces are accessed by the relevant parties. The sample contract built in Figure 12 doesn’t 

exactly include any complete sentence, though from casually parsing from top to bottom, a 

read is given a general idea of what this contract would do. This is a contract that exchanges 

money for services anonymously and renders some additional result upon the satisfaction of 

a given condition. 

 To improve the user interface the dApp would include smart contract modules. This 

article has disclosed a number of contract styles, some are more common than others and 

thus having pre-built contract modules improves a user’s experience. Modules also improve 

the ease of use.   

 In addition to the executing modules, some modules are used merely to hold data (e.g, 

a POJO). These modules are referenced as input by other executing modules in conformance 



  Colin Fowler CS298 

37 
 

to standard object-oriented design practice. Such holding objects include public private key 

pairs for wallets and amounts that the executing modules transfer.   

 Another type of module must send messaging between the various parties to the 

contract. Upon initial generation, the parties designate a contact address for each of them 

and upon the receipt of every input, the messaging system notifies all parties to the contract 

that the input had been received.  

 The proof of concept includes merely two modules (identify and exchange), and 3 

sub-modules (exchange of: capital, “stock” and “stock options”) that are necessary for the 

purposes of generating a Series A equity seed funding contract. Further development to 

generate more modules enables a greater breadth of contracts to be built on the Ethereum 

blockchain.  

  

 i. Proof of Concept 

 The variety and scope of potential contracts is too great a scope for one person to 

solve in less than a year. However, in order to prove that a given concept is effective, some 

selections needed to be made. An example of a useful contract that this system could produce 

is an equity financing agreement, such as those that are often obtained by start-up companies. 

Equity financing is an agreement where a company sells a part or all of itself (often via 

stock/shares) in exchange for money. The money is used to finance operation of the company, 

often before a long-term revenue model is implemented.   

 In determining a type of contract to implement in modules there are a few factors that 

are important to consider. First, the contact must be common enough that executing it would 

not be an uncommon usage -- users would actually need to want this contract. Second, the 



  Colin Fowler CS298 

38 
 

contract must be uncommon enough that the it cannot simply by executed with boilerplate. 

Third, the contract needs to be complex enough to not merely be a “one-and-done” contract. 

A contract that executes completely upon completion has little need for public execution. If 

the whole contract completes right away, there is no ongoing concern that the contract is 

doing something nefarious in the background.  

 With respect to the first factor, avoiding rare or unique use cases, the equity financing 

agreement is exceedingly common. While this sort of contract tends to have greater regional 

relevancy to the Bay Area and other geographic regions that have a culture of start-up 

companies, it’s still an important contract and commonly used. Many firms are catered 

toward addressing start-up culture, and indeed cater start-ups. The equity financing 

agreement is one of the first contracts a start-up needs in order to obtain funding to operate. 

Any given start-up may execute a number of these sorts of contracts in their lifetime based 

on how many seed rounds that start-up undergoes.  

 With respect to the second factor, avoiding boilerplate, the equity financing 

agreement can take several different formats. The type of stock provided (preferred/non-

preferred), which seed round the present contract pertains to (e.g., the first round or a later 

round), the amount of the investment involved, how many investors are involved, what the 

prior investors have rights in, and the expectations of investor rights may cause unanticipated 

complications.  

 With respect to the third factor, avoiding one-and-done contracts, equity agreements 

often include stock options which are executed at a later date. One of the primary advantages 

of using a blockchain based system is that there is a record of what code was executed or 

will be executed. If a given contract executes once and is forever complete, there is little 



  Colin Fowler CS298 

39 
 

reason for requiring public execution. The results of the contract are apparent from the 

completed execution. Stock options are a contract item that live on. One has to track a future 

vesting date, an option price, and a set of stock that is available at that time. The ongoing 

executing code would be of interest to the parties relevant to the contract and thus public 

execution would be relevant.    

  

 B. CHALLENGES      

 Now that an equity financing agreement has been identified as a proof of concept 

contract, I will examine issues that arose while developing the proof of concept. Some of the 

issues are purely technical while others are legal and lead to technical solutions. Those issues 

are first, how does one represent movement of stock on a blockchain? Second, how should 

the blockchain be structured (e.g., public or private)? Third, how does one access the 

program? 

 i. How does one represent stock exchanges?  

 Early in this article, it was discussed that the Bitcoin blockchain could store 

documents that in turn represent the movement of stock. This is an inadequate solution as it 

doesn’t actually move the stock, merely represents an intention to do so. Representing an 

intension to trade doesn’t actually reduce the amount of time an attorney needs to spend 

involved in a given case. It is a contract to act in the future, or a contract to contract further. 

Both circumstances require further attention. Therefore, the system should make use of 

cryptotokens that, themselves, represent the stock in question.  

 While established companies cannot merely shift all their stock out of public 

exchanges, start-ups are generally in the unique position that they can dictate the rules on 



  Colin Fowler CS298 

40 
 

their stock. The Ethereum blockchain commonly includes utility tokens operating under the 

ERC-20 standard14 (stands for “Ethereum request for comment-20”). ERC-20 tokens are 

those that are tied to a specific smart contract that operates on the Ethereum blockchain, 

these are separate from Ether, which is the base currency of the Ethereum blockchain.  

 While the ERC-20 token acts as a functional example of stock is has a few legal 

deficiencies regarding limitations of downstream transactions. ERC-20 tokens can be traded 

freely amongst users unless a centralized authority provides limits. Fortunately, there is 

another type of token, following the ST-20 standard (stands for “security token-20”). 

Security tokens enable the type of limitations on transacting that actual shares of stock 

include.   

 ST-20 was developed by Polymath Labs15 within the last year. As a result, platforms 

using ST-20 tokens do not quite have the sufficient interfaces to integrate with external 

services (such as a contract builder). For the purposes of a proof of concept, an ERC-20 token 

serves as a suitable substitute. As the laws regarding treatment of security tokens are not 

uniform yet, and in many cases unwritten, this proof of concept adopts the simpler of the 

proposed legal options. In the simpler versions of potential legal regimes, there is no 

functional difference to the modular contract builder whether a ST-20 token is used or an 

ERC-20 token is used.   

                                                 
14 Buterin, Vitalik and Vogelsteller, Fabian, ERC-20 token standard commit on GitHub, last updated on March 8, 
2019 (available at https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md accessed on 3/24/2019). 
15 Polymath Repository on GitHub, last updated March 24, 2019 (available at https://github.com/polymathnetwork 
accessed on 3/24/2019). 



  Colin Fowler CS298 

41 
 

    

FIG. 13 is block diagram of ST-20 token features16 

 

 Notably, future developments in legal treatment of security tokens can affect the 

relative interchangeability (e.g., between ST-20 and ERC-20). At the time of writing this 

article, states are split on how to treat security tokens between two regimes.17 Some states 

want to treat security tokens as if they are money where a right to tokens requires that those 

tokens be on hand at all times, whereas other states are comfortable with a contract right to 

have the tokens at a future date.  

                                                 
16 Ruiz, Pablo, “Overview of the ST-20 Interface and polymath Core”, Polymath Blog, April 13, 2018 (available at 
https://blog.polymath.network/overview-of-the-st-20-interface-and-polymath-core-86bf64c8929 accessed on 
3/3/2019).  
17 https://www.forbes.com/sites/andreatinianow/2019/03/07/a-split-emerges-in-blockchain-law-wyomings-approach-
versus-the-supplemental-act/#4730b2ab719a  

https://blog.polymath.network/overview-of-the-st-20-interface-and-polymath-core-86bf64c8929%20accessed%20on%203/3/2019
https://blog.polymath.network/overview-of-the-st-20-interface-and-polymath-core-86bf64c8929%20accessed%20on%203/3/2019
https://www.forbes.com/sites/andreatinianow/2019/03/07/a-split-emerges-in-blockchain-law-wyomings-approach-versus-the-supplemental-act/#4730b2ab719a
https://www.forbes.com/sites/andreatinianow/2019/03/07/a-split-emerges-in-blockchain-law-wyomings-approach-versus-the-supplemental-act/#4730b2ab719a


  Colin Fowler CS298 

42 
 

 The legal distinction leads to a technical position regarding a stock options. Where 

the tokens must be on hand, a module identifying a stock option must highlight the specific 

tokens that would be traded were that option executed. Where a stock option merely requires 

tokens upon request those tokens may either be identified at the time of initial agreement or 

created/minted at upon execution of the option. Either of these options may be selected when 

creating the stock option contract. 

 

ii. Public or Private Chain 

 A blockchain is ultimately just a data structure supported by multiple nodes. The 

character of those nodes is not inherently specified. The term “public chain” refers to 

blockchains that are maintained by an enormous number of nodes. A private chain is a 

blockchain supported only by nodes of known parties. Management of a private chain is the 

easiest option because it requires action of the fewest parties. However, on a private chain, 

control of appending actions to the chain is subject of the control of the small number of 

nodes on the chain. The “miners” or EVM are in fact those nodes. Use of a private chain 

effectively ruins the concept of public execution of code. The machine that acts as the EVM 

could effective run whatever program code it wanted. Private chains are thus not effective in 

the sense of trustless execution. Private chains are additionally prone to 51% attacks, 

especially if a single node going inactive reduces the overall processing power of the network 

by any significant degree. 

 For at least the reasons listed above, the contract builder cannot operate on a private 

network blockchain. Despite any downsides of a public blockchain they will not outweigh 

the feature breaking aspects of a private chain.    



  Colin Fowler CS298 

43 
 

 Connection to public chains has one very large disadvantage: the disk space 

requirement. Communicating directly with a public chain requires that the user support a 

node of the public chain. A node is required to have a full copy of the blockchain. The 

blockchain of most cryptocurrencies is exceedingly large. As of this writing, the Ethereum 

blockchain is approximately 200GB for a full node18 (and over 2TB for an archival node19). 

 For the practical purposes of use on the machine I was doing the relevant work on, an 

addition of 200GB of storage was not an option I could elect. External to a proof of concept, 

the issue of disk space is not particularly daunting. Any professional application would likely 

be run on a cloud service (AWS, Azure, etc…). However, inability to support a full-node of 

the Ethereum blockchain is an issue that others have anticipated. There are a number of APIs 

that provide access to full-nodes. One such service is BlockCluster.io20 

 Use of a node service enables those with limited disk space to conduct experiments. 

Accordingly, the proof of concept functions with a public blockchain.  

 

iii. How does one access the program?   

      The contract building dApp is a web application.  At some level, some of the 

“backend” must necessarily execute on a EVM that could be anywhere in the world.  The 

dApp therefore has access to the Internet. The interface thus uses HTML. The HTML code 

was developed using an online WYSIWYG (what you see is what you get) editor as well as 

some direct coding to pass in the correct variables. 

                                                 
18 Etherscan statistics for a full node (available at https://etherscan.io/chartsync/chaindefault and accessed on 
3/24/2019). 
19 Etherscan statistics for a full archival node (available at https://etherscan.io/chartsync/chainarchive and accessed 
on 3/24/2019). 
20 BlockCluster  website (available at https://www.blockcluster.io/ and accessed on 3/24/2019).  



  Colin Fowler CS298 

44 
 

 From a user standpoint, it makes sense to have different interfaces for the different 

parties. Often parties to a contract are never in the same room with one another. Many 

documents that include multiple signatures are all signed individually and then stored with 

multiple signature pages that include only the single signature. As a result, there should be 

individualized ways to access the Application. The proof of concept includes four. A primary 

lawyer dashboard where the contract is constructed. Signature pages individually for the first 

and second parties to the contract, and finally an interface that executes the future options.  

 While the application does execute publicly, most people aren’t going to be able to 

understand the code. Thus, having graphic interfaces that state very clearly what is going on 

is important. While code is not inherently readable by most of the populace, it is 

unambiguous. Where a problem occurs, it would be exceedingly easy to figure out that the 

problem had occurred, and who did the wrongdoing.  

 For the sake of testing, the proof of concept makes use of node.js rather than a cloud 

service to communicate with the web browser-based interface. The hosted node passes values 

to the main application code. The application code must necessarily be resident on some 

backend server.  

 Accordingly, the application includes both a centralized and a decentralized backend. 

The centralized backend is the server running the web interface, and the application that 

includes pre-built contract module constructs that are selected through the browser interface. 

The decentralized backend is the EVM that executes the contracts that were built via the 

centralized backend.  

  

 



  Colin Fowler CS298 

45 
 

 C. PROGRAM STRUCTURE 

 The proof of concept includes a HTML user interface that is being listened to by the 

node. The node reports to the application. The Application makes calls to methods from the 

BlockCluster.io API in order to coordinate with the Rinkeby Ethereum test network.    

 

FIG. 14 is a block diagram of the proof of concept application.  

 BlockCluster.io provides more than a conduit to the blockchain. The BlockCluster 

API includes prebuilt libraries with respect to instructing Ethereum wallets and creating the 

smart contracts on the Ethereum blockchain. The API includes traditional getters/setters as 

well as transactional methods. Most of the work generating the contracts is performed by 

calls to this API.   

 

  



  Colin Fowler CS298 

46 
 

VI. CONCLUSION AND FUTURE WORK 

 Application of blockchain structures and public virtual machines to legal contracts is 

an effective practice because the process is transparent and secure. Use of the inherent 

security in the blockchain enables contract execution in program code that was not previously 

available. Program code is more precise than human languages, which can reduce overall 

potential of costly court disputes.  

 There are some disadvantages to legal contracts that are implemented in Ethereum 

smart contracts. Not every contract can be effectuated using Ethereum smart contracts. The 

best sort of contracts to generate on a blockchain are those that involve satisfaction of 

publicly observable conditions. Contracts that require one party to exercise their judgment 

are difficult to reflect in program code. Conditions such as non-action with regard to taking 

part in a given activity that is not typically monitored by computers (e.g., working at a 

competing company) cannot be effectively implemented in a smart contract.  

 Despite the gaps in programmable contracts, many important contract types are better 

when implemented as Ethereum smart contracts. Specific examples of contracts that can be 

effectively implemented in Ethereum smart contracts include exchanges of assets or money 

that occur over extended periods of time (e.g., service contracts, financing agreements, 

payment based on results).  

 The proof of concept is a small piece of a significantly larger greater concept. While 

it has been proven that generation of a single contract has been vastly improved upon, that 

contract was constructed in hindsight (e.g., before being constructed by the proof of concept, 

I already knew the substance of the contract). 



  Colin Fowler CS298 

47 
 

 In order to be truly effective, one would have to be able to create a contract, on the 

fly, without a previous example to work from. Once the general terms are negotiated, those 

terms need to be put into an executable form quickly through a modular interface. To do so 

requires a significant time investment building contract modules. Some of these modules 

were discussed specifically -- many were not. Further, the modules need to interact with one 

another in variable fashion based on the existence or non-existence of one another. Doing so 

requires a significant number of underlying heuristics in the system that cause the modules 

to function intuitively.  

  

 

  



  Colin Fowler CS298 

48 
 

VII. REFERENCES 

[1] Rouse, Margaret, “Smart Contract”, last updated on April 2018, (available at 

http://searchcompliance.techtarget.com/definition/smart-contract and accessed 3/29/2019).   

[2] Bitcoin Wiki “Confirmation” last updated March 16, 2018, available at 

https://en.bitcoin.it/wiki/Confirmation and accessed on 4/14/2018). 

[3] Block Explorer available at https://blockchain.info/ and accessed 3/25/2018. 

[4] Etherscan available at https://etherscan.io/ accessed 3/24/2019. 

[5] Coleman, Jeff, question answer on Stack Exchange, “What is meant by the term ‘gas’?” 

last edited on May 31, 2017 (available at 

https://ethereum.stackexchange.com/questions/3/what-is-meant-by-the-term-gas and 

accessed on 3/24/2018).  

[6] Cryptographically Managing Telecommunications Settlement, U.S. Pat. Pub No. 

2017/0078493 invented by George Melika and Akbar Thobhani and filed on September 14, 

2015 (Drafted by Colin Fowler, and available at 

https://patents.google.com/patent/US20170078493A1)    

[7] Buterin, Vitalik and Vogelsteller, Fabian, ERC-20 token standard commit on GitHub, last 

updated on March 8, 2019 (available at 

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md accessed on 3/24/2019). 

 [8]  Polymath Repository on GitHub, last updated March 24, 2019 (available at 

https://github.com/polymathnetwork accessed on 3/24/2019).  

 [9] Ruiz, Pablo, “Overview of the ST-20 Interface and polymath Core”, Polymath Blog, 

April 13, 2018 (available at https://blog.polymath.network/overview-of-the-st-20-interface-

and-polymath-core-86bf64c8929 accessed on 3/3/2019). 

http://searchcompliance.techtarget.com/definition/smart-contract
https://ethereum.stackexchange.com/questions/3/what-is-meant-by-the-term-gas
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/polymathnetwork
https://blog.polymath.network/overview-of-the-st-20-interface-and-polymath-core-86bf64c8929
https://blog.polymath.network/overview-of-the-st-20-interface-and-polymath-core-86bf64c8929


  Colin Fowler CS298 

49 
 

[10] Etherscan statistics for a full node (available at 

https://etherscan.io/chartsync/chaindefault and accessed on 3/24/2019). 

[11] Etherscan statistics for a full archival node (available at 

https://etherscan.io/chartsync/chainarchive and accessed on 3/24/2019). 

[12]  BlockCluster  website (available at https://www.blockcluster.io/ and accessed on 

3/24/2019). 

 

     

   

 

            

https://www.blockcluster.io/

	CONTRACT BUILDER ETHEREUM APPLICATION
	Recommended Citation

	tmp.1558382229.pdf.zZ4zK

