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ABSTRACT

Masquerade Detection in Automotive Security

by Ashraf Saber

In this paper, we consider intrusion detection systems (IDS) in the context of a

controller area network (CAN), which is also known as the CAN bus. We provide

a discussion of various IDS topics, including masquerade detection, and we include

a selective survey of previous research involving IDS in a CAN network. We also

discuss background topics and relevant practical issues, such as data collection on the

CAN bus. Finally, we present experimental results where we have applied a variety

of machine learning techniques to CAN data. We use both actual and simulated data

in order to detect the status of a vehicle from its network packets as well as detect

masquerade behavior on a vehicle network.
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CHAPTER 1

Introduction

Research in automotive security is of increasing importance due to cars being

more networked and interconnected than ever before. Providing security to consumers

and maintaining their safety requires a considerable focus on automotive security as

well as awareness from users of security related issues [1]. In recent years, hackers and

security researchers have demonstrated the ability to remotely breach vehicle security

systems and gain unauthorized access. In one costly example, the successful hacking

of a Jeep Cherokee led to the recall of 1.4 million vehicles in 2015 [1].

Intrusion detection systems (IDS) have been widely studied in the information

security research literature. Such systems also have potentially great relevance to

vehicle security as IDS would enable us to identify malicious users or activities on a

CAN network. Yet, in comparison to IDS in a more general setting, relatively little

research has been conducted on IDS in CAN networks.

In this research, we will be applying machine learning techniques to CAN traffic

data for classification and masquerade behavior detection. The paper is organized

as follows. In Chapter 2, we discuss relevant background topics, including a brief

introduction to CAN networks and a similarly brief discussion of IDS in a general

setting. We provide a selective survey of IDS in CAN networks and we discuss a few

related topics in Chapter 3. Then in Chapter 4 we outline research in the area of

masquerade detection and discuss why this is likely a fertile area of research for CAN

networks. In Chapter 5 we consider collection issues related to CAN data and, finally,

Chapter 6 gives our conclusion and points to directions for future work.
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CHAPTER 2

Background
2.1 CAN Bus

Automotive vehicles manufactured in the US after 2008 have a standard internal

controller area network (CAN), which is commonly referred to as the CAN bus. Each

vehicle has several small electronic control units (ECUs) that are responsible for

controlling different car components. These ECUs communicate over the CAN bus,

sending and receiving packets during the vehicle’s operation. The CAN bus serves to

replace a complex wiring harness in vehicles.

CAN is a message broadcast system---a node broadcasts its packet, the receiving

node takes the packet, and other nodes should drop the packet. While CAN is

conceptually similar to Ethernet, CAN is slower but offers reliable service, in the

sense that high priority data will be transmitted. This makes CAN suitable for the

challenging and safety-critical environment found in an automobile.

Another important component of vehicle networks is the on-board diagnostic

(OBD-II) port. In the majority of vehicles, this port is to the left and below the

steering wheel, and in some cars it is visible to the driver, while in others it is hidden.

The OBD-II port enables users to check various engine conditions and to sniff traffic

on the CAN bus [2].

Automotive security researchers have primarily focused on two aspects of the

CAN bus. First, the possibility of breaching the vehicle network has been widely

considered, and second, attacks based on packet injection have been studied.

Next, we provide a high level discussion of IDS. Then we turn our attention to a

more detailed discussion of IDS, with the emphasis on CAN networks.
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2.2 Basics of Intrusion Detection

Intrusion detection systems (IDS) are a fundamental tool in the field of information

security. The purpose of IDS is to notify users when their systems are compromised.

IDS is typically considered to be distinct from an intrusion prevention system (IPS).

As the names indicate, IPS is designed to prevent attacks, whereas IDS is designed to

detect attacks once they have occurred---an IDS would be needed when, for example,

an IPS fails to prevent an attack.

IDS can operate at the host level or the network level, or some combination

thereof. Whether at the host or network level, there are many approaches to detecting

a breach. From a high level perspective, anomaly detection and signature detection

are the main techniques used by IDS [3]. IDS methods analogous to those used in

general networks can be applied to automotive vehicle systems to detect malicious

behavior.

2.3 Host Based IDS

A host-based IDS attempts to detect intrusions using information available at

the host, without taking network behavior into consideration. That is, host based IDS

monitors behavior on a specific host or set of hosts to detect malicious behavior [3].

This method of intrusion detection relies on data stored in logs, audit trails, checksum

values, characteristics of user behavior, and so on. One potential advantage of host

based IDS is that it may be able to detect the individuals behind the malicious

behavior, since logs can reflect the actions of each user [4].

Host based IDS has some disadvantages, depending on the specific implementation.

For example, host based IDS might require large storage to maintain the necessary

data that the IDS relies on [5]. And typically, multiple hosts need to each have their

own host based IDS, which makes setup and configuration challenging [4].
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2.4 Network Based IDS

Network based IDS attempts to detect intrusions at the network level. Such an

IDS monitors network traffic and typically inspects the header and possibly other

aspects of packets passing through the network [4]. An advantage of network based

IDS is that it can detect scans (e.g., Nmap scans), DoS attacks, and other network

based attacks [3]. This type of IDS is also easy to deploy and install, as compared to

a host based system.

One drawback to a network based IDS is that it does not have a clear view of

host behavior. In practice, host based and network based IDS are typically both used,

at least to some extent. This provides layered security and allows for defense in depth.

2.5 Anomaly vs Signature Detection

Anomaly detection and signature detection can be considered as two broad

categories for classifying IDS systems---whether host based or signature based. In

anomaly detection, we attempt to model characteristics of the system and when the

behavior of the system diverges sufficiently from the model, we flag it as a possible

attack. Although challenging, anomaly detection can potentially enable us to detect

zero-day attacks [6]. In contrast, signature detection is a form of pattern matching.

In such an approach, we extract a pattern or signature from a known attack, then

when this pattern is detected, the corresponding attack may have occurred [7]. While

relatively accurate and precise, signature scanning can only detect known attacks for

which a signature has been previously extracted.
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CHAPTER 3

Intrusion Detection
3.1 Intrusion Detection

In this section, our primary focus is to survey selected work on intrusion detection,

primarily within the context of CAN networks. We have organized the material among

several non-disjoint subtopics.

3.2 Anomaly Detection

As previously mentioned, a strength of anomaly detection is that it holds out the

possibility of detecting new attacks based on zero-day vulnerabilities [7]. Generically,

in anomaly detection, we train a model on normal behavior and significant deviation

from the norm is considered a potential attack [8].

A major issue with anomaly detection is the inherent challenge in trying to

model normal benign activities [6]. It is possible for benign activity to occur that

was not modeled during the training phase, and it is likely that normal behavior will

change over time. These and other similar issues can lead to an excessive number

false positives. However, even with the drawback of false alarms, anomaly detection

is popular in security research because of the potential to detect zero-day attacks.

Detection of zero-day attacks can be viewed as the holy grail of security research [9].

The work of Ye et al. [7] relies on using anomaly detection methods for cyber-

attack identification. The authors of [7] discuss the differences between several

anomaly detection techniques. First, they consider a process that they refer to as

specification-based anomaly detection. In this approach, the benign network events are

well defined and properly described. The ordering of network events is also important

to establishing a benign condition.

A second technique discussed by Ye et al. [7], is statistical-based anomaly-

detection. In this approach, the ordering of events is not important. The model
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learns benign behavior from historical data and, thus, the presence of historical data

is essential. These authors argue that including the ordering of events guarantees

a reduction in false alarms. In their work, they use network data and audit-trail

data to train a Markov-chain model for the purpose of detecting intrusions. The

model is tested for robustness and accuracy by altering the test data and checking

the percentage of false alarms. This approach was shown to be reliable throughout

the conducted tests.

Similar to Ye et al. [7], the work of Feng et al. [8] as well as that of Shon and

Moon [6] relies on anomaly detection. However, these authors do not use Markov-

chain models. They instead rely on the well-known support vector machine (SVM)

algorithm. In both of these papers, the authors considered SVM as their starting point

and make several modifications to the algorithm in an effort to improve their results.

Shon and Moon [6] use an enhanced SVM algorithm that is applicable to both

supervised and unsupervised learning. As for Feng et al. [8], their research combines

SVM and clustering, based on a self-organized ant colony network (SOACN) algo-

rithm [8]. Both models were tested for accuracy and yielded low rates of false alarms.

These papers indicate that customizing standard machine learning algorithms for the

specific task at hand can yield better results than simply using the baseline algorithm.

The work by Tsai et al. [9] considers the usage of different machine learning

algorithms in network intrusion detection. The authors of this paper consider 55

research papers on machine learning and intrusion detection in the period between 2000

and 2007. They categorize these papers according to the machine learning algorithm

used, as well as their effectiveness in detecting intrusions. On average, hybrid

methods where baseline algorithms are modified yielded the top results, both in terms

of effectiveness and popularity among researchers [9].
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The work of Javaid et al. [10] applies methods of deep learning in anomaly

detection. These authors use self-taught learning (STL) on the NSL-KDD dataset,

a dataset that was provided by the Canadian Institute for Cybersecurity. These

researchers use both unlabeled and labeled data in their models. The first phase of

their work is referred to as unsupervised feature learning (UFL), and in this phase

unlabeled data is used to train a model based on a sparse autoencoder. In the second

phase, the authors consider learning based on labeled data with a softmax function

used for classification.

It is worth mentioning that the applications of machine learning in intrusion

detection go well beyond computer networks. That is, the same machine learning

and deep learning techniques used to detect intrusions in a computer network can be

applied to other networks, such as CAN bus networks in vehicles. The type of data

used for training will differ, but the mathematical model will remain the same. For

example, Naduri and Sherry [11] propose an anomaly detection model for aircraft that

relies on recurrent neural networks (RNNs). In their paper, the authors use data from

X-Plane simulation software and the X-Plane Software Development Kit (XSDK).

Later in this section, we will discuss research that uses RNNs for anomaly detection

in CAN networks. The point here is that machine learning algorithms have a wide

variety of applications and are easily adapted to different datasets.

In all of the CAN bus IDS papers we have studied, researchers focus on a certain

feature to use in training their models. That is, researches extract different features

based on what they believe will provide the best representation of ‘‘normal behavior.’’

As we will see, different approaches tend to prove more effective against specific types

of attacks.

There are several limitations that researchers face when studying CAN networks.

For one, high quality data can be challenging to obtain---this is a topic that we discuss
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in more detail in Chapter 5. Another factor is that it may be challenging to obtain

a complete understanding of the meaning of all CAN packets. This is because car

manufacturers tend to keep such information confidential. In many cases, researchers

would need to sniff traffic or simulate traffic and observe the behavior of the system.

This analysis might include replaying a packet in question repeatedly to observe its

effect on the vehicle.

Anomalous behavior is usually detected by observing the data values in CAN

messages, the sequence of the messages, the IDs associated with each packet, the

timing of packets, and the frequency of the packets. Below, when we discuss various

CAN based IDS systems, the relevance of these various attributes should become

clear.

3.3 Sequence Anomalies

In this section, we discuss the specific topic of CAN network anomaly detection

research that relies on sequences of data and packet IDs. Wang et al. [12] propose

a live anomaly detection system for CAN networks that is based on hierarchical

temporal memory (HTM). The goal of this model is to alert the user during an attack.

These authors focus on specific data sequences to detect anomalies. Since each data

packet is associated to a particular ID, the model processes the data section of each

ID. Then, the model predicts the next data packet---the actual packet is compared

to the predicted packet to generate a score. If the score is below a certain threshold,

then the systems identifies it as an anomaly.

To collect their dataset, Wang et al. [12] sniffed 20 hours of data packets from

an Impreza vehicle. The data gathered was divided into sections, with the first 70%

used for training and 10% for validation. Finally, the remaining 20% of the data was

split into normal data and anomalies. The anomalies consisted of altered normal data,
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based on the authors’ expectations of what anomalous CAN packets might look like.

The authors argue that anomalies can be discerned from the frequency of a specific

packet. That is, a packet that appears at a rate different than what is expected can

provide a strong indication of anomalous behavior. In addition, anomalies can be

present in the data fields of the packets, either in the form of extra data or truncated

data. Wang et al. [12] compare their HTM model to a hidden Markov model (HMM)

and a recurrent neural network (RNN). Their HTM model is shown to be superior to

both other models.

The work of Marchetti and Stabili [13] presents an anomaly detection algorithm

that is based on the analysis of ID sequences. These researchers focus primarily on

the ID section of a CAN message instead of the data section. In their work, they

collected more than 10 hours of CAN bus data. Then they analyzed the possible ID

transitions throughout the collected CAN packets and created a transition matrix.

The transition matrix includes a boolean value to indicate whether a transition is

possible from ID 𝑖 to ID 𝑗, for each possible 𝑖 and 𝑗. This transition matrix can be

viewed as a representation of the normal behavior of the CAN network. Thus, the

authors are able to detect possible anomalies based on anomalous ID transitions.

An advantage of the system proposed by Marchetti and Stabili in [13] is that the

intrusion detection algorithm can operate in either a centralized or distributed mode.

The authors emphasize that their algorithm could be implemented inside any of the

gateway ECUs that have full visibility of the CAN network, and they highlight that

their algorithm can operate in a distributed mode by implementing the algorithm in

one ECU in each subnetwork.

To test their algorithm, Marchetti and Stabili [13] conduct two main sets of

tests. In the first test, they inject realistic CAN traffic with IDs that have different

frequencies. That is, they analyze the frequency of the IDs assigned to each CAN
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message. Injected packets tend to alter these expected frequencies. A single message

injection was detected with a high rate when the injected packet was from the pool of

IDs corresponding to low frequency packets. In contrast, when IDs corresponding to

high frequency packets are introduced, they usually go undetected. In other words,

high frequency IDs have a low rate of detection, which is intuitive. These results

improve when the number of packets used in the attack are increased. A strength of

these experiments is that no false positives were generated.

As a second set of experiments, Marchetti and Stabili [13] conducted replay, bad

injection, and mixed injection attacks. In the replay attack a set of previous CAN

messages is repeated, while for bad injection, a new set of CAN messages is introduced,

that is, the injected packets are new to the CAN network under consideration. Finally,

the mixed injection attack consists of injecting several random messages. In all

cases, these messages are crafted by the attacker without taking transitions into

consideration---only the function of the messages is considered. The detection of

replay attacks was sporadic and did not follow a clear trend. However, for the bad

injections, the detection rate was 100%, and for the mixed injections, the detection

percentage increases with the number of messages. For a one message mixed injection,

detection was 40%; when this number increased to two CAN messages, the detection

rate improved dramatically, reaching virtually 100%.

Malhotra et al. [14] propose an anomaly detection technique based on long short

term memory (LSTM) neural networks. The datasets used in this research consist

of long patterns of data of variable length. LSTM was chosen due to the long term

memory capabilities it provides, which enables such a model to take advantage of

long sequences of data. Four datasets were used in the experiments. The first was

electrocardiogram (ECG) data, which contained only one anomaly. The second was

space shuttle valve data, which contains three anomalous regions. The third was
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a power demand dataset, containing actual power consumption data. The fourth

and final dataset was multi-sensor engine dataset. This latter dataset includes the

behavior of 12 engine sensors.

Malhotra et al. [14] used stacked LSTMs in their models. They showed that no

prior exposure or knowledge of pattern duration is required when such an LSTM is

used. In these experiments, LSTMs yielded results that were either better than or

equivalent to those obtained with standard RNNs.

Taylor et al. [15] also consider an LSTM based anomaly detection method.

These authors focused on detecting anomalies in CAN data sequences. Their work

demonstrated that LSTM does not necessarily need to understand the target protocol.

However, they highlight that LSTM networks have some drawbacks, including the

fact that LSTMs deal with each CAN message ID sequence independently. These

authors conjecture that if all IDs were considered at the same time---and hence the

relationships between ID sequences could be taken into account---then the model

would yield significantly higher accuracies. But, such an approach would likely be

computationally intensive.

3.4 Physical Anomalies

Integrating the physical environment into an IDS can yield better detection

of security breaches. For example, Wasicek et al. [16] proposes a proof of concept

anomaly based IDS that they call context aware intrusion detection (CAID). In this

paper, the authors build a model that can detect alterations to the physical systems.

They rely on sensors to detect changes in the physical medium. The data they measure

includes speed, rpm, fuel rate, pedal position, temperature, and fuel-to-air ratio. For

anomaly detection, the CAID system relies on an artificial neural network (ANN).

The CAID framework consists of three main modules. The first modules are monitors
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that are used to collect raw data from the vehicle network. The second modules are

known as detectors, which are responsible for analysis. The third and final modules

are reporters, which, not surprisingly, communicate the detector result to the user.

The CAID framework was tested on a 2015 vehicle---to test the model, a modified

chip (used for vehicle tuning) with enhanced parameters was introduced to the vehicle.

The CAID framework detected the deviations in behavior.

3.5 Time Windows

Malicious activity on CAN networks would typically impact the timing of packets,

as well as the frequency with which certain packets appear. As a result, several

papers focus on detecting anomalies in packet timing. In this section, we discuss some

examples of this type of research.

Taylor et al. [17] proposed to detect CAN attacks based on packet timing. The

authors claim that packets usually arrive at a certain frequency and timing, and thus

they consider an anomaly detection system based on historical timing behavior. In

their algorithm, the authors measured inter-packet timings over a sliding window.

An anomalous behavior is detected whenever a sufficient deviation from historical

behavior occurs. Note that the time sequence of CAN messages is essential for this

analysis.

To collect their data, Taylor et al. [17] logged the CAN packets of a 2011 Ford

Explorer. They made five trips, each lasting five minutes. During those trips the

driver did not operate any user controls and they maintained a low speed and came

to a complete stop. The first three trips were used in training and the last two trips

were used for attack simulation. Attack simulation was conducted by inserting new

packets at different timings. The result showed that inter-packet timing yielded strong

detection results.
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Tomlinson et al. [18] also investigated anomalies in time windows and proposed

an IDS that detects intrusions based on deviations in these timings. They utilized

three statistical methods, namely, autoregressive integrated moving average (ARIMA),

the well known Z score, and a supervised threshold. In their work, they consider

non-overlapping windows. They preprocess the data in each window to reduce the

necessity of recalculating their various metrics. Each metric was used to classify all

broadcasts within the same window.

To collect their data, Tomlinson et al. [18] logged 127 minutes of driving data

from an unspecified target vehicle. Then they analyzed the frequency of broadcast

packets. They found that packets with a higher priority and low IDs (priority and

ID numbers are inversely related) had the least variation in timing, and these were

also broadcast with the highest frequency. The analysis of the data showed that

the majority of ECUs would broadcast at a consistent rate of at least 100 times per

second, while other ECUs broadcast at least 10 times per second. After this analysis

was complete, the authors simulated several attacks on the CAN network. To do so,

they altered the sniffed CAN packet data to create two simulated malicious datasets.

In the first set, they dropped several packets from a normal broadcast, while for

the second set, they injected additional packets to existing broadcasts. For testing,

the authors applied their three detection methods on a sample consisting of the five

highest priority IDs. They compared the broadcast interval against the mean of the

normal window, which acted as a supervised threshold against which the Z score and

ARIMA results were compared. Overall, the supervised threshold attained the best

results, followed by the Z score, then ARIMA.
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3.6 Entropy Based Anomalies

According to Marchetti et al. [19] entropy based anomaly detection models can be

effective only against cyber attacks that cause a high rate of chaos or randomness. In

other words, when the rate of malicious activity increases, entropy based IDS is more

likely to be effective. These authors show that entropy based approaches enable the

identification of malicious behavior without the necessity of disclosing manufacturer

proprietary material related to the meaning of various CAN messages. From the

manufacturer’s point of view, this could be seen as a significant advantage.

The work of Müter and Asaj [20] also considers an entropy based IDS for CAN

networks. These authors measure entropy in the context of coincidence in a given

dataset---entropy and the proposed coincidence measure are directly proportional.

Müter and Asaj make the point that in CAN networks, there is a low rate of coincidence

between packets. Thus, when an attack occurs, their measure of coincidence (i.e.,

entropy) should increase.

To simulate attacks, Müter and Adaj [20] follow three approaches. In the first

case, they slightly increase the frequency of a certain message, and in the second,

they flood the network with a specific message. Finally, in their third approach, they

consider the ‘‘plausibility of interrelated events,’’ where the goal is to understand the

correlation between certain events. The specific example they mention is that of a

driver in the city who would reach a speed of 60km/h then stop completely due to a

stop sign. This higher level of understanding enables their model to detect sporadic

single message injection.

3.7 Signature Detection

Signature or pattern matching can be used to detect an attacks. Each attack

type, or related sequence of instructions, has a specific pattern and patterns collected
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from several known attacks can used to train a model. After training, such a model

essentially acts as a meta-signature that is able to detect any of the patterns on which

it was trained, and possibly other similar attacks. A disadvantage of such an approach

is that it requires constant updating to the model as new attack patterns become

available. Another disadvantage is that such a model is unlikely to be effective in

defending against zero-day vulnerabilities [7].

3.8 Language Theory Based Detection

Studina et al. [21] proposed an intrusion detection method that relies on formal

language theory. They derive attack signatures from different ECUs. Their method

then detects malicious message sequences based on attack signatures, which depend

on the fact that ECUs operate with consistent rules. Thus, the authors are able to

leverage predictable ECU behavior to generate a language that characterizes certain

types of attacks.
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CHAPTER 4

Masquerade Detection

The masquerade detection problem has been extensively studied in the literature.

Specifically, masquerade detection based on UNIX commands has received considerable

attention. The seminal work in this field is the Schonlau, et al, paper [22], which

was published in 2001. There continues to be considerable interest in the topic, as

evidenced by recent papers such as [23, 24, 25, 26, 27, 28, 29, 30, 31].

The author is unaware of any masquerade detection research that has been

specifically applied to CAN networks. Hence, the brief survey of masquerade detection

that we provide in this chapter does not cite research that is directly related to vehicle

networks. However, we believe that masquerade detection is highly relevant to the

field of CAN networks, and in our experiments conclusion sections, we return to this

topic.

The survey article [32] cites approximately 40 relevant papers published prior

to 2009, most of which use the Schonlau dataset. In [32], the authors identify the

following general approaches to masquerade detection.

• Information-theoretic

• Text mining

• Hidden Markov model (HMM)

• Naïve Bayes

• Sequences and bioinformatics

• Support vector machine (SVM)

• Other approaches

In the remainder of this chapter, we summarize some of the relevant work in

each of the categories listed above, and we discuss a few examples of recent work.
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4.1 Information-Theoretic

The original work by Schonlau, et al, in [22] included analysis of a compression

technique, based on the fact that commands issued by the same user tend to compress

more than those involving an intruder. By the standards of subsequent work, the

results are not particularly strong. More recently, related techniques have been

pursued in [33, 34, 35], but the results have not improved dramatically.

4.2 Text Mining

In [26], a data mining approach is used to extract repetitive sequences of commands

from training data. These sequences are then used for scoring. Other data mining

approaches have been studied, including principle component analysis (PCA); for

example, in [36], good results are obtained using PCA, although the computational

cost is relatively high during training. Another example of a data mining technique

being applied to this problem can be found in [37].

4.3 Hidden Markov Model

Hidden Markov model (HMM) techniques are considered in [38] and [39], for

example. To date, HMMs have achieved some of the best detection results, and HMMs

are often used as a baseline for measuring the effectiveness of proposed techniques.

4.4 Naïve Bayes

A naïve Bayes classifier can be viewed as a static form of an HMM, in the sense

that naïve Bayes relies on frequencies, without using sequential information. Such an

approach is applied to the masquerade detection problem in [40] and [41]. Although

simple, naïve Bayes performs well. Additional relevant work can be found in [42, 43],

for example.
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4.5 Sequences and Bioinformatics

Sequence-based and bioinformatics-like approaches are, in some sense, at the

opposite extreme of naïve Bayes. Recall that naïve Bayes does not account for

sequential information, while bioinformatics is focused on extracting sequence-related

information.

In the Schonlau, et al, paper [22], a sequence-based analysis is considered. How-

ever, the only previous work on masquerade detection involving standard bioinfor-

matics techniques appears to be [23], where the authors use the Smith-Waterman

algorithm [44] to create local alignments of sequences. This alignment technique is

analogous to a profile hidden Markov model (PHMM), as discussed, for example,

in [45]. However, in [23], the resulting alignments are used directly for classification,

whereas in a standard PHMM, we use these alignments to generate a model, which

is then used for classification. Consequently, a PHMM based detection algorithm is

considerably more efficient, while the training is no more costly.

4.6 Support Vector Machine

Support vector machines (SVM) are a class of machine learning algorithms that

separate data points using a hyperplanes. The points in the original input space are

typically mapped to a higher dimensional feature space, where separation is likely to

be much easier. SVMs maximize the margin (i.e., the minimum separation between

the sets of points), while keeping the computational cost low [46].

For example, in [47], an SVM-based masquerade detection system achieves results

comparable to naïve Bayes. Additional masquerade detection work involving SVMs

can be found in [27, 48, 49], where the focus is primarily on improved efficiency, as

compared to [47].
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4.7 Other Approaches

Several other approaches that do not easily fit into any of the categories above

have been considered. However, most of these other approaches have produced

relatively poor results. For example, in [50] low frequency (i.e., not commonly used)

commands form the basis for detection. In contrast, the paper [29] shows that relying

on high frequency commands can yield comparable results.

Among other non-standard techniques, a ‘‘hybrid Bayes one step Markov’’ ap-

proach and a ‘‘hybrid multistep Markov’’ method (i.e., a Markov process of order

greater than one) are considere in the paper [22]. Neither of these achieve impressive

results.

A non-negative matrix factorization (NMF) technique is developed and analyzed

in [51]. These NMF results are improved upon in [52], where this approach is shown

to achieve reasonable detection results.

4.8 Discussion

The masquerade detection research discussed in this section highlights some

important points that are relevant to IDS in CAN networks. First, the topic of

masquerade detection seems particularly relevant to CAN networks. That is, an

attacker that is aware that an IDS is in use, will likely try to masquerade as a normal

user. Thus, a high degree of sensitivity will likely be needed to detect such attacks.

Another important point to glean from the discussion above is that a standard dataset

in invaluable in such research. The Schonlau dataset is far from perfect, but it

has enabled researchers to directly compare their results, and hence the problem of

masquerade detection based on UNIX commands has been thoroughly analyzed. A

widely available standard dataset for masquerade detection on CAN networks would

be an invaluable asset and would help focus research in this area.
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CHAPTER 5

Data Collection

Regardless of the IDS technique under consideration, researchers need access

to data. In the case of CAN networks, according to Rajbahadur et al. [53] most

researchers use simulated datasets, as opposed to data collected for real vehicles.

Rajbahadur et al. studied 65 papers dealing with intrusion in vehicle networks and

discovered that only 19 of these papers used real datasets. Here, we briefly discuss data

related issues. In descending order from the most expensive to the least expensive, we

consider the following three methods of obtaining data: real vehicles, ECU testbeds,

and simulations.

5.1 Real Vehicles

The most expensive method for obtaining CAN data is using an actual vehicle.

Note that a specific make and model would likely be needed to ensure consistency and

so that the results could be easily reproduced. The advantage of such data is that

it provides access to all in-vehicle systems, including infotainment, air conditioning,

GPS, door locks, etc. However, due to the cost, this option is not feasible for most

research.

5.2 ECU Testbeds

Another option for data collection is an ECU testbed that includes actual vehicle

components. Smith [54] explains how ECUs can be extracted from a vehicle and

connected together to enable this type of data collection, and for automotive research

in general. ECU benches could be relatively simple, including only a single ECU, or

they could be very complex, including most of the components found in an actual

vehicle. Such components would include the body control module, an engine control

module, an instrument cluster, and so on.
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Miller and Valasek [55] explain how ECUs can be connected together to build a

test bench. They also show how data can be sniffed from an ECU and details needed

to wire test bench components together.

Another option is the portable automotive security testbed with adaptability

(PASTA), as developed by Toyota [56]. PASTA is a portable testbed that is the size

of a suitcase, and it significantly reduces the barrier to entry for researchers. This

testbed contains several ECUs and displays simulated vehicle behavior on a screen.

Thus, the data is generated from actual ECUs, and the result of the generated data is

displayed to the user through the simulated vehicle behavior.

5.3 Simulation

The least expensive option is to simulate the data in its entirety. Several tools

are available to simulate CAN traffic. One of the best known simulation tools is

ICSim [57], which is a vehicle simulator that runs on Ubuntu. ICSim allows users to

generate CAN traffic and operate a virtual vehicle. It also includes sniffing, replay

and data injection capabilities.
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CHAPTER 6

Experimental Results

In this section, we discuss a variety of experiments that we have conducted that

are relevant to the problem of IDS on CAN networks. We conducted two sets of

experiments. The first set deals with classification. Our goal in these experiments was

to identify the behavior of a vehicle based on the network packets. In this stage of

experimentation, we relied on both real and simulated data. As for the second set of

experiments, our goal was to detect masquerade behavior. In this stage, we relied on

simulated data. Throughout all experiments, we employ a variety of machine learning

techniques.

6.1 Datasets

For the classification experiments, we consider two sources of data. We use a

dataset collected from a 2010 Ford Escape [58] and we also consider a simulated

dataset that was generated using ICSim [57]. ICSim enables CAN simulation, sniffing

and injecting messages. ICSim user interface is displayed in Figure 1. We refer to

the Ford Escape data as our ‘‘real’’ dataset, which the ICSim data is our ‘‘simulated’’

dataset.

Each CAN packet consists of eight bytes, where these byte can range over all

possible values, that is, from 0x00 to 0xFF. The real dataset contains CAN messages

representing three different states, namely, idle, drive, and park. In contrast, the

simulated dataset only contains CAN packets representing the idle and drive states.

For the Masquerade detection experiments, we generated 2 simulated data sets. A

summary of the data sets is captured in Table 1. The first set represented the behavior

of an authenticated user and that of masquerading users. One trip is the authenticated

user and the remaining 10 trips are the masquerading users. Each trip constitutes

of several actions. The 10 masquerading trips include 5 with high deviations from
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Figure 1: ICSim Display

the authenticated trip as well as 5 with small deviations. The second set consists of 7

simulations. Each simulation completely contains the packets necessary for a single

action that the simulator allows. These actions are:

• 20 mph

• 40 mph

• 60 mph

• Left Turn

• Right Turn

• Driver Door Open Close

• Right Passenger Door Open Close

6.2 Feature Extraction

For our initial experiment, each CAN message is converted to its decimal equiva-

lent. We then use these decimal numbers as observations and train models based on

sequences of numbers. We also apply a word embedding technique, Word2Vec, to
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Table 1: Datasets

Experiments Classification Masquerade Detection
Dataset 1 2 3 4
Source real simulated simulated simulated
Data idle/drive/park idle/drive 11 users 7 actions

CAN packets (as numbers). We compare results obtained with and without Word2Vec

conversions. For other experiments, we only used Word2Vec conversion.

Word2Vec is based on a shallow 2-layer neural network and is commonly used to

find the context of words in the natural language processing (NLP) domain [59]. In

effect, Word2Vec groups common words together, in a form that is suitable as input

to other machine learning techniques. For our Word2Vec embedding, we consider

CAN messages of length five, based on overlapping sliding windows. We train the

Word2Vec model on these words, with the output vectors serving as a feature set in

some of the experiments discussed below.

6.3 Experiments

We apply various machine learning models to the CAN packets (treated as

numbers), and also experiment with Word2Vec features. Specifically, we consider the

following machine learning techniques: 𝑘-nearest neighbor (𝑘-NN), hidden Markov

models (HMM), a long short-term memory (LSTM) model, deep neural network

(DNN), support vector machines (SVM) and Naïve Bayes.

6.4 Classification

In this section, we go over the results of the classification experiments. In these

experiments we trained on data sets 1 and 2. The scope was to identify the status of

a vehicle from its network packets without having a visual.
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6.4.1 𝑘-NN

We first consider 𝑘-NN, which we apply to both the numerical CAN packets

and the Word2Vec features, with the real data and simulated data being treated as

separate experiments. In these experiments, we measure how well we can distinguish

‘‘idle’’ CAN packets from ‘‘drive’’ packets.

Our 𝑘-NN results without Word2Vec are summarized in Figure 2, while results

for 𝑘-NN experiments based on the Word2Vec features are given in Figure 3. From

these results, we see that the Word2Vec features are far more informative, yielding

much higher accuracies.

𝑘 = 1 𝑘 = 3 𝑘 = 5
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80

A
cc

ur
ac

y

Real data
Simulated data

𝑘 = 1 𝑘 = 3 𝑘 = 5
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80

A
cc

ur
ac

y

Real data
Simulated data

(a) No Data Splitting (b) Data Splitting

Figure 2: 𝑘-NN Results (CAN Packets)

6.4.2 HMM

A hidden Markov model (HMM) includes an underlying Markov process that is

‘‘hidden’’ in the sense that it is not directly observable. But, we do have access to an

observation sequence that is probabilistically related to the hidden Markov process.

In the standard terminology, as found in [60], for example, the 𝐴 matrix drives the

underlying (hidden) Markov process, while the 𝐵 matrix relates the observations to

the hidden states, and the 𝜋 matrix contains the initial state distribution. All three

of these matrices are row stochastic.
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Figure 3: 𝑘-NN with Word2Vec

Note that for the experiments discussed in this section, we are operating in a

data exploration mode. That is, we are training HMMs and we will then examine the

models to see what they tell us about the data.

For our first HMM experiments, we train models treating the available CAN

messages as observations, where we considered each byte as one observation. Following

the notation in [60], we have 𝑀 = 256 distinct observations, and we train for 500

iterations of the Baum-Welch re-estimation algorithm. In addition, we have 𝑇 = 16800

observations, and we consider a model with 𝑁 = 3 hidden states. The idea here is

that these three hidden states should correspond to idle, drive, and park.

A snippet of the final converged 𝐵 matrix---which relates the hidden states to

the observations---is given in Figure 4. It is not immediately clear which column of

this 𝐵 matrix corresponds to which hidden state (idle, drive, park).
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Figure 4: Converged 𝐵 Matrix (Pairs of Characters as Observations)

From Figure 4, we see that observation 129 (hex representation of 0x81), has

probability 1.0 in the third state, while all other probabilities for the third state are,

of course, zero. This signifies that a message with hex value of 0x81 is in the third

state. However, we still do not know what this state actually represents.

To take this further, we trained another HMM with entire messages as observa-

tions. In this case, 𝑀 = 2830, 𝑇 = 16800, and we again choose 𝑁 = 3 hidden states.

A snippet of the final 𝐵 matrix for this model is displayed in Figure 5.

Similar results were observed for the third state in this case, with an ID of 0

having the probability of 1. During the preprocessing of the data, each of the 𝑇 = 2830

messages was assigned a unique ID. The ID 0 was assigned to the specific message 81

08 80 00 00 00 00 00. This packet was from the autopark file, which shows that

the HMM was able to correctly identify the packet that indicates when the car is in

the park state. This was also in line with the results obtained from the first HMM
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Figure 5: Converged 𝐵 Matrix (Packets as Observations)

model since we have 0x81 in the data section of this packet, and 0x81 does not appear

elsewhere in the data. Again, this packet was only found in the autopark file and was

absent from both the drive and idle files. Again, the HMM has associated the third

state with the ‘‘park’’ state. This illustrates the strength of an HMM (and machine

learning in general) for this data analysis problem.

The 𝐴 matrix obtained when the HMM was trained on CAN messages is displayed

in Figure 6. This matrix gives the transition probabilities between hidden states.

Based on the results discussed above, we observe that the third state is the park

state. Further analysis shows that the first state is the idle state while the second is

the drive state. As we can see from the 𝐴 matrix in Figure 6, from the park state,

there is only one possible transition and that is to the idle state. This is entirely

consistent with the way that a car is actually driven---a car cannot move directly

from the park state to the drive state, as it must first pass through the idle state.

28



Figure 6: Converged 𝐴 and 𝜋 Matrices

Another key observation is the fact that from the first two rows of the 𝐴 matrix, we

can see that there are frequent transitions from the idle to the drive state and vice

versa. These results generated by our HMM nicely illustrate the ‘‘learning’’ aspect of

machine learning models, since we never explicitly told the model anything about the

states or about driving, yet the model was able to discern this information, which is

completely consistent with real-life driving situations.

6.4.3 LSTM

Long short-term memory (LSTM) model is a type of recurrent neural network

(RNN) that can be used to predict new information based the previous known infor-

mation. Unlike other types of RNNs, LSTMs not only take into account recent past

information, but also considers a much larger context to predict new information. The

intuition behind using LSTMs in the CAN network context is that they are known

to work well with time series and sequence data. We experimented with different

number of LSTM layers and found that the best results were obtained with five LSTM

layers, in which case we were able to obtain an accuracy of 100% for the problem of

distinguishing idle and drive CAN packets.
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6.4.4 DNN and SVM

Deep neural networks (DNN) are a type of complex artificial neural network

(ANN) which consists of multiple layers between the input and output layer. We

implemented a DNN, where each layer contains 128 neurons. The model was trained

on word embeddings and we tested various numbers of CAN messages. We found that

models based on five CAN messages gave us the best results, yielding an accuracy

of 99.46%. Again, these results are for the problem of distinguishing between idle and

drive CAN packets.

Support vector machines (SVM) was also applied to the data. Using SVMs, we

obtained good results on both the real and simulated datasets. Our DNN and SVM

results are summarized in Figure 7.
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Figure 7: DNN and SVM with Word2Vec
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6.5 Masquerade Detection

In this section we go over the results of the masquerade detection experiments.

These experiments rely on data sets 3 and 4. These experiments deal with the different

simulated users as well as the actions of their simulated trips . All data is simulated

in this section and is converted to Word2Vec.

6.5.1 𝑘-NN Speed Detection

The first steps we followed to tackle a masquerade detection problem was using

both 𝑘-NN and DNN. First, we generated two simulated files, each at a different

speed. For one file, the speed ranged from 20 to 40 mph and for the other, the speed

ranged from 40 to 60. Then, the data from each file was converted to a vector with

Word2Vec and labeled. Afterwards, we applied the two machine learning methods

under consideration, attaining high accuracy in both cases. These 𝑘-NN and DNN

results are summarized in Figure 8. The use case of these tests is to detect changed

behavior of a user. For instance if a vehicle owner maintains an average speed that is

suddenly altered then this could be an indicator of theft.

6.5.2 𝑘-NN User and State Detection

In this section, we explore the results of the 𝑘-NN experiments conducted against

the 11 simulated trips and the 7 actions mentioned in section 6.1. First, we trained

a KNN model on the simulated CAN traffic for the 11 trips (authenticated user +

10 trips). Afterwards, we split the data into 2 sets: 70% for training and 30% for

testing. All trip data was labeled and accuracy calculations relied on whether the

prediction meets the initial label or not. The results for this experiment are displayed

in Figure 9.

We also applied 𝑘-NN to differentiate between the 7 possible trip actions. The

scope of this experiment is to check if we can differentiate between these actions with
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Figure 8: 𝑘-NN and DNN Speed Detection
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Figure 9: 𝑘-NN User Detection Results

high accuracy in order to prepare for the Naïve Bayes tests in the next section. Data

was also split into 70% for training and 30% for testing. The results are displayed in

Figure 10.
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Figure 10: 𝑘-NN State Detection Results

6.5.3 Naïve Bayes

In this section, we discuss the results achieved after applying Naïve Bayes to the

data. We applied Naïve Bayes in 2 different sets of experiments.

In the first set of experiments, we trained a Naïve Bayes model on the simulated

CAN traffic for the 7 trips (each representing a single action or state). The data

is split into 2 sets: 70% for training and 30% for testing. Afterwards, we trained a

Naïve Bayes model on the simulated CAN traffic for the 11 trips (authenticated user

+ 10 trips). We also split data into 2 sets: 70% for training and 30% for testing. The

trips are labeled and we calculate accuracy based on whether the prediction meets the

initial label or not. Results are displayed in Figure 11. In the graph, the User label

represents the accuracies attained when we trained on the 11 trips and the States

label represents the accuracies of the 7 trips.

The second set of experiments was more complex. We trained a Naïve Bayes

model on the simulated data for the 7 possible actions. Then we predicted what each
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Figure 11: Naïve Bayes Detect User and State

packet indicated for all 11 user trips. Afterwards, we cross referenced the prediction

with our initial simulation to identify the accuracy. Thus, we attained 11 accuracies

displayed in Figure 12. We can attribute the low accuracies to the fact that the Naïve

Bayes Model was not trained on any of the users’ trips but rather on the 7 trips

representing possible actions.

6.6 Summary

The graph in Figure 13 summarizes the accuracy of the various models considered

for the problem of distinguishing the idle state from the drive state. From these

results, we seen that LSTM was the clear winner, particularly on the more challenging

real dataset.

In Figure 14, we can see the accuracies of both the Naïve Bayes and 𝑘-NN

implementations for the Masquerade detection problem. We included the accuracies

of the user detection experiments only to narrow down the comparison. We can tell

that 𝑘-NN provides better results than Naïve Bayes in this case.
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Figure 12: Naïve Bayes Train on 7 Actions
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Figure 13: Summary of CAN Traffic Analysis Results
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Figure 14: Naïve Bayes vs. 𝑘-NN Results for Masquerade Detection
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CHAPTER 7

Conclusion and Future Work

In this report, we considered the problem of intrusion detection in CAN networks.

We provided a selective survey of research in the field, organized around several major

approaches. We also discussed masquerade detection research and suggested that this

would be a productive path to follow for future research in CAN network security.

We then did 2 sets of experiments. In the 1st set of experiments, our scope was

to identify the status of a vehicle from its network packets without having a visual

on the car. In order to do so, we analyzed CAN data using various machine learning

models. We applied 𝑘-NN, LSTM, HMM, DNN and SVM on 2 data sets. One data

set consisted of simulated data and the other consisted of actual data. From the

results of the HMM model, we were able to identify important characteristic of CAN

packets. From the other models, we were able to properly classify the vehicle status

from the packets. All of the models produced good results on at least one of the data

sets, with LSTM giving us the best result of 100% accuracy on both data sets under

consideration.

In the 2nd set of experiments, our scope was to identify the user driving the

vehicle as well as the action in the trip being studied. For this set of experiments we

used 2 simulated data sets. The first set consisted of 11 simulated trips representing

an authenticating user and 10 masquerading users. In that set, we applied both 𝐾-NN

and Naïve Bayes. We applied 𝐾-NN for different values and got the best accuracy at

96.28%. We got a lower accuracy for Naïve Bayes at 76%. The econd data set we

used consisted of 7 files, each has the packets representing only 1 action --from the 7

actions that constituted the 11 user trips. Our goal was to train on the 7 actions and

try to predict the sequence of each trip. We applied Naïve Bayes and the accuracies

for these tests ranged from 10 % - 27 %.
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For future work, we can expand the scope of masquerade detection to include a

combination of GPS location paired with CAN traffic, Speed, Infotainment System

usage and daily times of operation. This would require the availability of more data.

A hollistic masquerade detection model could rely on several steps. Initially,

authenticating the user using a biometric feature--or a mix of several features. Then

monitoring CAN traffic paired with GPS as well as infotainment behavior. In addition,

we can use sentiment analysis to analyze the tone of voice and facial features.
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