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ABSTRACT 

 

Poriferal Vision 
by Saketh Saxena 

 

Sponges provide nourishment as well as a habitat for various aquatic organisms. Anatomically, 

sponges are made up of soft tissue with a silica based exoskeleton which serves both as support 

and protection for the underlying tissue. The exoskeleton persists after the tissue decomposes, and 

microscopic parts of the exoskeleton break away to form spicules. Oceanographic studies have 

shown that the density of the sponge spicules is a good indicator of the sponge population in an 

area. This measure can be used to study sponge population dynamics over time. The spicule density 

is measured by imaging spicules from samples of water extracted from the oceans using an 

instrument called FlowCAM, which separates and photographs individual small items in a sample. 

It has a high processing rate, but is inefficient at computationally analyzing large numbers of 

photographs. Computer vision technologies, particularly deep learning using Artificial Neural 

Networks, and Support Vector Machines have shown to be effective in handling large scale image 

classification problems and are the de-facto standard in image recognition problems. Typically, 

these models require a large amount of data to learn the underlying distribution in datasets 

effectively and avoid model overfitting, which is currently a challenge to procure a vast dataset of 

images. To mitigate this challenge and achieve the overarching purpose of developing a high-

performance classifier, we demonstrate various geometrical image transformation techniques to 

enhance the size of the dataset. We also show initial experimental results for training Generative 

Adversarial Networks for artificial synthesis of spicule images. Finally, we develop a 

Convolutional Neural Network and compare its performance against a Support Vector Machine 

for classifying images of sponge spicules training both the models on the original set of images 

and the newly generated set of images and achieve a test accuracy of 95% with a CNN trained on 

the newly generated images.  

 

Index terms – Artificial neural networks (ANN), sponge spicules, bioinformatics, computer 

vision, deep convoluted neural networks (CNN), FlowCAM, generative adversarial networks 

(GAN), global silica biogeochemical cycle, image transformations 
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1. Introduction 

 Sponges occur at all depths from intertidal zones to the continental margins and down to 

the abyssal zones ranging from 3,000 to 6,000 meters and hadal zones ranging from 6000 to 11,000 

meters [1]. Sponges are primitive creatures which evolved about 500 million years ago [2]. There 

are about 15,000 extant species of sponges belonging to the phylum porifera which are further 

divided into three classes—Hexactinellida, Calcarea, Demospongiae [3]. Out of these the Class 

Hexactinellida commonly known as “glass sponges” occur in benthic regions of seas and oceans 

[3]. Anatomically, they are pale in color and are cup/basket shaped. They lack an epidermal 

covering and are made up of soft tissue supported and protected by an exoskeleton made up of 

spicules of silica which form a latticework. The exoskeleton composed of a grillwork of fused 

spicules persists after the underlying tissue decomposes [4].  

 Sponges provide nourishment as well as a habitat for various aquatic organisms. In the 

benthic zones, they can stabilize sediment and act as a substrate for larval recruits [5]. The Kahn 

[5] study describes in detail the impact of benthic grazing and carbon sequestration by deep-water 

glass sponge reefs in the oceanic ecosystem. Sponges can also filter organisms of microscopic 

scales of up to 1 to 50 µm from water [6]. The research studies by Chu [7] and Stryuf [8] show 

that along with diatoms and radiolarians, sponges are important local sinks of silicon and play a 

role in global silica biogeochemical cycle, inferring that sponges have a major role to play in the 

biological cycling of silica in the biosphere. Sponge populations are expected to rise with increase 

in ocean temperatures and decline of coral reefs. It is therefore important to study sponge 

population dynamics during past climate change events.  
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 Studying glass sponges and their spicules is advantageous because the spicule particles 

persist over longer durations of time. Oceanographic studies of IODP sediment cores conducted 

by Moss Landing and Marine Biology Labs and Monterey Bay Aquarium Research Institute, have 

shown that the density of the sponge spicules is a good indicator or proxy for the sponge population 

in an area. The fluctuations in the quantity of spicules can be studied to monitor the changes in the 

taxonomy and abundance of sponges over time to predict the ecological conditions and changes 

thereof. It would also help in determining the factors which would allow for sustainable 

proliferation of sponge populations.  

 The spicule density is measured by imaging spicules from samples of water extracted from 

the oceans using an instrument called FlowCAM [9]. The resulting images are then manually 

inspected to identify and differentiate spicules from other particles such as diatoms and 

radiolarians which are henceforth referred to as “impurities.” The impurities specifically 

radiolarians look very similar to spicules and may results in misclassification. For very large 

samples it takes a lot of hours of manual inspection. Another shortcoming of this approach is as 

the size of the image data increases storing and efficiently managing this data would become 

cumbersome since this process is not scalable. 

 Computer vision technologies, particularly deep learning using Artificial Neural Networks 

(ANNs), have shown to be effective in handling large scale image classification problems and are 

the de-facto standard in image recognition problems [10]. There are various types of neural 

networks but deep convolutional neural networks (ConvNets) and Generative adversarial networks 

(GANs) have shown the most promising results in object detection and classification [10], [11]. 

Although ANNs have been applied to some bioinformatics problems such as ecological modelling 

[12] and plant identification using vein morphology [13], their application in marine biology and 
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specifically to classify sponge spicules has never been attempted before. Most studies in regard to 

biological image data have been in Biomedical research [14]. In the later part of the 20th century, 

Support Vector Machines (SVMs) emerged as the state of the art for classification tasks due to 

their “high generalization performance” for high dimensional input without any prior knowledge 

[15]. We hypothesize that these powerful supervised learning algorithms would prove to be an 

effective and scalable means to solve the challenge of classifying spicule images.  

 Considering the need for a large-scale classification model, we propose to develop a 

scalable deep ConvNet for classifying sponges and other impurities and test its performance 

relative to a benchmark SVM model. With prescience we identify that a challenge we face in 

classifying sponge spicules is having a sparse dataset of images which could cause our 

classification models to overfit, in order to mitigate the problem of model overfitting we propose 

to increase our dataset by applying various image transformation techniques to the objects within 

the images and perform experiments on training the classification models using both the native set 

of images and the image set generated after applying various transformations henceforth described 

as “Transformed” image sets. We also describe our attempt to generate synthetic images using 

generative adversarial networks (GANs) to enhance the image set further [16]. The remainder of 

this report is divided into the following sections: section 2 describes the image gathering, training-

test split and image transformations used, section 3 elaborates on the methods developed and used, 

section 4 enumerates our results, section 5 concludes the report and section 6 consists of a brief 

discussion about the project and a reflection of potential future work. 
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2. Image Gathering, Training-Test Split and Transformations 

2.1. Image gathering: FlowCAM Imaging and Manual Identification 

 The data used in this project consists of FlowCAM images of radiolarians, diatoms and 

sponge spicules. FlowCAM is a proprietary machine primarily used to identify radiolarians and 

diatoms but can also be used to image spicules. Typically, the process comprises of collecting 

sediment core samples from the deep-sea and feeding these samples into FlowCAM, which then 

captures images of each microscopic particle one at a time [9]. These generated images are then 

manually segregated into two categories as depicted by Figure 1— (1) images of spicules and (2) 

images of diatoms, radiolarians and other microscopic particles. We consider images of spicules 

as the positive dataset and the other impurities as the negative dataset for the purposes of this 

project. The images generated are from sediment core samples extracted by the IODP Expedition 

323, Sites U1340-1342 (Bering Sea) and provided by Dr. Amanda Kahn (MBRAI and Moss 

Landing and Marine Biology Labs). Figure 1 below shows three sample images of a spicule, 

diatom and radiolarians.  

 

Figure 1 Sponge Spicule (left), Diatom (center) and Radiolarians (left) 

 The number of initial images for both positive and negative sets, along with the number of 

images manually selected for our experiments based on image quality are tabulated in Table I. 
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TABLE I. INITIAL DISTRIBUTION OF DATASET 

Dataset Type Total Number Number of 

selected images 

Positive image set Spicules 188 120 

Negative image set Diatoms 95 92 

Radiolarians 35 32 

Total Number  - 318 244 

 

 

2.2. Training-Test Split 

 A key challenge for the project which was identified early on was the scarcity of data for 

training and testing the classification models and GANs effectively. In order to ensure that the 

image transformations do not introduce bias in the final performance evaluation of the models, a 

set of positive and negative images was held out before applying any transformations. Another 

important consideration was to ensure that the test set was balanced and uniformly distributed and 

the number of images be significant enough to have meaningful performance metrics. We use 

about 25% of the positive and negative datasets to hold out for testing. The final number of images 

available for training and testing after pruning the test sets to balance them, are shown in Table II 

below. 
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TABLE II. TRAINING AND TEST SPLIT OF ORIGINAL DATASET 

Dataset Type Training set Test Set 

Positive image 

set 

Spicules 80 30 

Negative image 

set 

Diatoms 68 22 

Radiolarians 25 8 

Total Number  Total Number 173 60 

 

2.3. Image Transformations to Enhance the Training Dataset 

 In order to increase the number of images to mitigate the potential problem of model 

overfitting, we have applied 3 different image transformation techniques to the positive and 

negative image sets using OpenCV [17]. The image transformation techniques are described 

below: 

i. Image Flipping  

The original positive and negative images are taken as is and flipped around the 

vertical axis, horizontal axis and both the axes to produce 3 new images which 

increase the total number of images by 3 times. 

ii. Perspective Transformations 

Certain focal points within the image around the object are chosen and the object 

in focus is slightly shifted to the left side and top of the image to produce 6 

perspective transformations. This transformation is applied on both the original 

positive and negative image sets. 
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iii. Rotational Transformations 

The original images along with the 3 flipped images generated are rotated in 15-

degree increments using the central locus of the image as the center. 

 

 The protocol followed to apply these transformations is depicted in Figure 2 below. In 

order to preserve the structure of the object in focus and get more realistic looking transformations 

the spicule or impurity in the image are detected using the chain approximation method and 

trace/draw highly accurate contours around the object [17]. A rectangular bounding box is drawn 

around the contours to isolate the image and preserve some of its background composition. A 

sample spicule image with a contour traced around the spicule and the bounding box in focus is 

shown in Figure 3 below. 

 

Figure 2 Image Transformation Workflow 

 

Once the object has been isolated, the bounding box is flipped to generate 3 different axial 

orientations of the image which are then saved and perspective transformations are applied on 

these images to produce 6 transformed images, the flipped and original images are then rotated in 

15 degree increments to generate 23 different orientations of the object. The image background is 
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then cleaned by removing noise and repainting any black edges or borders produced due to the 

rotations. Finally, the images are saved in .jpg format. The transformed image set is then checked 

for any blank images generated due to the perspective transformations by converting the images 

to gray scale and applying a gaussian filter on the image to blur the image if the majority of the 

pixels within the image are then black or white the image is removed from the dataset.  

 

Figure 3 Bounding box of the spicule with a contour traced around its edges 

As a final quality control step the images are manually checked for any images where the objects 

are cropped out and the ultimate transformed dataset is curated. As an attempt to generate more 

representations of the spicules we have also developed a method to develop a 3-D model of the 

image, but its application falls out of the scope of this project. The number of images generated 

and selected after applying all the transformations and manual curation are tabulated in Table III. 

Figure 4 below shows a sample set of images generated by applying the transformations described 

above. 
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TABLE III. NUMBER OF IMAGES GENERATED ON FLIPPING THE IMAGES, ROTATING THE IMAGES 

AND APPLYING PERSPECTIVE TRANSFORMATIONS 

Dataset Type Original 

number   

Flipped 

images 

generated 

Rotated 

images 

generated 

Perspective 

transformations 

Total 

number 

of 

selected 

images 

Positive 

image set 

Spicules 80 240 5120 376 5816 

Negative 

image set 

Diatoms 68 204 4352 408 5032 

Radiolarians 25 75 1600 150 1850 

Total 

Number 

- 173 519 11072 934 12698 

 

 

Figure 2 Sample results after applying transformations 
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2.4 Image Resizing 

Due to the sparsity of the image dataset and high variation in the image resolutions ranging 

from resolutions as low as 26x64 to about 300x300, we resize all images to the same resolution. 

We adopt a naïve approach to choose a resolution to resize the image instead of using a standard 

64x64 resolution as is common in many image classification algorithms. We compute the mean 

resolution of the training image set. Based on our computations we have chosen 138x78 as the 

resolution for the images. 

 

3. Methods 

3.1. Artificial Image Synthesis using GANs 

 Generative Adverserial Networks (GANs) was a novel framework proposed in 2014 for 

estimating generative neural network models using an adverserial process [16]. The fundamental 

idea behind the framework is to concurrently train two models namely— a generator “G” and a 

discriminator “D”  such that G estimates the underlying distribution of the data and D estimates 

that a data samples originates from the original data as opposed to the outcome of G. Specifically 

for multilayer perceptron networks or neural networks, the framework uses backpropgation for 

simultaneous training of the generator and discriminator such that the generator is trained to 

maximize the probability of the discriminator returning a false positive result.  

 Goodfellow et al [16] have demonstrated that for arbitrary functions G and D there exists 

a unique solution where G learns the distribution of the training data and D results in about ½ for 

all input distribution. In literature this model is often elaborated using an analogy where the 

generator model is compared to a counterfieter and the discriminator as a forgery detector where 
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the generator tries to recreate a counterfiet item as closely as possible to fool the discriminator into 

believing the counterfiet item as real. Probabilistically, the GAN framework has been described as 

a two-player “min-max” game. Ever since the framework was proposed there has been a growing 

interest in the applications of GANs particularly in computer vision. Some of the applications 

include semantic image editing, image generation, text-to-image generation, style transfer and 

image classification [18]. We conceptualize a typical workflow while training a GAN in figure 5 

below. 

 

Figure 3 Workflow for Training a GAN based generative model 

 Many variants of GANs have been introduced in the recent years such as DCGAN [19] and 

Wasserstein GAN [20]. E. L Denton [21] introduced a deep generative image model which can 

produce high quality natural images soon after the release of the GAN frame work, the proposed 

model uses a laplacian pyramid of adverserial networks to generate extremely high quality images 

from sampled noise. Biological images generated using flouroscent mircoscopy typically have 

much simpler spatial and geometric structure than natural images but the variation in colors is an 
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indicator of important biological function , A. Osokin [22] demonstrated a novel approach to 

synthesize images of cell growth patterns as imaged from flouroscent microscopy loosely using 

the color channels for training a DCGAN, WGAN and WGAN-GP and proposed a Star based 

GAN architecture. Acknowledging the power of GANs in image synthesis, we have experimented 

with a “Vanilla” GAN and a DCGAN to generate artificial images with similar distribution as that 

of the training data. Both the Vanilla GAN and DCGAN are implemented using PyTorch which is 

a Python based open source deep learning platform [23]. 

 

3.1.1. Vanilla GAN 

 The Vanilla GAN we have developed is based on the original multi-layer perceptron 

network-based framework as proposed by Goodfellow et al [16]. We visualize the architecture of 

the Generator and the Discriminator Networks in Figure 20 in the appendix section using torchviz 

which is a python package to generate DOT format graphs for perceptron networks in PyTorch 

and render the graphs as JPEG files using graphviz [24]. 

 The generator network consists of 3 hidden layers and an output layer, all the layers are 

feed-forward and apply linear transformations to the input samples. We use Leaky rectified linear 

unit activation function (LeakyRelu) in the layers with the alpha value as 0.2, which allows a small 

non-zero gradient even when the node is inactive [25]. The first layer inputs a tensor from a random 

noise sample of size 138 and returns a 256-channel tensor as input for the second layer. The 

succeeding layers apply the activation function and convert the samples into 512, 1024 and finally 

to an output size of 32,292.  The output layer applies the element wise Tanh function to the 

generated sample. The discriminator network also has 3 linear, feed-forward hidden layers and an 

output layer. All the layers use a LeakyRelu activation function with the alpha value as 0.2 and 
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they contain a dropout function for regularization at each layer [26]. The first hidden layer takes 

as input the real or fake image samples with 32,393 features and the transformations at each layer 

are shown in Figure 20 in the appendix section. The final output layer applies the element-wise 

sigmoid function. 

For the global parameters of the GAN we use the binary cross entropy loss function as the loss 

function and the “Adam” optimizer [27]. 

 

3.1.2. DCGAN 

 DCGANs were conceptualized as a class of unsupervised CNNs for learning image data 

representations using the adversarial net framework [19]. They had adopted three primary 

developments in CNN architectures for developing more stable DCGANs— (1) Replacing spatial 

pooling functions/layers with “strided convolutions” [28]; (2) Eliminating fully connected hidden 

layers [29]; (3) Mitigate shortcomings in training due to inferior initialization approaches by using 

batch normalization and enable gradient flow in deep multi-layer perceptron models [30].  

 Our model follows the architecture introduced by A. Radford, L. Metz and S. Chintala [19].  

The generator network consists of a linear feed-forward layer followed by 4 2-d transposed 

convolutional layer, the first three convolutional layer applies batch normalization to the input 

sample and a ReLu activation function with an initial alpha value of 0.2 and the last convolutional 

layer does not apply either of the functions to allow for a deeper architecture. The output layer 

applies element wise TanH function. The discriminator network consists of 4 2-d convolutional 

layers and apply batch normalization at each layer followed by the LeakyRelu activation function 

with the standard alpha value of 0.2. The output layer of the discriminator network applies the 

element-wise sigmoid function to generate output.  We continue using binary cross entropy as our 
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loss function and the Adam optimizer in our experiments with the DCGAN. A general schematic 

of the DCGAN we implementation is shown in Figure 6 below. For the entire architecture and 

parameters graph of the DCGAN we refer interested readers to Figures 21 and 22 in the appendix 

section. 

 

Figure 4 Schematic Representation of DCGAN 

3.1.3. Image Preprocessing for GANs 

 Training GANs requires a huge amount of data and significant hardware resources to ease 

this process we perform the following transformations to the input dataset: 

i. Compute mean resolution of the training data 

ii. Resize the images to the computed mean 

iii. Transform the images to grayscale and read in a single pixel channel 

iv. Convert raw images to tensors using PyTorch transforms 

v. Normalize the images  

 This protocol was used for both Vanilla GAN and DCGAN.  However, for DCGAN we 

omit steps i-ii and resize the images to a fixed resolution of 64x64 and read in all 3 channels which 

is due to architecture constraints to reduce training time and the ability of DCGANs to handle 
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multi-channel input respectively. We use PyTorch transforms to perform the preprocessing steps 

for GANs [23]. 

 

3.1.4. Protocol for Training 

 We follow the same protocol for training both the Vanilla GAN (VG) and the DCGAN 

(DG). After the performing the image processing steps we train the GANs on two datasets, i.e., 

the smaller original dataset and the larger transformed dataset to generate two separate models 

each for VG and DG. We log the time taken for each epoch along with the generator and 

discriminator loss and display 6 generated images every 100 epochs and look for convergence of 

the model to stop training. The model’s state parameters are saved as training checkpoints for 

every 100 epochs. We train VG for about 200 epochs with a batch size of about 500 for the larger 

transformed dataset and for about 200 epochs with a batch size of about 20 for the smaller dataset. 

 

3.1.5. Performance Evaluation 

 In our experiments we test the training performance and convergence of the GAN for both 

the models and tabulate the generator and discriminator loss for various levels of training.  

 

3.2. Image Classification Models   

 Image classification is a primary task in computer vision and machine learning. In order to 

develop a scalable machine learning model to classify spicules vs other impurities we train, and 

test two popular models commonly used for image classification tasks—SVMs and Deep 

ConvNets.  
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 We note three primary reasons for selecting a SVM and a ConvNet model for the image 

classification task as opposed to simpler classification method—(1) With foresight, although the 

current dataset sizes are limited we anticipate that the number of images to classify would increase 

significantly by some orders of magnitude with further expeditions and using native image 

processing based classification methods such as template matching or feature matching using 

OpenCV would be accurate but take a significant amount of time for larger datasets; (2) As shown 

in figure 1, the images of spicules and diatoms are distinctive but the negative set also contains a 

substantial number of radiolarians which are visually very similar to images of spicules which 

would affect the accuracy of native approaches greatly and finding a good distance metric, 

template and feature set for the entire larger dataset would be quite cumbersome primarily due to 

the expected variability and  (3) Finally, in conjunction with the above reasons and the overarching 

aim of the project to be able to study the variation in taxonomy and abundance of spicules, we aim 

to establish our ConvNet as benchmark binary classifiers for this task which can be further 

extended to perform multiclass classification and classify the spicules and impurities based on 

their species. 

3.2.1. Support Vector Machine as a Benchmark 

 Support vector machines first came into prominence in 1995 and have seen immense 

amount of research and application particularly for binary classification tasks [31]. We use the 

Support Vector Classifier implementation in SciKit-Learn [32] with a linear kernel to train a 

support vector machine model which we use as a benchmark model to validate the performance of 

our CNN model.  
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3.2.1.1. Principal Component Analysis of Images  

 As a byproduct of resizing our training sets based on a mean resolution, the number of 

features greatly increase while this would not be a problem for training the SVM on a smaller 

dataset, the training time for the SVM increased greatly once the size of the dataset was increased 

by adding the transformed images. We also conjecture that the performance of the SVM classifier 

could be affected by the resizing of the images. R. Sahak et al [33]  used an approach combining 

SVM with PCA to reduce the feature size and achieved a high classification accuracy. To have a 

strong benchmark SVM classifier we perform principal component analysis on the image data to 

extract the most representative features from the images, and experimentally set the number of 

components to reduce the image dimensionality to a lower dimensional space. 

 

3.2.1.2. Parameter Optimization and Cross-Fold Validation 

 We use sklearn’s GridSeachCV to optimize the c and gamma parameters while training the 

SVM along with 3-fold cross validation on a linear SVM kernel and return the best parameters and 

model which performed the best [32].  

 

3.2.2. Deep Convolutional Neural Networks  

 Deep Convolutional Neural Networks (CNNs) can learn high dimensional image mappings 

for large samples of image data and have become an obvious choice for image recognition and 

classification tasks [34]. One of the main reasons for the revival of CNNs in the last decade or so 

was due to the availability of massive collection of datasets with comprehensive annotations and 

data distribution which allows for learning more generalized models such as ImageNet [11], [35]. 
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Advancements in graphics processor units have also been a core driver in catalyzing the research 

in CNNs and achieving state-of the art results on image processing and detection tasks [36].  

 Specifically, for image classification tasks CNNs achieve better accuracy as compared to 

other machine learning models. AlexNet was a land-mark CNN architecture  which had 

significantly higher classification accuracy as compared to other image classification methods and 

laid the foundation for further research and development of various CNN architectures 

customizable for a variety of domains [11], [36].  

 The deep CNN we developed comprises of two 2-D convolutional layers, followed by a 

dense layer with a relu activation function and an output layer with a sigmoid activation function 

[25]. The model implementation and all the visualization were done using TensorFlow [37]. The 

detailed architecture of our CNN model is shown in Figure 23 in the appendix. 

3.2.3. Image Preprocessing for Classification 

 We perform the following image transformations to get a uniform resolution of all the 

images to train and test our classification models: 

i. Read in the entire training set and convert the images to grayscale 

ii. Compute the mean resolution of the images in the training set 

iii. Resize the images to the new computed mean 

iv. Normalize the image data 

v. Assign class labels to the data where we use the standard notation of ‘1’ for positive 

images and ‘0’ for negative images  

vi. Pickle out the dataset 

All the above transformations have been implemented using OpenCV in Python [17]. 
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3.2.4. Training and Experiments 

 We train two sets of classification models, i.e., one each of the SVM and CNN on the 

original dataset and the on the larger transformed dataset. For the SVM we especially perform a 

PCA step as described in section 3.2.1.2., and reduce the dimensionality of the feature space. In 

order to choose the number of components to reduce the input space to by fitting the principal 

component analysis algorithm to the dataset and evaluating the “Explained Variance %” ratio. We 

would ideally like the value of the Variance percentage high as we hypothesize that it would return 

a more representative feature set of the entire image set. We consider the entire dataset including 

positives and negatives while performing principal component analysis.  

 Once we choose a set of features, we perform PCA on our entire dataset and train the SVM 

model accordingly. We use scikit-learn’s features to generate the model’s evaluation result. While 

PCA helps in reducing training time greatly, we conjecture that the difference would not be 

statistically significant to learn the representative data distribution by the CNN. Therefore, we 

supply the resized version of the original and transformed images. We compute the training 

accuracy and training loss. Finally, we test out both the SVM and the ConvNet against the held-

out test set. 

 

3.2.5. Performance Evaluation 

 We evaluate various standard performance metrics used in image classification tasks for 

testing our classification models such as test accuracy, F-Score, precision and recall. 
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4. Results 

4.1. Histogram Analysis of Images Generated from Transformations 

 We overcome the challenge of scarcity of data for training by enhancing the 

size of the dataset by applying various image transformations, it is imperative to ensure that the 

transformations do not add any bias in the data distribution. To validate our approach of applying 

transformations we perform histogram analysis on the original and transformed images. In figure 

7, below we show the histogram plots for a single sample image to show the variation in the pixel 

intensity distribution between the original image and the mean of the transformed set of images 

including— (a) the histogram of the original sample image (b) the mean histogram of the images 

generated by flipping the image across both vertical and horizontal axes, (c) the mean histogram 

of the images generated by applying rotations  and (d) the mean histogram of the images generated 

by applying perspective transformations on the sample image. 

 We also analyse the image histogram on the entire original image set and the 

entire set of images generated from transformations for both positive and negative datasets. The 

histograms thus generated are depicted in figure 8—Figure 8(a) shows the mean histogram for the 

entire positive training set comprising of the original images and 8(b) shows the mean histogram 

for the entire positive training set comprising of both the original images and transformed images. 

Similarly, figure 8 (c) shows the mean histogram of the entire negative training set comprising of 

only the original images and 8 (d) shows the mean histogram for the transformed training set and 

we observe that in both the cases the transformations produce the same peak values and 

distribution. In both figures 7 and 8 we normalize the frequencies of the distributions to account 

for images of different resolutions and sizes and allow for meaningful interpretation of the pixel 

intensity distributions. 
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Figure 5 Pixel Intensity of histograms for the sample image—(a) Histogram of Original Sample Image in Grayscale; 

(b) Mean Histogram of Images generated by flipping the sample Image; (c) Mean Histogram of images generated on 

rotating the sample; (d) Mean Histogram of images generated on applying perspective transformations to the sample 

image 

 

 
Figure 6 (a) Mean Histogram of Positive Training set; (b) Mean Histogram of Positive Training set with transformed 

images; (c) Mean Histogram of original negative Image sets; (d) Mean histogram of transformed negative training 

set 
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4.2. Training results for GANs 

 We present some initial results of our experiments with training GANs for 

image synthesis using only the spicule images of original dataset, we have run some experiments 

on the transformed dataset as well, but their results were largely inconclusive and insufficient and 

thus we leave them out of the scope for this report. In figure 9, we show the G-error and D-error 

which is representative of the loss during training for training vanilla GAN, the errors spike quite 

a bit initially as expected but soon converge at around 100 epochs but the model goes into mode 

collapse where the generator fixates on a certain distribution within the image which the 

discriminator always fail to identify as fake data. 

 

Figure 7 G-error and D-error for Training Vanilla GAN on Original Dataset 

 In figure 10, we show the images generated by the generator on being inputted 

with 16 random noise samples, as we see for each epoch the model generates the same image 

distribution or the same image and which is representative of mode collapse. 
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Figure 8 Test images generated for spicules at various epochs by Vanilla GAN 

 In figure 11 below, we show the G-error and D-error for training DCGAN on the original 

dataset, we notice that the error values spike quite a bit initially which is as expected. We train the 

DCGAN for 200 epochs or steps only due to hardware limitations. The initial results for the 

DCGAN seem quite promising and the adversarial network does not seem to mode collapse in the 

first 200 epochs. 

 

 

Figure 9 G-error and D-error for training DCGAN 
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Figure 12 below shows the test images generated by the DCGAN at various epochs, and for the 

200th epoch of training the images generated visually seem to fall into a pattern of spicules. 

 

 

Figure 10 Images generated by the DCGAN generator on 6 randomly sampled noise inputs at various epochs 

 

4.3. Performance of Classification Models 

4.3.1. Support Vector Machine 

4.3.1.1. Principal Component Analysis 

 We perform principal component analysis as an approach to reduce the training time of 

the SVM model, reduce the dimensionality of the training data, avoid overfitting and increase the 

generalizability of the model. For choosing an appropriate dimension for the image set we calculate 

the explained variances of the datasets over a range of the number of components. Figure 13, below 

shows the plot for the explained variances vs number of components calculated for the original 

dataset over a range of 0 to 175 components and figure 14, shows the same for the transformed 

dataset.   
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 Since figures 13 and 14, do not show a clear single point of inflection representative of 

the optimal number of components to choose for either of the datasets we select a range from the 

graphs and experimentally choose 30 as the number of components to decompose to for the 

original dataset and 40 for the transformed dataset as these values produce the highest accuracy, 

for our results. 

 

Figure 11 Explained Variance Obtained by performing PCA on the Original Training Dataset 

 

Figure 12 Explained Variance of Transformed Dataset for 170 components 
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 We further validate our choice of the number of components for the transformed dataset 

by showing the explained variance vs number of components tested over a range of 0 to 500 

components in figure 15 below. Figure 15 clearly estimates the point of inflection to be around 40-

45 for the transformed dataset and our experimental results return the maximum accuracy for the 

value 40.  

 

Figure 13 Explained variance obtained on the Transformed Dataset for 500 components 

4.3.1.2. SVM Parameter Optimization 

 We use the grid search cross validation method for optimizing the C value and 

gamma value for the SVMs trained on the original dataset and transformed dataset. Both the C and 

gamma values tested are in the range [10-6,100]. Figure 16 below shows the heat-map for the 

validation accuracy for each combination of C and gamma value for the SVM trained on the 

original training set (SVM-Original) and Figure 17 shows the same for the SVM trained on the 

transformed training set (SVM-Transformed) the C value selected for SVM-original was 0.1 with 

a gamma value of 0.001 and for SVM-Transformed the C value selected was 1 and gamma value 

was 0.001. 
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Figure 14  Heatmap for validation accuracy for C and Gamma for SVM-Original 

 

 
Figure 15  Heatmap for validation accuracy for  C and Gamma for SVM-Transformed 
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4.3.2. CNN Training Performance 

 

Figure 16 CNN-Original training accuracy(left) and loss(right) 

 We report training results for two CNN models, one trained on the original 

dataset (CNN-Original) and the other trained on the transformed dataset (CNN-Transformed) 

trained for 15 epochs. Figure 18 above, shows the training accuracy on the left and the model loss 

on the right along with the validation accuracy for 15 epochs for CNN-Original. The model was 

able to achieve a training accuracy of 96% accuracy and validation accuracy of about 90% by the 

end of training.  Figure 19 shows the same statistics for CNN-Transformed for 15 epochs. CNN-

Transformed reached a training accuracy of about 98% and a validation accuracy of about 95%. 

 

 
Figure 17 CNN-Transformed training accuracy(left) and loss(right) 
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4.3.3. Classification Test Results 
  

 In Table III. below we tabulate the summary of all our test results and display the test 

accuracy, F-score, precision and recall on the trained classification models—SVM-Original, 

SVM-Transformed, CNN-Original and CNN-Transformed, using the original balanced test set 

which was held out separately at the beginning. Using the transformed dataset to train the CNN 

model we achieved an accuracy of about 95%. We note that the accuracy of the SVM-Original is 

about 83% which is slightly higher than SVM-Transformed which returned an accuracy of 80%. 

Finally, the accuracy of the CNN-Original was about 91% and thus, CNN-Transformed performed 

much better than any of the other models. 

 
TABLE III. CLASSIFICATION TEST RESULTS 

Model Test Accuracy F Score Precision Recall 

SVM-Original 0.8333 0.8331 0.8348 0.8333 

SVM-

Transformed 

0.8000 0.7916 0.8571 0.8000 

CNN-Original 0.9166 0.9161 0.9286 0.9167 

CNN-

Transformed 

0.9500 0.9499 0.9505 0.9500 

 

 

 

5. Conclusion 

 We have developed four different classification models and adopted a 

completely data driven approach for comparing the models’ performances. We have also 
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experimented with various image transformation techniques to manipulate objects within the 

images and further enhance the dataset, which we experimentally validate to have a similar 

histogram distribution as the original dataset. In fact, figure 8 which compares the mean histogram 

distributions of the original and transformed image sets shows that the addition of the new images 

generated to the dataset smoothens out the histogram distribution and reduces spikes such that the 

overall distribution is normalized. We conclude that this step was imperative in increasing the 

performance of the CNN classifier. Performing PCA analysis on the training dataset in order to 

reduce training dimensionality of the SVMs reduced the training time for our SVM classifiers. The 

reduction in dimensionality also increased the performance of SVM-Original whereas it did not 

affect the performance of SVM-Transformed. We note that both the CNN models trained on the 

original dataset and the transformed dataset perform significantly better and reach a high-test 

accuracy of 95% from our benchmark SVMs. We have presented some initial results for using 

GANs as an approach to synthesize spicule images and by extension images of non-spicules. Out 

of the two types of GANs we have tested, we conclude that the DCGAN performed significantly 

better than the Vanilla GAN and has the potential to generate highly accurate images of spicules 

with more training epochs, a larger dataset and suitable computational resources. We run into the 

mode collapse issue in Vanilla GANs which is partly due to the small size of the dataset. In 

conclusion, the methods described in this report solve two major problems—firstly, we mitigate 

the challenges due to the small size of the dataset by adopting a highly specific approach of 

isolating and applying geometric transformations to the objects within the images to produce 

different orientations of the images and enhance the dataset from roughly 200 images to about 

12000 and secondly, we develop a highly accurate CNN classifier and validate its performance 

against SVM which gives us about 95% test accuracy using the transformed data. 
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6. Discussion and Future Work 

 In our exploratory research towards increasing the size of image datasets by 

generating different geometric orientations of the objects within the image we find that these 

transformations not only enhance the dataset and distribution but also largely improve the 

performance of the classifiers, it would be interesting to further explore this method in two ways 

– (1) performing more detailed statistical analysis on the newly generated images and (2) how 

specific learning parameters of different classification models are affected by training on the 

transformed dataset. Another interesting avenue to explore for image generation would be to use 

the 3-D representation of images to generate images of objects with different spatial orientations. 

We show an initial 3-D model of a spicule in figure 24 of the appendix. For our experiments with 

GAN models it would be beneficial to explore allowing more training epochs and using our 

transformed dataset specifically for the DCGAN as an approach for artificial image synthesis. We 

would like to highlight that as mentioned in the previous sections the SVM-Transformed model 

does not realize significant improvement in performance as expected and we presume that this 

discrepancy could be due to choosing a sub-optimal dimension size to reduce to for the PCA 

analysis before training, this is another area that can be improved in terms of image pre-processing 

specifically for the spicule vs non-spicule dataset that we have. In terms of the overarching 

classification problem itself, the next step would be to develop a multiclass CNN classifier to 

classify spicules and other particles based on their species, this would require a large sized labelled 

dataset. We believe that our work can be extended greatly to further simplify the task of studying 

the variation in the taxa and population size of oceanic sponges through time.  

 This work constitutes a valuable step toward real-time shipboard analysis of 

sponge spicules. 
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Appendix 

We show 5 images (Figure 20- Figure 24) of the architecture of the VGAN, DCGAN, ConvNet 

and 3-D view of a spicule image. 

 

Figure 18 The architecture of Vanilla GAN - (left) Generator Network and (right) Discriminator Network 
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Figure 19 DCGAN Generator Network Architecture 
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Figure 20 DCGAN- Architecture of the Discriminator 
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Figure 21 Architecture of the Deep ConvNet used for classification 
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Figure 22 3-D View Generation for a Sample Spicule Image 
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