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ABSTRACT 

Schema Migration from Relational Databases to NoSQL Databases with Graph Transformation 

and Selective Denormalization 

By 

 Krishna Chaitanya Mullapudi 

 

We witnessed a dramatic increase in the volume, variety and velocity of data leading to the 

era of big data. The structure of data has become highly flexible leading to the development of 

many storage systems that are different from the traditional structured relational databases where 

data is stored in “tables,” with columns representing the lowest granularity of data. Although 

relational databases are still predominant in the industry, there has been a major drift towards 

alternative database systems that support unstructured data with better scalability leading to the 

popularity of “Not Only SQL.” 

Migration from relational databases to NoSQL databases has become a significant area of 

interest when it involves enormous volumes of data with a large number of concurrent users. Many 

migration methodologies have been proposed each focusing a specific NoSQL family. This paper 

proposes a heuristics based graph transformation method to migrate a relational database to 

MongoDB called Graph Transformation with Selective Denormalization and compares the 

migration with a table level denormalization method. Although this paper focuses on MongoDB, 

the heuristics algorithm is generalized enough to be applied to other NoSQL families. 

Experimental evaluation with TPC-H shows that Graph Transformation with Selective 

Denormalization migration method has lower query execution times with lesser hardware footprint 

like lower space requirement, disk I/O, CPU utilization compared to that of table level 

denormalization.  
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CHAPTER 1 

Introduction 

Relational databases have been the traditional backend for most of the software 

applications for many years since their inception. They served the purpose well within a 

conventional web application architecture having an RDBMS backend hosted on a server which 

is vertically scalable without any network partitioning [1]. But at the current rate of data explosion 

with a large user population, it is necessary to be able to store large volumes for big-data. Platforms 

like Teradata and Netezza, which are created on relational semantics, have been in the market for 

a while and are capable of handling terabyte-scale analytical applications [2]. However, there are 

limitations to these platforms when it comes to elasticity, scalability and fault tolerance in a 

distributed environment [3]. These solutions, which are architecturally similar to a relational data 

model, are not very flexible when it involves semi-structured or unstructured data which is often 

the data collected by most of the big data systems today.  

With the advent of cloud computing and horizontal scalability as a storage paradigm which 

uses less expensive commodity hardware, storage capacity has dramatically increased leading to 

the widespread use of alternate data stores called ‘Not Only SQL’ (NoSQL) that are partition 

tolerant, unlike relational databases. Several NoSQL systems are developed with the intent of high 

scalability that can handle thousands of concurrent users by readily deploying it on the cloud [1]. 

Many types of NoSQL storage systems have been developed to cater to the application and use 

case requirements. A majority of them can be placed under five categories, namely key-value 

stores, document stores, graph stores, wide-column stores and multi-model data stores.  

 Although NoSQL systems do not require the developers to specify a rigid schema like 

Relational Database Management Systems (RDBMS) do, modeling the data for better performance 

is highly imperative [1]. This has sparked interest in the area of data modeling in NoSQL for 

performance optimization.  The data model of the NoSQL system should be in such a way that 

they take advantage of the features that they are explicitly developed for like scalability, elasticity 

and high availability. NoSQL database modeling is query driven, i.e., the modeling is optimized 



2 

 

around access patterns while relational database modeling is data-driven with emphasis on data 

integrity and redundancy removal. 

 This research focuses on developing a heuristics approach for transforming a relational 

schema represented by an Entity-Relationship (ER) paradigm to a NoSQL schema using graph 

transformations. This graph transformation involves steps that convert an ER diagram into a 

graphical representation, formulating a Directed Acyclic Graph (DAG) from the graphical 

notation, identifying the root node for the order of embedding, a heuristics based graph traversal 

algorithm from the root node for denormalization and creation of views and indexes. This research 

illustrates and validates the effectiveness of Graph Transformation with Selective Denormalization 

(GTSD) by comparing with another heuristics based transformation algorithm – BFS [4] proposed 

by G Karnitis et al. Experimental comparison is conducted using the TPC-H benchmark [5] to 

evaluate the effectiveness of migration methodology.  

 The rest of the paper is organized as follows. Chapter 2 introduces the core concepts and 

differences between relational and NoSQL data modeling. Chapter 3 introduces the previous 

approaches proposed in various literature for relational to NoSQL schema transformation. Chapter 

4 explains the TPC-H benchmark and determining the access patterns through query graphs that 

are used in the migration algorithm. Chapter 5 describes the novel schema migration algorithm 

introduced in this research called Graph Transformation with Selective Denormalization (GTSD) 

followed by data migration methodology in Chapter 6. Chapter 7 presents the experimental results 

followed by conclusion remarks and scope for future work in Chapter 8.    

 

 
 
 
 
 
 
 
 
 

 



3 

 

CHAPTER 2 

Background 

 

2.1  Relational Databases Systems 

 A relational model is an approach of grouping data, known as tuples that are grouped into 

relations represented using tables. A Relational Database Management System (RDBMS) is a 

database management system that adheres to the relational semantics and set theory. RDBMS 

handles user queries based on a predefined storage model. Developers should explicitly specify 

what information the database should store and how it has to be stored through a schema definition 

along with the constraints to access related data. Once the schema definition has been specified, 

the database engine will determine the underlying data structures for storing the data and 

procedures to retrieve it [6].   

 This rigidity of storing the relational semantics of the data into rows and tables with 

constraints is a limitation when it comes to storing unstructured data. It is not always possible to 

organize data into rows and tables especially unstructured data like JSON. Schema changes like 

adding a new row to an existing table are costly operations in a relational database as the changes 

should be propagated to the entire table while it is not necessary for a NoSQL database like 

MongoDB where each document can have a different structure with different fields. Relational 

databases are designed to be steady data retention stores with a rigid schema.   

 Relational databases are designed originally to be vertically scalable, i.e., as single-node 

systems with means to add more disk space and memory with the growing requirement. Vertical 

scalability has its limitations concerning the cost-effectiveness and the amount of resources that 

can be added to the node, whereas there is practically no limit to the number to nodes that can be 

added to a system built on the paradigm of horizontal scalability like the NoSQL databases.  

 Similar to the join operation in relational algebra, relational databases use joins to fetch 

data from one or more related tables. Joins are operations performed on the common values present 

in the participating tables often defined as the foreign keys. Distributed implementation of the 

relational databases to handle large volumes of data has been an active research area in recent 
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times. Tables are sharded and spread across multiple nodes instead of a single node. While this 

might solve the storage size limitation, joins over such sharded tables involves a lot of data fetching 

and movement over the network especially if it involves a large number of rows. Distributed joins 

are resource intensive and usually don’t scale well owing to more data movement and 

communication overhead of participating nodes in the cluster.  

Relational databases are designed to be ACID compliant, i.e., the database transactions in 

a relational model adhere to the properties of Atomicity, Consistency, Isolation, and Durability. 

These properties are explained below [7]:  

Atomicity:  A database transaction consists of multiple operations. Atomicity guarantees such 

operations are treated separately as individual units which either complete or fail.  

Consistency: Consistency ensures that the database is not left in an invalid state and hence prevents 

database corruption. 

Isolation: Isolation ensures that the concurrent execution of multiple transactions does not leave 

the database in an inconsistent state, i.e., it provides isolation to multiple concurrent transactions 

as if they were executing sequentially one after the other.  

Durability: Durability ensures the state of a transaction as complete even in the event of a system 

failure.  

 Integrity constraints are used to ensure that the data is ACID compliant along with 

measures like resource locking. Relational databases have catered the requirements very well until 

the big-data era. Guaranteeing ACID properties in a distributed implementation of relational 

models has complications that need to be solved like network failures and high bandwidth required 

for communication. ACID properties can be enforced even in distributed databases by 

implementing methods like two-phase locking to ensure global serialization [8]. But locking has 

the limitation of holding the resources until the transactions are completed which could be a 

problem in an environment with limited resources.  
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2.2 Not Only SQL (NoSQL) Database Systems 

 Not Only SQL paradigm came into existence with a promise of better scalability, 

availability and query performance of data-intensive applications [9]. Organizations are shifting 

towards NoSQL databases to overcome the limitations of relational modeling. For example, 

migration from Oracle to MongoDB by a company called Telefonica has improved query 

performance to a great extent with a 50% reduction in development costs and a 65% reduction in 

storage costs [10]. The decline in storage costs is attributed to the use of cheaper commodity 

hardware for scaling the NoSQL database termed as horizontal scalability.  

  

 With many NoSQL database systems emerging into the market, the choice of choosing the 

right database entirely depends upon the task at hand. Most of NoSQL databases can be categorized 

into document stores, key-value stores, wide-column stores and graph databases. NoSQL systems 

follow an alternative design principle to that of relational databases to account for fault tolerance 

and horizontal scalability. NoSQL databases transactions follow the CAP paradigm in contrast to 

the traditional ACID semantics of RDBMS [11].  

 

The choice of picking a NoSQL system to be used can be assisted with the help of CAP 

theorem. CAP theorem [12] states that it is not possible for a distributed data store to guarantee 

more than two of the following features simultaneously:  

 

Consistency: read requests receive the most recent value or an error when read from any of the 

nodes in the distributed environment. 

Availability: every request receives a response at all-times irrespective of the correctness or 

consistency of data. 

Partition: system continues to work regardless of failures caused by network partitioning or packet 

loss in the network.  

 

After analyzing the CAP theorem and comparing it with the requirements of the 

application, the suitable NoSQL database for the use case under consideration can be narrowed 

down. The application access patterns, the frequency of reads/writes the structure of the data and  
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the complexity of the queries are some of the primary factors that determine the choice of NoSQL 

for the application. Once the decision of a NoSQL database is made, efficient data modeling has 

to be done to ensure performance. 

 

Document stores like MongoDB are suitable for the use cases that require flexible storage 

formats like JSON/BSON. MongoDB supports complex queries through aggregation pipeline and 

composite indexes. Figure 1 [28] classifies databases in the context of CAP theorem with               

MongoDB suitable for the use cases that require consistency and partition tolerance. 

 

 

 

 

Figure 1: CAP theorem (Shertil, 2016). 
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CHAPTER 3 

Related Work 

 

Model transformation from relational databases to NoSQL databases or data modeling of 

NoSQL, in general, has become an important research topic with the growing adoption of NoSQL 

databases. Due to the lack of migration tools and the differences in the design principles and 

features of different NoSQL databases, model transformation and data migration are often done 

manually and left to the expertise of the database administrators [10].  

 

 Different migration methodologies are proposed over time for various NoSQL systems. 

Most straightforward strategies involve migrating a relational schema into a NoSQL schema as it 

is, i.e., a one to one correspondence with the relational schema. An example would be creating a 

separate collection in MongoDB for every table in the relational schema. This migration results in 

poor query performance as joins are not always supported in NoSQL databases. Application level 

joins can be performed to fetch related data in such a scenario, but it is much more expensive to 

handle joins at the application layer especially if it involves a large amount of data. 

 

Denormalization is often chosen to avoid join operations where related data is duplicated 

and stored together to improve query performance. Denormalization might improve the query 

performance of read operations, but might slow down updates and compromise the data integrity 

[13]. Care has to be taken while choosing the level of denormalization and identifying related data 

to be put together. The following describes some of the significant research efforts in this area.  

 

Li et al. made one of the early attempts to define a set of rules to transform a relational 

schema to a NoSQL schema in his research on HBase [14]. A three-step process has been proposed 

to convert tables in RDBMS to HBase along with key mapping and denormalization of related 

data into column families. To the best of our knowledge, this is the first work that takes the 

cardinality of the relations into consideration. Li used the conceptual terms ‘main tables’ and 

‘attached tables’ to identify what tables go together in the resultant HBase schema. These 

conceptual mapping of main and attached tables are left to the knowledge of the developer. 
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D Serrano et al. have made an extension to the work by Li [14] in mapping a relational 

database to HBase schema using Entity Relation diagrams [1]. This work evaluates the role of 

Row Keys in designing effective HBase schema. A Graph Transformation Algorithm is proposed 

by Zhao [15], wherein all the tables of the relational databases are represented as vertices of a 

Directed Acyclic Graph (DAG). This Graph Transformation Algorithm only considers table 

merging and does not consider referencing the related tables and produces high redundancy by 

duplicating the entire table through multiple levels of embedding.  

 

An extension of the work by Zhao has been made by Sutedi et al. to reduce the data 

redundancy by removing the transitive dependency among the edges [16]. The transitive edges are 

identified and are removed, thereby reducing the number of table merges in the target schema and 

reducing the space requirement.   

 
 

All the above approaches are based on the concept of table level denormalization, i.e., the 

entire tables are duplicated and merged with the related tables based on the primary-foreign key 

relationship. Duplicating the table as a whole may sometimes lead to excessive redundancy. A 

novel method of duplicating only the necessary columns based on access patterns is introduced in 

this work J Yoo et al. [13]. They called their process ‘Column Level Denormalization’ in contrast 

to the traditional table level merging. Although this approach reduces the space requirement 

significantly than naïve table level denormalization, this method still requires joins when querying 

from multiple collections and its performance is limited to a pre-defined set of queries. The 

performance of the queries in column level denormalization is solely dependent on the choice of 

columns to be denormalized and this method chose to duplicate only non-primary foreign key 

predicates.  

 

In our research, the process of migration of a relational database to a target NoSQL 

database has been streamlined through a graph transformation. The idea of denormalization is 

identified as the most critical step of data modeling of NoSQL databases. The proposed schema 

migration algorithm outlines a systematic way of denormalization through various stages like 

mapping the input entity-relation schema into an intermittent graph model, selective  
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denormalization based on access patterns which include redundancy removal.  The unique aspect  

of this algorithm is that it takes the rapid growth of data into consideration and evaluates its effect 

on schema migration and query performance. The use of views and indexes and their impact on 

the migration are also investigated. Most schema migration techniques produce multiple 

intermittent target physical models and compare them based on certain evaluation criteria based 

on access logs. The migration algorithm in this project considers the access patterns from the very 

first stage of schema migration for reducing redundancy.  
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CHAPTER 4 

Transaction Processing Control Benchmark  

 

 The Transaction Processing Control (TPC) specifies database benchmarks for performance 

evaluation [17]. TPC Benchmark- H consists of a suite of ad-hoc analytical queries. TPC-H 

supports a set of complex queries with varying scale factors. A scale factor = N indicates a database 

size of  N*1 GB. The TPC-H benchmark suite [5] is based on an e-commerce use case consisting 

of 8 tables depicted in Figure 2.  

 

 

Figure 2: The TPC-H schema 
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Figure 2 shows the TPC-H schema with the arrows representing the relationship between two 

entities. The head of the arrow points to the foreign key in the entity while the tail points to the 

primary key to which it references. The Lineitem and Orders tables are the central fact tables where 

Lineitem references Orders. Lineitem has a composite foreign key (partkey, suppkey) with 

PartSupp. Every part can be supplied by multiple suppliers and every supplier can supply multiple 

parts. Customer places orders and every customer belongs to a nation. Every nation comes under 

a specific region. Every supplier has a nation which comes under a region. 

 

4.1 Use Case and Workload Selection 

 

 TPC is the most widely accepted decision support benchmark to evaluate database 

performance under varying workloads. Each query in the TPC – H benchmark aims at a specific 

use case and can be used to assess the query performance. TPC – H benchmark is chosen because 

it encompasses all the requirements to evaluate the migration algorithm like cardinality, a rapidly 

growing entity similar to that of a central fact table in a data warehouse and complex candidate 

keys representing the relationships. All the relationships in TPC – H are one to many. Methods to 

handle a one to one relationship has been studied in some of the researches mentioned in Chapter 

3, with embedding it into the parent document in case of MongoDB [10] and including it into the 

column family of the referring entity in case of HBase [1]. Similarly, one to many relationships 

have been embedded into the parent document in [10], and many to many relations in a Relational 

world are modeled using references.  

 

 To the best of our knowledge, no research work has considered the velocity of data growth 

over a period while modeling the database. This is a significant factor in determining the 

performance of the queries as well as the size of the resultant database after migration. The rate of 

growth should be estimated in advance by database architects to design a scalable application. In 

case of a data warehouse, it is obvious that the Fact tables grow rapidly, while the dimension tables 

are rarely updated. TPC-H follows a Star Schema [18] with the Lineitem and Orders as the central 

fact tables that grow rapidly and the rest are dimension tables that are rarely updated. TPC – H is 

chosen as a candidate database to evaluate the migration methodology in this research as it covers 
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all the cases under evaluation with varying workloads that helps in identifying the limitations of 

the migration algorithm with different data vs cache sizes.  

 

4.2 TPC – H Queries 

 

 Every TPC – H query has a business use case associated with it and a rationale explaining 

where and why the query should be used [19]. These queries have a functional definition expressed 

in ANSI SQL standard. The queries simulate an actual access pattern which is one of the major 

deciding factors in the NoSQL data modeling.   The choice of queries is made in such a way that 

they validate the effectiveness of the migration methodology compared with other migration 

techniques.   

 

Pricing Summary Report Query (Q1): 

The query Q1 of TPC-H specification [5] reports the amount of business reported. This query 

aggregates on RETURNFLAG and LINESTATUS. The functional query definition of Q1 

according to the TPC-H documentation: 

  

               

Figure 3: TPC – H Query 1 (TPC-H specification) 
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Shipping Priority Query (Q3) 

 

The query Q3 of TPC-H specification [5] returns the top 10 unshipped orders with the highest 

value. This query involves three entities Lineitem, Orders and Customer, out of which Lineitem 

and Orders are rapidly growing or Fact tables. The functional query definition of Q3 according to 

the TPC-H documentation: 

 

 

Figure 4: TPC – H Query 3 (TPC-H specification) 
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Order Priority Checking Query (Q4) 

 

The query Q4 of TPC-H specification [5] focuses on customer satisfaction wherein the customer 

receive the ordered items with the commit date which is the expected committed date by the 

supplier. This query tests the effectiveness of denormalization on the Orders table after migration. 

The functional query definition of Q4 according to the TPC-H documentation: 

 

 

            

Figure 5: TPC – H Query 4 (TPC-H specification) 
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Local Supplier Volume Query (Q5) 

 

The query Q5 of TPC-H specification [5] calculates the revenue for the orders where the customers 

that ordered the parts and suppliers who supplied them to the customers belong to the same region. 

This is a highly complex query that requires fetching data from all the entities in the TPC-H 

schema. The functional query definition of Q5 according to the TPC-H documentation: 

 

 

            

Figure 6: TPC – H Query 5 (TPC-H specification) 
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4.3 Identifying Access Patterns 

 

 The most important factor in data modeling of MongoDB is balancing the needs of the 

application, the data retrieval patterns and the performance characteristics of the database engine 

[20]. This holds true for any other NoSQL data modeling in general. While designing the data 

models in MongoDB, the usage characteristics like queries and processing of the data play a vital 

role in performance evaluation. The advantage of using a flexible data store like MongoDB is that 

it allows related data to be put together through embedding or referencing.   

 

The migration algorithm developed in this research is modeled around the above TPC-H 

transactions, assuming that these queries form the access patterns of the target application for 

which data migration is to be done. Migrating data to a NoSQL database should be done by 

considering the queries and data access patterns of the target application. Data access patterns can 

be depicted using a directed dependency graph on the involved entities connected through a foreign 

key relationship. The direction of the arrow points from the foreign key in one entity to the primary 

key it references to in the other entity. Figures 7 and 8 show the query graphs for TPC-H Q3 and 

Q4. 

 

                                                 

Figure 7: query graph of TPC-H Q3 
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Figure 8: Query graph of TPC-H Q5 

 

In a relational database, when multiple tables are involved in a query, join operations are 

performed on the foreign keys to fetch the relevant data from these tables. But most of the NoSQL 

databases do not support joins because joining data over multiple nodes in a distributed cluster 

will be expensive. In a document store like MongoDB, to overcome the limitation, data from 

various entities is denormalized together into a single document either by embedding or 

referencing. The choice of embedding or referencing a given relationship is a crucial step that 

determines the performance of the query and size of the resultant denormalized data. The migration 

algorithm developed in this project defines a systematic approach to make this choice of 

denormalization of related data based on the rate of growth of data. Denormalization usually results 

in data redundancy. This study uses non-primary foreign key predicates presented in column level 

denormalization [13] as a redundancy removal technique to be used along with the graph 

transformation algorithm.  
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CHAPTER 5 

Graph Transformation with Selective Denormalization (GTSD) 

This research adopts a heuristics based schema migration method using graphs based on the Entity-

Relation (ER) diagram of the TPC-H benchmark presented in Figure 9 [29]. This migration 

algorithm preserves the relational semantics between entities as represented by the ER diagram 

with foreign key relationships. The logical flow of steps involved in GTSD schema migration is 

shown in Figure 10 followed by a detailed explanation.  

 

Figure 9: TPC-H Entity-Relationship diagram (Database Research Group, 2010) 
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Figure 10: Flowchart of GTSD schema migration 

  

 The GTSD migration algorithm takes topologically sorted DAG representing the entity 

relationships as the inputs. The ER diagram is converted to a directed graph programmatically 

using an adjacency matrix [21] that describes the relationships between the vertices of the graph. 

The direction of the edge is always from foreign key to the primary key which represents the order 

of embedding in the final MongoDB model. This research chooses embedding as the default 

denormalization technique from referencing unless it involves a rapidly growing entity.  
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Figure 11: ER diagram to a directed graph 

Figure 11 shows the directed graph from the TPC-H ER-diagram which does not have a 

cycle between its vertices, making it readily available for topological sorting. However, in a more 

complex use case, there is a high probability of the presence of a cycle in the graph as shown in 

Figure 12. This research addresses such an edge case and ways to handle the presence of a cycle 

using Vertex Coloring algorithm [23], a greedy algorithm that divides the vertices of a graph into 

colored sets based on some criteria. Here it is identifying the group of the vertices that form a cycle 

in a directed graph.  

From the graph in Figure 11, every supplier belongs to a nation and every nation comes 

under a region. Let us assume a scenario where a particular region, for example, ‘ASIA’ accepts 

supplies only from a limited set of selectively chosen suppliers. In this case, there would be a 

relationship from region to supplier which is represented using an edge ‘r_suppkey’ as shown in 

Figure 12. When the vertex coloring algorithm is used on the graph in Figure 12, it returns a set of 

vertices that form the cycle, here it is Supplier- Nation - Region - Supplier. The graph has to be 

made acyclic by removing one of the edges. The choice of the edge to be removed depends upon 
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the access pattern that can be identified through queries. For example, if no query accesses 

Suppliers from Region through the ‘r_suppkey,’ then this edge can be removed.  

 

           Figure 12: TPC-H directed graph with a cycle 

The next step in GTSD is to traverse the DAG to selectively denormalization and decide 

on the type of denormalization, i.e., to embed or reference. Graph traversal can be done either 

using Breadth First Search (BFS) or Depth First Search (DFS) by defining a starting point for 

traversal. To identify the starting point, i.e., the root node of the graph, topological sorting is used. 

Topological sorting gives the linear ordering of the vertices in a graph [22]. Topological sort 

requires a Directed Acyclic Graph (DAG) to avoid infinite looping over a vertex. Topological 

sorting of the graph represented by Figure 11 gives Lineitem as the first vertex in the linear 

ordering. With Lineitem as the root, the graph traversal algorithm can be applied to identify the 

final physical MongoDB model. 
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Algorithm: Graph Transformation with selective denormalization 

Input: Graph G (N,E) -  A topologically sorted directed acyclic graph (DAG) where ‘N’ is the 

set of nodes represented by an adjacency matrix and E is the set of edges between any two nodes 

as represented by a foreign key- primary key relationship. 

Output: MongoDB physical model 

 

for (node n in the set of  Nodes N of DAG G):  

      if(n is marked as a Dimensional table): 

          createCollection (n); 

 else 

       for(n is marked as a Fact table)  

                    createCollection (n); 

                      Depth First Search (with root as node n); 

           if (any of n’s child node represented as ‘cn’ is a Fact table) 

  Identify the non-primary-foreign-key-attributes of cn and add it to C(n); 

  remove cn and it’s subtree from the graph; 

  continue; 

           else: 

identify all the non-primary-foreign-key-attributes of children of n and                  

add it to C(n); 

SelectiveDenormalize(node n, a subset of nodes that can be reached from 

n as root through directed edges e): 

Identify attributes of the node that are accessed in any of the queries 

apart from non-primary-foreign-key predicates and add them to 

C(n);   

 

   createCollection(node n): 

return collection on node n with the auto index on ‘_id’ field; 
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Figure 13: Sub-trees obtained from Graph Traversal with selective denormalization 

Every node is attributed with metadata to be used while traversing the graph. This metadata 

includes the attributes of the entity, i.e., all the column names of the table, a Boolean value to 

represent whether an entity is a fact table or not. Being a fact table is analogous to a rapidly growing 

entity and a dimension table to a static or almost static entity that is rarely updated. This plays a 

vital role in deciding whether to embed or refer which dictates the performance of our migration. 

This research chooses references to model a rapidly growing entity instead of embedding owing 

to limitations of the MongoDB framework and performance issues explained in the experimental 

evaluation section.  
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CHAPTER 6 

Data Migration 

 

 The migration algorithm in the previous section produces eight collections for eight 

different entities of the TPC – H schema, out of which six are normalized, which means they have 

a one to one correspondence with the tables in the relational schema. The two other collections, 

Lineitem, and Orders are denormalized. The emphasis of this research is on testing the efficiency 

of the migration algorithm and performance comparison with other migration strategies.  

 

To the best of our knowledge, no tool currently available does automatic data migration 

into MongoDB from flat files based on a defined MongoDB physical model. TPC-H supports 

benchmark evaluation for various relational databases like Oracle, SQL Server, MySQL and DB2 

along with support for data population. A decision support benchmark for NoSQL databases is an 

active research area and the need for such a tool that automatically populates data into a NoSQL 

with different input data models is essential.  

 

Data migration from flat files has been done manually based on a MongoDB object 

modeling tool called Mongoose [24]. The data has been programmatically parsed from the flat 

files and loaded into MongoDB based on the model generated from GTSD. The data for BFS is 

also parsed programmatically with multiple levels of embedding as defined in Figure 14. 
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CHAPTER 7 

Experiments and Results 

 

7.1 Overview of Experiments 

To prove that the migration using Graph Transformation with Selective Denormalization 

is effective, the MongoDB model obtained from GTSD algorithm as shown in Figure 16a and 16b 

is compared with a model derived from BFS [4], which is a variant of table level denormalization.  

We measured the average query execution time of the four queries shown in Chapter 4 with varying 

scale factors (1 and 16) of the TPC-H benchmark, and the sizes of the resultant MongoDB 

databases are compared. While implementing the BFS algorithm, we chose Lineitem as the root 

node to make an apple to apple comparison with the GTSD algorithm. The document structure 

obtained from BFS as shown in Figure 14 is the same as the one presented in the research by Yoo 

et al. [13] in their study.  

  

             

                       

                                              Figure 14: Lineitem collection with BFS 
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Figure 15 shows a document in the collection obtained from BFS corresponding to 

Figure14. The Lineitem collection embeds the orders and Partsupp collections which have other 

collections embedded into them.      

 

                                   

   Figure 15: Document corresponding to BFS schema 

 

 According to GTSD migration algorithm, Lineitem and Orders are two separate collections 

with data selectively denormalized into them. The graph traversal starts at Lineitem as the root and 

selectively denormalizes nonprimary foreign key predicates that can be added to Lineitem along 

with other attributes obtained from query graphs. When the traversal encounters Orders node, it 

excludes Orders along with all the child nodes of Orders node. References of Orders are created 

and included in the Lineitem collection. The graph traversal resumes with Orders as the root node 

and selectively denormalizes all the nonprimary foreign key predicates of the subtree with Orders 

as the root node. The collections obtained from GTSD migration algorithm are shown in Figures 

16a and 16b.  
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Figure 16a: Document structure of Orders and Lineitem collections obtained from GTSD 

 

 

 

Figure 16b: Document structure of the rest of the collections obtained from GTSD 

  

We chose scale factors 1 and 16 of TPC-H benchmark data to analyze the impact of data 

set size on the execution time. We used the default cache size of WiredTiger storage engine [23], 
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which is 50% of (total memory available - 1) which comes to 7.5 GB on a machine with 16 GB 

memory. WiredTiger uses at most 80% of the cache allocated to it to fetch the data from disk 

leaving the rest of the cache to handle the process pool. So the final cache size available for 

WiredTiger comes to 6 GB. With scale factor 1 (data size of 1GB) the working set fits entirely in 

the cache. While with scale factor 16 (data size of 16GB) the working set does not fit entirely in 

the cache. The average execution time of the four TPC-H queries with a cache of 6 GB and the 

database sizes after the migration are compared.  

  

 WiredTiger is configured to use the file system cache along with its internal cache to reduce 

disk I/O. Collections are compressed with Snappy block compression technique in WiredTiger 

while indexes use prefix compression [23].  The default index of MongoDB uses B- trees as the 

internal data structure. Since Mongo does not support joins all the four queries in the workload are 

translated manually using the aggregation pipeline. For example, Figures 17 shows two versions 

of TPC-H query Q1, one for GTSD and other for BFS. 

 

Figure 17: TPC-H Q1 - Mongo queries for Graph Transformation Algorithm and BFS 

 

The aggregation pipeline in both versions of queries is optimized for best performance on both the 

collections. For example, the order of operations, $project and $match determine the amount of 

data to be fetched as $project fetches only a few fields and then $match filters the fields based on 

a defined condition. 
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Figure 18: TPC-H Q3 - Mongo queries for GTSD and BFS 

 

The experiments are conducted on an ASUS machine with Intel i7, Quad-core 7th generation 

processor with 16 GB of DDR3 RAM. It is to be emphasized that the resultant data model with 

GTSD and BFS is catered to answer the four queries presented in Chapter 4. 

  

7.2 Results and Analysis  

 

 The results defined in this section are obtained from running the four queries of the TPC-

H benchmark translated through the aggregation pipeline into mongo queries of both GTSD and 

BFS databases. Since MongoDB uses system cache, the machine is rebooted before every 

experiment. Every query is executed five times and the average execution time is calculated.  
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7.2.1 Data Size 

 

 For a scale factor =1, which represents a data size of 1 GB, the database size after BFS 

transformation is 5.5 GB while it is 1.6 GB with GTSD. The database size of GTSD is almost 3.6 

lesser than BFS for a scale factor of 1, while the difference is nearly 4.2 times with a scale factor 

of 16. The growth in the number of records with the scale factor is not linear in the TPC-H 

benchmark. For example, there are 1.5 million orders for linenumber=1 with scale factor 1 whereas 

there are 6 million orders for linenumber=1 with scale factor 16.   

 

The rate of growth of database size is less with GTSD compared to BFS due to the 

selectivity applied while choosing the fields to denormalize. The output of GTSD limits 

denormalization only to Lineitem and Orders collections, while the rest are normalized collections 

having a one to one correspondence with the relational schema.  

  

 

Figure 19: Database size comparison GTSD vs BFS 
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7.2.2 GridFS storage vs. modeling with references  

 This migration methodology chose the referencing method for rapidly growing entity rather 

than embedding it into another entity. The size of the rapidly growing entity easily exceeds the 

maximum BSON document size of MongoDB which is 16 GB and thus embedding is not suitable 

in such a use case. MongoDB imposes the 16 GB limitation on a document size to facilitate 

document distribution in a cluster. MongoDB has a specification to store large amounts of data 

exceeding the document size limitation using GridFS [26]. GridFS stores a large file in two 

collection, files and chunks, chunks store the actual data in 255KB blocks and metadata regarding 

the chunks are stored in the files collection.  

 

Consider the Lineitem and Orders tables, the migration methodology in this research chose to refer 

Order references in Lineitem collections instead of embedding as these two entities are rapidly 

growing and will exceed the document size limitation of 16 MB. However, they can also be loaded 

into GridFS buckets in smaller chunks. An experiment is conducted to show that GridFS involved 

excessive overhead while storing the large embedded document. In this experiment, we created 

two  

 

Data sets: one data set consists of one large collection where 150,000 records with Orders are 

embedded into LineItem and saved data through GridFS. The other data set consists of two 

collections LineItem and Orders where LineItem references Orders and saved data without using 

GridFS. We measured the execution time of a query that calculates the avg(l_extendedprice) from 

each data set based on the query shown in Figure 20. 

  

Figure 20: Query to evaluate GridFS performance 

 

As the results in Figure 21 shows, the execution time of querying two collections to fetch the 

avg(l_extendedprice) is 1.7 times faster than the denormalized data stored together in GridFS. The 

reason is that the 255KB chunks of data stored in GridFS have to be fetched entirely before doing 
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an aggregation like avg(l_extendedprice) in the application logic. It can be concluded that 

referencing the data performs better than GridFS in a use case as described above. 

 

                                                                

 

Figure 21: GridFS evaluation 

However, if the use case requires only fetching the data stored in GridFS and no further operations 

are required, then GridFS is faster than performing joins on two separate collections. This 

experiment justifies that referencing is a better choice to model rapidly growing data even if it 

involves application level joins than using embedded documents stored in GridFS.  

 

7.2.3 Execution Time 

 The average execution times of the four queries are depicted in Figures 22 and 23. For 

SF=1, the working set, which is the entire data required to answer a query fits in the cache. A 

typical read operation path in MongoDB is shown in Figure 24. When a read request is encountered 

by the database engine, the working set required to answer the read request is loaded into the 

WiredTiger cache from disk assuming that it is not already present. The data is stored on the disk 

using Snappy compression which has to be decompressed before processing in the RAM. The 

operating system caches frequently accessed files in the disk into the memory and WiredTiger 

accesses this OS cache before reading from the disk. Hence disk I/O is one of the major 

contributing factors in assessing database performance. However, for SF=1 disk I/O is not a major 
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factor for performance evaluation since the working set fits in the memory and is already loaded 

in memory after the first execution.    

         

Figure 22: Average execution time for SF=1 

 

GTSD has better average execution times for all the queries than BFS. The improvement 

is approximately around 1.3 times for Q1 and Q4 which are queries on a single table, but the 

queries Q3 and Q5 which involves queries on more than three tables have seen an improvement of 

around 1.9 times. Since I/O stats is not a major performance factor in this scenario, the CPU 

utilization dictates the performance in this case. BFS requires a lot of extract operations to fetch 

the data embedded deep into one single large collection. The CPU utilization is directly 

proportional to how deep the data is embedded. The deeper the data is embedded in the document, 

more unwrangling operations are needed to fetch it. In the case of SF = 16, where the working set 

does not fit in the memory both disk I/O and CPU utilization plays a crucial role in performance. 

The improvement ratio is more than two times for GTSD over BFS on queries Q3 and Q5 whereas 

it is around 1.7 times for Q1 and Q4. The reason between such higher improvement factors is that 

the size of working set in GTSD is less compared to that of BFS because the average object size 

in GTSD is 512 bytes whereas the average object size is around 2.5KB for BFS. The Smaller size 

of the working set increases cache hits and thus reducing disk access. Another factor regarding the 
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CPU utilization is that GTSD does not have as many unwrangling operations as BFS since the 

non-primary foreign key attributes are added to the topmost level of the document, whereas one 

has to do more number of unwrangling operations in BFS to reach for a data point embedded deep 

within the document. The maximum cursor timeout option has to be modified to avoid the timeout 

exception during execution.  

   

Figure 23: Average execution time for SF=16 

 

 

Figure 24:  Read path in MongoDB 
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7.2.4 Size of Indexes 

 

 Indexes are created on the non-primary foreign key predicates apart from the _id attribute 

for every collection. The index size of GTSD is 1.2 times larger than the BFS model since BFS 

has only one huge collection with indexes on _id attribute and the non-primary foreign key 

predicates while GTSD has a total of eight collections with indexes on _id attributes and the non-

primary foreign key predicates.  

 

Collection stats shows the index sizes on individual collections of GTSD and BFS 

databases for a scale factor =1 are shown in Figure 25. The total index size of all the collections in 

the GTSD database is around 386 MB while it is around 321 MB for BFS.  

 

 

Figure 25: Index statistics from collection stats in GTSD and BFS databases 

 

 

7.2.5 Impact of Views   

  

 The performance of the data model from the migration algorithm depends on how well the 

related data are identified and grouped so that application joins can be avoided. Sometimes it is 
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inevitable to avoid joins even with the best modeling practices. Joins operations in the application 

layer are expensive, and thus it is a common practice to delegate this task to the database through 

materialized views. MongoDB does not support materialized views as of version 4.0.9, but the 

option to create materialized views is in the active pipeline. A simple expansion of the command 

for creating a view [27]. A new materialized: <boolean> option which defaults to false would 

allow the view to be created as a materialized view as shown below. 

 

db.runCommand( { create: <view>, viewOn: <source>, pipeline: 

<pipeline>, materialized: <boolean> } ) 

 

 MongoDB 4.0.9 supports virtual views with disk access using the $lookup aggregation. The 

$lookup is essentially a left outer join on two collections. In Q3, there is a $lookup on the view 

created on the data from Lineitem and Orders, which are rapidly growing collections. Fetching 

data by joining such collections in the application layer is not an ideal practice as it requires 

intermittent storage on either the disk/cache. Materialized views fare well in such a scenario as 

they pre-fetch and store data that is needed on the disk as physical objects, decoupling the 

application and database layers. For Q3, a left outer join on the Lineitem and Orders collections 

are made to pre-fetch the customer market segment from the Orders collection and is stored in the 

view. Virtual views in MongoDB use the indexes defined on the underlying collections, here 

Lineitem and Orders while executing. Virtual views are not stored physically on the disk and 

require periodic execution of the aggregation pipeline to fetch updated data from the underlying 

collections.  
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CHAPTER 8  

Conclusion/Future work 

 

 In this research, we proposed a heuristics based schema migration algorithm from a 

relational database to MongoDB called Graph Transformation with Selective Denormalization.  

Our method reduces join operations and disadvantages of BFS schema migration using the notion 

of selective denormalization that considers the data access patterns to denormalize. Furthermore, 

our approach addresses the rate of growth of data and its impact on denormalization and suggests 

guidelines to model rapidly growing data.  

 

Experimental results show that our method significantly improves query performance with 

lesser hardware requirements compared with BFS schema migration. Future work can include an 

extension of GTSD to other NoSQL families like wide-column and graph stores. The creation of 

a benchmark suite that supports multiple NoSQL databases with automatic data population with 

different input schema could be another extension to the data migration methodology used in this 

research.     
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