
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-22-2019

R*-Tree index in Cassandra for Geospatial Processing R*-Tree index in Cassandra for Geospatial Processing

Avinashilingam Nanjappan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nanjappan, Avinashilingam, "R*-Tree index in Cassandra for Geospatial Processing" (2019). Master's
Projects. 713.
DOI: https://doi.org/10.31979/etd.55t5-e77a
https://scholarworks.sjsu.edu/etd_projects/713

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/713?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

R*-Tree index in Cassandra for Geospatial Processing

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Avinashilingam Nanjappan

May 2019

© 2019

Avinashilingam Nanjappan

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

R*-Tree index in Cassandra for Geospatial Processing

by

Avinashilingam Nanjappan

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2019

Dr. Suneuy Kim Department of Computer Science

Dr. Christopher Pollett Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

R*-Tree index in Cassandra for Geospatial Processing

by Avinashilingam Nanjappan

Geospatial data has garnered enough attention in recent times that it is being
used everywhere right from simple applications such as booking a taxi ride to complex
applications such as autonomous driving. Though the attention towards geospatial
processing is something new, substantial research has been going on for years. With
the evolution of NoSQL databases in recent times, geospatial processing has attained
a new dimension concerning its applications and capability. The most popular NoSQL
database to be used for geospatial processing is the MongoDB followed by Cassandra.
It is the indexing process that is important concerning the data at hand irrespective
of the type of the database. Some of the most common indexes used for the geospatial
processing are R-tree, R*-tree, B-tree, Z-curve. R*-tree is the area of our study as
it is one among the widely used indexes for geospatial querying. The database of
our interest is Cassandra as it is one among the widely used NoSQL database that
does not have native support for geospatial query processing. To support geospatial
workload, Cassandra should interact with external libraries such as GeoMesa and
Solr. In particular, we are interested in the working of the GeoMesa as it uses
the Z-curve as the indexing mechanism for the geospatial processing. R*-tree is a
dynamic structure capable of representing multi-dimensional data whereas Z-curves
are capable of representing multi-dimensional data in a single dimension. In this
study, we compare and contrast the performance of R*-tree and Z-curve for various
geospatial operations in Cassandra.

ACKNOWLEDGMENTS

I would like to take this opportunity to thank my project advisor Dr. Suneuy
Kim, for her ceaseless support and motivation over the months without which this
project would have not reached this stage. I would also like to thank my committee
members Dr. Christopher Pollett and Dr. Robert Chun for their valuable time and
input which enhanced the overall outcome of the project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background and Related work . 3

2.1 Geospatial Data . 3

2.2 Database Indexes . 6

2.3 R-Trees and R*-Trees . 6

2.3.1 R-Trees . 6

2.3.2 R*-Trees . 10

2.4 Z-Curves . 14

2.5 Indexing spatial data using Flattened R-Tree 15

3 Cassandra and GeoMesa . 18

3.1 Cassandra . 18

3.2 GeoMesa for Cassandra . 19

4 R*-Tree index and Z-Curve index systems 22

4.1 R*-Tree index system . 22

4.1.1 Write path . 23

4.1.2 Read path . 24

4.2 Z-Curve index system . 25

4.2.1 Write and read path . 26

5 Experiments and Results . 28

5.1 Dataset . 28

vi

vii

5.2 Experiment setup . 28

5.2.1 Write (insert and delete) operations 29

5.2.2 Read (search) operations 29

5.3 Results and Analysis . 30

5.3.1 Insert operation . 30

5.3.2 Overlap operation . 30

5.3.3 Intersect operation . 32

5.3.4 KNN (K Nearest Neighbor) operation 33

5.3.5 Delete operation . 34

6 Conclusions and Future Work . 37

LIST OF REFERENCES . 38

LIST OF FIGURES

1 Example of Raster data - [1] . 4

2 Example of Vector data - [2] . 5

3 Raster data vs Vector data - [3] 5

4 Example of an R-tree - [4] . 8

5 Node Split cases - [5] . 10

6 Comparison - Node Split cases - [6] 12

7 Overlap condition - [6] . 13

8 R*-Tree Split case - [6] . 13

9 Z-Curve - [7] . 14

10 Z-Curve representation on a World Map - [8] 15

11 Flattening an R-Tree into a Mongo collection - [9] 16

12 The flattened R-Tree schema - [9] 17

13 Architecture of Cassandra - [10] 19

14 Indexing in GeoMesa - - [11] . 20

15 R*-Tree index system . 23

16 Write path - R*-Tree index system 24

17 Read path - R*-Tree index system 25

18 Z-Curve index system . 26

19 Write and Read path - Z-Curve based GeoMesa application . . . 27

20 Data insertion - New data inserted into an empty database 30

21 Overlap query (Database size = 40000 entries) 31

viii

ix

22 Overlap query(Database size = 80000 entries) 32

23 Search - Intersect query - Data entries = 40000 33

24 Search - Intersect query - Data entries = 80000 33

25 KNN (Database size = 40000 entries) 34

26 KNN (Database size = 80000 entries) 34

27 Delete single data . 35

28 Delete all data . 36

CHAPTER 1

Introduction
Modern day computing involves processing vast volumes of structured and un-

structured data from a variety of data sources. Such data is often referred to as
"Big Data". Geospatial data are data that include geographical components and
frequently appear in big data. With the advent of NoSQL databases and the rapidly
increasing number of geospatial applications in recent times, the interest and necessity
for research within the geospatial domain have increased [12]. Geospatial processing
has found its usage in areas that include disaster management, crime statistics, civic
planning[13]. Relational databases face performance limitation to house geospatial
data due to its rigid schema and restricted scalability. On the other hand, NoSQL
databases can store unstructured data efficiently and can scale up depending on the
quantity of the data stored. The aim of this project is to compare the performance of
R*-tree index system with Z-Curve index system for geospatial operations.

The base for an efficient geospatial processing system is to store and retrieve
vast volumes of data rapidly and efficiently. Indexes play a critical role in efficient
retrieval primarily when the size of the data set is enormous. The index in general is
a data structure that contains a copy of index columns from the data set which helps
in quick look up and retrieval of data from the entire data set. Indexes for geospatial
processing should be capable of holding multidimensional data. The choice of the
underlying data structure for the index depends on the use case. Some commonly used
data structures for geospatial indexes are the R-trees, R*-trees, Quadtrees, Geohash,
Z-curve. Each of these structures has its trade-offs and advantages facilitating its
usage over a wide range of use cases within the geospatial domain[14].

Famous NoSQL databases such as MongoDB, Couchbase, DynamoDB have
native support for geospatial querying and processing, and each of the data stores
has its custom indexing mechanism. For example, MongoDB uses a 2d sphere as
the indexing mechanism for geospatial data whereas DynamoDB uses Geohash as its
two-dimensional index [15]. While Cassandra is one of the prominent NoSQL data
store [16], it does not have any native support for geospatial processing. In this study,
we choose Cassandra as the underlying database to conduct a performance study on
the geospatial index mechanisms that enable and facilitate geospatial functionality of
this highly scalable NoSQL system. Currently, Cassandra cannot process geospatial
data on its own, an external library called GeoMesa adds this capability by building

1

an index based on the Z-curve [11].
In this project, we developed two geospatial index systems for Cassandra, one

using the R*-tree index and the other using GeoMesa which uses Z-curve index.
R*-Trees are widely accepted as efficient index data structures especially when they
come to multidimensional data such as geospatial data [17]. This project aims to
make a performance comparison between the R*-tree index and the Z-curve index
for geospatial operations in Cassandra. Representative geospatial operations such
as insertion, deletion, overlaps, intersects, and k-nearest neighbors are chosen and
their processing times are measured in both the systems for comparison purpose.
We conducted experiments to study the impact of various performance factors and
analyzed their results.

The organization of the report is as follows: Chapter 2 overviews fundamental
concepts and the background techniques this project entails and also presents a research
work that implements a strategy to use R-tree index in MongoDB. Chapter 3 describes
Cassandra and GeoMesa. Chapter 4 presents the proposed work, the rationale behind
the work’s architecture and system design. Experiments and our analysis of the results
are presented in Chapter 5. Finally, chapter 6 presents conclusions and future work.

2

CHAPTER 2

Background and Related work
2.1 Geospatial Data

A diverse set of sources generate geospatial data in today’s world. Some sources
include satellites, transportation systems, urban housing, and planning systems. All
of these sources generate data at a high pace and in vast quantity. A closer look at
these data shows that it is unstructured, meaning, it does not have a default data
model. Multiple attributes or features are recorded as a part of the data collection
process depending on the source. When data contains any location related information
such as longitude-latitude, coordinates, a GPS recording, then the data can be termed
as geospatial data. Usually, geospatial data are stored along with their metadata.
Metadata provides additional information such as appropriateness, source of the
geospatial data which helps in understanding the context of the data. In this project,
we use a geospatial dataset for performing query operations.

Raster data and Vector data are two classifications within the geospatial data
[13]. Raster data are cell-based. This concept is similar to the case where an image is
split into pixels, and each pixel is assigned a value denoting the color of itself in the
entire image. The value that a cell represents can be anything that helps to position
the cell in the map such as the soil type, average rainfall, elevation. Some of the
commonly used raster data formats include GeoTIFF files, .dem files, .png or .jpeg
format along with its associated georeferencing files[18].

An example representation of raster data is given below as Fig.1. The image on
the left side is a general picture of a land area segmented as cells. One area within
the raster image is zoomed to show the individual cells. A single cell record attributes
such as height and width of the cell.

Vector data, on the other hand, represent the earth as a set of features. Each
feature has a geometric shape associated with it. Here the shapes could be points,
lines, polygons or any combination of these three shapes. Some of the popular formats
include shapefiles, GeoJSON, and Geometry Markup Language [18].

3

image.png

Figure 1: Example of Raster data - [1]

Figure 2 shows examples of geometry shapes. The table on the right side shows a
sample representation of data and the left side figure shows the shape corresponding
to the data.

a) Points: Point type represents an object as a set of x and y values. Usually,
longitude and latitude are used to represent a point. Point data is commonly used
to represent discrete data points and non-adjacent features. Point dataset cannot
measure area or length as it does not have any dimensions. Point data can have other
temporal and qualitative attributes associated with it.

b) Lines: A set of points connected forms a line. Lines can represent connections
or motion. Similar to point data, line data can also have other attributes associated
with it.

c) Polygons: When lines connect a set of vertices, and if the starting and the
ending vertex is the same then it forms a polygon. A polygon can be used to represent
complex figures, and it is usually used to represent boundaries. Similar to the other
types, polygons can also be associated with other attributes.

4

Figure 2: Example of Vector data - [2]

The difference between the raster and the vector representations for the same
area within the map is given below as figure 3. In our project, we used geospatial
data in vector format.

Figure 3: Raster data vs Vector data - [3]

5

2.2 Database Indexes
An Index in a database enables a query to retrieve data efficiently. An index is a

set of key-value pairs with the keys being the columns from the table, and the values
being pointers to the location of the data in the disk. These pointers help retrieve the
data directly after a lookup operation over the keys. Index creation is a vital process
as it determines the overall retrieval efficiency of the system. The decision about
selecting the right column for indexing is taken based on the data access pattern and
workload characteristics of the applications. As we design geospatial systems in this
project to perform query operations, we study about the available geospatial indexes.

Most commonly used index data structure is the B-tree. B-tree has a key-value
pair at each level of the tree. The leaf nodes contain pointers to the actual data while
the internal nodes contain pointers to the child nodes[19].

While B-tree index facilitates searching value for a given index key, it does
not efficiently support searching a value within multiple dimensions [5]. Typical
geospatial queries are finding a range of points within a particular area, finding
k number of locations near a given single point, and verifying if two objects are
intersecting each other [5]. B-tree indexes do not efficiently support such queries
involving multi-dimensional geospatial data.

Active research on designing an index data structure that can be used to accom-
modate multi-dimensional data led the way to the creation of R-trees [5]. R-tree is
a tree data structure which can be used to index multi-dimensional data. Various
enhancements were applied on top of R-tree leading to R+-tree[20], R*-tree[6], Hilbert
R-tree[21]. Z-order curves[22], Quadtree [23], and Geohash are other data structures
that can index two-dimensional data. The following section describes the R-tree,
R*-tree, and Z-order curve index this project entails.

2.3 R-Trees and R*-Trees
As a variant of R-trees, R*-trees show most appealing performance and are often

used in comparison studies for indexes [5]. We first describe the mechanism of R-trees
and then specify R*-tree focusing on their significant improvement over R-trees.

2.3.1 R-Trees
R-trees are dynamic self-balancing trees based on B+-trees [5]. R-trees have

internal nodes and leaf nodes. Nodes are placed within the R-tree based on the
Minimum Bounding Rectangles (MBRs). An MBR is a bounding box or rectangle

6

that contains all the geospatial points within a node. These MBRs are constructed in
a way that there is little dead space apart from the space occupied by points within
it, hence the name minimum bounding rectangles [5]. Each internal node of R-tree
corresponds to an MBR that bounds the MBRs of all the lower nodes under it. Each
leaf node has a pointer to the geospatial tuple in the database and an MBR.

One important property that impacts the performance is the number of entries
that can fit in a single node of the tree. This parameter determines the tree depth
and the frequency of the node splitting operation. Node splitting is a sequence of
steps which is triggered when the number of entries within a node exceeds the allowed
number of entries. Assuming M be the maximum number of geospatial entries that
a node can contain and M/2 >= m be a factor denoting a minimum number of
geospatial entries that has to be in a node, the properties are:

a) Each leaf node and non-leaf node should contain geospatial entries between m
and M except for the root node.

b) For all the nodes, the minimum bounding rectangle should be the smallest
possible rectangle containing all the tuples under it.

c) Root index node should have at least two children unless the child node is a
leaf node.

d) All the leaf nodes should be at the same level [5].
Figure 4 presents an example of R-tree index structure. In this example, the

root node has two entries T and U denoting the parent MBRs. Leaf node A has an
MBR constructed in a way that all the points within leaf A is contained in the MBR.
Also, there are two leaf nodes H and G present in both the boxes T and U. Node G is
not completely within U’s region and overlaps with T’s region. Same is the case for
node H. As we progress higher towards the root, constructing MBRs over the child
MBRs, we include the child MBR into the parent MBR only when the parent MBR
completely contains the child MBR. This rule is followed for constructing the MBRs
of the internal nodes until we reach the root node.

Search operation starts from the root node and descends towards the leaf node,
similar to that of the B-tree’s process. A geospatial search query specifies a query
rectangle denoting the target search area. The database system serves this query by
returning all the points within this query rectangle, and the R-tree index facilitates
the search process. At a given point in time, either a leaf node or a non-leaf node
is consulted. For a non-leaf node, the query rectangle is compared with that of the

7

bounding rectangle stored in the node. If any entry overlaps, the same process is
recursively done with the children of the current node. For a leaf node, all the entries
of the leaf node are compared with the query rectangle. If any entry overlaps, that
entry is a qualifying record, and the entry is added into the result set of the query.
This approach makes sure that irrelevant regions of the indexed space are eliminated
and only entries that overlap with the search area are examined. A

Figure 4: Example of an R-tree - [4]

Insertion in an R-tree is achieved through a series of steps. The insertion process
is similar to that of a B-tree wherein new index records are added to the leaves. If the
number of entries within a node exceeds the predefined value, the node is considered
to be overflowing, and the split process starts. The overflowing node is split, and the
change is propagated upwards until the tree is balanced.

8

When a geospatial entry is added to the index, the R-tree algorithm finds the
leaf node that will house the new entry. The leaf node is determined based on the
leaf node’s bounding rectangle. Precisely, the leaf node’s MBR that needs the least
enlargement to accommodate the new entry is selected. If two nodes have the same
least enlargement to accommodate the new entry, then the leaf node’s rectangle having
the smallest resultant area is selected to house the new entry. Having selected a node
to add the new entry, the insertion algorithm checks if the selected node will overflow
after adding the new entry and performs node splitting if the node will overflow.
Splitting process constructs two nodes. Parent of the overflowing node before the split
is taken and its bounding rectangle is adjusted in a way that it tightly encloses all
the entries of the first new node. A new entry is created with a pointer to the second
new node and a bounding rectangle that tightly encloses all the values in the second
new node. Add this entry to the parent node if there is space, if not split this node
as well. Repeat this process iteratively until the tree is adjusted and the iteration
process reaches the root node.

Node splitting has to be done in a way that it becomes unlikely that two split
nodes have to be examined to serve a subsequent search. An example of a good split
and a bad split are presented in figure 5. The case with the bad split is that there is
much dead space in the bounding rectangle that is formed whereas, in the case of a
good split, the rectangle is as tightly bound as possible.

Representative splitting algorithms are proposed in [5]. The goal of these node
splitting algorithms is to split a node containing M+1 entries into two nodes, where M
is the maximum number of entries a node can have. The splitting algorithm proposed
in [5] comes with quadratic running time. It selects two entries from M+1 entries in
a way that the selected pair, when grouped into an MBR, would create much dead
space in the MBR. These two points should be assigned to separate nodes, namely
node 1 and node 2. For each of the remaining entries, calculate the increment in the
area of the node 1’s MBR and node 2’s MBR. The splitting algorithm chooses the
entry that has the highest difference and adds the entry to the node that requires
the least enlargement in the MBR area. Continue this process for all the entries and
assign them to the corresponding node.

To delete an index entry from an R-tree, the leaf node that contains the target
entry is located first. To find the target node, the deletion algorithm starts with the
root node and compares the MBR of the root node with the MBR of the entry to be

9

Figure 5: Node Split cases - [5]

deleted. If a leaf node is reached, each entry within the leaf node is checked to find a
match. A matched entry is deleted from the leaf node. If the number of entries on
the leaf node does not meet the required minimum after the deletion, the remaining
entries of the leaf node are added into a set Q. If the leaf node has enough entries,
then the possibility to reduce the MBR area is checked. Recursively move towards the
root node from the leaf node adding the node entries that do not meet the minimum
threshold. After reaching the root node, all the values in the set Q are reinserted into
the tree similar to the insertion operation.

2.3.2 R*-Trees
R*-tree was proposed in [6] and have been studied as an efficient index structure

for multi-dimensional data in many pieces of literature. [6] performs a heuristic
based approach to identify the parameters that are essential for effective retrieval
performance. The four parameters as concluded by [6] which are crucial for effective
retrieval performance are - the area covered by the MBR should be minimal, the
overlap between the MBR should be minimal, the margins (lengths of the edges of
the MBR added together) of the MBR should be minimal, and the storage utilization
should be optimal.

In a tree multi-dimensional index, its insertion algorithm has to be examined

10

to identify the optimization approaches that have been used for effective retrieval.
Insertion algorithm in R-tree calls two algorithms in which the decision for retrieval
performance is made. One is the choose subtree procedure, and the other is the split
algorithm. From [5], it is clear that choose subtree procedure optimizes the area
of the MBRs. For the node splitting algorithm, [5] proposed linear and quadratic
approaches. In [6], the linear and quadratic splitting algorithms were evaluated
for their performance, and the quadratic splitting algorithm was found to be better
performing than the linear algorithm in large. Hence the quadratic algorithm was
examined for optimization parameters in [6]. From [5], the node splitting algorithm
considers the area of the MBRs and degree of overlap between the MBRs. Out of the
four optimization parameters identified by [6], R-tree considered only two parameters.

Because of the way these algorithms were designed, R-tree had few disadvantages.
The first issue is because of the local reorganization within the MBR during a split
process. Local reorganization does not support a restructuring of the MBRs. As
R-tree is non-deterministic in choosing the nodes for an entry to be inserted, meaning
tree structure differs if the sequence of entries inserted is changed, MBRs that were
built using the initial set of entries may no longer suit the entries that are inserted
later. This problem is worsened when a node becomes underfilled during a deletion
operation after which the entries of the underfilled node are merged with the old
parent. The second disadvantage is with the quadratic split algorithm. During the
split process, when two entries are selected and evaluated based on the MBR area,
the possibility of having an MBR with a small area but large distance is high. This
process results in creating a needle-like MBR which is a bad split. Another problem
with this split algorithm is that when splitting entries between two new nodes, the
number of entries within one node may reach the limit. In this case, all the remaining
entries are directly assigned to the second node without considering any geometric or
area properties. This process results in a bad split. Figure 6 shows the issues with
the splitting process in an R-tree. An overfilled node and possible results after the
split are shown. First split results in uneven distribution of the entries between the
nodes and the second split results in a higher overlap between the nodes for the same
entries as the minimum number of entries in a node is set to 30

R*-tree deduced a revised node splitting algorithm and forced reinsertion technique
during node overflow. These algorithms were designed to minimize node overlap and
coverage. When a node overflows, a part of its entries is removed and inserted into the

11

Figure 6: Comparison - Node Split cases - [6]

tree again. This reinsertion helps in producing a tree that is well-clustered, reducing
the dead space and builds a better tree incrementally. Also, R*-tree postpones the
node splitting until necessary increasing the average node occupancy. Better node
occupancy at every level improves the storage utilization which is the fourth parameter
to improve the retrieval efficiency [6].

For insertion, [6] tested multiple combinations of area, margin and overlap
parameters to determine the optimal combination. The steps in the insertion process
are as follows. Choose subtree algorithm identifies the node to add the new entry.
Starting from the root node, the R-tree is traversed until the right leaf node is identified
comparing the MBRs of the node at each level with the new entry’s MBR. If the node
compared has its child to be a leaf node, choose the entry in the current node that
needs the least overlap enlargement to include the new entry’s MBR. If not, choose
the entry in the current node that needs the least area enlargement (similar to R-tree)
to include the new entry’s MBR. The overlap condition is given in figure 7. Here 𝐸1 ,
, 𝐸𝑝 are the list of entries in the current node [6].

12

Figure 7: Overlap condition - [6]

The revised split algorithm of R*-tree first sort all the entries within the over-
flowing node based on the lower value of the bounding rectangle and then sort again
by its upper value. For each sort, (M-2m+2) distributions of the M+1 entries are
split into two groups. For the k-th distribution (k takes values from 1 to (M-2m+2)),
the first node contains the first (m-1) + k entries and the second node contains the
remaining entries. Here m and M represents the minimum and the maximum number
of entries that should be present in a node respectively. For each distribution, the
goodness value is computed. [6] devises a method to determine the goodness value.
Now based on the selected goodness value, an axis is chosen as the split axis. Now
that split axis is determined, choose the entries that fall within each group using the
minimum overlap value.

Given below is figure 8 showing an example case on how split occurs in R*-tree.
The resultant nodes after the split have minimum coverage and minimum overlap.
The resultant shape of the MBRs is more quadratic (like a square) and uniform. This
shape promotes better and compact enclosing MBRs over the split nodes.

Figure 8: R*-Tree Split case - [6]

13

2.4 Z-Curves
Z-curves are space-filling curves that map multidimensional data into a single

dimensional output. Z-curves work based on the Z values generated from the given
data in any dimension. Usually, Z-curves are used for indexing purpose as it presents
multidimensional data in a linear way. Searching in a linear set of data is always
easier and hence its usage in indexing huge data sets.

Figure 9: Z-Curve - [7]

Figure 9 shows the generated Z-curves for 1 to 4 iterations. A curve like structure
is formed by connecting the Z values in the order of their precedence. Z values for
the input are generated based on a process called Binary interleaving. In this process,
the coordinate values within the input data are converted to their binary form, and
these binary values are interleaved to form the corresponding Z value. Interleaving is
a process wherein the binary representation of the n-dimensional input are combined
into a single value with the binary bits at the alternating positions. The resultant
single value is called the Z value of the n-dimensional input. This process is performed
for all the values of the input. Now the entries are all sorted based on the Z values.
The property of this Z ordering is that it preserves the natural ordering as in an
n-dimensional plane.

14

Binary interleaving is explained with an example below. Consider a random
coordinate point (X, Y) as (79, 412). The first step here is to convert the X and Y
values into their binary representation. After conversion, 79 becomes 001001111 and
214 becomes 110011100. Now the resultant Z value is obtained by combining both of
these values with each bit from the corresponding byte at alternating positions. So Z
becomes 010110000111111010 which when converted into decimal form yields 90618.
This resultant number is the Z value for the point (79, 412).

The suitability of Z-curves for representing the geospatial data is given as figure
10. The z value is also called as Morton code after the name of the person who
formalized this concept [22].

Figure 10: Z-Curve representation on a World Map - [8]

2.5 Indexing spatial data using Flattened R-Tree
To design a new indexing component that can function along with a NoSQL

database and to plugin the indexing scheme into the functioning of the NoSQL
database, we study an R-tree based flattening method that is integrated into MongoDB.
According to [9], in MongoDB, all of the geospatial processing is performed using
2dsphere index which supports only input data in the format of GeoJSON. [9] suggests
an idea of using R-trees for indexing geospatial data in MongoDB. However, MongoDB
is a document-oriented data, and all the data are stored as documents. According to
[5], R-trees are tree structures which represent hierarchy and node traversing concepts.
Though R-tree is a widely accepted and used geospatial indexing scheme, because of

15

the nature of the MongoDB, it cannot be directly used in MongoDB. So, [9] suggests
a method wherein the resultant R-tree obtained after indexing the geospatial data is
flattened into a MongoDB document.

Figure 11: Flattening an R-Tree into a Mongo collection - [9]

An example transformation is given above in Fig.11.The traversal in R-tree is
based on pointers to the child node which is now transformed to identifier based
document traversal when flattened into MongoDB. When the Fig.11 is observed
closely, each document has 4 key-value pairs. They are node identifier, node level
counting, number of index entries that are put to use, index entry information. Other
than this, each index entry has two fixed key-value pairs. The value "child" is used
for document referencing, and MBR is used to store the MBR values. If the node is a
leaf, then the corresponding "child" node points to the actual spatial object. Four
different collections are maintained to store the R-tree related information. They are
R-tree collection (RC), Spatial collection (SC), R-tree metadata collection (RMC)
and Spatial metadata collection (SMC). Based on the real-time situation, the two
metadata collections can have only one, and the other two can have any number of
instances. Also for each R-tree collection, there is a Spatial collection. Coming to
the details of these collections, as the naming implies, SC contains key-value pairs of
GeoJSON data. RC has a structure that was explained above with the same name as
that of the SC that it indexed, suffixed with "-RTree".

16

Figure 12: The flattened R-Tree schema - [9]

SMC contains the metadata of the planar spatial data and a corresponding RMC
denoting SMC is indexed. All of the above definitions are visualized as in Fig. 12.
Now that the schema is ready, this implementation is then plugged into the MongoDB
architecture. A new module based out of R-tree is built and is added into the route
server. The existing message dispatching module is now altered. Whenever the user
fires a geospatial query, the message dispatching module identifies the type of query
and invokes the R-tree module. For example, let us assume that the user fires a search
overlap command on a specific geospatial field. Now the message dispatcher after
receiving this query consults with the config server to determine if there is a flattened
R-tree that is already available for the target collection. If found, then the R-tree
module is called up, and it executes the necessary query that is mapped. For the query
execution, the RC and the SC are now queried using the native mongo commands.
The results of these queries are sent to the R-tree module. Now if necessary, the
results are refined and sent back to the user. This execution flow is performed for all
types of queries. Depending on the type of query, the necessary module is invoked,
and query execution is p, and the results are sent to the user.

17

CHAPTER 3

Cassandra and GeoMesa
3.1 Cassandra

Cassandra is an open source, Apache licensed, distributed wide column NoSQL
database system. It is optimized to run on a cluster providing high scalability [24].
Cassandra achieves high availability and partition tolerance (denoting no single point
of failure) while loosening the consistency factor in terms of the CAP theorem [25].
Cassandra follows peer to peer distribution model to replicate data across multiple
nodes in a cluster. With the peer-to-peer model, all nodes in a cluster take the same
role without any designated primary node.

A Cassandra cluster can be viewed as a ring because it partitions data across
a cluster through the consistent hashing strategy [25]. Figure 13 depicts a ring
layout of the Cassandra cluster. Cassandra provides tunable consistency, allowing
different consistency level to be specified for a read and write operation in balance
with availability. A consistency level can be defined per operation, keyspace or cluster.
Cassandra supports replication to achieve high availability. A replication factor
specifies how many nodes house a copy of the same partition and a consistency level
is defined in terms of the replication factor. In a Cassandra cluster, all nodes are
identical in function and are aware of the way data are distributed and replicated. In
this way, adding and removing nodes can be done without much downtime, and a
failed node can be recovered quickly by getting data from other nodes in the cluster.

Cassandra houses data in a table of which rows can be skinny rows or wide rows.
The primary key defined in the table schema determines the type of rows in the table.
The first component of the primary key serves as a partition key which is used to
partition tables in a cluster. Skinny rows are similar to rows in relational databases
except for that they do not save null for non-existing values. Wide rows are identified
by their partition keys and stores value ordered by the clustering key, which is the
second component of the primary key.

18

Figure 13: Architecture of Cassandra - [10]

CQL is a query language for Cassandra which provides a Data Definition Language
(DDL) and a Data Modification Language(DML) similar to SQL. Currently, CQL
does not support any geospatial queries and Cassandra serves geospatial queries by
interacting with GeoMesa.

3.2 GeoMesa for Cassandra
GeoMesa is an open source library or tool capable of performing geospatial

querying in a large scale distributed system. It is used along with Cassandra for
geospatial processing. GeoMesa provides spatio-temporal indexing of geodata which
enables high-speed geospatial querying on point data. GeoMesa is a part of the
LocationTech group of the eclipse foundation and is licensed under Apache License
2.0. GeoMesa library can be incorporated on top of any key-value database. In this
study, we use the GeoMesa datastore library available for Cassandra. GeoMesa uses
Z values as the core indexing mechanism for the geospatial input data. When a given
area in a map is formalized as a group of cells, Z-curve visits each cell exactly once
establishing a unique ordering between the cells. Ordering here is based on the Z
value that is generated for the given set of geospatial points.

19

As Cassandra is a key-value store, geoMesa formulates an indexing scheme
wherein the resultant Z value is kept as the key, and the data entries form the value
for that key. The index types within GeoMesa are Z2, Z3, XZ2, XZ3. Number
2 denotes two-dimensional data, i.e. longitude and latitude and Number 3 denote
three-dimensional data which has a temporal attribute included. XZ is a type of
space-filling curve and is an extension of the Z-curve.

Figure 14: Indexing in GeoMesa - - [11]

In general, indexes are classified as data-specific and space-specific. A detailed
overview of the types of indexes are given in [26]. A data specific index constructs
indexes whose sub-divisions are determined by the specific records that they accept.
The category that the corresponding value gets into cannot be identified without
knowing where the previous values were indexed. On the other hand, space-specific
indexes always index a value only based on the space that is being indexed. No
information regarding the previous records is necessary to compute the index of
current value. GeoMesa is based on Z-curve which is in turn based on the space-
specific index. Figure 14 shows the indexing scheme followed by GeoMesa. The first
table gives the schema whereas the table below gives a list of sample index values.
Presence of 0 or 1 after the first two characters in the RowID denote whether the
corresponding entry is an index or data entry.

20

GeoMesa uses Contextual Query Language (CQL) which is a library under the
geotools package. GeoMesa’s query planner takes in a CQL query and converts it into
corresponding Cassandra Query Language. The Contextual Query Language supports
filters which are equivalent to the where clauses in Cassandra Query Language. Filters
within a query can be classified into primary and secondary CQL filter. The primary
CQL filter is used to determine the scan range, and secondary CQL is used to identify
matching rows. GeoMesa has few indices built in the initialization phase. So the query
planner selects the index type that scans the least number of rows. For this decision,
GeoMesa uses two methods : cost-based and heuristic-based method. Each method
has a process of identifying the best index using a series of steps [11]. After identifying
the type of index to consult, query planner executes the query and retrieves the results
from the Cassandra.

21

CHAPTER 4

R*-Tree index and Z-Curve index systems

To perform a comparison between the R*-tree and Z-curve, we designed and
implemented two index systems, R*-tree index and Z-curve index systems, for geospa-
tial operations in Cassandra. For each index system, we developed an application
consisting of a user interface and a back-end component. The back-end component
comes with a driver that establishes the connection between the application and the
rest of the system and also a query planner that enables geospatial operations in
Cassandra and facilitates them using the given index type.

The R*-tree index system follows the NodeJS framework and uses JavaScript as
the implementation language. The Z-curve index system is written in Java based out
of Spring MVC (Model View Controller) framework and uses GeoMesa for indexing
the geospatial data. This chapter describes the design principles and implementation
of these two systems. These two systems are used to compare the performance of
R*-tree and Z-curve index for the representative geospatial operations.

4.1 R*-Tree index system
The architecture of the R*-tree index system is given below as figure 15. For this

system, we developed a NodeJS application consisting of a user interface and a query
planner. User can submit the geospatial operations through the user interface. This
page has provision to enter necessary input and perform desired geospatial operations.
The back-end component of the application processes all the requests from the user
interface. This component also has a query planner module integrated into it. For a
given geospatial operation, the query planner interacts with the R*-tree index. Post
this interaction, query planner generates the CQL query, and Cassandra executes this
query.

While deploying the application, the back-end component establishes a connection
with Cassandra using the NodeJS driver. The driver attempts to connect to the port
that Cassandra is running during initialization. Read and write paths are the two
significant workflows within the application. All geospatial operations fall within
either of the workflows.

22

Figure 15: R*-Tree index system

4.1.1 Write path
This subsection provides an in-depth description of the sequence of steps performed

during the write path. The execution of insert and delete operations follow the write
path. Our system supports both single point data insertion and bulk insertion using a
CSV file. The figure 16 depicts the write path of the R*-tree index system. When a
user provides input for insertion (step-1), the query planner first extracts the longitude,
and latitude from the user defined values and inserts it into the in-memory R*-tree
index (step-2). The query planner then generates CQL prepare statement to perform
the insertion operation in the Cassandra and invokes the database driver (step-3).
Database driver performs insertion into the Cassandra (step-4). Post insertion in
Cassandra, the user is notified about the successful insertion.

23

Figure 16: Write path - R*-Tree index system

4.1.2 Read path
Figure 17 presents the sequence of steps followed in a read path. When a user

provides input for the search query (step-1), the query planner first consults the
R*-tree index for lookup (step-2). Input for the read path operations is usually the
coordinates of the bounding box. For a given operation, the R*-tree index returns a
list of results containing the longitude and latitude pairs (step-3). The query planner
takes these results and constructs a corresponding CQL filter query to retrieve all
the necessary columns from Cassandra (step-4). The query planner invokes database
driver and submits the CQL query. Database driver executes this query in Cassandra
(step-5) and Cassandra returns the result set to the driver (step-6) which is then
passed to the query planner module (step-7). Finally, the results are passed to the
user interface (step-8).

24

Figure 17: Read path - R*-Tree index system

4.2 Z-Curve index system
We developed an application consisting of an user interface, and a query planner for

the Z-curve index system.The application uses the GeoMesa library as the abstraction
layer on top of Cassandra. As discussed in the previous section, GeoMesa does not
use a multi-dimensional index to handle and process geospatial data but converts
the multi-dimensional geospatial data into a single dimensional value based on the
Z-curve instead. The configuration of Cassandra is set to be precisely the same as the
one set for the R*-tree index system.

To enclose the GeoMesa library into an interaction mechanism, we create a Spring
MVC application and design a user interface with geospatial operations. When a user
enters input to perform a spatial process, the query planner module is invoked. Query
planner, depending on the type of geospatial operation, generates a query based on
Contextual Query Language (CQL) with the user input and passes it to the GeoMesa
module which interacts with the Cassandra and retrieves the results. The figure 18
below depicts the architecture of Z-curve index system.

25

Figure 18: Z-Curve index system

4.2.1 Write and read path
Write and read paths for our GeoMesa application follow the same sequence of

steps. For a write path, when a user enters an input in the interface, the query planner
receives the request (step-1). It extracts the values and creates a list of SimpleFeature
objects. SimpleFeature is a package present in the OpenGIS library used to represent
the geospatial data [27]. Query planner module constructs the Contextual Query
Language insertion query with the SimpleFeature object list. Query planner also
groups the geospatial attributes into a geometry feature and marks the feature with a
‘‘*’’ field to denote the default geometry. Now, the query planner submits the CQL
query to GeoMesa (step-2). GeoMesa inserts the input data into Cassandra (step-3)
and builds multiple indexes on the data for efficient retrieval. One among them is a Z2
index which GeoMesa constructs on the generated Z-values for the geometry feature.
In our implementation, Z2 is the primary index for all the geospatial operations.
Cassandra acknowledges the insertion (step-4). This acknowledgement is passed to
the query planner (step-5) and then to the user (step-6). Figure 19 below shows the

26

sequence of steps in a write and read path.

Figure 19: Write and Read path - Z-Curve based GeoMesa application

During a read operation, after the user enters the input, the query planner
receives the request (step-1). It then creates a Contextual Query Language query for
the corresponding geospatial operation along with a filter component containing the
coordinates of the query bounding box and submits it to GeoMesa (step-2). GeoMesa
identifies the type of operation and consults the corresponding index for efficient
lookup (step-3). For example, in case of a geospatial search operation, GeoMesa
computes the Z-values for the user entered bounding box coordinates and performs a
search based on Z-values using the Z2 index. Finally, Cassandra returns the results
for the query (step-4). The result set is then passed to the query planner (step-5) and
then displayed in the user interface (step-6).

27

CHAPTER 5

Experiments and Results

This section describes the experiments for performance evaluation and presents
our analysis on the results. The representative geospatial operations (overlap, intersect,
K Nearest Neighbor, insertion and deletion) are chosen for the experiments. First, the
dataset that was used for these experiments is listed, and the features about the same
are also presented.

5.1 Dataset
A railroad bridge dataset is chosen for the experiments. This dataset is available

as an open source under the ArcGIS Hub [28], collected and published by U.S.
Department of Homeland Security containing around 86,894 rows. The size of the
dataset is around 60MB. This dataset lists all the railroad bridges in the United States
and information associated with them such as the exact location, Id, width and height
of the bridges. Exemplary use cases involving the dataset are locating the bridges
nearby given a location in the event of a threat, identifying a list of bridges that
would be impacted given a natural calamity, and swiftly identifying alternating routes
given a blockage. In this dataset, geospatial information is represented as X and Y
coordinates denoting longitude and latitude, ZIP code and the address. In this project,
longitude and latitude values are used for indexing.

5.2 Experiment setup
All the experiments were performed on a PC with 1.8 GHz Intel Core i5 processor

and 12GB RAM running Windows 10. Two systems were designed to perform the
experiments and compare the results. In this chapter, the application running R*-tree
index with Cassandra is abbreviated as A1 and the application running Z-curve
index as A2. The application A1 is implemented in JavaScript following the NodeJS
architecture. The implementation of the R*-tree is adopted from a JS Library [29].
The application A2 is implemented in Java 8 following the Spring MVC framework.

Two geospatial search (read) operations (overlap and intersect) and two write
operations (insert and delete) are chosen for the experiments. Processing time is
measured for a given operation on each index system. We also studied the impact
of R*-tree on the performance of the KNN geospatial query which is not currently
supported natively by GeoMesa.

Processing time consists of the time taken for index operations and the execution

28

time of the given database operation. Specifically, the processing time is the interval
that starts from the time the index is consulted for a search query or index construction
for insertion query up until the time to return the result from the database in the case
of a search query and persisting of data in the database in the case of the insertion
operation. Processing time is measured 10 times for a given operation and the average
processing time is presented.

5.2.1 Write (insert and delete) operations
In our experiments, insert and delete operations are considered to find the impact

of the index on the performance of write operations.
• Insert: Through the user interface of each index system we developed, data can

be inserted as a single row or from a file containing data denoting bulk insertion
of data. Time taken to perform different use cases within insertion is explained
below in the results section. Overhead while inserting new data into an already
existing index structure is also experimented. Here, the input would be the data
to be inserted, and during the process, data is inserted into the index and the
database.

• Delete: Within deletion, deleting a single data entry from the database and
deleting all the data from the database are considered. Time taken to perform
these operations is also recorded provided varying the amount of data that is
stored in the database. Depending on the type of operation, the input for this
operation will either be a single point in case of single entry deletion or nothing
in case of deleting all the contents from the database.

5.2.2 Read (search) operations
We perform the following three geospatial search operations in our experiments.

• Overlap: The overlap query is to find the data entries that fall within a given
query bounding box and returns, an array of entries that satisfy this criterion.
The coordinates of the query bounding box is an input to the query.

• Intersects: Given the coordinates of the query bounding box, this query returns
a Boolean true or false denoting if any entries within the database intersect
with the bounding box. Though the underlying principle for processing both
intersects and overlaps are same, the subtle difference here is that the intersects
query completes the processing as soon as it finds a single data entry within the
bounding rectangle whereas overlaps have to find out all the points within the

29

box.
• KNN: Returning K nearest neighbors is the third type of search operation. Given

a point and the number of neighbors to be returned, the output is the list of
neighbors requested. For finding the k nearest neighbors, a depth-first traversal
implementation using a priority queue is used. Also, the MINDIST property
of a given point is used to fill the priority queue. The process is terminated
after there are k elements in the priority queue. In our experiments, we are
considering the impact of underlying data stored.

5.3 Results and Analysis
This section presents the experimental results and our analysis.

5.3.1 Insert operation
Figure 20 depicts the comparison between the insertion times of R*-tree and the

Z-curve. As the number of entries inserted increases, the R*-tree system takes higher
processing time compared to the Z-curve based system. This behavior is expected.
With a larger volume of inserted data, R*-tree has to perform node splitting and
forced-reinsertion more frequently to handle node overflowing while the Z-curve index
inherently does not have the notion of node overflowing.

Figure 20: Data insertion - New data inserted into an empty database

5.3.2 Overlap operation
The query bounding box specified in an overlap query determines the number of

data returned from the query. In this experiment, the processing time of an overlap
operation is presented by the number of data the operation returns. Considering that

30

the index size grows as the data size grows and thus searching can take longer time in
a large sized database, we conducted experiments with two different database sizes,
one with 40,000 and the other with 80,000 records.

Figure 21 presents the experimental results with the database size of 40,000
entries. The results show that the R*-tree index system outperforms the Z-curve
index system as the number of results that a query has to find increases. R*-trees
are primarily designed for faster retrieval from multi-dimensional data because the
R*-tree node construction groups points that are close to each other into a bounding
box. This structure is particularly useful in the case of range search as we have to
return a set of points near a given query point.

Figure 22 presents the experimental results with database size of 80,000 records.
The results mirror the results from the previous experiments depicted in Figure 21.
The results also show that it takes more processing time as search area grows from
40,000 to 80,000 records for a given overlap operation.

Figure 21: Overlap query (Database size = 40000 entries)

31

Figure 22: Overlap query(Database size = 80000 entries)

5.3.3 Intersect operation
Figure 23 and figure 24 show the performance of both the index systems given a

intersect query. The first set of bars compares the processing times of an intersect
operation from two systems when the intersect operation found a result that intersects
with the given query bounding box. The second set of bars presents processing times
when the search fails. Both index systems take longer processing time to determine
there is no such target as compared to the time for a successful search. R*-tree index
system performs better than the Z-Curve index system for both cases of successful
search and search failure.

Since this query does not return all the values and returns a Boolean result as
soon as it finds the first result, it is faster than the overlap operation. In the case
of R*-trees, the query MBR and the node’s MBR are compared once at each level.
The performance gap between the cases of successful search and search failure in
R*-tree index system is due to deeper tree travels that search failure entails. Z-curve
index system underperforms than R-tree index for the cases of successful search and
search failure because Z-curve scans the range of entries within the Z-values of the
query MBR and eliminates false positives. This process takes additional time when
compared to that of the R*-tree’s mechanism.

32

Figure 23: Search - Intersect query - Data entries = 40000

Figure 24: Search - Intersect query - Data entries = 80000

5.3.4 KNN (K Nearest Neighbor) operation
GeoMesa does not support KNN operation and thus cannot be executed in the

Z-curve index system. Considering KNN operation as a prominent operation, we
recorded the performance of R*-tree index to serve KNN operations in this experiment.
Figures 25 and 26 present the experimental results with database sizes to be 40,000
and 80,000 records respectively.

Increasing the number of records in the database did not add up to the processing
time in case of finding a smaller number of neighbors. While traversing down the
R*-tree index to retrieve the neighbors, the depth-first search algorithm appends

33

entries into the priority queue. Since the number of neighbors to be returned is less,
given the total number of entries in the tree, the priority queue is filled up while
reaching the depth of the tree index during the first pass. A massive increase in the
processing time for retrieving 100 neighbors is because of the time associated with the
depth-first search algorithm.

Figure 25: KNN (Database size = 40000 entries)

Figure 26: KNN (Database size = 80000 entries)

5.3.5 Delete operation
Delete operation is studied under two cases: deleting a single point and deleting

all entries from the database. Figure 27 presents how the processing time of a given
delete operation increases as the database sizes increase. For smaller data size, the

34

R*-tree system performs better compared to the Z-curve system. As the number of
data entries stored in the database is increased, the Z-curve index performs better
compared to the R*-tree system. This behavior is because the R*-tree system performs
node reinsertion when the number of entries in the node falls below a threshold value.
Hence it takes higher processing time when the data size increases and thus index
size increases in the database. In the case of the Z-curve system, the processing time
increases as the number of data entries stored in the databases increases.

Figure 28 shows the processing time to delete all entries from the database. As
this operation does not involve any index modification, both the systems take nearly
the same processing time regardless of the database size. The memory allocated to
the index and the database is dropped as there are no filter conditions or lookup
necessary.

Figure 27: Delete single data

35

Figure 28: Delete all data

36

CHAPTER 6

Conclusions and Future Work

In this project, we developed an R*-tree index system and Z-curve index system to
conduct a performance study on these two index mechanisms for geospatial processing
in Cassandra. An R*-tree based indexing mechanism works based on the minimum
bounding rectangles and is known to be efficient to index multidimensional data.
Z-curve based indexing mechanism is used by GeoMesa which is an external library
Cassandra currently is relying on to support geospatial operations. The processing
times of representative geospatial operations are measured in both the index systems,
and the experiment results are analyzed. The experiment results show that the R*-tree
index system outperforms the Z-curve index system for search queries. We also found
that the R*-tree index system underperforms compared to Z-curve as the database
size increases because insertions in the R*-tree index system involve the overhead
of spitting and forced-reinsertion to handle overflowing nodes. We also studied the
performance of the K nearest neighbors operation, which is not currently supported
by GeoMesa.

The experiments of this project were conducted in Cassandra deployed in a single
server. High scalability within Cassandra is achieved by partitioning data across
multiple nodes in a cluster. The research products and findings from this project
can be extended to study distributed R*-tree index in Cassandra. Such distributed
R*-tree indexes should maintain the index content consistent to new insertions and
deletions across the cluster.

In this project, we set up experiments in a way that index always resides in
memory. This setup was necessary to make an apple to apple comparison between
index systems under test. In the future study, the performance of R*-tree can be
examined under varying memory sizes to find the impact of disk access time on index
performance. This work could also be extended to handle complex data types such as
polygons and lines so that this indexing scheme can be used with a broader range of
geospatial data types.

37

LIST OF REFERENCES

[1] ‘‘About raster data in spatial analyst.’’ [Online]. Avail-
able: https://pro.arcgis.com/en/pro-app/help/analysis/spatial-analyst/basics/
about-raster-data-in-spatial-analyst.htm

[2] ‘‘G-FAQ - what is spatial topology in GIS Part I.’’ [Online]. Available:
https://apollomapping.com/blog/g-faq-spatial-topology-gis-part

[3] ‘‘Did you know Raster vs. Vector.’’ [Online]. Available: https://blogs.lib.uconn.
edu/outsidetheneatline/2009/08/17/did-you-know-6-raster-vs-vector/

[4] ‘‘R-tree how to calculate minimum bounding rectangles of non leaf nodes.’’
[Online]. Available: https://stackoverflow.com/questions/45535271/r-tree-how-
to-calculate-minimum-bounding-rectangles-of-non-leaf-nodes

[5] A. Guttman, ‘‘R-trees. A Dynamic Index Structure For Spatial Searching,’’
vol. 14, no. 2, pp. 47--57, 1984. [Online]. Available: https://doi.org/10.1145/
971697.602266

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, ‘‘The R*-tree: an
efficient and robust access method for points and rectangles,’’ vol. 19, no. 2, pp.
322--331, 1990. [Online]. Available: https://doi.org/10.1145/93605.98741

[7] ‘‘Z-order curve.’’ [Online]. Available: https://en.wikipedia.org/wiki/Z-order_
curve

[8] ‘‘Get to the point with big spatial data.’’ [Online]. Available: http:
//www.ccri.com/2015/07/29/get-to-the-point-with-big-spatial-data/

[9] L. Xiang, J. Huang, X. Shao, and D. Wang, ‘‘A mongodb-based management of
planar spatial data with a flattened r-tree,’’ vol. 5, 2016. [Online]. Available:
https://doi.org/10.3390/ijgi5070119

[10] ‘‘Apache cassandra architecture tutorial.’’ [Online]. Available: https:
//www.simplilearn.com/cassandra-architecture-tutorial-video

[11] J. Hughes, A. Annex, C. N. Eichelberger, A. Fox, and A. Hulbert, ‘‘Geomesa: a
distributed architecture for spatio-temporal fusion,’’ vol. 9473, 2015. [Online].
Available: https://doi.org/10.1117/12.2177233

[12] P. Lobo, ‘‘A framework for the detection of utility conflicts using geo-spatial
processing,’’ 2017.

38

https://pro.arcgis.com/en/pro-app/help/analysis/spatial-analyst/basics/about-raster-data-in-spatial-analyst.htm
https://pro.arcgis.com/en/pro-app/help/analysis/spatial-analyst/basics/about-raster-data-in-spatial-analyst.htm
https://apollomapping.com/blog/g-faq-spatial-topology-gis-part
https://blogs.lib.uconn.edu/outsidetheneatline/2009/08/17/did-you-know-6-raster-vs-vector/
https://blogs.lib.uconn.edu/outsidetheneatline/2009/08/17/did-you-know-6-raster-vs-vector/
https://stackoverflow.com/questions/45535271/r-tree-how-to-calculate-minimum-bounding-rectangles-of-non-leaf-nodes
https://stackoverflow.com/questions/45535271/r-tree-how-to-calculate-minimum-bounding-rectangles-of-non-leaf-nodes
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/93605.98741
https://en.wikipedia.org/wiki/Z-order_curve
https://en.wikipedia.org/wiki/Z-order_curve
http://www.ccri.com/2015/07/29/get-to-the-point-with-big-spatial-data/
http://www.ccri.com/2015/07/29/get-to-the-point-with-big-spatial-data/
https://doi.org/10.3390/ijgi5070119
https://www.simplilearn.com/cassandra-architecture-tutorial-video
https://www.simplilearn.com/cassandra-architecture-tutorial-video
https://doi.org/10.1117/12.2177233

[13] P. A. Longley, M. Goodchild, D. J. Maguire, and D. W. Rhind, Geographic
Information Systems and Science, 3rd ed. Wiley Publishing, 2010.

[14] H. C. Karnatak and V. Kumar, ‘‘Performance study of various spatial
indexes on 3d geo-data in geo-rdbms,’’ vol. 30, 2014. [Online]. Available:
https://doi.org/10.1080/10106049.2014.952354

[15] X. Zhang, W. Song, and L. Liu, ‘‘An implementation approach to
store gis spatial data on nosql database,’’ 2014. [Online]. Available:
https://doi.org/10.1109/GEOINFORMATICS.2014.6950846

[16] ‘‘Db-engines ranking.’’ [Online]. Available: https://db-engines.com/en/ranking

[17] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis,
R-Trees: Theory and Applications. Springer, 2006.

[18] E. Westra, Python Geospatial Analysis Essentials. Packt Publishing, 2015.

[19] D. Comer, ‘‘Ubiquitous b-tree,’’ ACM Computing Surveys (CSUR), vol. 11, no. 2,
pp. 121--137, 1979. [Online]. Available: https://doi.org/10.1145/356770.356776

[20] T. Sellis, N. Roussopoulos, and C. Faloutsos, ‘‘The r+-tree: A dynamic index
for multi-dimensional objects,’’ in Acta Informatica, 1987. [Online]. Available:
https://doi.org/10.1007/BF00288933

[21] I. Kamel and C. Faloutsos, ‘‘Hilbert r-tree: An improved r-tree using fractals,’’
in 20th International Conference on Very Large Data Bases, 1994.

[22] G. M. Morton, A Computer Oriented Geodetic Data Base and a New Technique
in File Sequencing. IBM Ltd., 1966.

[23] R. Finkel and J. Bentley, ‘‘Quad trees: A data structure for retrieval on
composite keys,’’ 1974. [Online]. Available: https://doi.org/10.1007/BF00288933

[24] A. Cockcroft and D. Sheahan, ‘‘Benchmarking Cassandra Scalability on
AWS - Over a million writes per second,’’ https://medium.com/netflix-
techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-
second-39f45f066c9e, 2011, [Online; accessed 25-April-2019].

[25] A. Lakshman and P. Malik, ‘‘Cassandra: a decentralized structured
storage system,’’ vol. 44, pp. 35--40, 2010. [Online]. Available: https:
//doi.org/10.1145/1773912.1773922

[26] H. Samet, Foundations of Multidimensional And Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2006.

39

https://doi.org/10.1080/10106049.2014.952354
https://doi.org/10.1109/GEOINFORMATICS.2014.6950846
https://db-engines.com/en/ranking
https://doi.org/10.1145/356770.356776
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-over-a-million-writes-per-second-39f45f066c9e
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922

[27] ‘‘Simplefeature (geotools module).’’ [Online]. Available: http://docs.geotools.org/
stable/javadocs/org/opengis/feature/simple/SimpleFeature.html

[28] ‘‘Railroad bridges - arcgis hub.’’ [Online]. Available: https://hub.arcgis.com/
datasets/72056d6f0b35445f893c642c033fede3_0

[29] V. Agafonkin, ‘‘Rbush - a high-performance javascript r-tree-based 2d spatial
index for points and rectangles,’’ https://github.com/mourner/rbush, 2017.

40

http://docs.geotools.org/stable/javadocs/org/opengis/feature/simple/SimpleFeature.html
http://docs.geotools.org/stable/javadocs/org/opengis/feature/simple/SimpleFeature.html
https://hub.arcgis.com/datasets/72056d6f0b35445f893c642c033fede3_0
https://hub.arcgis.com/datasets/72056d6f0b35445f893c642c033fede3_0
https://github.com/mourner/rbush

	R*-Tree index in Cassandra for Geospatial Processing
	Recommended Citation

	Introduction
	Background and Related work
	Geospatial Data
	Database Indexes
	R-Trees and R*-Trees
	R-Trees
	R*-Trees

	Z-Curves
	Indexing spatial data using Flattened R-Tree

	Cassandra and GeoMesa
	Cassandra
	GeoMesa for Cassandra

	R*-Tree index and Z-Curve index systems
	R*-Tree index system
	Write path
	Read path

	Z-Curve index system
	Write and read path

	Experiments and Results
	Dataset
	Experiment setup
	Write (insert and delete) operations
	Read (search) operations

	Results and Analysis
	Insert operation
	Overlap operation
	Intersect operation
	KNN (K Nearest Neighbor) operation
	Delete operation

	Conclusions and Future Work
	LIST OF REFERENCES

