
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2019

Deep Learning on Graphs using Graph Convolutional Networks Deep Learning on Graphs using Graph Convolutional Networks

Saurabh Mithe
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Mithe, Saurabh, "Deep Learning on Graphs using Graph Convolutional Networks" (2019). Master's
Projects. 720.
DOI: https://doi.org/10.31979/etd.yca4-fmqh
https://scholarworks.sjsu.edu/etd_projects/720

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/720?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Deep Learning on Graphs using Graph Convolutional Networks

Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Saurabh Mithe

May 2019

c○ 2019

Saurabh Mithe

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Deep Learning on Graphs using Graph Convolutional Networks

by

Saurabh Mithe

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2019

Dr. Katerina Potika Department of Computer Science

Dr. Sami Khuri Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

Graphs are a powerful way to model network data with the objects as nodes and

the relationship between the various objects as links. Such graphs contain a plethora

of valuable information about the underlying data which can be extracted, analyzed,

and visualized using Machine Learning (ML). The challenge to this task is that graphs

are non-Euclidean structures which means that they cannot be directly used with ML

techniques because ML techniques only work with Euclidean structures like grids or

sequences. In order to overcome this challenge, the graph structure first needs to be

encoded into an equivalent Euclidean representation in the form of a low-dimensional

vector. This low-dimensional vector is called an embedding vector, and the encoding

process is called node embedding. Traditionally, user-defined heuristics and matrix-

factorization based methods were used for node embedding. However, these methods

are slow and perform poorly on large and complex graphs. During the recent years,

various ML techniques have been developed that learn the encoding of the graph

automatically, and in a faster and more efficient way. A few of these techniques

called Graph Convolutional Networks (GCNs) use variants of the convolutional neural

networks adapted for graphs, and are implemented using deep neural networks. The

aim of this project is two-fold. Firstly, to develop a unified framework focusing

on three major GCN techniques in order to analyze, evaluate, and compare their

performance on select benchmark datasets for the task of node classification. And

secondly, to implement a new aggregator for one of the techniques — GraphSAGE,

and compare the performance of the aggregator with the existing GCN methods as

well as the other aggregators provided by GraphSAGE.

Index Terms — Node embedding, machine learning, graph convolutional net-

work, node classification.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude towards my advisor

and mentor - Dr. Katerina Potika. I was fortunate enough to work with her and

receive guidance on my master’s project, a decision which I took as a result of taking

the courses on social networks, graphs, and algorithm analysis under her guidance

and realizing that we share the same interests and passion towards graphs, networks,

and the underlying algorithms.

Her knowledge of the field, combined with the relentless enthusiasm and energy

towards guiding her students has been evident in every step of the way. She man-

aged to keep me motivated to progress in the right direction while making sure I

was researching, learning, exploring, and applying the knowledge that would help

me successfully complete the project independently while helping me with topics I

struggled with. The time, energy, and attention provided by her in this endeavor are

truly commendable and I thank her very much for that.

My heartfelt gratitude goes to Dr. Sami Khuri and Dr. Robert Chun for agreeing

to be on my defense committee and providing their valuable time, feedback and

guidance. Last but not least, I want to thank my colleagues and friends who kept me

motivated and supported and helped me through difficult academic challenges.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Problem Statement . 4

1.2 Terminology . 5

1.2.1 Graphs . 5

1.2.2 Feature Vectors . 7

1.2.3 Neural Networks . 9

1.2.4 Node Embeddings . 11

1.2.5 Node Classification . 13

2 Related Work . 15

2.1 Methods using matrix-factorization 15

2.2 Methods using random walk . 16

2.3 Methods using auto-encoders . 16

2.4 Methods using graph-convolutions 16

2.4.1 Graph Convolutional Networks (GCN) 18

2.4.2 Fast GCN . 19

2.4.3 GraphSAGE . 20

2.4.4 Graph Attention Networks 22

3 Methodology . 23

3.1 Developing a unified analysis framework for evaluating existing
methods . 25

3.1.1 Graph Convolutional Network (GCN) 25

vi

vii

3.1.2 Fast Graph Convolutional Network (Fast GCN) 27

3.1.3 GraphSAGE . 28

3.2 Graph Attention Aggregator Model 29

3.2.1 Principles of attention in graphs 30

3.2.2 Aggregator Model using Attention 31

4 Experiments and Results . 33

4.1 Datasets . 33

4.1.1 Cora Citation Dataset . 33

4.1.2 Pubmed Citation Dataset 34

4.1.3 Citeseer Citation Dataset 35

4.1.4 Reddit Posts Dataset . 35

4.2 Generating and visualizing Node Embeddings 36

4.3 Graph Convolutional Networks (GCN) 38

4.3.1 Results . 39

4.4 Fast GCN . 41

4.4.1 Results . 42

4.5 GraphSAGE . 44

4.5.1 Results . 45

4.6 Attention Aggregator . 47

4.6.1 Results . 47

4.7 Experimentation: Performance comparison of all the techniques . 50

4.8 Experimentation: Performance comparison of attention aggregator
with other techniques . 50

5 Conclusion . 51

LIST OF TABLES

1 Cora Citation Dataset . 34

2 Pubmed Citation Dataset . 34

3 Citeseer Citation Dataset . 35

4 Reddit Posts Dataset . 35

5 GCN F1 scores and Accuracy . 39

6 Fast GCN F1 scores and Accuracy 42

7 GraphSAGE F1 scores . 45

8 Attention Aggregator Supervised F1 scores compared to other ag-
gregator score in original papers 47

9 Attention Aggregator Supervised F1 scores compared to other
method scores in original paper 48

10 Attention Aggregator Supervised F1 scores compared to other ag-
gregator score in experimentation 49

11 Attention Aggregator Supervised F1 scores compared to other
method scores in experimentation 50

12 Implementation results for existing methods 50

13 Original paper results compared with Attention aggregator 50

viii

LIST OF FIGURES

1 A simple graph . 5

2 Adjacency matrix representation 6

3 Adjacency list representation . 7

4 A simple neural network . 10

5 A deep neural network . 11

6 Node Embeddings for Zachary Karate Club Graph (DeepWalk [9]) 12

7 Node classification for missing labels (GraphSAGE [12]) 14

8 Input to Graph Convolution-based networks 17

9 Graph Convolutional Network (GCN [4]) 19

10 Neighboring node processing - Fast GCN (left) vs GCN (right)
(FastGCN [13]) . 20

11 Node aggregation (GraphSAGE [12]) 21

12 Neighborhood aggregation algorithm (GraphSAGE [12]) 21

13 Attention Aggregator Model . 32

14 Zachary Karate Club Graph . 37

15 Node Embeddings for Zachary Karate Club with Identity Matrix
as features . 37

16 Node Embeddings for Zachary Karate Club with Shortest Path
length as features . 38

17 GCN Micro F1 Scores . 40

18 GCN Accuracy . 40

19 GCN Embeddings Visualization for Cora dataset 41

ix

x

20 FastGCN Micro F1 Scores . 43

21 FastGCN Embeddings Visualization for Cora dataset 44

22 GraphSAGE GCN Aggregator F1 Scores 46

23 GraphSAGE Mean Aggregator F1 Scores 46

CHAPTER 1

Introduction

A graph is a powerful data model when it comes to modeling data. Any form of

network data can be modeled as a graph, with the nodes representing the objects and

the links representing the connection between those objects. The major graph-models

that dominate the world wide web are social networks which have become an integral

part of our life and have remarkably changed the way humans interact with each other

and the world. Modern social networks contain a plethora of valuable information

about their users which can be analyzed in order to extract relevant insights from

it [1] which can then be used for applications like recommending new friends to a

user [2] or extrapolating missing information for a user profile. In bioinformatics,

graphs are used to model protein-protein interaction [3] which can be analyzed in

order to predict the protein functions. In research and literature, the publications

can be represented in the form of a graph where two publications are joined by an

edge if one publication cites the other publication. This graph can be analyzed to

find out the similarity and relationship between various publications as well as to

classify them into different categories [4]. One major area where graphs are central is

the world wide web (www) where the web pages are modeled as nodes and the links

connecting those web pages are modeled as edges. Analysis of the structure of the

web is the core foundation of the Page Rank [5] algorithm used by search engines to

return relevant web pages in response to the given keyword search.

The graph can be analyzed using proper tools for predicting a future link among

any two nodes, labeling the unknown nodes, clustering the node data, recommending

new links, allocating resources, etc. The quality of results of the above-mentioned

1

applications depends on the quality and accuracy of the underlying techniques. This

analyzing task is called as graph analysis.

Traditional methods for graph analysis have proven to be inefficient for mod-

ern social networks because of the network’s vast size and dynamic nature. This

raised the need for using modern data analysis techniques based on machine learning

in order to achieve an unprecedented performance gain. However, machine learning

techniques are designed to work with data defined on Euclidean domains, such as

grids (e.g. images) and sequences (e.g. speech, text), and cannot be directly used

with data defined on non-Euclidean domains such as graphs [6]. To overcome this

limitation, a technique to convert non-Euclidean data into its equivalent Euclidean

representation is needed i.e. a way to transform information contained in graphs into

an equivalent representation that can be processed by current machine learning mod-

els. When transforming the information contained in the graphs into an equivalent

Euclidean representation, it is important that the information in the graph should be

preserved as much as possible, thus minimizing the translation loss. The transformed

representation is called an embedding (dense vector representation) and the process

is called node-embedding or feature/representation learning. Once the embeddings

are generated, they can be used with the machine learning/deep learning techniques

for tasks such as link prediction, community detection, finding influential nodes in a

network, and many more. The quality of the generated embeddings determines the

accuracy of the result of these tasks.

Existing methods used to generate embeddings can be broadly divided into two

main categories - methods that extract heuristic-based features from a graph which

are often slow and inefficient when used with modern complex and large graphs and

methods that learn the node representations automatically from a given graph in a

2

faster and more efficient way using machine learning. The machine learning methods

are mainly categorized into the following types:

∙ Factorization-based methods (Laplacian Eigenmaps [7], Inner-product [8])

∙ Random walk-based methods (Deep Walk [9], Node2Vec [10])

∙ Autoencoder-based methods (Deep Neural Graph Representations [8], Struc-

tural Deep Neural Embeddings [11])

∙ Graph convolution-based methods (GraphSAGE [12], Graph Convolutional Net-

works [4], FastGCN [13], Graph Attention Networks [14])

This project focuses on three recent techniques from the Graph convolution-based

methods which are Graph Convolutional Networks (GCN) [4], FastGCN [13], and

GraphSAGE [12] all of which, as the name suggests, use a variant of the traditional

convolutional networks adapted to graphs in order to learn the graph representa-

tion. The methods are based on deep learning and implemented using state-of-the-art

frameworks like TensorFlow and PyTorch. The aim of the project is to:

∙ Study the recent (above mentioned) graph convolution-based methods in depth

∙ Develop a unified framework in order to implement, execute, and evaluate the

methods and analyze/compare the performance/results

∙ Develop a custom aggregator model for the GraphSAGE technique and compare

its performance with existing methods and other GraphSAGE aggregators on

node classification for benchmark datasets.

3

1.1 Problem Statement

Graph analysis is an important task because of the rising popularity of social

networks, and the increase in the amount of data being generated which is modeled

in the form of a graph. Graph analysis using machine learning poses some challenges

like encoding the graph into a low-dimensional representation in order to extract

relevant features that can be fed into the machine learning models for performing

tasks such as node classification, label prediction, link recommendation, etc. Various

methods for graph analysis via representation learning using deep learning exist that

operate on the same underlying principles and offer similar functionality. However, for

each technique, the performance is measured on different types and sizes of data and

thus, there is no unified framework that gives an accurate comparison of the existing

methods on the benchmark datasets. Also, the datasets which are shared by multiple

methods differ with respect to the input format and thus, cannot be readily evaluated

with other methods. For example, the GCN [4] is tested on Cora, Citeseer, Pubmed,

and NELL datasets while FastGCN [13] is tested on Cora, Pubmed, and Reddit leav-

ing out the Citeseer dataset. GraphSAGE is tested on Reddit and Protein-protein

interaction (PPI) datasets leaving the other ones out. Moreover, GCN does not men-

tion the F1 scores of the test experimentation results while FastGCN leaves out the

accuracy. Thus, it is challenging to compare and evaluate the results of these similar

methods on the same datasets. Another area of focus is on GraphSAGE, which is a

modular representation learning method where the aggregators are modeled in a plug-

and-play type of interface. Another technique for graph analysis using deep learning

named Graph Attention Networks (GAT) [14] which uses masked self-attention lay-

ers that enables specifying different weights to different nodes in a neighborhood in

order to achieve a performance gain over the above-mentioned methods which use the

4

same weights for all the nodes in the neighborhood. The aim is to develop and im-

plement a new aggregation model for GraphSAGE based on the concept of attention

over the features of the model as described in the GAT technique instead of a simple

mean aggregation and evaluate/compare the performance and the results of the new

aggregator method with other methods.

1.2 Terminology

1.2.1 Graphs

A graph is a collection of vertices connected with each other by edges. Graph

𝐺 can be represented as 𝐺 = (𝑉,𝐸) where 𝑉 is a set of vertices and 𝐸 is a set of

edges where each edge joins two vertices. Figure 1 shows a graph with 5 vertices and

6 edges could be represented as follows:

𝑉 = {1, 2, 3, 4, 5}

E = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 2), (5, 1)}

𝐺 = (𝑉,𝐸)

Figure 1: A simple graph

5

Graphs are abstract data structures i.e they can be implemented and represented

in more than one way. A graph representation can be as simple as a list of all edges

present in the graph, an adjacency matrix which is a 𝑛 x 𝑛 matrix where n is the

number of vertices in the graph representing the presence of an edge as 1 and the

absence as 0 for each pair of vertices, or it can be represented in the form of an

adjacency list which is a list of all the vertices where each vertex points to a list of its

connected vertices. Figure 2 shows the adjacency matrix representation of a simple

undirected graph with 5 nodes and 6 edges while Figure 3 shows the adjacency list

representation of the same graph.

Edge List:

𝐺 = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 2), (5, 1)]

Figure 2: Adjacency matrix representation

Figure 5 represents a deep neural network with multiple hidden layers producing

a multi-category output.

6

Figure 3: Adjacency list representation

1.2.2 Feature Vectors

A vector, in its simplest form, is a series of numbers. It’s similar to a matrix but

restricted to a single row and multiple columns. For example, [1, 2, 6, 4, 7, 0, 1] is a

vector of size 7.

A feature vector is just a vector consisting of features of a particular object. For

example, if we have a cube 𝐶 with width 𝑤, height ℎ, and depth 𝑑, then the feature

vector for cube 𝐶 can be represented as 𝐶 = [𝑤, ℎ, 𝑑]. For a cube 𝐶1 with width 5,

height 7, and depth 3, the feature vector would be 𝐶1 = [5, 7, 3].

A graph consists of vertices and edges. A graph representing a social network

like Facebook will have the vertices as the profiles of individuals and the edges as

the "friendship" relation that join two individuals together. In such a graph, the

vertices are objects which contain the entire information about the individuals like

their name, profile picture, city, country, school information, occupation, the content

they like, the comments, the uploaded media, and much more. All this information

belonging to a vertex in a graph can be seen as a feature of that vertex i.e. the details

of the individual represented by that particular vertex. Such information would be

7

best represented using a feature vector. For example, a person John Doe having a

Facebook account would have information such as name, city, university, and country.

This information can be represented for John as ["John Doe", "Seattle", "University

of Washington", "United States of America"]. Other individuals in the graph can

be represented similarly. This way of representing objects using in the form of a

feature vector allows you to define a common format of information representation

allowing only the desired information leaving any unnecessary details out. These

feature vectors can then be used in some form of application or information processing

system for analysis and information extraction.

The contents of the feature vector for an object is highly dependent on the type

of data present in the object as well as the task for which the vector is eventually

going to be used. For example, a graph consisting of research papers as vertices

with the edges representing the citation of papers by each other could have a feature

vector consisting of the top 100 most frequently occurring words present in each of

those papers. For example, consider the following papers represented by their feature

vectors ignoring the commonly occurring words in the English language:

Paper A: ["denmark", "biology", "molecules", "synthesis", "analysis"]

Paper B: ["oxygen", "molecules", "global warming", "ozone", "methane"]

Paper C: ["greenhouse", "molecules", "analysis", "ozone", "carbon monoxide"]

The above three papers selected from a group of papers written about global

warming could have the respective set of most frequently occurring words extracted

using the "TF-IDF" algorithm. These vectors give us a high-level idea about the

contents of the papers and eliminate unnecessary information like the commonly

occurring or less frequently occurring words, punctuation symbols, special characters,

images, etc. Looking at the feature vectors allows us to determine that these papers

8

belong to a similar topic even if we did not know originally that they are from "global

warming" category. Thus, feature vectors are a powerful way of representing and

leveraging the information present in a graph.

In cases where the graph objects do not have any explicit features, the structural

properties of the vertices such as in-degree, out-degree, page rank, centrality, etc. can

be used to represent the properties of the objects in order to be used in the analysis

of the graph.

1.2.3 Neural Networks

Neural Networks are a set of algorithms modeled after the human brain designed

to recognize patterns in the input data based on some set of rules. These networks are

capable of remembering the previously seen information and associating it with the

new information in order to selectively learn and remember the required information.

In the end, the learned patterns are stored as a "model" which can then be used to

make informed decisions on the new or previously unseen data.

The way in which neural networks operate is that they use a structural unit

called as a node which is analogous to a neuron present in the human brain. A neural

network can contain hundreds or even thousands of such neurons or nodes. A node

gets activated only if the input that the particular node receives meets certain criteria

defined by an "activation function". Different nodes receive different information from

the same input based on the way the network is designed. The nodes are connected

with each other using "weights" which are a set of floating point numeric values

that get updated upon each activation. Eventually, the set of the values represented

as weights are fine-tuned based on input and these values can be used to make a

prediction on the new input data. This is what we call as "learning" in terms of

9

"machine learning" which makes neural networks a specific form of machine learning.

While it is totally normal for a neural network to have a single "layer" of such

nodes, adding more layers increases the performance of the neural network dramat-

ically. Each of these layers can be stacked together in order to form a much more

complex and capable neural network which is called as a "deep neural network" with

the word "deep" insisting on the presence of multiple layers called as "hidden layers".

The learning done using a deep neural network is thereby called "deep learning".

Figure 4 represents a single-layer perceptron model of a neural network with a set

of inputs being passed through an input function and an activation layer in order to

create an output.

Figure 4: A simple neural network

10

Figure 5: A deep neural network

The above network represents just one type of neural network - a multi-layer

perceptron. These types of networks are particularly useful in learning numeric or

text data but do not generally perform well on images or sequences like speech and

long texts. There are other neural networks which are more suited for images called

as "Convolutional neural networks" and those which are suited for long sequences

such as "Long short term memory networks" or LSTMs or "Recurrent neural net-

works" or RNNs. There is no one right answer when it comes to neural networks

as they are highly dynamic and can be modeled based on a particular use case. It

is not uncommon to see several different variants of neural networks of each of the

above-mentioned types in order to address different kinds of problems across multiple

domains.

1.2.4 Node Embeddings

Given a graph containing 𝑛 nodes and 𝑒 edges, an equivalent representation

with dimension 𝑑 << 𝑛 is expected as an output of the node embedding process.

In some cases like graph convolutional networks, the node embedding process could

be combined with the eventual machine learning task such as node classification,

11

etc. to create a single homogeneous program that accepts the graph as an input

and provides the classification result for each node while generating and using the

embeddings intermediately.

Also, not all embeddings are created equal. Based on the type of application the

generated embedding is going to be used for, the nature of embedding is decided. For

example, the embeddings that need to be generated for the task of link prediction

would be different from the ones generated for the task of finding influential nodes

in a network. This can be done in a supervised manner where the target application

would define the process of node embedding itself. Although a generalized embedding

would get the work done for all the applications, it wouldn’t be as much effective as

a custom embedding generated for that particular application. This is an area that

needs to be researched in more detail. Figure 6 represents the node embeddings

generated for Zachary Karate Club graph where the nodes belonging to the same

group in the original graph are close to one another in the corresponding embedding

space.

Figure 6: Node Embeddings for Zachary Karate Club Graph (DeepWalk [9])

Another aspect of node embeddings is based on how the process works for dy-

namic graphs where new nodes are being added continuously for example in a social

12

network where hundreds of new users sign up in a day. The embedding generation

technique should also take into consideration the dynamic nature of the graphs and

how that can be addressed using the minimum number of computational steps.

1.2.5 Node Classification

Node classification is a classic graph-based problem. Given a graph with several

nodes, a set of links connecting those nodes, and a set of categories that the nodes

belong to, the idea is to classify the nodes to their respective categories based on

some information extraction and analysis based algorithm. For example, given a

set of research papers where each paper belongs to exactly one of the seven given

categories, the aim is to classify each paper to the respective category that it belongs

to. The classification may depend on the text present inside each of the research

papers or the topic of the paper, or even the authors of the paper.

Node classification problem may or may not have pre-defined categories. In case

we do not know the categories in advance, it is up to us to determine the number of

categories and the label of each category. For example, node classification can be im-

portant in community detection problem in which, given a set of nodes representing

people in a city in the form of a graph, we need to determine the different commu-

nities the people belong to. Once again, the details of the community determination

would be guided by the exact problem we are trying to solve the overall idea remains

common. The number of communities can be determined based on the graph size,

nature of the data, or some other parameter. Figure 7 represents the scenario where

the original graph has a few nodes missing the labels which can be predicted using

the machine learning algorithm.

13

Figure 7: Node classification for missing labels (GraphSAGE [12])

Another area where node classification can prove to be immensely helpful is in

the cases where the information about some nodes is not present. In such cases, the

nodes can be classified based on the information present in the other nodes and then,

once we have categories of the nodes, the information or the labels of the "known"

nodes can be propagated over to the unknown nodes in the same category since we

know that the nodes belonging to the same category share the similarities.

14

CHAPTER 2

Related Work

The suggested work in the project conceptually builds upon previous node-

embedding techniques that use both supervised and unsupervised form of deep learn-

ing on graphs. Traditionally, user-defined heuristics which relied on graph statistics

such as node degrees or clustering coefficients, kernel functions, or hand-engineered

features to measure neighborhood structures were used to extract features to encode

information about a graph. These techniques used graph kernels and treated feature

extraction as a pre-processing step performed before the task of classifying the nodes

and other similar operations. While the techniques were more efficient than the older

methods, they were not fast enough for larger graphs that have over a million or more

nodes. To overcome this shortcoming of traditional techniques, newer techniques were

developed which use ML and dimensionality reduction principles for the task of fea-

ture extraction. The ML techniques automatically learn to encode graph structure

into an 𝑛-dimensional vector using deep learning methods and non-linear dimension-

ality reduction principles. They treat the node encoding task like an ML task as

compared to treating it like a pre-processing step as done by the older techniques

mentioned above. The ML techniques include the following methods:

2.1 Methods using matrix-factorization

These methods are inspired by classic techniques that rely on the concept of

dimensionality-reduction and multi-dimensional scaling. Two major methods are

Laplacian eigenmaps [7] and Inner product methods such as Graph Factorization

and GraRep [8].

15

2.2 Methods using random walk

These methods learn the features by performing random walks on different parts

of the graph and then using the collected data to generate embeddings. The intuition

behind these approaches is that similar nodes tend to occur together and frequently on

random walks started from different nodes. There are two main random walk-based

techniques — Node2Vec [10] and DeepWalk [9].

2.3 Methods using auto-encoders

These approaches use auto-encoders to compress the information from a node’s

neighbors such that a node’s reaching distance is calculated with respect to all the

other nodes and stored in a high-dimensional vector. The dimensionality of this vector

is reduced by passing it through an auto-encoder resulting in a much smaller embed-

ding representation which can be decoded to retrieve the original embeddings. The

two main techniques based on this approach are Deep Neural Graph Representations

(DNGR) [8] and Structural Deep Neural Embeddings (SDNE) [11].

2.4 Methods using graph-convolutions

Graph convolution-based approaches are based on the principle of aggregating

information from a node’s local neighborhood in order to generate an embedding for

it. The advantage of graph convolution-based approaches is that they utilize node

features or attributes in order to generate embeddings. In a social network, the node

attributes might be the user information such as place of residence, school, workplace,

etc. which can be used to further refine the embeddings. In networks where the node

attributes are not present, graph statistics like node degree or position can be used

as a node attribute.

16

These approaches generate embeddings in a recursive manner. The initial node

embeddings are the same as the features of the graph. At each iteration of the

algorithm, information is collected from the node’s neighbors and combined with the

node’s own feature vector representation. This continues for 𝑘 iterations and in each

iteration, more an more information gets carried over to a node (information from 𝑘th

degree connected node). After the aggregation and combination phases are complete

with 𝑘-iterations, the node has information about farther nodes but with the same

dimensionality that it started with, which makes it more efficient as compared to other

techniques. Figure 8 represents a graph convolutional network where the inputs are

in the form of an Adjacency Matrix representation 𝐴 of the graph along with an input

Feature Matrix 𝑋.

Figure 8: Input to Graph Convolution-based networks

A few of the popular recent techniques that are based on the above mentioned

principle are GraphSAGE [12], GCN [4], and FastGCN [13] which follow similar

underlying principles but differ in implementation. In all the methods, the node

embeddings are initialized to be the same as input node attributes. These attributes

can be represented using one-hot encoding. In each iteration, the nodes update their

own features by aggregating the features of their neighbors using an aggregation

17

function. After a specific number of iterations, each node has a feature vector that

contains information aggregated from its neighbors combined with its own features.

This is similar to how a convolution operator would operate on images or grids in

order to aggregate information about the image by looking at the surrounding pixel

information.

2.4.1 Graph Convolutional Networks (GCN)

GCN is a technique that uses a semi-supervised method of training. GCN is

built on the concept of convolutions which are popular for image identification and

processing tasks. In GCN, the information from the adjacent nodes is gathered via a

form of localized first-order approximations of spectral convolutions. GCN also takes

into account, the node features in the form of a 𝑁x𝐹 0 feature matrix 𝑋 where 𝑁 is

the number of total nodes and 𝐹 0 is the number of input features per node. Another

input parameter is the adjacency matrix 𝐴 which is a 𝑁x𝑁 matrix. The network

consists of multiple hidden layers 𝐻 and at each layer, the features are aggregated

to form the next layer’s features using a propagation rule 𝑓 . This process, however,

is transductive which means that if new nodes are added to the graph, the entire

training needs to be repeated for all the nodes, and the learned embeddings cannot

be generalized to previously unseen nodes or similar graphs. Figure 9 represents the

block diagram of the graph convolutional network working on a publication dataset

belonging to 7 different categories with an embedding output accurately showing the

separation of the publications into the corresponding categories.

18

Figure 9: Graph Convolutional Network (GCN [4])

2.4.2 Fast GCN

Fast GCN can be seen as an improvement over the GCN technique proposed by

Kipf et. al. While GCN was designed assuming that both training and test data

is present while learning features, Fast GCN suggests changes that overcome that

requirement. Moreover, in case of large and dense graphs, the way GCN is designed,

the recursive neighborhood expansion may result in longer processing times and huge

memory consumption, thereby making it difficult or even impossible to use the meth-

ods on such types of graphs. Fast GCN provides a solution to this shortcoming by

interpreting graph convolutions as integral transforms of the embedding functions

under probability measures. Additionally, Fast GCN uses sampling to determine the

adjacent nodes that need to be processed instead of processing all the adjacent nodes

in case of GCN which improves performance on larger and denser graphs. Figure 10

represents the contrast between the number of nodes processed by GCN (right) and

the number of nodes processed by FastGCN (left) which clearly shows that FastGCN

saves the processing by a large scale.

19

Figure 10: Neighboring node processing - Fast GCN (left) vs GCN (right) (FastGCN
[13])

2.4.3 GraphSAGE

Most approaches require all the nodes in the graph to be present at the time of

training the node features, and are thus transductive in nature. Such approaches do

not generalize to previously unseen nodes and require additional rounds of training to

be able to do that. GraphSAGE, however, is inductive in nature which means that the

features or embeddings, once trained, can be used even when new nodes are added,

and instead of training all the features all over again, only the features for the new

nodes need to be trained. In addition to that, GraphSAGE allows the learned features

to be generalized to an entirely new unseen graph which can potentially save a lot of

processing time for seemingly similar graphs. This is made possible since GraphSAGE

learn a function that generates the node features instead of training individual features

for each node. So once the function is learned, new features can be generated for newly

added nodes or an entirely new set of nodes for a similar graph. This learned function

is called a aggregation function which aggregates the features from the surrounding

nodes in order to generate features for a particular node. The general aggregation

functions that are implemented in GraphSAGE are element-wise mean aggregator

20

which, as the name suggests, calculates the mean value of the all features of all

the adjacent nodes and aggregates them to form the features for a given node, a

max-pooling aggregator which selected the maximum of the features for the adjacent

nodes, and LSTM aggregator to aggregate neighboring embedding information. The

aggregation step is repeated for 𝑘 steps in order to aggregate information from farther

nodes. Figure 11 represents the aggregation function for GraphSAGE technique while

Figure 12 shows the GraphSAGE aggregation and sampling algorithm to aggregate

features from the neighboring nodes for 𝑘-iterations.

Figure 11: Node aggregation (GraphSAGE [12])

Figure 12: Neighborhood aggregation algorithm (GraphSAGE [12])

21

2.4.4 Graph Attention Networks

Graph Attention Networks (GATs) [14] are a type of Graph Convolutional Net-

works (GCNs) which use the concept of attention to overcome the limitations of some

of the other GCNs. This is done by allowing the nodes to use different weight for

each neighbor while combining the neighborhood features.

22

CHAPTER 3

Methodology

The embedding technique proposed by Kipf et al. [4] named Graph Convo-

lutional Networks uses a weighted element-wise mean to aggregate information from

the neighboring nodes and a weighted sum is used to combine the aggregated informa-

tion with a node’s own embedding while using node features or attributes. However,

this approach is transductive i.e. if new nodes are added to the graph, additional

rounds of training need to be performed. Also, the generated embeddings cannot be

generalized for other similar graphs.

The embedding technique proposed by Chen et. al. [13] named Fast GCN

improves upon GCN by using a sampling function that operates over a probability

measure in order to minimize the number of nodes that are processed for each node.

This significantly reduces the processing time and is more suitable for larger and

denser graphs. However, it does not address the transductive issues present in GCN.

The technique proposed by Hamilton et al. [12] named GraphSAGE uses gen-

eral aggregation functions such as element-wise mean, a max-pooling neural network,

and LSTMs are used to aggregate neighboring node information and a concatena-

tion operation to combine the aggregated information with a node’s own embedding.

GraphSAGE is inductive which enables the generation of embeddings for previously

unseen nodes thereby making it a better choice over the other two methods for larger

dynamic graphs.

GraphSAGE introduces a plug-and-play style of aggregation mechanism for node

embedding where different kinds of aggregator functions can be used within the same

23

implementation based on the required functionality. The mean aggregator and the

GCN aggregator are the best performers among all the aggregators suggested by

GraphSAGE. A recent paper named Graph Attention Networks (GAT) [14] leverages

masked self-attentional stacked layers in which nodes are able to attend over the

features of their neighbors in order to aggregate the neighbor features and generate

node embeddings for the given node. This project aims to build on the principles of

Graph Attention Networks in order to design an aggregator function which can be

plugged into the GraphSAGE model in order to generate the node embeddings. This

would enable the user to leverage existing properties of GraphSAGE while providing

potential improvements achieved using attention in graphs. The performance would

be compared with the existing techniques mentioned above as well as with other

aggregator functions provided by GraphSAGE.

Since each of the above methods uses different datasets for experimentation, in

order to compare the results, it is necessary to implement, and execute the methods

on a common set of benchmark datasets and analyze the performance. Moreover,

each technique uses different measures in order to showcase the results. For example,

GCN relies on accuracy for the experimentation while FastGCN relies entirely on

F1 scores. Thus, one of the major challenges in completing the project would be to

develop a unified framework in order to implement, execute, and test the performance

of the above-mentioned techniques on a common set of benchmark datasets.

The proposed implementation plan for the project is as follows:

∙ Implementing standard Graph Convolution Network, Fast GCN, and Graph-

SAGE techniques.

∙ Adding the missing required features to each of the techniques in order to be

24

able to run them on the same set of standard benchmark datasets.

∙ Analyzing the performance of each technique and tune the hyper-parameters

until the best performance for the technique is achieved in the given computa-

tional environment.

∙ Implementing the custom aggregator for GraphSAGE that uses attention over

the neighboring nodes.

∙ Comparing the custom aggregator performance on benchmark datasets with

that of existing techniques as well as other aggregator models.

3.1 Developing a unified analysis framework for evaluating existing meth-
ods

Since all the node embedding techniques implementations being studied in this

project differ in one or more key aspects, it is crucial to unifying them by adding

the missing features to each of the implementations. This would make it possible

to evaluate the performance of all the techniques on a common set of benchmark

datasets described in the previous section. Following sections describe the work done

and changes made to each of the techniques in order to achieve that goal.

3.1.1 Graph Convolutional Network (GCN)

Graph Convolutional Network (GCN) is a scalable semi-supervised approach for

graph analysis based on an efficient variant of convolutional neural networks that

operate directly on graphs [4]. The algorithm learns hidden layer representations

that encode local graph structure and node features in the given graph.

Given a graph 𝐺 = (𝑉,𝐸), the inputs to the graph convolutional network are:

25

∙ a 𝑉 x𝑉 adjacency matrix representation 𝐴 of the graph 𝐺

∙ an input feature vector 𝑋 of dimensions 𝑉 x 𝐹 0 where 𝐹 0 is the number of

input features per node

The hidden layer 𝐻 i can be written as 𝑓(𝐻 i-1, 𝐴) where 𝐻0 = 𝑋 (input feature

vector) and 𝑓 is the propagation rule (activation function). On each layer, the features

are aggregated from the neighboring nodes to form the features for the next layer.

This is continued all the way to the last layer which outputs the final set of features

for each node. In this way, the features for each node are learned by the model.

This project uses the original implementation provided by the authors from their

official Github repository as a starting point and then builds upon them according to

the requirements.

3.1.1.1 Modifications

∙ The original implementation only calculated and used accuracy as a part of

their experimentation and results. So this project adds the functionality to

calculate the precision, recall, and the micro F1 score for the valida-

tion sets. This was important since other methods use the micro F1 measure

to compare results which the original implementation was lacking.

∙ A module to extract the node embeddings and visualize them after

the model is trained is developed as a part of the project using the tSNE

dimensionality reduction algorithm which is showcased in the results section.

26

3.1.1.2 Limitations

∙ The original paper does not showcase the micro F1 scores which are crucial

since we need to compare the results with those showcased by other papers who

use micro F1 scores. So for the sake of comparison, the micro F1 scores in the

results section are taken from the Fast GCN paper results section who ran the

experiments on original GCN and provided the F1 scores in their own paper.

∙ Because of the processing overhead for large graphs, and GCN’s inability to

process them, the experiments could not be run for Reddit dataset due to its

large size.

3.1.2 Fast Graph Convolutional Network (Fast GCN)

In Graph Convolutional Network [13], the neighborhood expands rapidly, and

within a few hops (usually 3-4), the entire graph is covered. This repeats for each

node, and thus, to process each node, the entire graph needs to be accessed which is

expensive in terms of computation. FastGCN addresses this exact issue by sampling

the neighborhood up to a fixed number 𝑘 so that a lot of computations are saved.

This substantial reduction in the neighborhood gives the same quality of output as

a result of a careful selection of samples under a probability measure using a Monte

Carlo approximation of the loss function. Apart from this major change, the rest of

the functionality remains similar to that of GCN mentioned in the previous section.

This sampling approach yields substantially better results over GCN as showcased

below.

27

3.1.2.1 Modifications

∙ A module to extract the node embeddings and visualize them after

the model is trained is developed as a part of the project using the tSNE

dimensionality reduction algorithm which is showcased in the results section.

3.1.2.2 Limitations

∙ Citeseer was not included with the implementation provided by the authors. So

the dataset was imported in a format that runs with the implementation and

trained the model on that dataset.

∙ The Reddit dataset was not provided with the implementation. So this project

implements a custom program to convert the Reddit dataset into the format

executable by the provided implementation.

∙ The original paper does not showcase the accuracy which we need to compare

the results with those showcased by other papers who use accuracy. There-

fore, this project adds the functionality to calculate the accuracy from the test

predictions and the original labels for the test set.

3.1.3 GraphSAGE

GraphSAGE [12] can be viewed as a stochastic generalization of graph convolu-

tions and is useful for large dynamic graphs with rich feature information.

Since the original implementation of GraphSAGE was intended and designed for

massive dynamic graphs, it did not perform well on smaller static graphs which may

or may not have node features. The overhead of sub-sampling required for larger

graphs makes GraphSAGE perform in a negative way on smaller graphs taking more

28

execution time and resulting in sub-optimal outcomes.

The author provided a light-weight implementation written using PyTorch to

address the above issues making it possible for GraphSAGE to run efficiently on

smaller static graphs. However, this implementation only contains the GCN aggre-

gator and the mean aggregator. The results showcased in the following sections are

taken from the implementation which provides a better outcome for the dataset under

consideration.

3.1.3.1 Modifications

∙ The GraphSAGE implementation provided by the authors did not experiment

on Cora, Pubmed, and Citeseer datasets which are covered by the other tech-

niques. Moreover, the input format for the datasets for GraphSAGE differs from

the original format of the datasets. A custom converter module is developed as

a part of project work that takes the original dataset as the input and generates

an equivalent dataset in the format that works with GraphSAGE. This project

uses the converter to convert Cora, Pubmed, and Citeseer datasets before using

them with GraphSAGE.

3.1.3.2 Limitations

∙ Citeseer dataset was not provided by the authors, and thus, there were no target

results to have a comparison with.

3.2 Graph Attention Aggregator Model

The Graph Convolutional Network is structure-dependent which limits the gen-

eralizability of the algorithm. This problem is overcome by GraphSAGE which takes

29

an average of all the adjacent node features. However, the weights being used for all

the adjacent neighbors are the same which does not work well since different nodes

have different features, and thus, the weights should be modified independently for

each neighbor. Using attention in graphs [14], this problem is overcome by assigning

weights to the neighbors based on their features and provide a structure-independent

normalization. In essence, in the modified aggregator, attention over the features of

neighbors is used in place of the mean aggregation of the node features.

3.2.1 Principles of attention in graphs

In Graph Convolutional Network, a convolutional operator calculated a normal-

ized sum of the features of the adjacent nodes. This is done using the following

formulae based on GAT [14] and explained on DGL website [15] as follows

ℎ
(𝑙+1)
𝑖 = 𝜎

(︁∑︀
𝑗∈𝒩 (𝑖)

1
𝑐𝑖𝑗
𝑊 (𝑙)ℎ

(𝑙)
𝑗

)︁
where

∙ 𝒩 (𝑖) is the set of one hop neighbors

∙ 𝑐𝑖𝑗 =
√︀

|𝒩 (𝑖)|
√︀

|𝒩 (𝑗)| is the normalization constant

∙ 𝜎 is the activation function (ReLU)

∙ 𝑊 (𝑙) is the weight-matrix

GraphSAGE follows the same model but with a different normalization constant as

𝑐𝑖𝑗 = |𝒩 (𝑖)|

Steps to calculate attention: The Graph Attention Network technique [14] pro-

vides a way to calculate attention for a given graph using the following steps:

30

1. For a given layer, calculate a linear transformation 𝑧 of the features ℎ of the

current layer and the weight matrix 𝑊

𝑧
(𝑙)
𝑖 = 𝑊 (𝑙)ℎ

(𝑙)
𝑖

2. Calculate a pair-wise attention score 𝑒 for any two-nodes adjacent to each other.

This can be done by concatenating the linear transformations 𝑧 for both the

nodes and taking a dot product of the concatenation with a weight vector 𝑎.

This entire product is passed through a non-linear activation function 𝜎 which

is a LeakyReLU.

𝑒
(𝑙)
𝑖𝑗 = LeakyReLU(⃗𝑎(𝑙)

𝑇
(𝑧

(𝑙)
𝑖 ||𝑧(𝑙)𝑗))

3. The attention score calculated in the previous step is normalized using a soft-

max function.

𝛼
(𝑙)
𝑖𝑗 =

exp(𝑒
(𝑙)
𝑖𝑗)∑︀

𝑘∈𝒩 (𝑖) exp(𝑒
(𝑙)
𝑖𝑘)

4. The features for the next layer ℎ+1 are aggregated from the neighboring nodes

after being scaled by their attention scores.

ℎ
(𝑙+1)
𝑖 = 𝜎

(︁∑︀
𝑗∈𝒩 (𝑖) 𝛼

(𝑙)
𝑖𝑗 𝑧

(𝑙)
𝑗

)︁

3.2.2 Aggregator Model using Attention

∙ The attention aggregator which is based on the principles of attention in graphs

as mentioned in [14] consists of a Sequential model made up of two Linear

layers and a simple hyperbolic tangent activation function tanh. This is used

to calculate 𝑧
(𝑙)
𝑖 from step 1

31

∙ The attention score 𝑒
(𝑙)
𝑖𝑗 is calculated by calculating the embeddings of adjacent

nodes and talking its dot product with vector 𝑎(𝑙)
𝑇 . This is done using a fully

connected layer implementing a linear model with an activation function of

LeakyReLU.

∙ The calculated attention score is then fed through a soft-max layer in order to

normalize them.

Figure 13: Attention Aggregator Model

32

CHAPTER 4

Experiments and Results

4.1 Datasets

The machine learning task to be focused on in this project is node classification

has a set of nodes and a set of edges connecting the nodes in the form of a graph.

The algorithm classifies the nodes into separate categories such that similar nodes

belong to the same category. The datasets chosen for this project are some of the

most well-known datasets for node classification.

The choice of a dataset is one of the most important aspects of any data analysis

project. When it comes to graph data, there are many available choices that can

be attributed to the boom of social networks and the rising popularity of graphs in

general. Since we are dealing with the node classification problem here, the dataset we

choose should have the data that can be classified into a finite number of categories

and should have a good probability that the data is almost uniformly distributed

i.e. the data should not be biased and inclined towards a particular category. The

datasets chosen for this project are as follows:

4.1.1 Cora Citation Dataset

The Cora dataset consists of 2708 scientific publications classified into one of

the seven categories. It has 5429 edges where the presence of each edge indicates a

"citation" relationship between two given papers 𝐴 and 𝐵 such that paper 𝐴 cites

paper 𝐵.

The feature vector for the dataset consists of 1433 columns and 2708 rows where

33

1433 is the number of unique words present in all the papers combined. Such a vector

is called a dictionary. Each entry in the feature vector is either a 0 or a 1 with 0

representing the absence of that word in a paper and 1 representing the presence. For

example, if paper number 1652 contains a word "neuron" which is the 57th word in

the dictionary of 1433 words, then the value at the 1652nd row and the 57th column

would be 1.

Nodes Edges Features Classes Type Source
2708 5429 1433 7 Citation linqs.cs.umd.edu

Table 1: Cora Citation Dataset

4.1.2 Pubmed Citation Dataset

The Pubmed Diabetes dataset consists of 19717 scientific publications related

to diabetes classified into one of the three categories. It has 44338 edges where the

presence of each edge indicates a "citation" relationship between two corresponding

publications.

The feature vector for the dataset consists of 500 columns and 19717 rows where

500 is the number of unique words present extracted using TF/IDF algorithm from

all the papers combined. The row and column corresponding to the publication/word

is set to 1 if the word is present in the paper else 0.

Nodes Edges Features Classes Type Source
19717 44338 500 3 Citation linqs-data.soe.ucsc.edu

Table 2: Pubmed Citation Dataset

34

4.1.3 Citeseer Citation Dataset

The Citeseer Citation dataset consists of 3312 scientific publications classified

into one of the six categories. It has 4732 edges where the presence of each edge

indicates a "citation" relationship between two corresponding publications.

The feature vector for the dataset consists of 3703 columns and 3312 rows where

3703 is the number of unique words present in all the papers combined. The row/col

corresponding to the publication/word is set to 1 if the word is present in the paper

else 0.

Nodes Edges Features Classes Type Source
3312 4732 3703 6 Citation linqs.soe.ucsc.edu

Table 3: Citeseer Citation Dataset

4.1.4 Reddit Posts Dataset

The Reddit Posts dataset consists of 232965 posts created by Reddit users on

the platform classified into one of the 41 communities or subreddits. It has 5376619

edges.

The feature vector consists of 602 columns and 232965 rows where 602 is the

number of unique words present in all the posts combined.

Nodes Edges Features Classes Type Source
232965 5376619 602 41 Social Networks Posts pushshift.io

Table 4: Reddit Posts Dataset

35

4.2 Generating and visualizing Node Embeddings

The graph convolutional networks, by design, are so powerful that even a simple

feed-forward network with random weight initialization can provide pretty good re-

sults since it takes advantage of the structural properties of the graph as well as the

features. Here is a demonstration of the concept on a Zachary Karate Club graph

provided with the NetworkX library as shown in Figure 14. An identity matrix 𝐼

is added to the adjacency matrix 𝐴 in order to create self-loops so that nodes can

aggregate their own features too. The resulting matrix is normalized by multiplying

it with an inverse degree matrix 𝐷−1 to minimize the effect of a large variation in

degrees for different nodes. With a simple ReLU activation function in a two-layer

feed-forward network with randomly initialized weights, the generated embeddings

are significantly accurate.

Embeddings generated by considering the node numbers in their one-hot repre-

sentations as node features are shown in Figure 15

Embeddings generated by considering the length of the shortest path from a node

to each of the two leaders as node features are shown in Figure 16

Both the plots show a clear separation between the members belonging to two

different groups each led by one of the two leaders.

36

Figure 14: Zachary Karate Club Graph

Figure 15: Node Embeddings for Zachary Karate Club with Identity Matrix as fea-
tures

37

Figure 16: Node Embeddings for Zachary Karate Club with Shortest Path length as
features

Although this simple setup is powerful, it is not suitable for large and complex

graphs. Following sections describe the operations of Graph Convolutional Networks

on such graphs.

4.3 Graph Convolutional Networks (GCN)

∙ The model is implemented in Python using TensorFlow deep learning library.

∙ The configuration for the showcased results: 230 Epochs, 16 Hidden layers,

Learning rate of 0.01.

∙ The default implementation for GCN is unable to handle the Reddit dataset

because of the large size. This is consistent with the original paper [4] which

too did not include the Reddit dataset in the results.

∙ The FastGCN paper did not run GCN experiments for Citeseer dataset so the

38

F1 scores are not available for the original implementation.

4.3.1 Results

Table 5 compares the F1 and Accuracy values for the implemented GCN algo-

rithm with modifications and the values provided in the original paper [4]. On the

test machine, the accuracy scores for all the datasets came out to be marginally bet-

ter than the original paper and can be interpreted to accurately mimic the intended

behavior of the algorithm as suggested by the paper. The original F1 scores, however,

were not mentioned in the original paper, and are borrowed from FastGCN [13] which

did not have the scores for Citeseer dataset. The F1 experimentation scores seem to

be lower than those mentioned in FastGCN paper but cannot be verified since those

are not the official scores provided by GCN. The algorithm took a very long time

to process the Reddit dataset because of the large dataset size and the associated

processing overhead.

Dataset Measure Results (Experiments) Results (GCN [4]) Results (FastGCN [13])

Cora
F1 0.784 NA 0.865

Accuracy 81.7 81.5 NA

Pubmed
F1 0.788 NA 0.875

Accuracy 79.3 79.0 NA

Citeseer
F1 0.716 NA NA

Accuracy 70.9 70.3 NA

Reddit
F1 NA NA NA

Accuracy NA NA NA

Table 5: GCN F1 scores and Accuracy

39

Figure 17: GCN Micro F1 Scores

Figure 18: GCN Accuracy

40

Figure 19 displays the node-embeddings in a two-dimensional space, separated

into different categories for the Cora publications. As seen from the figure, the em-

beddings show that the publications are successfully categorized into 7 clusters with

each cluster representing a different category. Since the accuracy of GCN is low, there

are some false-positives which can be seen in the form of color-overlapping.

Figure 19: GCN Embeddings Visualization for Cora dataset

4.4 Fast GCN

∙ The model is implemented in Python using TensorFlow deep learning library.

∙ The configuration for the showcased results: 200 Epochs, 128 Hidden layers,

Learning rate of 0.01.

∙ FastGCN implementation provided by the authors as well as the paper does

not include experiments run on Citeseer database. The experiments, however,

consider Citeseer but I do not have the benchmark original Citeseer accuracy

or F1 results to compare with.

41

∙ FastGCN implementation and the paper does not include accuracy calculation

for the experiments performed on the datasets so the comparison with my ac-

curacy calculation would not be possible and therefore, is not considered.

4.4.1 Results

Table 6 compares the F1 and Accuracy values for the implemented FastGCN

algorithm with modification and the values provided in the original paper. On the test

machine, the F1 scores appear to be close to the scores provided in the paper which

is in alignment with the conclusions in the original paper. The test implementation

calculates the accuracy values for the experiments run on the datasets but they cannot

be compared with the original paper [13] since they were not provided with the paper.

Dataset Measure Results (Experiments) Results (Original Paper [13])

Cora
F1 0.9098 0.850

Test Accuracy 87.4 NA

Pubmed
F1 0.881 0.880

Test Accuracy 86.90 NA

Citeseer
F1 0.8346 NA

Test Accuracy 78.7 NA

Reddit
F1 0.9296 0.937

Test Accuracy 92.6 NA

Table 6: Fast GCN F1 scores and Accuracy

42

Figure 20: FastGCN Micro F1 Scores

Figure 21 displays the node-embeddings for the Cora dataset using FastGCN. As

seen from the figure, the number of false-positives is significantly less than the ones

present in the GCN embeddings shown in Figure 19. This is in line with the accuracy

scores for both the techniques where the accuracy of FastGCN for all the datasets is

significantly greater than the accuracy of GCN for those datasets.

43

Figure 21: FastGCN Embeddings Visualization for Cora dataset

4.5 GraphSAGE

∙ The results showcased in this section are derived from two separate implemen-

tations of the algorithm. GraphSAGE [12] was initially designed to work effi-

ciently on larger graphs, and involve a significant amount of pre-processing for

each node. This model is implemented in Python using TensorFlow deep learn-

ing library. However, the implementation is not suitable for smaller datasets like

Cora dataset because of the unnecessary processing for its size. The authors,

for this exact purpose, provided a simpler implementation in Python using the

PyTorch deep learning library.

∙ The configuration for the TensorFlow implementation: 150 Epochs, 128 Hidden

layers, Learning rate of 0.01.

∙ The default GCN provides an implementation for Max-Pool aggregator, Mean

aggregator, GCN aggregator, and the LSTM aggregator. The simpler imple-

44

mentation, however, provides only the GCN aggregator and the Mean aggrega-

tor implementation since those are the highest-performing among all the aggre-

gators on an average. For the purpose of experimentation, this project sticks to

the GCN aggregator and the Mean aggregator.

4.5.1 Results

Table 7 compares the F1 scores of the test implementation with those provided

by the original paper. Since the datasets Cora and Pubmed were not mentioned in

the original paper, this project refers to FastGCN paper [13] tests on GraphSAGE

for those scores. The results include scores for both the GCN aggregator and the

mean aggregator and shows that the test results are close to the original scores for

the Reddit dataset. The scores differ for Cora and Pubmed but a conclusion cannot

be derived since the scores are not from the original paper but from FastGCN tests

on the original paper.

Dataset Aggregator F1 (Expt.) F1 (GraphSAGE [12]) F1 (FastGCN [13])

Cora
GCN Aggr [12] 0.868 NA 0.829
Mean Aggr [12] 0.8760 NA 0.822

Pubmed
GCN Aggr [12] 0.83 NA 0.849
Mean Aggr [12] 0.874 NA 0.888

Citeseer
GCN Aggr [12] 0.69 NA NA
Mean Aggr [12] 0.738 NA NA

Reddit
GCN Aggr [12] 0.9258 0.930 0.923
Mean Aggr [12] 0.9512 0.950 0.946

Table 7: GraphSAGE F1 scores

45

Figure 22: GraphSAGE GCN Aggregator F1 Scores

Figure 23: GraphSAGE Mean Aggregator F1 Scores

46

4.6 Attention Aggregator

∙ The aggregator is implemented in Python using PyTorch deep learning library.

4.6.1 Results

Table 8 compares the F1 scores of the GCN and Mean aggregators from the

original paper to the F1 score of the GraphSAGE attention aggregator designed as

a part of this project. As seen in Table 8, the F1 score for the attention aggregator

is marginally higher than those for the default aggregators when it comes to smaller

datasets like Cora and Pubmed, however, in case of larger Reddit dataset, the

attention aggregator F1 score is lower than the one provided in the original paper.

The decrease in score for the Reddit dataset might be a consequence of the larger

size which is making the attention aggregator not perform up to the mark. This will

be clearer in the subsequent tests.

Dataset Aggregator F1 Score (Original Paper)

Cora
GCN Aggr[12] 0.829
Mean Aggr[12] 0.822

Attn Aggr 0.8921

Pubmed
GCN Aggr[12] 0.849
Mean Aggr[12] 0.888

Attn Aggr 0.8852

Citeseer
GCN Aggr[12] NA
Mean Aggr[12] NA

Attn Aggr 0.763

Reddit
GCN Aggr[12] 0.930
Mean Aggr[12] 0.950

Attn Aggr 0.8964
Table 8: Attention Aggregator Supervised F1 scores compared to other aggregator
score in original papers

47

Table 9 compares the F1 scores of the GCN and FastGCN algorithms to the F1

scores of the GraphSAGE implementation with the attention aggregator. The scores

from the attention aggregator are slightly higher than the other methods for Cora

and Pubmed datasets but lower than the other methods for the Reddit dataset. This

is right in line with the results showcased in Table 8 where the scores are lower for

the Reddit dataset. It may be the case that the attention aggregator is experiencing

some issues when it comes to larger datasets which results in a lower F1 score for

such datasets.

Dataset Aggregator F1 Score (Original Paper)

Cora
GCN [4] 0.865

FastGCN [13] 0.85
GraphSAGE with Attn Aggr 0.8921

Pubmed
GCN [4] 0.875

FastGCN [13] 0.88
GraphSAGE with Attn Aggr 0.8852

Citeseer
GCN [4] NA

FastGCN [13] NA
GraphSAGE with Attn Aggr 0.763

Reddit
GCN [4] NA

FastGCN [13] 0.937
GraphSAGE with Attn Aggr 0.8964

Table 9: Attention Aggregator Supervised F1 scores compared to other method scores
in original paper

Table 10 compares the F1 scores for the GCN aggregator and the Mean aggre-

gator from the test implementation with the F1 score for the attention aggregator.

Following the previous patterns, the F1 score of the attention aggregator is higher

than that of the other aggregator for Cora, Pubmed, and Citeseer datasets but lower

for the Reddit dataset. This shows that the attention aggregator needs to perform

better on larger datasets and can be a topic for further research.

48

Dataset Aggregator F1 Score (Experimentation)

Cora
GCN Aggr [12] 0.868
Mean Aggr [12] 0.876

Attn Aggr 0.8921

Pubmed
GCN Aggr [12] 0.83
Mean Aggr [12] 0.874

Attn Aggr 0.8852

Citeseer
GCN Aggr [12] 0.69
Mean Aggr [12] 0.738

Attn Aggr 0.763

Reddit
GCN Aggr [12] 0.9258
Mean Aggr [12] 0.9512

Attn Aggr 0.8964
Table 10: Attention Aggregator Supervised F1 scores compared to other aggregator
score in experimentation

Table 11 compares the F1 scores for the GCN and the FastGCN method with

the F1 score for the attention aggregator. The F1 scores for the Cora, Pubmed, and

the Citeseer dataset are significantly better than those of GCN and marginally better

than those of FastGCN. However, for the Reddit dataset, the attention aggregator

does not outperform the other ones.

49

Dataset Aggregator F1 Score (Experimentation)

Cora
GCN [4] 0.784

FastGCN [13] 0.9098
GraphSAGE with Attn Aggr 0.8921

Pubmed
GCN [4] 0.788

FastGCN [13] 0.881
GraphSAGE with Attn Aggr 0.8852

Citeseer
GCN [4] 0.716

FastGCN [13] 0.8346
GraphSAGE with Attn Aggr 0.763

Reddit
GCN [4] NA

FastGCN [13] 0.9296
GraphSAGE with Attn Aggr 0.8964

Table 11: Attention Aggregator Supervised F1 scores compared to other method
scores in experimentation

4.7 Experimentation: Performance comparison of all the techniques

Dataset GCN[4] FastGCN[13] GraphSAGE Mean[12]
Cora 0.784 0.9098 0.868

Pubmed 0.788 0.881 0.874
Citeseer 0.716 0.8346 0.738
Reddit NA 0.9296 0.9512

Table 12: Implementation results for existing methods

4.8 Experimentation: Performance comparison of attention aggregator
with other techniques

Dataset GCN[4] FastGCN[13] GraphSAGE Mean[12] Attention Aggr.
Cora 0.865 0.85 0.822 0.8921

Pubmed 0.875 0.88 0.888 0.8852
Citeseer NA NA NA 0.763
Reddit NA 0.937 0.950 0.8964

Table 13: Original paper results compared with Attention aggregator

50

CHAPTER 5

Conclusion

This project develops a unified framework for three known node embedding tech-

niques, namely Graph Convolutional Network (GCN), Fast GCN, GraphSAGE, in

order to make it possible to compare them with each other on the same set of bench-

mark datasets. We measured the performance with regards to F1 score and accuracy.

This was not possible before since different techniques used different datasets in their

own custom input format and showcased different performance measures. One part of

the project implements and modifies the node-embedding techniques, and streamlines

them in order to work with all the different datasets. Therefore, it generates results

in all the expected measures. The experimentation data from Table 12 shows that

FastGCN performs consistently better on smaller datasets, which can be attributed to

the sampling mechanism that it improves over GCN. However, for the Reddit dataset,

which has a lot of nodes and edges, and is a larger graph, the GraphSAGE algorithm

outperforms the other methods. This is right in line with the fact that GraphSAGE

was built for larger graphs and achieves the performance improvement by using batch

pre-processing of node features.

Another aspect of the project is to design a new aggregator model for the Graph-

SAGE algorithm and analyze/compare the performance of the new model with that of

other aggregators as well as other models. Table 13 showcases the performance of the

new aggregator model, named attention aggregator, and its comparison with other

models as well as the best-performing GraphSAGE aggregator, which is the Mean

aggregator. From the experimental results, one can see that the aggregator model

performs significantly better than other methods for the Cora dataset, which has the

51

smallest size among all the available datasets. On Pubmed dataset, the attention ag-

gregator performs almost the same as all the other methods with the difference being

negligible. Since other techniques did not use the Citeseer dataset, the performance

of attention aggregator cannot be compared with the original one. Lastly, for the

Reddit dataset, the performance of the attention aggregator is not as good as that

of the FastGCN and GraphSAGE Mean aggregator, which is the best performing for

the dataset. This might be partly because the attention aggregator seems to have

some performance issues when it comes to larger datasets. This is something that

can be a part of further research studying the effect of increasingly larger graphs on

the aggregator performance.

52

Bibliography

[1] Nandi and A. Das, “Online social network mining: Current trends and research

issues,” International Journal of Research in Engineering and Technology, vol. 3,

p. 346, Apr. 2014. doi: 10.15623/ijret.2014.0304062.

[2] L. Backstrom and J. Leskovec, “Supervised random walks: Predicting and rec-

ommending links in social networks,” CoRR, vol. abs/1011.4071, 2010. arXiv:

1011.4071. [Online]. Available: http://arxiv.org/abs/1011.4071.

[3] C. Moschopoulos, S. Likothanassis, V. G. Stamatopoulos, and S. Kossida, “Ap-

plying graph theory on protein - protein interaction data,” in 2009 16th In-

ternational Conference on Systems, Signals and Image Processing, Jun. 2009,

pp. 1–4. doi: 10.1109/IWSSIP.2009.5367688.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph con-

volutional networks,” CoRR, vol. abs/1609.02907, 2016. arXiv: 1609.02907.

[Online]. Available: http://arxiv.org/abs/1609.02907.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web.,” Stanford InfoLab, Technical Report 1999-66, Nov.

1999, Previous number = SIDL-WP-1999-0120. [Online]. Available: http://

ilpubs.stanford.edu:8090/422/.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst, “Geometric deep learning: Going beyond euclidean data,” CoRR,

vol. abs/1611.08097, 2016. arXiv: 1611.08097. [Online]. Available: http://

arxiv.org/abs/1611.08097.

53

https://doi.org/10.15623/ijret.2014.0304062
http://arxiv.org/abs/1011.4071
http://arxiv.org/abs/1011.4071
https://doi.org/10.1109/IWSSIP.2009.5367688
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://arxiv.org/abs/1611.08097
http://arxiv.org/abs/1611.08097
http://arxiv.org/abs/1611.08097

[7] M.Belkinand and P.Niyog, “Laplacian eigenmaps and spectral techniques for

embedding and clustering,” Neural Information Processing Systems, 2002.

[8] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with

global structural information,” in Proceedings of the 24th ACM International

on Conference on Information and Knowledge Management, ser. CIKM ’15,

Melbourne, Australia: ACM, 2015, pp. 891–900, isbn: 978-1-4503-3794-6. doi:

10.1145/2806416.2806512. [Online]. Available: http://doi.acm.org/10.

1145/2806416.2806512.

[9] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social

representations,” in Proceedings of the 20th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, ser. KDD ’14, New York,

New York, USA: ACM, 2014, pp. 701–710, isbn: 978-1-4503-2956-9. doi: 10.

1145/2623330.2623732. [Online]. Available: http://doi.acm.org/10.1145/

2623330.2623732.

[10] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”

CoRR, vol. abs/1607.00653, 2016. arXiv: 1607 . 00653. [Online]. Available:

http://arxiv.org/abs/1607.00653.

[11] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Pro-

ceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’16, San Francisco, California, USA:

ACM, 2016, pp. 1225–1234, isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.

2939753. [Online]. Available: http : / / doi . acm . org / 10 . 1145 / 2939672 .

2939753.

54

https://doi.org/10.1145/2806416.2806512
http://doi.acm.org/10.1145/2806416.2806512
http://doi.acm.org/10.1145/2806416.2806512
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
http://arxiv.org/abs/1607.00653
http://arxiv.org/abs/1607.00653
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
http://doi.acm.org/10.1145/2939672.2939753
http://doi.acm.org/10.1145/2939672.2939753

[12] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on

large graphs,” CoRR, vol. abs/1706.02216, 2017. arXiv: 1706.02216. [Online].

Available: http://arxiv.org/abs/1706.02216.

[13] J. Chen, T. Ma, and C. Xiao, “Fastgcn: Fast learning with graph convolutional

networks via importance sampling,” CoRR, vol. abs/1801.10247, 2018. arXiv:

1801.10247. [Online]. Available: http://arxiv.org/abs/1801.10247.

[14] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,

“Graph attention networks,” in 6th International Conference on Learning Rep-

resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings, 2018. [Online]. Available: https://openreview.

net/forum?id=rJXMpikCZ.

[15] H. Zhang, M. Li, M. Wang, and Z. Zhang, Understand graph attention network.

[Online]. Available: https://docs.dgl.ai/en/latest/tutorials/models/1_

gnn/9_gat.html#sphx-glr-tutorials-models-1-gnn-9-gat-py.

55

http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1801.10247
http://arxiv.org/abs/1801.10247
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://docs.dgl.ai/en/latest/tutorials/models/1_gnn/9_gat.html#sphx-glr-tutorials-models-1-gnn-9-gat-py
https://docs.dgl.ai/en/latest/tutorials/models/1_gnn/9_gat.html#sphx-glr-tutorials-models-1-gnn-9-gat-py

	Deep Learning on Graphs using Graph Convolutional Networks
	Recommended Citation

	Introduction
	Problem Statement
	Terminology
	Graphs
	Feature Vectors
	Neural Networks
	Node Embeddings
	Node Classification

	Related Work
	Methods using matrix-factorization
	Methods using random walk
	Methods using auto-encoders
	Methods using graph-convolutions
	Graph Convolutional Networks (GCN)
	Fast GCN
	GraphSAGE
	Graph Attention Networks

	Methodology
	Developing a unified analysis framework for evaluating existing methods
	Graph Convolutional Network (GCN)
	Fast Graph Convolutional Network (Fast GCN)
	GraphSAGE

	Graph Attention Aggregator Model
	Principles of attention in graphs
	Aggregator Model using Attention

	Experiments and Results
	Datasets
	Cora Citation Dataset
	Pubmed Citation Dataset
	Citeseer Citation Dataset
	Reddit Posts Dataset

	Generating and visualizing Node Embeddings
	Graph Convolutional Networks (GCN)
	Results

	Fast GCN
	Results

	GraphSAGE
	Results

	Attention Aggregator
	Results

	Experimentation: Performance comparison of all the techniques
	Experimentation: Performance comparison of attention aggregator with other techniques

	Conclusion

