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ABSTRACT

Designing single guide RNAs for CRISPR/Cas9

by Neha Atul Bhagwat

Researchers have been working towards development of tools to facilitate regular

use genome engineering techniques. In recent years, the focus of these efforts has been

the Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/CRISPR

associated(Cas) systems. These systems, while found naturally in bacteria and archaea

as an immunity mechanism, can be used for genome engineering in eukaryotes.

There are three major computational challenges associated with the use of

CRISPR/Cas9 in genome engineering for mammals - identification of CRISPR arrays,

single guide RNA design and minimizing off-target effects. This project attempts to

solve the problem of single guide RNA design using a novel approach.

Researchers have been trying to solve the problem by using different machine

learning classification algorithms. The algorithms have been trained to use the

sequential and structural properties of single guide RNAs (sgRNAs). This project

explores the use of a neural network based approach to solve the sgRNA design

problem. A form of the Recurrent Neural Network (RNN) called the Long Short Term

Memory (LSTM) model can be used as feature-less classification model to differentiate

between functional and non-functional single guide RNAs.

The project covers different experiments conducted using Support Vector Machine

and Random Forest classifiers using sequential and structural features to identify

the most potent sgRNAs in a given set of input sgRNAs. It also summarizes the

implementation of the LSTM model and its results, along with the cross-validation

results for each of these models. Through these results, it has been observed that

LSTMs perform better than existing models such as Random Forest Classifiers and



Support Vector Machines and give results comparable to existing tools.
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CHAPTER 1

Introduction

Once the DNA double helix was discovered, scientists worked towards developing

techniques of modifying, building and breaking DNA[3]. Following the development

of these techniques, the focus moved to techniques aimed at making site-specific

modifications to genomes. Genome editing is an important research topic in today's

day and age for several reasons. The applications of this research vary from disease

prevention and cure to resurrection of species and creation of new, healthy foods.

While genome editing is an attempt to bring positive change in different domains

and is already being used in some domains, the widespread adoption of any genome

editing technique is subject to technical barriers and ethical concerns[4].

CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats.

Cas9 is the CRISPR-associated enzyme that is instrumental in cutting the DNA

at the targeted locus. The CRISPR-Cas9 is becoming increasing popular in the

field of genome engineering due to advantages such as simplicity, cost-effectiveness,

easy technology and capability to precisely target or manipulate the genomic

loci[3]. While the CRISPR system is capable of precisely targeting the genomic

loci, there is a possibility that the incorrect locus is targeted. The target sequence

used in the CRISPR system may occur elsewhere in the genome leading to edits

at the incorrect location. Modifications made by the CRISPR system at the

incorrect site are referred to as off-target effects. There is still a pressing need

to verify that the correct sites are being targeted with minimum to no off-target.

Off-targets can potentially be lethal and it is imperative to improve the system

so as to increase on-target specificity before the system becomes feasible for regular use.
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1.1 Background

Traditional approaches for genome editing include using oligonucleotides, Zinc

Finger Nucleases (ZFNs) and TAL Effector Nucleases (TALENs)[3]. In an early

approach used for genome editing, disease-causing genes were inactivated using

oligonucleotides. An oligonucleotide is a polynucleotide with few nucleotides that can

be used to stop the transcription of a disease-causing gene by means of an antisense

specific to the target gene. Another approach uses small molecules called siRNAs to

disrupt the expression of a disease-causing gene, rendering it incapable of causing any

harm. A newer approach uses ZFNs and TALENs attached to sequence-specific DNA

to introduce breaks at specific positions. Following several experiments using the

last approach, ZFNs and TALENs have been engineered for use in many organisms.

These approaches, however, face problems in protein design and synthesis and are

expensive[4].

The field of genome editing is undergoing a transformation due to the easy genome

engineering technology called CRISPR-Cas9. The CRISPR-Cas9 system is developed

from the type II CRISPR system in bacteria. The naturally occurring CRISPR

system provides immunity in bacteria. Recent work has made it significantly easier

to use CRISPR-Cas9 in mammalian genome engineering by reducing the number of

components required to implement it[5, 6].

In the next chapter, we go over the natural CRISPR-Cas9 system and modifi-

cations made to the natural system to facilitate its adoption in the field of genome

engineering.
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CHAPTER 2

The CRISPR-Cas9 System

In order to understand the use of CRISPR-Cas9 in genome engineering and the

revolution that it has brought, it is important to understand the naturally occurring

CRISPR-Cas9 system and how its components have been modified to make it more

applicable.

2.1 The Natural CRISPR-Cas9 System

In 1987, Yoshizumi Ishino and colleagues at Osaka University found short direct

repeats separated by short sequences in Escherichia coli[3, 7]. Subsequently, similar

repeats interspaced with short sequences were found in several bacteria and archaea.

Numerous predictions and proposals were made about their role, including their

potential significance in DNA repair [8, 9]. In 2006, it was proposed that the Cas

system is an adaptive defense technique that uses RNAs as signatures of previous

attacks by a virus or phage. This was followed by a spurt in experiments to understand

the Cas system and its use in genome engineering, which has continued till date [10, 11].

The natural CRISPR-Cas arrays consist of identical direct repeats separated by

spacers acquired from the DNA of an invading virus of phage[3].

The natural process of adaptive immunity by using CRISPR-Cas9 system occurs

in three stages —Adaptation, Expression and Interference [1]. This process can be

easily understood from Figure 1 which is part of the research by Donohoue et al. [1].

1. Adaptation: In adaptation, the host organism is attacked by an invading

virus [1]. The protospacer is a sequence of the attacking virus that is acquired

by the host organism and saved as a spacer within the CRISPR array. As the

name suggests, a protospacer adjacent motif (PAM) is a very short sequence
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Figure 1: The Natural CRISPR-Cas system [1]

that lies next to the protospacer. The Cas proteins recognize the PAM and start

targeting the nucleic acid based on its location. The Cas genes are expressed

and bound to the protospacer sequence of the DNA. The DNA sequence is then

incorporated into the CRISPR array as a spacer such that there is a repeat on

both sides of the spacer.

2. Expression: When the same virus or phage attacks for the second time, the

expression process starts. This process begins with the transcription of the

complete CRISPR array. Repeat-spacer elements are processed to form the

CRISPR RNA (crRNA). The crRNA binds to the Cas nuclease and leads to the

formation of the Cas:crRNA complex. The Cas nuclease is sometimes referred

to as the trans-activating crRNA (tracrRNA) and the complex is then called

the tracrRNA:crRNA complex.
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3. Interference: This complex then looks for the complementary protospacer in

the invading DNA. The invading DNA is cleaved at the location where the

complementary protospacer is found next to the PAM sequence.

2.2 The engineered single guide RNA chimera

In 2011, it was discovered that the tracrRNA was essential for crRNA

maturation[12]. In 2012, it was shown that the Streptococcus Pyogenes CRISPR-Cas9

protein was a dual RNA- guided endonuclease[3, 5]. The tracrRNA:crRNA complex

was found to be crucial for directed DNA cleavage. Thus, the natural CRISPR—Cas9

system consists of two functionally important components in the interference phase

—tracrRNA and crRNA. These two components were then engineered into a single

guide RNA (sgRNA)[2]. Figure 2 effectively differentiates between the natural system

and the modified system. The sgRNA retained two properties —the 20 nucleotide

sequence at its 5'end that is complementary to the target site and can be bound to it

by Watson- Crick pairing, and the structure at the 3'end that binds to Cas 9. This

development made the process of genome engineering easier and cost-effective. Zinc

Finger Nucleases and TAL Effector nucleases required protein design and synthesis

for each target DNA site. The CRISPR—Cas9 system on the other hand only needs

a change in the single guide RNA. These factors have led to the widespread adoption

of the CRISPR-Cas9 system in the genome engineering field.

The next chapter explains the importance of designing single guide RNAs in order

to successfully use them in the field of genome engineering.
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Figure 2: Difference between the natural CRISPR—Cas9 system and sgRNA
chimera [2]
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CHAPTER 3

Importance of designing single guide RNAs

Even though CRISPR-Cas9 is a cellular immune system, the genome engineering

technique associated with the use of Cas9 protein and the single guide RNA (sgRNA)

is often referred to as the CRISPR-Cas9 system in the literature and media [3]. The

term CRISPR is actually related to the CRISPR arrays and not the technique that is

used for genome engineering. Designing single guide RNAs (sgRNAs) is an important

problem to solve in order to make CRISPR/Cas9 systems reliable.

Much research hypothesizes that the functional single guide RNAs are structurally

and sequentially different from the non-functional single guide RNAs [6, 13, 14].

Potential guide RNA sequences are extracted from genomic sequences based on the

location of a protospacer adjacent motif (PAM). In case of the Cas9 system, the PAM

sequence is NGG (any nucleotide followed by two guanines). The length of a single

guide RNA is 20 nucleotides [6]. Thus, the 20 nucleotides adjacent to a PAM can be

considered as a potential sgRNA.

It is highly likely that the same sequence of 20 nucleotides is present elsewhere

in the genome. When a sgRNA binds at the targeted genomic locus, it is said to

be on-target. However, a sgRNA can potentially bind at one or more unintended

sites resulting in non-specific genome editing at incorrect loci [15, 16]. Whether or

not significant off-target effects are seen in CRISPR-Cas9 is still being debated [17].

But it is important to minimize the off-target effects that may appear as a result

of genome engineering using CRISPR-Cas9 in order to enable efficient genome en-

gineering [13]. Thus, predicting on-target efficacy and reducing off-target effects in

an important computational challenge to make genome-editing using CRISPR/Cas9

systems feasible [18].
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The process of designing single guide RNAs involves identifying the 20-nucleotide

sequences adjacent to a protospacer adjacent motif that can potentially function as

sgRNAs. The learning algorithm is then used with these potential sgRNAs as input

to classify them into 2 groups - functional and non-functional sgRNAs based on the

features that were used to train the learning algorithm.

In the next chapter, the process of data collection followed by previous researchers

is explained in detail.
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CHAPTER 4

Existing Datasets

Data collection, in single guide RNA design, involves two steps —collection of

genomic sequences and collection of potential single guide RNAs from these genomic

sequences. This step is not necessarily part of every sgRNA design research. For

example, while the research for the Azimuth tool by the Genetic Perturbation Platform

involved extensive data collection, the research for the tool WU-CRISPR made use of

the Avana and Asiago libraries that were developed as a result of Azimuth [14]. This

chapter goes over the process of data collection that was followed to create datasets

by researchers.

The initial dataset for the Avana and Asiago libraries was created by targeting

the transcripts listed by the Consensus Coding Sequence Database (CCDS) [13].

CCDS consists of 18,675 genes for the human genome and 20,077 genes for the mouse

genome [19]. For a gene with over one CCDS ID, the one with the smaller transcript

was chosen. The NGG protospacer adjacent motif (PAM) was annotated along both

strands. The single guide RNAs were chosen for inclusion from these annotated

sequences by dividing them into tiers based on three criteria. One of these criteria is

based on the rule set 1 on-target efficacy score. This rule set was created as a result of

an earlier research by the GPP group [14]. Through step-by-step relaxation of criteria,

6 sgRNAs were chosen per gene. The three criteria are as follows:

1. Criterion A:

• Target site in 0-25% of the protein coding region

• Target site in 25-50% of the protein coding region

• Target site in 50-75% of the protein coding region

• Target site in 70-100% of the protein coding region
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2. Criterion B:

• 13 nucleotides in the sgRNA sequence are unique

• 17 nucleotides in the sgRNA sequence are unique

• 20 nucleotides in the sgRNA sequence are unique

• Sequence is not unique

3. Criterion C:

• Rule set 1 on-target score in the range 0.9-1.0

• Rule set 1 on-target score in the range 0.8-0.9

• Rule set 1 on-target score in the range 0.7-0.8

• Rule set 1 on-target score in the range 0.6-0.7

• Rule set 1 on-target score in the range 0.5-0.6

• Rule set 1 on-target score in the range 0.4-0.5

• Rule set 1 on-target score in the range 0.3-0.4

• Rule set 1 on-target score in the range 0.2-0.3

• Rule set 1 on-target score in the range 0-0.2

The dataset created using CCDS and the above criteria can be used for designing

single guide RNAs with high on-target specificity and low off-target effects.

The research for the tool DeepCRISPR also involved a dataset creation step.

In this step, all potential sgRNAs (20 nucleotide sequences) adjacent to a NGG

protospacer adjacent motif were collected from the coding and non-coding regions of

the human genome [18]. This resulted in approximately 0.68 billion sgRNA sequences

for the human genome. This acts as a large unlabeled dataset for the sgRNA design

process.

While the dataset creation step is not followed in all models, each model uses

different features to classify the single guide RNAs. The next chapter summarizes

10



the two main families of features used in different models and explains in detail the

individual features in each.
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CHAPTER 5

Features of single guide RNAs

Several examples of research and single guide RNA (sgRNA) design tools make

use of the sequential and structural features to differentiate between a functional and

non-functional sgRNA with the help of machine learning models.

5.1 Sequential Features

The first research group to include sequence features in evaluating potency

of single guide RNAs was the Genetic Perturbation Platform [14]. Position-wise

nucleotide composition and contiguous nucleotide presence are some sequence-based

characteristics of single guide RNAs that have been considered in the design of sgRNAs.

A comprehensive list of sequence-based features of sgRNAs that have been

considered in past research is as follows:

1. Position-specific sequential features:

(a) Order 1 position-wise nucleotide : This feature takes into consid-

eration which nucleotide is present at each position of the single guide

RNA [6, 13, 20]. This is a categorical variable as each position can have

one of four values —‘A’, ‘C’, ‘T’ or ‘G’. In order to make this feature

usable in machine learning models, this feature is converted into one-hot

encoded vectors [13]. For each position, 4 binary vectors are created which

can take the value 0 or 1. Each binary vector corresponds to a possible

nucleotide that can be found at this position. Since each position can have

a total of four possible nucleotides, 4 vectors are created for each position.

12



(b) Order 2 position-wise nucleotides : Similar to the order 1 position-wise

nucleotide feature, this feature considers consecutive pairs of nucleotides as

a feature [6, 13, 20]. Order 2 position-wise nucleotides are also categorical

features and in order to use them to train the machine learning model,

they are converted into 16 one-hot encoded vectors for each position [13].

For each position, 16 binary vectors are created which can take the value 0

or 1. Each binary vector corresponds to a possible nucleotide pair that

can be found at that position. A nucleotide pair can have four different

nucleotides in the first position and four different nucleotides in the second

position, leading to a total of 16 possible pairs. Therefore, 16 binary

vectors are created for each position.

(c) Nucleotides relative to the PAM: For Cas9 systems, the protospacer

adjacent motif (PAM) is considered as 'NGG'. The two nucleotides

adjacent to the two contiguous guanines ('NGGN') can also be considered

as features in the classification model [8]. As this is a position specific

feature with two nucleotides, it can be converted to 16 one-hot encoded

vectors. There can be four different nucleotides in each of the positions

in the nucleotide pair, resulting in 16 unique combinations. Therefore,

16 binary vectors which can take the value 0 or 1 are created for this feature.

2. Position-independent sequential features:

(a) Nucleotide count: The count of each individual nucleotide in the single

guide RNA can also be considered as a feature [6, 13]. It has been found

that the frequency of adenine can be a strong feature in differentiating

13



between functional and non-functional single guide RNAs (sgRNAs) [6, 13].

On the other hand, the nucleotide count of guanine, cytosine and thymine

cannot be considered as a good indicator of whether a single guide RNA is

functional or not. Nucleotide count will give four features for every single

guide RNA —each of the four features will represent the count of each of

the four nucleotides.

(b) Dinucleotide count: Dinucleotide count feature represents the count

of every potential dinucleotide that can be found in a single guide RNA

(sgRNA) [6, 13]. There are 16 possible dinucleotides that can be found

in a sgRNA. Thus, dinucleotide count results in 16 features. Out of all

the dinucleotides, it has been found that ‘GG’ is the most indicative

dinucleotide in classification between functional and non-functional

sgRNAs.

(c) Trinucleotide count: Similar to the nucleotide count and dinucleotide

count features, trinucleotide count considers every sequence of three

nucleotides that can be found in a sgRNA [6]. Out of all the trinucleotides,

it has been found in past research that ‘GGG’ is the most important

trinucleotide to be considered in the classification model for designing

sgRNAs.

The count of contiguous nucleotides is stopped at trinucleotide count

because any sgRNA with over three contiguous bases is eliminated.

Repetitive bases are indicative of poor functionality in sgRNAs. Presence

14



of 4 contiguous adenines, 4 contiguous guanines, 5 contiguous cytosines

or 5 contiguous thymines is considered as repetitive and the sgRNA is

removed from further consideration.

5.2 Structural Features

The accessibility of individual nucleotides plays an important role in determining

the potency of a single guide RNA. Only if each nucleotide is accessible can the sgRNA

bind at the appropriate genomic loci. Self-folding free energy, structural stability

and thermodynamic features play an important role in determining the structural

accessibility of any nucleotide sequence.

A comprehensive list of structural features of sgRNAs that have been considered

in past research is as follows:

1. Self-folding free energy: Secondary structures of the single guide RNA

(sgRNA) can be calculated using RNA fold [6]. Thus, the self-folding free energy

of the sgRNA can be found and used as a feature in the classification model.

2. Accessibility of individual nucleotides: The accessibility of nucleotides

varies at specific positions for functional sgRNAs as compared to non-functional

sgRNAs [6]. For example, the three nucleotides at positions 18-20 are more

accessible in case of functional sgRNAs as compared to non-functional sgRNAs.

3. Structural stability of sgRNA: The structural stability of a single guide

RNA (sgRNA) can be estimated based on its GC content [6, 13]. It has been

observed that non-functional sgRNAs have higher GC content as compared to

15



functional sgRNAs.

4. Melting points of sgRNA: Melting point of a sgRNA can be used as a

thermodynamic feature in the classification model [13]. The melting points can

be estimated used the Biopython package.

5. Melting points of parts of sgRNA : This thermodynamic feature can

be divided into three features —melting point of 5 nucleotides next to the

protospacer adjacent motif (PAM), the next 8 nucleotides and the next 5

nucleotides [13]. Like the previous feature, these values can be calculated using

the Biopython package.

Depending on the tool and the classification model used in the tool, different

subsets of the features listed above are used to train the classification models. The

next chapter describes the classification models used by some of these tools.
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CHAPTER 6

Classification models for designing single guide RNAs

Humans are capable of classifying objects that they can see, hear or feel into

categories. In order to do this, we identify characteristic features of the objects that

we have to classify and develop a relationship between the features and the object.

A machine learning based classification model works in a similar manner. To use a

machine learning model for classification we need a set of features of each object and

a set of class labels representing all the categories or classes into which the objects

can be divided [21, 22].

Classification involves a set of data with pre-defined classes and features

(attributes). Based on this data, which is commonly referred to as the training

set, the model is built using a learning algorithm [21]. The model represents a

relation between the set of features and the class label. This model can then be

used to predict the classes of data for which features are known, but the class

labels are unknown. Support vector machines, decision trees, nearest neighbors are

commonly used approaches for classification models [23]. Besides these traditional ma-

chine learning approaches, deep learning can also be used to build a classification model.

6.1 Classification models in sgRNA design

Classification models for sgRNA design incorporate some of the features listed in

the previous chapter to train the model to identify the differences between functional

and non- functional sgRNAs.

Some of the classification models used in different research publications and tools

are listed next:
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1. WU-CRISPR: This Washington University tool used a support vector ma-

chine (SVM) with a radial basis function (RBF) kernel to differentiate between

functional and non-functional single guide RNAs [6]. The RBF kernel is useful

in classification of data that is not linearly separable.

2. Genetic Perturbation Platform (GPP): The GPP group has developed

two tools for sgRNA design. The first tool did not use a machine learning model

for sgRNA design. The research for the second tool, developed in 2016, made

use of several models in an attempt to identify the one that performed best [13].

The predictive classification models used in this tool are:

• Linear Regression

• L1 regularized Linear Regression

• L2 regularized Linear Regression

• Support Vector Machine plus Logistic Regression

• Random Forest Classification

• Gradient boosted Regression Tree

• L1 Logistic Regression (Classifier)

• Support Vector Machine Classification

3. DeepCRISPR: DeepCRISPR is one of the first sgRNA design tools that

makes use of deep neural networks for the purpose. Specifically, it uses a deep

convolutional de-noising neural network to implement a deep unsupervised

representation learning algorithm [18].

4. Study on key sequence features of sgRNAs: This study, which only takes

into consideration the sequential characteristics of single guide RNAs, makes use

of a support vector machine to implement a classification model for functional
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and non-functional sgRNAs [20].

5. Library-on-library approach: This study also implemented a support vector

machine to capture relation between functional and non-functional sgRNAs [24].

Ten-fold cross validation and test data were used to evaluate the accuracy of

the model.

The next chapter explains the different steps followed in this research and the

experiments conducted.
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CHAPTER 7

Methods
7.1 Dataset Collection

The Brunello and Brie datasets published by Doench and colleagues were used

as a basis for the dataset used for classification [13]. The Brunello and Brie datasets

contain the 4 best-ranked sgRNAs for each target transcript belonging to the human

and mouse genome.

While this dataset provided a list of functional single guide RNAs, implementation

of classifiers requires both functional and non-functional sgRNAs. In order to create a

negative dataset, the accession numbers in the Brunello and Brie datasets were used.

With these accession numbers and the BioPython package, the genomic sequence

for each accession number was retrieved from NCBI [25, 26]. Single guide RNAs are

sequences of 20 nucleotides found on the basis of the presence of a protospacer adjacent

motif (PAM). Negative instances were found by scanning the genomic sequences for a

PAM (NGG motif) in both directions. Each 20 nucleotide sequence adjacent to a NGG

motif was used considered for inclusion in the dataset. If the sgRNA was found in the

original dataset, it was assigned the class 1. Other sgRNAs were assigned the class

0. At the end of this step, a dataset was created with functional and non-functional

sgRNAs.

The non-functional sgRNAs were very high in number in comparison to the

functional sgRNAs. In order to build an effective classifier, the number of samples

from each class should be more or less the same. The number of non-functional

sgRNAs were restricted to the number of functional sgRNAs for each target transcript.

This led to the creation of a balanced dataset. Each single guide RNA stored in this

dataset includes the following details:

1. Target Transcript
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2. Strand (sense/antisense)

3. sgRNA Target Sequence

4. Target Context Sequence

5. PAM Sequence

6. start

7. end

8. class (0 or 1)

7.2 Feature Extraction

To implement the feature-dependent machine learning classification models,

sequential and structural features were used. The following features were extracted

for each single guide RNA:

7.2.1 Sequential Features

Similar to earlier research, the sequential features used include position-specific

and position-independent features. The following sequential features were used to

identify single guide RNAs:

1. Position-specific Sequential Features :

• Order 1 position-wise nucleotide: This feature holds the letter repre-

senting the nucleotide present at each position of the single guide RNA

- A, C, G or T - as explained in 1a. Depending on the classifier used,

these representations are converted to labeled features or one-hot encoded

features.

Labeling the one-hot encoded features involves converting each feature

to a numerical representation. For example, A is represented as 0, C is
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represented as 1, and so on. In order to label the order 1 nucleotides, the

LabelEncoder function from the preprocessing package of the sklearn API

was used [27].

To convert the categorical features into one-hot encoded features, each

position-wise feature was converted into four one-hot encoded features - one

for each possible nucleotide that could be found at each position. There are

a total of 20 order 1 features for each sgRNA. When converted to one-hot

encoded features, the total number of order 1 nucleotide features becomes

80. To convert one-hot encoded features to order 1 nucleotide features, the

OneHotEncoder function from sklearn API’s preprocessing package was

used [27].

• Order 2 position-wise nucleotides: Order 2 position-wise nucleotides

features consider consecutive pairs of nucleotides as features as explained

in 1b. Similar to order 1 nucleotide features, order 2 features are also

categorical in nature. Hence, they have to be converted into labeled or

one-hot encoded features depending on the classifier being used.

In case of order 2 nucleotides, labeling involves conversion of each possible

pair of dinucleotides into numerical labels. For example, AA is represented

as 0, AC is represented as 1, AG is represented as 2, and so on. In order to

convert the string features into numerical label values, the LabelEncoder

function from the preprocessing package of the sklearn API was used [27].

Similar to one-hot encoding in case of order 1 nucleotides, order 2 nucleotide

features were converted into one-hot encoded features by using the OneHo-

tEncoder function from the preprocessing package of the sklearn API [27].

When 19 order 2 nucleotide features for each sgRNA are converted into

one-hot encoded features, a total of 304 features are obtained.
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2. Position-independent Sequential Features:

• Nucleotide count: This feature considers the count of each nucleotide in

the single guide RNA as a feature. Thus, there are 4 features representing

nucleotide count - one for adenine, cytosine, guanine and thymine each.

Each sgRNA has 20 nucleotides.

• Dinucleotide count: In this position-based feature, the count of every

possible dinucleotide is considered as a feature. Each sgRNA has 19

dinucleotides. As there are 16 dinucleotides in all, 16 features represent

dinucleotide count in the feature set.

• Trinucleotide count: Trinucleotide count takes the count of each possible

trinucleotide in the sgRNA. A sgRNA has 18 trinucleotides. In all, there are

64 possible trinucleotides. Therefore, 64 features represent the trinucleotide

count in the feature set.

7.2.2 Structural Features

A single guide RNA’s structure, self folding energy and thermodynamic features

are symbolic of its stability. The following structural features have been extracted for

the classification models:

1. Melting Points of sgRNA: The melting point of the entire single guide RNA

is calculated using the Nearest Neighbor function in the BioPython package [25].

The nearest neighbor based melting point calculates melting temperatures based

on nearest neighbor thermodynamics.

2. Melting points of parts of sgRNA: The feature is represented by 3 values.

These 3 values are the melting points of the 3 parts of the sgRNA as explained

in 5. Each melting point is calculated using the Nearest Neighbor function in

the BioPython package [25].
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3. Self-folding free energy: The self-folding free energy of an sgRNA is calculated

using the ViennaRNA package.

7.3 Feature and Sequence Encoding

The features listed above include categorical and numerical features. For example,

if we consider the position-wise nucleotide features, the feature values are categorical.

There is a fixed set of possible values (categories) that each of these features can hold

and the feature value is one of these categories. Similarly, if we consider the nucleotide,

dinucleotide or trinucleotide counts, we can see that these values are numerical in

nature. Based on the classification model, the features need to be encoded to ensure

that the model can understand the features and derive meaningful insights.

7.3.1 One Hot Encoding

In order to incorporate categorical features in Support Vector Machine based

classification, it is essential to convert them into one-hot encoded features. One hot

encoding represents categorical variables as vectors. One hot encoding involves 2

steps:

1. Fetching all possible categories: In this process, all possible values that a

feature can take are listed.

2. Converting one feature into multiple one-hot encoded features: Using

the list of features obtained in the previous step, each feature is converted into

a binary vector. This binary vector has the value 0 for all categories except the

category to which it belongs.

Consider the order 1 position-wise nucleotide feature and the single guide RNA

- ’GATCCACACTCCCAACAAGG’. At position 1, the single guide RNA has the

nucleotide ’G’.
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Table 1: One hot encoding for categorical variables

A C G T
0 0 1 0

Table 2: Position 1 nucleotide features in five sgRNAs from the Brunello Dataset

sgRNA Position 1
GATCCACACTCCCAACAAGG G
CTGTTGTCACCATAACAACA C
GAACCATACACAGACCACAA G
TCATTGCCGAGTAATACAAA T
GCACCGCCACCATTGCACCA G

Step 1 of the one-hot encoding process involves listing all possible values that

the feature can take. At any position, a single guide RNA can have one of the four

nucleotides - ’A’, ’C’, ’G’ or ’T’.

For this sgRNA, the one-hot encoded feature corresponding to ’G’ will have have

the value 1 and the other 3 features will have the value 0. Therefore, the single

feature corresponding to order 1 position wise nucleotide will be divided into 4 one-hot

encoded features as seen in Table 1.

Table 2 and Table 3 show the order 1 position-wise nucleotide feature and the

corresponding one-hot encoded features for 5 single guide RNAs from the Brunello

dataset.

7.3.2 Label Encoding

Label Encoding is an essential step for the Random Forest Classifier to understand

text-based categories in categorical features. Label encoding involves the following

three steps:

1. Fetching all possible categories: In this process, all possible values that a

feature can take are listed.

25



Table 3: One hot encoded position 1 nucleotide features in five sgRNAs from the
Brunello Dataset

sgRNA A C G T
GATCCACACTCCCAACAAGG 0 0 1 0
CTGTTGTCACCATAACAACA 0 1 0 0
GAACCATACACAGACCACAA 0 0 1 0
TCATTGCCGAGTAATACAAA 0 0 0 1
GCACCGCCACCATTGCACCA 0 0 1 0

Table 4: Labels for order 1 position-wise nucleotide feature

Position 1 feature value Label
A 0
C 1
G 2
T 3

2. Assigning labels to the categories: For each of the categories listed in the

previous step, a numerical value is assigned to the categories.

3. Converting the feature values into labels: The feature values are then

converted into numerical labels based on the mapping generated in the previous

step.

Consider the feature order 1 position-wise nucleotide feature. According to the

first step, the possible values of this feature can be listed as - ’A’, ’C’, ’G’ and ’T’.

The next step involves assigning numerical values to each of these values. This

labeling can be observed in Table 4.

The last step involves assigning the labels to the respective features. Table 5 lists

the original feature value for order 1 position-wise nucleotide value.

7.3.3 Sequence Encoding

Sequence encoding is used specifically for the Long Short Term Memory (LSTM)

model. While sequence encoding is similar to label encoding, there are no features
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Table 5: Position 1 nucleotide features in five sgRNAs from the Brunello Dataset

sgRNA Order 1 Position-wise
nucleotide Encoded Label

GATCCACACTCCCAACAAGG G 2
CTGTTGTCACCATAACAACA C 1
GAACCATACACAGACCACAA G 2
TCATTGCCGAGTAATACAAA T 3
GCACCGCCACCATTGCACCA G 2

involved in sequence encoding. Each input single guide RNA sequence is converted

into a sequence of numerical labels to ensure that the LSTM model understands the

input sequences.

Sequence encoding involves 3 steps:

1. Fetching all possible subsequences for each position of the input se-

quence: In case of the sgRNA design problem, our input sequences are single

guide RNAs. For sgRNAs, each position can have one of the four nucleotides

- ’A’, ’C’, ’G’ and ’T’. Therefore, the possible subsequences for every position

remains the same.

2. Assigning labels for each unique input subsequence: In the sgRNA

design problem, as we have just 4 unique subsequences that can form the input

sequence, we can create the subsequence-label mapping as seen in Table 8.

3. Creating a numerical sequence from the input sequence: For each

sub-sequence (nucleotide) in the input sequence, the label for the sub-sequence

is obtained from the mapping created in the earlier step. This step converts the

input sequence into a list of numerical labels. For the first 5 sgRNAs in the

Brunello dataset, the numerical sequences can be seen in Table 6.
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Table 6: Labels for order 1 position-wise nucleotide feature

sgRNA Encoded Sequence
A 0
C 1
G 2
T 3

Table 7: Encoded sequences for sgRNA sequences from the Brunello dataset

Sub-sequence Label

GATCCACACTCCCAACAAGG [ 2, 0, 3, 1, 1, 0, 1, 0, 1, 3, 1, 1, 1, 0, 0,
1, 0, 0, 2, 2 ]

CTGTTGTCACCATAACAACA [ 1, 3, 2, 3, 3, 2, 3, 1, 0, 1, 1, 0, 3, 0, 0,
1, 0, 0, 1, 0 ]

GAACCATACACAGACCACAA [ 2, 0, 0, 1, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1,
1, 0, 1, 0, 0 ]

TCATTGCCGAGTAATACAAA [ 3, 1, 0, 3, 3, 2, 1, 1, 2, 0, 2, 3, 0, 0, 3,
0, 1, 0, 0, 0 ]

GCACCGCCACCATTGCACCA [ 2, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 0, 3, 3, 2,
1, 0, 1, 1, 0 ]

7.4 Machine Learning Classification Models

Traditional machine learning techniques can be used to build classification models

with the help of training data and a set of predefined features. For single guide RNA

design, sequential and structural features have been found to play an important role

in determining the functionality of a sgRNA. Therefore, these features as listed above

were used to for the classification model.

Two classification models were implemented using sequential and structural

features - Support Vector Machine classifier and Random Forest classifier. Support

vector machines try to identify a hyperplane in an N-dimensional space where N is the

number of features used for classification such that the hyperplane effectively divides

the set of inputs into distinct classes. Several hyperplanes may satisfy the purpose,

but the aim is to identify a hyperplane that clearly distinguishes the points while
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maintaining maximum distance between the points and the plane. Random Forest

classifiers identify the class of the input sequence based on votes of a set of decision

trees. These decision trees are created using subsets of the training data.

Using both sequential and structural features individually, the classifiers were

trained to classify sgRNAs as functional or non-functional. Both implementations

made use of the sklearn package [27].

7.5 Long Short Term Memory Classification Model

Recurrent Neural Networks (RNN) are networks with loops that allow the network

to retain information. Due to the presence of these loops, RNNs can be used for

applications that involve sequences. In traditional RNNs, the amount of context is

very small in practice [28]. The effect of a particular input on the output may either

blow up or diminish significantly as the input cycles through the loops in the RNN.

This problem is referred to as the vanishing gradient problem.

After several solutions were proposed to solve the vanishing gradient problem,

the Long Short Term Memory (LSTM) approach was proposed by Hochreiter and

Schmidhuber in 1997 [28, 29]. LSTMs are a type of Recurrent Neral Networks (RNN)

that learn long-term dependencies [30].

Sequence classification is a predictive problem that is solved by using LSTMs and

word embeddings. As previous research has found relations between the sequential

features of single guide RNAs and their functionality, we can treat sgRNA design as a

sequence classification problem.

In case of text classification, a large vocabulary has to be created based on the

words in the training sentences. This vocabulary is then used to label the input

sequences. LSTMs require the input sequences to be equal in length. In order to make

the sequences equal in length, padding is used. If a new word is encountered in the

29



test sentences that is not present in the training data, it is tagged as an unknown

word. Thus, using LSTMs for text classification involves a lot of pre-processing.

However, using LSTMs for sgRNA design is a simpler problem as it involves minimum

pre-processing. The problem is reduced as the vocabulary can be reduced to 4 bases

(words in traditional text classification) - A, C, G and T. The unknown tags are not

required as the training and test data cannot have any bases besides the four listed

earlier. The sgRNA sequences are always equal in length as each sgRNA is a 20

nucleotide sequence. Hence, the need to pad input sequences is eliminated.

An LSTM-based approach has not been used in the problem of single guide RNA

design so far.

Several experiments were conducted to identify optimal configurations with best

results. The next chapter goes over the results of these experiments.
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CHAPTER 8

Results

Different subsets of the feature set were used with different feature engineering

techniques to experimentally determine the best set of features. Table 8 summarizes

the cross-validation accuracies and test set accuracy for each combination of dataset,

feature set and feature engineering technique.

The Long Short Term Memory Network to classify functional and non-functional

single guide RNAs was built using keras [31]. With an accuracy of 83.85%, this

LSTM model classifies a single guide RNA provided as input into functional or non-

functional sgRNA. Table 9 summarizes the results of the LSTM model with different

configurations and experiments in detail.

Ten-fold cross-validation was performed for each of the models. Figure 3 compares

the distribution of the cross-validation accuracies of each of the models.

Experiments were conducted to compare the results of different tools with individ-

ual sgRNAs. The results of the LSTM model were comparable to the results of existing

tools like WU-CRISPR, CRISPR-ML (tool developed by the Genetic Perturbation

Platform group in collaboration with Microsoft Research). It is difficult to prove the

accuracy of any specific tool. The WU-CRISPR tool assigns a potency score or value

to each sgRNA in the range 1-100, where sgRNAs with a score 1 are least functional

and sgRNAs with a score 100 are highly functional. For the genomic sequences tested,

the sgRNAs identified by the LSTM model as functional sgRNAs have a high potency

value based on the WU-CRISPR tool. Similarly, the sgRNAs identified by the LSTM

model as functional sgRNAs have a high on-target score according to the CRISPR-ML

tool. Some sgRNAs identified by both WU-CRISPR and CRISPR-ML tool are not

identified by the LSTM model as functional sgRNAs.
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Table 8: Comparison of results of SVM and RF classifiers

Classifier Feature
Set Feature Engineering Accuracy

Linear SVM Sequential
Features

One Hot Encoding and Scal-
ing 77.9%

Linear SVM Structural
Features Scaling 56.4%

Random Forest Sequential
Features Label Encoding 70.8%

Table 9: Comparison of results of LSTM classifiers with different configurations

Classifier Epochs Sequence used Dataset
used Accuracy

Sequential API
Keras 20 sgRNA sequence Brie 71.2

Sequential API
Keras 20 sgRNA sequence Brunello 71.89

LSTM 20 sgRNA sequence Brie 80.99
LSTM 20 sgRNA sequence Brunello 81.88

LSTM 25 sgRNA sequence +
PAM Brie 82.78

LSTM 25 sgRNA sequence +
PAM Brunello 83.85

Figure 3: Distribution of cross-validation accuracies of different models
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CHAPTER 9

Conclusion

In this project, we analysed several ways to design a single guide RNA (sgRNA)

using different classifiers. Traditional machine learning algorithms and neural networks

were both used to solve the problem. While traditional machine learning algorithms

such as Support Vector Machines (SVM) and Random Forest (RF) Classifier used

sequential and structural features of sgRNAs to differentiate between a functional and

non-functional sgRNAs, the LSTM model was a type of featureless classification.

The LSTM model gave better results as compared to the SVM and RF models.

Even though the LSTM model is featureless, the sequence encoded sgRNAs are used

as input for the model. The LSTM model performs better when the protospacer

adjacent motif (PAM) is used along with the 20-nucleotide sgRNA in classification.

The 3-nucleotide PAM sequence is represented as NGG (any nucleotide followed by

two guanines). Therefore, we can conclude that the N in the PAM sequence has a role

to play in the classification. Use of structural features in sgRNA design is observed to

not yield comparable results.

While the LSTM model and some existing tools give comparable results, it is

recommended to use multiple tools and a consensus of their results when deciding

whether or not a particular sgRNA is functional or not. Different tools use different

features, datasets and classifiers to determine the functionality of a sgRNA, therefore

using multiple tools allows one to consider all these features and algorithms before

coming to a conclusion.

In the process of dataset creation, the number of non-functional sgRNAs extracted

from each transcript was equal to the number of functional sgRNAs from the Brunello

and Brie datasets found in the corresponding transcript. Therefore, if the Brunello or

Brie dataset contained a certain number of functional sgRNAs, the same number of
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potential non-functional sgRNAs were randomly selected from the list of all potential

non-functional sgRNAs. It is possible that the random selection of the non-functional

sgRNAs may have affected the results of the classifiers. As part of future extension

of this work, the non-functional sgRNAs can be ordered using a metric and then

the least functional sgRNAs from those can be included in the dataset. The results

of the LSTM model can also be improved upon by trying different configurations.

More neural network based classification algorithms can be tested to solve the sgRNA

design problem.

34



LIST OF REFERENCES

[1] P. Donohoue, R. Barrangou, and A. May, ‘‘Advances in industrial biotechnology
using crispr-cas systems,’’ Trends in Biotechnology, vol. 36, no. 2, pp. 134--146,
February 2018.

[2] ‘‘Crispr guide rna,’’ https://dharmacon.horizondiscovery.com/gene-editing/
crispr-cas9/crispr-guide-rna/, (Accessed on 12/16/2018).

[3] J. A. Doudna and E. Charpentier, ‘‘The new frontier of genome engineering with
crispr- cas9,’’ Science, vol. 346, no. 6213, p. 1258096, November 2014.

[4] ‘‘Genome editing,’’ https://www.genome.gov/27569222/genome-editing/, (Ac-
cessed on 12/16/2018).

[5] M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpen-
tier, ‘‘A programmable dual rna guided dna endonuclease in adaptive bacterial
immunity,’’ Science, vol. 337, no. 6096, pp. 816--821, August 2012.

[6] N. Wong, W. Liu, and X. Wang, ‘‘Wu-crispr: characteristics of functional guide
rnas for the crispr/cas9 system,’’ Genome Biology, vol. 16, no. 1, p. 218, November
2015.

[7] ‘‘Breakthrough dna editor born of bacteria,’’ https://www.quantamagazine.org/
crispr-natural-history-in-bacteria-20150206/, (Accessed on 5/2/2019).

[8] K. S. Makarova, L. Aravind, N. V. Grishin, I. B. Rogozin, and E. V. Koonin, ‘‘A
dna repair system specific for thermophilic archaea and bacteria predicted by
genomic context analysis,’’ Nucleic Acids Research, vol. 30, no. 2, pp. 482--496,
2002.

[9] C. P. Guy, A. I. Majerník, J. P. J. Chong, and E. L. Bolt, ‘‘A novel nuclease-
atpase (nar71) from archaea is part of a proposed thermophilic dna repair system,’’
Nucleic Acids Research, vol. 32, pp. 6176--6186, 2004.

[10] L. A. Marraffini and E. J. Sontheimer, ‘‘Crispr interference limits horizontal gene
transfer in staphylococci by targeting dna,’’ Science, vol. 322, pp. 1843--1845,
2008.

[11] R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau,
D. A. Romero, and P. Horvath, ‘‘Crispr provides acquired resistance against
viruses in prokaryotes,’’ Science, vol. 315, no. 5819, pp. 1709--1712, 2007.

35

https://dharmacon.horizondiscovery.com/gene- editing/crispr-cas9/crispr-guide-rna/
https://dharmacon.horizondiscovery.com/gene- editing/crispr-cas9/crispr-guide-rna/
https://www.genome.gov/27569222/genome-editing/
https://www.quantamagazine.org/crispr-natural-history-in-bacteria-20150206/
https://www.quantamagazine.org/crispr-natural-history-in-bacteria-20150206/


[12] E. Deltcheva, K. Chylinski, C. Sharma, K. Gonzales, Y. Chao, Z. A. Pirzada,
M. R. Eckert, J. Vogel, and E. Charpentier, ‘‘Crispr rna maturation by trans-
encoded small rna and host factor rnase iii,’’ Nature, vol. 471, no. 7340, pp.
602--607, March 2011.

[13] J. G. Doench, N. Fusi, M. Sullender, M. Hegde, E. Vaimberg, K. F. Donovan,
I. Smith, Z. Tothova, C. Wilen, R. Orchard, H. W. Virgin, J. Listgarten, and
D. Root, ‘‘Optimized sgrna design to maximize activity and minimize off-target
effects of crispr- cas9,’’ Nature Biotechnology, vol. 34, pp. 184--191, January 2016.

[14] J. G. Doench, E. Hartenian, D. B. Graham, Z. Tothava, M. Hegde, I. Smith,
M. Sullender, B. L. Ebert, R. J. Xavier, and D. E. Root, ‘‘Rational design
of highly active sgrnas for crispr-cas9âĂŞmediated gene inactivation,’’ Nature
Biotechnology, vol. 32, pp. 1262--1267, September 2014.

[15] S. Q. Tsai, Z. Zheng, N. T. Nguyen, M. Liebers, V. V. Topkar, V. Thapar,
N. Wyvekens, C. Khayter, A. J. Iafarte, L. P. Le, M. J. Aryee, and J. K. Joung,
‘‘Guide-seq enables genome-wide profiling of off-target cleavage by crispr-cas
nucleases,’’ Nature Biotechnology, vol. 33, pp. 187--197, December 2015.

[16] V. Pattanayak, S. Lin, J. P. Guilinger, E. Ma, J. Doudna, and D. R. Liu, ‘‘High-
throughput profiling of off-target dna cleavage reveals rna-programmed cas9
nuclease specificity,’’ Nature Biotechnology, vol. 31, pp. 839--843, August 2013.

[17] ‘‘Crispr off-targets: a reassessment,’’ https://www.nature.com/articles/nmeth.
4664, pp. 229--230, March 2018, (Accessed on 03/13/2019).

[18] G. Chuai, H. Ma, J. Yan, M. Chen, N. Hong, D. Xue, C. Zhou, C. Zhu, K. Chen,
B. Duan, F. Gu, S. Qu, D. Huang, J. Wei, and Q. Liu, ‘‘Deepcrispr: optimized
crispr guide rna design by deep learning,’’ Genome Biology, vol. 19, no. 1, June
2018.

[19] S. Pujar, N. A. O. Leary, C. M. Farrell, J. E. Loveland, J. M. Mudge, C. Wallin,
C. Giron, and et al, ‘‘Consensus coding sequence (ccds) database: a standardized
set of human and mouse protein-coding regions supported by expert curation,’’
Nucleic Acids Research, vol. 46, pp. D221--D228, January 2018.

[20] L. Chen, S. Wang, Y.-H. Zhang, J. Li, Z.-H. X. J. Yang, T. Huang, and Y.-D.
Cai, ‘‘Identify key sequence features to improve crispr sgrna efficacy,’’ IEEE
Access, vol. 5, pp. 26 582--26 590, 2017.

[21] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, (First
Edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2005.

36

https://www.nature.com/articles/nmeth.4664
https://www.nature.com/articles/nmeth.4664


[22] S. B. Kotsiantis, ‘‘Supervised machine learning: A review of classification tech-
niques,’’ Informatica, vol. 31, pp. 249--268, 2007.

[23] S. Sharma, J. Agarwal, S. Agarwal, and S. Sharma, ‘‘Machine learning techniques
for data mining: A survey,’’ IEEE Conference on Computational Intelligence and
Computing Research, pp. 1--6, 2013.

[24] R. Chari, P. Mali, M. Moosburner, and G. M. Church, ‘‘Unraveling crispr-
cas9 genome engineering parameters via a library-on-library approach,’’ Nature
Methods, vol. 12, pp. 823--826, 2015.

[25] P. Cock, T. Antao, J. Chang, B. Chapman, C. Cox, A. Dalke, I. Friedberg,
T. Hamelryck, F. Kauff, B. Wilczynski, and M. de Hoon, ‘‘Biopython: freely
available python tools for computational molecular biology and bioinformatics,’’
Bioinformatics, vol. 25, pp. 1422--1423, 2009.

[26] S. F. Altschul, W. Gish, W. Miller, E. W.Myers, and D. J.Lipman, ‘‘Basic local
alignment search tool,’’ Journal of Molecular Biology, vol. 215, pp. 403--410,
1990.

[27] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nicu-
lae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,
B. Holt, and G. Varoquaux, ‘‘API design for machine learning software: experi-
ences from the scikit-learn project,’’ in ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, 2013, pp. 108--122.

[28] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks.
Springer-Verlag Berlin Heidelberg, 2012.

[29] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural Computa-
tion, pp. 1735--1780, 1997.

[30] C. Olah, ‘‘Understanding lstm networks,’’ August 2015, available at
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, Accessed: 2019-
04-14.

[31] F. Chollet et al., ‘‘Keras,’’ https://keras.io, 2015.

37

https://keras.io

	Designing single guide RNAs for CRISPR/Cas9
	Recommended Citation

	Introduction
	Background

	The CRISPR-Cas9 System
	The Natural CRISPR-Cas9 System
	The engineered single guide RNA chimera

	Importance of designing single guide RNAs
	Existing Datasets
	Features of single guide RNAs
	Sequential Features
	Structural Features

	Classification models for designing single guide RNAs
	Classification models in sgRNA design

	Methods
	Dataset Collection
	Feature Extraction
	Sequential Features
	Structural Features

	Feature and Sequence Encoding
	One Hot Encoding
	Label Encoding
	Sequence Encoding

	Machine Learning Classification Models
	Long Short Term Memory Classification Model

	Results
	Conclusion
	LIST OF REFERENCES

