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ABSTRACT

Fast High Resolution Image Completion

by Chinmay Mishra

This paper presents a method for image completion, an active research area in

the field of computer vision. The method described in the paper aims at achieving

comparable results to other state of the art methods with approximately four and a

half times reduction in training time. It is a two step procedure which involves image

completion and enhancing the resolution of the completed image. We use the SSIM

metric to evaluate the quality of the completed image and to also time our model

against other image completion models.

Key Terms - Generative Adversarial Network, Convolution Neural

Network, Image Completion, Image In-painting
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CHAPTER 1

Introduction

The task of image completion involves the generation of patches for the missing

regions of an image. This task can be broken down to the prediction of the context

of the image. It is fairly complex because the model has to not just complete the

image but also understand the structure of the objects in the image to complete it

consistently. There are numerous applications of image completion such as image

restoration, removal of objects from images and enhancing resolution of low resolution

images. There are a lot of methods that have been proposed in this field from

completing an image based on a patch or using deep networks to understand the

structure of the object and complete it. But in all these techniques the resultant

networks are huge and have lots of variables which make them very time consuming

to train and require a vast amount of training data. We propose a model that will

complete images with quality comparable to other state of the art methods while

taking lesser time to train and consuming lesser memory.
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CHAPTER 2

Related Work

A large body of literature exists on various aspects of image completion. A few

of the papers which are related to the method proposed in this paper are discussed.

2.1 Image generation

Since the introduction of GAN(Generative Adversarial) by Ian Goodfellow in his

paper [1], it has been the center of research for various types of problems such as image

generation, image transformation, super resolution and image completion. GANs are

used whenever there is a requirement of predicting data in a particular distribution.

They consist of two neural networks, a generator, 𝐺, and a discriminator 𝐷. The 𝐺

network generates data from a random vector 𝑧, sampled from a prior distribution 𝑝𝑧

while the 𝐷 evaluates whether the incoming data is generated or sampled from data

distribution 𝑝𝑑𝑎𝑡𝑎. The 𝐺 and 𝐷 networks are trained by optimizing the loss function:

min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = 𝐸ℎ 𝑝𝑑𝑎𝑡𝑎(ℎ)[𝑙𝑜𝑔(𝐷(ℎ))]

+𝐸𝑧 𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 −𝐷(𝐺(𝑧))], (1)

where h is the sample from the 𝑝𝑑𝑎𝑡𝑎 distribution; 𝑧 is from a random encoding in the

latent space. Using GAN Radford in the paper [2] further developed a more stable

architecture which comprised of convolutional layers with strides used for reducing

the size of the image while removing all the max pooling layers. The architecture also

used batch normalization on all the layers to normalize the data being passed to every

layer.

2.2 Image Transformation

Image transformation is the problem to take an image and apply the desired

transformations on it. Justin Johnson in his paper [3] introduced perceptual loss

for the task of image transformation. Image transformation tasks previously used
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per-pixel loss between the output and the generated image by Dong in the paper [4]

for super-resolution and Cheng [5] for colorization of images, the switch to perceptual

loss gave similar results but three times faster. The perceptual loss unlike pixel-wise

loss which focuses on per pixel loss focuses more on the high-level feature similarity.

Perceptual loss is also used in the paper [6] to transform low resolution images to

high resolution images. The mean squared error(MSE) loss function results in images

appearing overly-smooth, whereas using perceptual loss generates images with high

texture detail.

Figure 1: Architecture of LeNet-5, a convolutional neural network for digit recognition.
Source: Adapted from [7]

2.3 Image Completion

There have been many different methods proposed to complete an image. Rares

in the paper [8] introduces an edge-based image restoration method where the model

looks at the surrounding edge of the hole and interpolates from that to fill the missing

part. This method fails to complete the image consistently when the missing part of

the image contains objects which aren’t in the other parts of the image. It also fails

when the missing parts are huge in the image. To overcome the shortcomings in the

methods that use techniques such as diffusion which couldn’t handle large missing

parts, Pathak in the paper [9] introduced a model that learns the features of the image

which helps the model generate a plausible hypothesis for the missing part. In the

3



paper they trained the model using both the pixel-wise reconstruction loss, as well as

an adversarial loss. The adversarial loss helped the model to learn structures in the

images and complete the images more accurately.
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CHAPTER 3

Method

In this paper the proposed model is broken down into two parts. The first part

is the image completion part which is followed by the enhancing part. The image

completion part comprises of three networks, a single completion network and two

discriminator networks which are used to train the completion network to complete the

image realistically. The training process involves the discriminator networks trying to

determine whether the image has been completed realistically, whereas the generator

tries to fool the discriminator into believing that the completed image is real. The

completion network is fed a lower resolution image which the network completes and

the completed image is then fed to the super resolution network which transforms the

image to a higher resolution. The generator and the discriminator networks are based

on the architecture discussed in the paper [10] by Satoshi Iizuka with constraints

described in the paper [2] on the architecture, which will make model more stable to

train. The completed images are then fed to another network to enhance the images to

a higher resolution. The image enhancement network is based on the model described

in paper [6], with loss function as perceptual loss first discussed in the paper [3], to

transform images instead of pixel-wise loss for the reconstruction of images.

3.1 Convolutional Neural Network

In the model proposed in this paper the networks are built using convolutional

layers, which were introduced in papers [11] and [7] . The convolutional neural network

architecture was introduced because the regular neural network architecture wouldn’t

scale well for images as for even a 32x32x3 image, the neural net would have 32*32*3

= 3072 weights and for a 256x256x3 image the number of weights would go up to

120,000 weights. The convolutional layers arrange the images as 3D vector unlike the

traditional architectures where the data is represented by a single layer of neurons.
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The Convolutional layers use operators to reduce the size of the data conserving the

spatial structure of the image. In a feed forward network the image is flattened and

the spatial structure of the image is not maintained, hence a convolutional network is

used which uses filters in order to capture the spatial structure of the image. In the

figure 1 the architecture of the LeNet-5, which shows the working of a convolutional

neural network. The figure shows how the input image is convoluted into different

sizes of 3D vectors by using filters which organized as different planes in every layer.

The convolutional layers are usualy followed with a non-linear activation function like

a Rectified Linear Unit (ReLU) which is decribed in the paper [12].

Figure 2: Systematic dilation supports exponential expansion of the receptive field
without loss of resolution or coverage.(a) F1 layer is produced from F0 by 1-dilated
convolution, i.e. each element in F1 has a receptive field of 3x3. (b) similarly in image
b a 2-dilated convolution is used; each element has a receptive field of 7x7. (c) here
4-dilated convolution layer is shown which has a receptive field of 15x15.
Source: Adapted from [13]

3.2 Dilated Convolutional Layer

The model in addidtion to the traditional convolutional layers also uses a special

kind of convolutional layer called Dilated Convolutional Layer introduced in the paper

[13]. In this paper the authors talk about how semantic segmentation is a different

problem than image classification and the conventional convolutional network are

not efficient for that work. So they introduced dilated convolutional network which

enables exponential expanse of the receptive field without the loss of resolution or

coverage. The figure 2 shows that even though the number of parameters remain same

6
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Figure 3: Overview of the generator architecture of image completion network.

in each layer but the receptive field grows exponentially. This allows the network to

capture large features without increasing the number of trainable parameters.

(𝐹 * 𝑘)(𝑝) =
∑︁
𝑠+𝑡=𝑝

𝐹 (𝑠)𝑘(𝑡) (2)

(𝐹 * 𝑙𝑘)(𝑝) =
∑︁

𝑠+𝑙𝑡=𝑝

𝐹 (𝑠)𝑘(𝑡) (3)

Equation 2 is for the standard convolution and equation 3 is for a dilated convolution.

The summation in the second equation is s+lt=p which will cause the kernel to

skip some points during convolution which in turn increases the area of the input

that can be used as input without increasing the number of weights required for the

convolution.

3.3 Batch Normalization

The convolutional and the dilated convolutional layers in the model are followed

by a batch normalization layer. These layers were introduced by Sergey Ioffe in

the paper [14]. Deep neural networks usually suffer the phenomenon called internal

covariate shift, which happens due to the change in the distribution of inputs for

every layer because of which the learning rates have to be low and the parameter

initialization becomes an issue. To overcome these problems batch normalization

7



layers are introduced after every convolutional layer. Since the convolutional layer

modifies the data, the batch normalization layer helps in normalizing the value before

it is sent to the next layer. This normalization of the inputs before passing them to

the next layer helps overcome the internal covariate shift problem and allows the

model to have a high learning rate.

3.4 Deconvolutional Layer

Deconvolutional layers are used in interpolation of images from their feature

vectors. These layers were used in [15] for image segmentation and also in [2] for

generation of images. There are various interpolation methods like nearest neighbour,

bi-linear and bi-cubic but the deconvolutional layer instead has learnable parameters

which are trained in a similar fashion to convolutional layer but in a backward manner.

These layers help the model learn high-level features during the decoder part of the

network while generating the image from the latent vectors.

3.5 Completion Network

The Completion network comprises of multiple fully-connected convolutional

layers with a few dilated convolution layers sandwiched in between them. The input

to the completion network is an RGB image with a mask( the mask contains 1 for

parts that have to be completed) and the output of the network is an RGB image. The

input image is first resized to 64X64 and everything is scaled down to that resolution

including the holes in the images. This approach is different from the one discussed

in the paper [10] as our focus is to make the training of the network faster and more

stable. The architecture of the completion network follows that of an encoder-decoder.

The input image is processed with convolution operators to extract features and

then passed on to the decoder part which restores the image to the input resolution

completing the holes in the input image. The encoder uses convolutional and dilated

8



convolutional layers to extract the features and the decoder uses deconvolutional

layers to reconstruct the image. All the layers in the completion network are followed

by batch normalization, which helps in the making the model more stable as found in

the paper [2] and also helps in the overcoming the problem of internal covariate shift.

3.6 Context Discriminators

The paper [10] defines two different types of discriminators global and local.

The discriminators together are trained to discern whether the input image is an

image from the dataset or is a completed image using the generator in the completion

network. The context discriminator consist of convolutional layers which extract

features from the image over several layers and finally the features from both the

networks are concatenated which is used to predict whether the image is real or has

been completed. The global discriminator takes as input the whole image, which is in

our case is a 64x64 image and compresses to output a single 1024 dimensional vector.

This global discriminator is used to check the consistently of the whole image, whether

it has similar features to the images the network has been trained upon. The local

discriminator does similar thing but the input is 32x32 patch of the image around

the completed region. The output from both the discriminator networks are then

concatenated together into a 2048-dimensional vector which are then passed through

a sigmoid activation layer to give a value in the range [0, 1], which represents the

probability of the image being real.

3.7 Residual Network

In the field of computer vision, the idea of stacking up layers of convolution to

make the model better at image recognition or image generation worked till 20+ layers,

after which the the accuracy dropped due to problems like vanishing gradients. To

overcome this problem the idea of residual layers were introduced by Kaiming in the

9



paper [16]. The residual layers help in mapping identity functions which is otherwise

very complicated using the convolutional kernels. These residual layers have used to

improve the accuracy and speed for single image super resolution [17],[18].

Figure 4: Flowchart of the whole model with the completion and the super resolution
modules

3.8 Loss Functions

The Mean Squared Error (MSE) function which calculates the pixel wise error

between the images usually struggle to handle the high level features between the

images in question. Therefore, minimizing MSE results in generation of overly-smooth

images as it finds the pixel-wise average of plausible solutions. In this paper, we will

be using perceptual loss [3] along with an adversarial loss as in defined in the paper

[6].

3.9 Super Resolution

The architecture for super resolution is based on architecture in the paper [6].

The architecture consists of a generator and a discriminator network which are trained

in an adversarial manner [1]. The generator network which has residual blocks (similar

to the model described in [3]) of convolution layers, batch normalization layers and

relu activation. These blocks are sandwiched between convolutional layers which

help in tranforming the shape of the data that is being passes throught the network.

The resolution of the image is increased by two trained sub-pixel convolution layer

as proposed in paper [18]. The discriminator network is based on the architectural

guidelines summarized in paper [2] and it is trained to maximize equation (4). In the

super resolution network, the generator instead of an upsampling layer as mentioned

10



in the paper [3] uses transposed convolutional layer as discussed in the completion

network. The transposed convolutional layer helps in a more accurate construction of

the image in the decoder part of the network in comparison to an upsampling layer.

min
𝜃𝐺

max
𝜃𝐷

E𝐻𝑅
𝐼 v 𝑝𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅)[𝑙𝑜𝑔𝐷𝜃𝐷(𝐼𝐻𝑅)] +

E𝐼𝐿𝑅 v 𝑝𝐺(𝐼𝐿𝑅[𝑙𝑜𝑔(1 −𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅))] (4)

Here, 𝐷𝜃𝐷 is the discriminator and 𝐺𝜃𝐺 stands for the generator. Both the networks

are trained in an adversarial manner to optimize the equation (4).

3.10 Optimization Algorithm

Every deep learning problem essentially requires us to optimize a loss function

using a neural network. To facilitate the search for the minima or to optimize on a

loss function, algorithms are used called as optimization algorithms. For our problem

of image completion and super resolution we will use the Adam optimizer [19]. In the

paper, the authors have shown promising results for adam optimizer in terms of speed

of training over other optimization algorithms such as adadelta, stochastic gradient

descent.

3.11 Training

The image completion network and the image enhancement network are trained

on the celebA dataset but separately. The input images to the network are resized to

64x64. These images are then used to create masks which contain the information

of the missing parts. The low resolution images and the masks are then passed to

the completion network to output a complete image, which is then evaluated by the

discriminator to be real or generated.

Image Completion Network The generator of the completion network is denoted

by 𝐶(𝑥,𝑀𝑐) and the discriminators are denoted as 𝐷(𝑥,𝑀𝑑), with 𝑥 the input image,

11



𝑀𝑐 the completion mask and 𝑀𝑑 the mask passed to the discriminator. The networks

for the completion part are trained using two loss functions together, a weighted Mean

Squared Error (MSE) loss and an adversarial loss function. The MSE loss is used to

allow the networks to train in a stable manner [10], whereas the adversarial loss is

used to generate more realistic images [9]. The MSE loss function is defined as,

𝐿(𝑥,𝑀𝑐) = ||𝑀𝑐 ⊙ (𝐶(𝑥,𝑀𝑐) − 𝑥)||2, (5)

where ⊙ is the pixel-wise multiplication and ||.|| is the Euclidean norm. The adversarial

loss turns the usual optimization problem into a min-max optimization problem where

the discriminators are trying to get better at discriminating between the images, hence

increasing the loss and the generator is trying to fool the discriminator into believing

the generated images are real, hence decreasing the loss. The adversarial loss is defined

as,
min
𝐶

max
𝐷

E[𝑙𝑜𝑔𝐷(𝑥,𝑀𝑑)] + 𝑙𝑜𝑔(1 −𝐷(𝐶(𝑥,𝑀𝑐),𝑀𝑐)], (6)

where 𝑀𝑑 and 𝑀𝑐 denote a random mask and input mask respectively.

Super Resolution Network After the completion network has completed the

images realistically but at a low resolution, the super resolution network is used to

enhance the image to a higher resolution. While training, the aim of the network

is to estimate a high resolution image from a given low resolution image. The high

resolution image is represented by 𝐼𝐻𝑅 and the low resolution image is represented by

𝐼𝐿𝑅. The training phase involves creation of low resolution images by passing the high

resolution image through various filters like Gaussian. The goal of this network is to

formulate a generation function which when fed low resolution images can generate

its corresponding high resolution images. To achieve this, a feed-forward CNN 𝐺𝜃𝐺

is trained parameterized by 𝜃𝐺. 𝜃𝐺 here denotes the weights and the baises of each

layer and is optimized by a loss function 𝑙𝑆𝑅 . The perceptual loss 𝑙𝑆𝑅 is defined as a

12



weighted loss of several loss components that help in defining certain characteristics

of the recovered high resolution image.

Most super resolution papers use the MSE loss defined in equation 7 for image

transformation [4, 18], but the solutions for the MSE often lack high frequency content

and have overly smooth texture.

𝑙𝑆𝑅𝑀𝑆𝐸 = 1/(𝑟2𝑊𝐻)
𝑟𝑊∑︁
𝑥=1

𝑟𝐻∑︁
𝑦=1

(𝐼𝑥,𝑦𝐻𝑅−𝐺𝜃𝐺(𝐼𝐿𝑅)𝑥,𝑦)
2 (7)

Therefore, the MSE loss was not used and based on the ideas of [3, 20, 21] a loss

function was built based using the VGG network defined in [22]. This loss function

uses the VGG network to extract features from the generated image and compares

that with the features extracted from the actual image. This loss function is defined

equation 8.
𝑙𝑆𝑅𝑉 𝐺𝐺/𝑖,𝑗 = 1/(𝑊𝑖,𝑗𝐻𝑖,𝑗)

𝑊𝑖,𝑗∑︁
𝑥=1

𝐻𝑖,𝑗∑︁
𝑦=1

(Θ𝑖,𝑗(𝐼
𝐻𝑅)𝑥,𝑦

−Θ𝑖,𝑗(𝐺𝜃𝐺(𝐼𝐿𝑅))𝑥,𝑦)
2 (8)

In addition to the modified MSE loss another adversarial loss is also used with a

discriminator which will push the generator towards generating more realistic images.

The generative loss 𝑙𝑆𝑅𝐺𝑒𝑛 is defined as the summation of the probabilities of the

discriminator 𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅)) over all training data.

𝑙𝑆𝑅𝐺𝑒𝑛 =
𝑁∑︁

𝑛=1

−𝑙𝑜𝑔𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅)) (9)

13



CHAPTER 4

Experiments

Both the completion and the super resolution networks are trained on the celebA

dataset [23].

4.1 Image Completion Network

The image completion network has three networks, one completion network and

two discriminators. The completion network consists of convolutional layers, dilated

convolutional layers and deconvolutional layers. The aim of the paper is to devise

a model that completes image comparable to other state of the art methods with a

significant reduction in the training time. The architecture used for the generator is

shown in table 1. The resolution of the input image is 64x64, this is done so as to

reduce the amount of computations that are done. This also enables us to have a

comparatively shallower model which can detect the important features and complete

the image. We will look at some of the metrics applied on the completed images

through different models. We will apply these metrics locally on the completed region

and globally on the whole image measure the consistency of whole image as well as

the completed region. The training phase of the completion network involves initially

training the generator network alone, during this time since the discriminator has not

been trained and cannot discriminate whether the completed image is real or fake.

During this phase all the images sent to the discriminator is randomly classified as

real or fake. After the generator is trained for a few iterations, the discriminator is

trained to discriminate real images and fake ones. This creates a sudden peak in the

generator’s loss, as now the discriminator is able to identify fake images from real.

This sudden peak in generator’s loss creates a sudden dip or peak in the values of

different metrics.
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Figure 5: The total ssim of different models over 200 iterations for 30000 images.

1. SSIM - The structural similarity index (SSIM) metric is used to evaluate the

quality of the completed image. SSIM helps us to quantify the degradation in

image quality, after it has been processed and operations like image completion,

restoration and compression have been applied over it. SSIM was first introduced

in the paper [24], where the author shifted the focus of the measuring the

image quality from visible errors to degradation of structural information in the

generated images. In other papers, they have used SSIM metric [15], but they

have used it on the whole image. The problem with using it on the whole image

is that the SSIM value is high regardless of how well the missing parts have

been completed. We will be using SSIM for the missing part as it is a better

indicator of the quality of the completion.

2. MSE - The Mean Square Error (MSE) metric is used to find the pixel wise

difference between the generated image and the original image. The problem

with this metric is that it doesn’t look for the high level features that were present

in the images, instead looks at a pixel level how the completion has happened.

15



Figure 6: The local ssim of different models over 200 iterations for 30000 images.

Figure 7: The total mse of different models over 200 iterations for 30000 images.

This metric does not give us a clear indication of which model performs better.

It is clear from both the graphs (7 and 8) of the total and local mse values that

this metric does not help us differentiate between the models.
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Figure 8: The local mse of different models over 200 iterations for 30000 images.

3. PSNR - Peak Signal to Noise Ratio is another metric for measuring the image

quality degradation. Higher value of PSNR signifies better quality of the

generated image compared to the original image. PSNR is based on MSE, MSE

calcluates the cumulative squared error whereas PSNR represents the peak error

between the generated and the original image.

𝑀𝑆𝐸 = (
∑︁
𝑚,𝑛

(𝐼1(𝑚,𝑛) − 𝐼2(𝑚,𝑛)2)/𝑚 * 𝑛

Here m and n represent the row and the column of the pixel being compared.

Using this the PSNR is computed as follows:

𝑃𝑆𝑁𝑅 = 10 log10(𝑅
2/𝑀𝑆𝐸)

Where R is the maximum fluction occuring in the input image. The graphs (9

and 10) show that our model gets similar psnr values as the state of the art

model.

Since out of all the metrics SSIM is able to capture the structural information
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Figure 9: The total psnr of different models over 200 iterations for 30000 images.

Figure 10: The local psnr of different models over 200 iterations for 30000 images.

of the image, we use only SSIM for evaluating our model and to time it against the

state of the art model. The figure 11 shows that the completion isn’t proper but the

ssim scores are very high. Figure 6 shows the SSIM values of the completed parts
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Figure 11: Images completed using our method and GLIC method.

Figure 12: Images completed using our method and our method without the local
discriminator.

against iterations for 3 different models ours (FHRIC), globally and locally consistent

image completion method (GLIC) and ours without the local discriminator. From the

figure 6 it can be seen that our model gives better ssim value of around 0.84 compared

to 0.74 of the GLIC model. We also conducted another experiment with fixed size

holes in the image and trained them over 2000 images for 300 iterations. We set a

baseline of 0.85 to compare both the models. We chose this value because the values

reported in the paper [25] (which also deals with face completion) were below 0.85. In

the experiment we noted the time it took both the networks to reach 0.85 local SSIM

value. The figure 13 shows the graph of the local ssim values over the iterations. Our

model FHRIC attains 0.85 local SSIM on the 249th iteration and the model GLIC

attains local SSIM on the 286th iteration. It takes our model to get to 249th iteration

1 hour 6 mins and the GLIC model takes 5 hours 22 mins to reach the 286th iteration.
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Table 1: Architecture of the completion network.

Type Kernel Dilation Stride Outputs
conv. 5x5 1 1x1 64
conv. 3x3 1 2x2 128
conv. 3x3 1 1x1 128
conv. 3x3 1 2x2 256
conv. 3x3 1 1x1 256

dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 4 1x1 256
dilated conv. 3x3 8 1x1 256

conv. 3x3 1 1x1 256
deconv. 4x4 1 1/2x1/2 128
conv. 3x3 1 1x1 128

deconv. 4x4 1 1/2x1/2 64
conv. 3x3 1 1x1 32
output 3x3 1 1x1 3

Figure 13: The local ssim of FHRIC and GLIC models over 300 iterations for 2000
images.

4.2 Super Resolution Network

After the completion of the image, the images are then passed through the image

transformation network which enhances the resolution of the images from 64x64 to
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Figure 14: The percentage of faces detected by each individual method

Table 2: Architecture of the super resolution network.

Type Kernel strides filters
conv. 9x9 1 64

16 residual blocks
conv. 3x3 1 64
conv. 3x3 1 64

2 deconvulational
deconv. 4x4 1/2x1/2 128
conv. 3x3 1 256
conv. 9x9 1 3

256x256.This enhancement of the completed images are done to generate a higher

resolution image. SSIM index works by trying to match the features present in both

the images. We went further and use a face detection algorithm implemented in

the library [26] to detect faces from the completed image. By this we can evaluate

whether the images that are completed resemble a face or not. The figure 14 shows

the percentage of faces detected by the algorithm when run against the test images

that were completed by the different methods.

The tables 1 and 2 show the final architectures of the completion network and

the super resolution network respectively. The table only mentions the different
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Table 3: The PSNR and SSIM values on the test sets

Method PSNR SSIM
Globally and Locally Consistent 27.73 0.90

FHRIC without Local 23.37 0.88
FHRIC 26.61 0.91

types of convolutional layers used in these networks. Each convolutional layer in the

completion network is followed by a batch normalization and a relu activation layer.

The completion network is trained for 200 epochs and on 30,000 images, which took

around 10 hours on a machine with 16GB ram and a Nvidia Tesla P100 GPU. The

completion is done on images with reduced resolution of 64x64 and after completion,

the reslution of the images are enhanced to 256x256 using the super resolution network.

The super resolution network is trained for 30000 epochs with a batch size of 1. Both

the networks are trained using 30,000 images from the celebA dataset.

The table 3 shows the PSNR and SSIM values of the test set when used with the

different methods. The figure 15 shows a few selected images that were completed

using our method. The values show that our method achieves comparable score or

better in completing images, taking a fraction of the time to train the models. The

image completion network took 10 hours and 45 minutes and the super-resolution

network took 2 hours to enhance the images and transform them from 64x64 to

256x256.
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(a) Input image (b) Completed im-
age (c) Hi-res image (d) Original image

Figure 15: A few images that were completed and enhanced with our method and in
comparisson to the original image.
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CHAPTER 5

Future Work

The model at this state takes in low resolution images with missing parts and then

completes it followed by enhancing the image to 256x256. This create the problem

of not being able to use the existing parts of the image during the transformation of

the image. Future work would include being able to incorporate the residual network

within the completion network and be able to train the single network to complete

and enhance the resolution of the image.

The proposed model currently looks at a single set of images before completing

them. Future work could also include a sequence of images being sent to the model.

This would allow the model to learn and predict the movement of the subject and

complete missing parts in a video.
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CHAPTER 6

Conclusion

In conclusion, the model is able to complete an image and output high resolution

images. We used local SSIM to evaluate the quality of the completed images and to

time our model. Our model took 1 hour 6 minutes to complete it’s training to achieve

the same SSIM index as the GLIC model which took 5 hours 22 minutes. Our model

is 4.87 times faster than the GLIC model and the memory usage is also significantly

less as the images that being dealt with are of lower resolution 64x64 and are later

enhance to 256x256 using the super resolution network. The network also works great

with 30,000 images whereas other state of the art models [10] worked with half a

million images.
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