San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-24-2019

Learning for Free — Object Detectors Trained on Synthetic Data

Charles Thane MacKay
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

MacKay, Charles Thane, "Learning for Free — Object Detectors Trained on Synthetic Data" (2019). Master's
Projects. 738.

DOI: https://doi.org/10.31979/etd.e4vb-qdwk

https://scholarworks.sjsu.edu/etd_projects/738

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/738?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F738&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Learning for Free — Object Detectors Trained on Synthetic Data
by
Charles Thane MacKay
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science
in
Computer Science
in the

Graduate Division
of the

San José State University

Committee in charge:

Professor Teng Moh, Advisor
Professor David Anastasiu
Professor Christopher Pollett

Spring 2019

Learning for Free — Object Detectors Trained on Synthetic Data

Copyright 2019

by
Charles Thane MacKay

The dissertation of Charles Thane MacKay, titled Learning for Free — Object Detectors

Trained on Synthetic Data, is approved:

Advisor Date

Date

Date

San José State University

Abstract

A picture is worth a thousand words, or if you want it labeled, it’s worth about four cents per
bounding box. Data is the fuel that powers modern technologies run by artificial intelligence engines
which is increasingly valuable in today’s industry. High quality labeled data is the most important factor
in producing accurate machine learning models which can be used to make powerful predictions and
identify patterns humans may not see. Acquiring high quality labeled data however, can be expensive and
time consuming. For small companies, academic researchers, or machine learning hobbyists, gathering
large datasets for a specific task that are not already publicly available is challenging. This research
paper describes the techniques used to generate labeled image data synthetically which can be used
in supervised learning for object detection. Technologies such as 3D modeling software in conjunction
with Generative Adversarial Networks and image augmentation can create a realistic and diverse image
dataset with bounding boxes and labels. The result of our effort is an accurate object detector in an
environment of aerial surveillance with no cost to the end user. We achieved a best average precision
score of 0.76 to classify and detect cars from an aerial perspective using a mix of GAN-refined data along

with randomized synthetic data.

Acknowledgments

I would like to thank Nightingale Intelligent Systems for the donation of the real datasets, pre-trained object
detection models, and Sharan Duggirala for collaboration on YOLO training and scripting. A special thank

you to Cherry Cheung for IXTEX support and consultation.

Contents

[List of Figures|

[Cist_of Tables|

(1__Introductionl

[2__Background and Related Work|
2.1 e challenge of getting datal
2.2 ject Detection using Convolutional Neural Networks|.

2.3 Neural Network Training Techniques| 0 o 0. ...
2.4 _Generative Adversarial Networks|o oo oo
[2.5 Tramming with synthetic data] 0 000
|2.6 Refining synthetic data by domain or style transfer] oo .
|2.7 YOLO algorithm for object detection on aerial photography] o
P8 Summary and objective]

[3__Creation of Synthetic Data|

3.1 3 odel Rendering| L
3.2 Spins dataset — camera orbits with all encompassing views|.
8.3 Improvements in 3D modeling|. oo
8.4 Texturing Cars| e
[3.5 Performance increases for massive dataset generation|.
3.6 Surreal Dog Dataset — True Negative Examples|
3. eneration of bounding boxes, labels, and metadata) 0000

[4_Using GANs to Refine Synthetic Data|
[T Pre-processing of the synthetic datal o o v v i i it
4.2 CycleGAN Training] o 0 e

4.3 Making use of the CycleGAN model to refine syntheticdatal.

[Training the Object Detector]
b.1 Architecture and training strategy|o
.2 Training from scratch|

6 R I & onl
6.1 Test criteria to evaluate object detector performance] L.
6.2 More challenging test set; Rooftop Parking|
6.3 Discussion of GAN Refinement]

vi

viii

ix

17
17
18
19
23
26
26
27

30
30
31
34

36
36
37

40
40
42
43
45

47

|A Datasets used for testing, training, and evaluation|

vii

50

54

List of Figures

[1.1 Synthetic dataset generation pipeline|. 4
[2.1 Tmage demonstrating different views of the same object ||20||] 9
[3.1 Audi Spin Dataset — 3D rendering of an Audi R8 at different angles of rotation| 19
3.2 HDRI'images| o e 20
[3.3 Dodge Challenger in an empty HDRI garage with shadows casted|. 21
[3.4 Screenshot of Blender software demonstrating the X, Y, Z vector of the cameral 23

3.5 Screenshot of Blender software visualizing the paths the camera was allowed to take by the
spherical black lines. Notice the radius of the sphere is fixed, this results in the object appearing

[the same size at all timesl L e 24
3.6 Various Textures e e 25
[3.7 The surreal dog dataset had two primary achievements: Being extremely amusing, and reducing |
| the amount of false positives by dulling activations| 28
[4.1 Image texture mapped into the real domain| L oo 32
4.2 Lighting was the most prominent feature transferred 33
4.3 refinement and image substitution process.| o oL oL 34
4.4 result of the substitution process which leaves a square boundary, but with a realistic looking car| 35
1.5 before and after GAN-refined substitution] 35
6.1 Comparison of detector performance on the Newark gt test set| 41
6.2 Sample of the more difficult rooftop test set with a sample prediction] 43
6.3 Image augmentation with great positive effects on recall of rotated images (newark_gt)[. 44
6.4 GAN-refined trained model, with false positive SUPPIession] oo v v v v oo .. 46

viii

List of Tables

6.1 Results on the benchmark datasets dataset for the Tiny YOLO models|
6.2 ooftop parking lot test sets|
6.3 nalysis of syntheticdatal

ix

1 Introduction

What if there was a way to obtained labeled data at no cost or human effort? The implications of a technique
that could produce infinite amounts of labeled data for rare or difficult datasets would be tremendous. This
paper discusses how to create synthetic data that is both realistic by using Generative Adversarial Networks
(GANSs) and diverse using Blender Python API to randomize properties. This allows the object detector to
become both sensitive to the test set and robust to various conditions outside of the training set.

Many times in a machine learning engineer’s career they will encounter a desperate need for high quality
data. Publicly available datasets are sometimes insufficient or inapplicable for the user’s end goals. Manually
produced data involves the steps of first gathering, then annotating the data in order to produce supervised
data. This can be very expensive and time consuming. As a personal example, the 2017 NVIDIA IEEE Al
City Competition required contestants to personally label over 1000 key frames of traffic intersections [4].
With each frame taking 30 seconds to upwards of a few minutes to label, contestants had to spend hours
painstakingly drawing bounding boxes.

Image annotation services such as Amazon Mechanical Turk can be cheap but of poor quality and requires
manual review. Other services can be of better quality but are more expensive and require a minimum
purchase order which can be in the range of tens of thousands of dollars. The goal of this paper is to avoid
human annotations all together, and create a system to produce unlimited labeled data of any shape, pose,
texture, lighting, or environment imaginable.

To demonstrate the use of synthetic data, this project trained an object detector to be used in an aerial

drone platform used to detect cars. This simple goal was met with many challenges by the lack of publicly

CHAPTER 1. INTRODUCTION 2

available data and the high variation of object pose, rotation, tilt, and altitude. Identifying and localizing
cars is a very common task in object detection applications, however, the aerial perspective is unique for
the car needs to be identified not only in 360° rotations, but from 0 to 90° camera tilt, with common flying
altitudes as well.

Due to the lack of a publicly available aerial dataset that is suitable for this specific application, one was
manually created for this project. This dataset was captured by a DJI phantom 3 drone around various
locations, and was pre-labeled using an already trained object detector then reviewed by hand for accuracy.
This dataset was used as a ground truth to benchmark the detectors as well as being an input to the GAN to
learn realistic features. These datasets are explained in detail in chapter [A] Only recently, there has been a
release of a drone aerial photography with decent quality called VisDrone [35]. This paper runs the detectors
on this validation set for completeness, but was not used for other than the purpose of validation.

Almost all object detectors use a convolutional neural net (CNN) architecture, which have outstanding
performance on image recognition and localization tasks. However, CNNs are not pose invariant as said best
by Geoffrey Hinton in his talk “Whats Wrong with CNNs” [18]. What this implies is that in order for a
CNN to learn the object of interest well, it requires a unique training example for each of the possible pose
transformations the object can take. This leads to a large domain space for training, making it even more
expensive and difficult to acquire a labeled training set.

The generation and experimentation of synthetic labeled data is divided into 3 stages. First the generation
of the base synthetic data, which uses Blender [5] 3D modeling software. The second stage was training object
detectors using the YOLO [26] object detection algorithm with unrefined or “pure” synthetic data to get a
baseline. The final stage used the CycleGAN framework [34] to transfer realism taken from a real dataset
onto the synthetic computer generated car models. Comprehensive results were gathered to benchmark
object detector performance on a variety of dataset sources. Results of these experiments are discussed in
chapter [6}

This paper also strives to evaluate how synthetic datasets affect object detector training, and to learn

what is the most important aspect in achieving high localization and recall. The use of Blender 3D modeling

CHAPTER 1. INTRODUCTION 3

software allowed the application of a variety of realistic and unrealistic image textures, inspired by the work
of Tremblay et al. in “Domain Randomization” which intentionally abandons realistic textures [33]. In
addition, the work of Geirhos, et al. noted that object detectors perform better when they have a bias
towards shape instead of texture [13].

This paper aims to answer the following questions:

e How can we overcome the problem of acquiring large amounts of labeled image data used to train

convolutional neural networks?
e How can we avoid relying on manual labor to produce labeled data for supervised learning?

e How can synthetic data be used to improve a neural network when the available datasets are lacking

in pose variation?

e How can we use Generative Adversarial Networks to transfer realism from a “real-world” dataset onto

a synthetic dataset?

e What data is most important in producing high precision and recall, while reducing false positives in

object detection applications?

This papers shows it was able to train object detectors using only synthetic data to detect cars from
an aerial perspective resulting in 0.74 AP and F1 score of 0.79. With GAN refinement, a score of 0.76 AP
was achieved. On the downwards angle portion of the test set, the GAN-refined model was able to nearly
match the real-data model with a difference of only 0.02 AP. This demonstrates it is possible to train and
develop deep learning based computer vision applications without any expensive or time consuming human
annotated datasets.

The need for vast amount of data in object detection applications can be satisfied by the proposed
dataset generation pipeline shown in Figure This pipeline combines modern techniques of 3D modeling

in conjunction with GANs to synthesize a comprehensive and diverse dataset.

CHAPTER 1. INTRODUCTION

Figure 1.1: Synthetic dataset generation pipeline

2 Background and Related Work

This section will discuss the relevant background regarding the training of convolutional neural networks
(CNNs) in an object detection application via supervised learning methods with real and synthetic data.
The goal is to understand how it is possible to train CNNs with limited or no data real data by using
synthetic data. This project revolves around 5 main premises derived from the research questions mentioned

in Chapter
1. High-quality labeled data for a specific application can be hard to get

2. Deep learning requires lots of data, convolutional neural networks require unique examples for pose

variations
3. Synthetic data can be used to supplement real data
4. GANs can refine synthetic data to match the test set to improve model performance

5. Object detectors used in an aerial photography application can be trained with synthetic data alone

2.1 The challenge of getting data

The particular use case and inspriation for this project was the application of aerial object detection from a
drone. During the inception of the project in fall 2017, a public dataset that was useful to classify common
vehicles from an aerial perspective did not exist. A search for datasets lead to the discovery of the Stanford

Drone Dataset [27]. The Stanford Drone dataset was of enormous volume clocking in at 69 GB of video, but

CHAPTER 2. BACKGROUND AND RELATED WORK 6

of little value due to its perspective which was of a locked 90° downwards view angle, height that made people
appear as specs only a few pixels across, and high compression that did not extract discernable features from
the objects. This made it difficult to use SSD and YOLO object detection algorithms due to their poor
performance on small object as stated by Hui in his article describing SSD models [19).

Since then, datasets such as VisDrone, UAVDT have been published to the public as of April 2018 |35,
10]. These datasets are of higher quality and contain numerous examples. VisDrone has recently been turned
into a competition for object detection. This resource was not discovered until recently and after significant
effort was spent to circumvent the problem. This scenario is common for many machine learning researches.
Although the amount of high quality data available to the public data is growing, there will always be an
special niche application to which data is difficult to acquire. Models trained for this project were evaluated
using the VisDrone test set for a datapoint on how synthetic models stack up against other test sets.

If no suitable dataset is available online, one has to construct the dataset from scratch. For example
to gather a sufficient aerial dataset, it takes numerous hours of flight time across different times of day,
different weather, altitude, and camera angle to produce a comprehensive dataset. In addition to the long
hours of recording and acquiring raw data, the effort to slice the and annotate each individual frame can be
tremendous. Researchers and engineers in this situation could turn to image annotation companies such as
Crowdflower (Figure-Eight) and Scale. When queried, these companies required minimum orders of 10,000
to 100,000 images and were in the range of 12,000.00 - 60,000.00 US dollars. Cheaper alternatives such as
Mechanical Turk are enticing, but a lack of quality control, and the right for Amazon to re-use the labeled

data for their own purposes [3] makes a strong argument to find alternatives.

2.2 Object Detection using Convolutional Neural Networks

Object detection is the task of first localizing objects, identifying where the object is, then classifying that
object which is identifying what the object is, or what category it belongs to. Object detection methods

fall into two categories: classical machine learning methods and deep learning methods, both of which

CHAPTER 2. BACKGROUND AND RELATED WORK 7

extract image features in order to make predictions. Popular classical methods use a feature extractor such
as histogram of oriented gradients (HOG) followed by a classification stage using support vector machines
(SVM). Deep learning models are different by the way the learn how to extract important image features on
their own [14]. For example, they first learn how to distinguish raw pixels into shapes, and edges, and curves
as well as color, texture, and lighting, then encode these features into layers that will determine which class
the input belongs to.

The convolutional neural network (CNN) is a deep neural network architecture which has outstanding
performance on image classification tasks. The hierarchical structure of the convolutional layers, which start
by low-level features in beginning layers which gets built upon to construct a high-level representation of the
image in deeper layers. Yann LeCun pioneered the first convolutional neural network trained using gradient
descent to recognize handwritten digits [22]. AlexNet changed the game for image recognition in the 2012
ImageNet Large Scale Visual Recognition Challenge with the use of a CNN for image classification, beating
out the runner up by 10.8 percentage points [21]. Since then, CNNs have become the standard approach to
image classification and localization.

Whether it is a single-shot approach like YOLO by Redmon and Farhadi [25], or two stage detection
like Faster R-CNN and RetinaNet by Girshick et al. [23], modern object detectors define regions of object
proposals in the scene, or a grid cell used in YOLO [26], then evaluates the extracted features to determine
the probability the region contains an object of interest. In either of these cases object detectors use CNNs
as feature extractor backbones. Transfer learning is commonly done to transfer pre-trained convolutional
weights from one model to another. Most object detectors start training using convolutional weights that
have been trained from the ImageNet dataset as stated By Redmon and Farhadi in YOLO9000 [9} [25]. This
saves training time and resources such that the convolutional layers do not have to learn how to extract
image features from scratch, but are retrained to be sensitive to the object of interest. This project will
compare the use of pretrained convolutional weights from ImageNet as well as starting from scratch and only

using synthetic data.

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Disadvantages of convolutional neural networks

CNNs have trouble understanding pose and rotation, meaning that if object is rotated or moved, the network
will have difficulty recognizing it as the same object. CNNs have information flow from the input to the
top layer of the network leading to a class prediction. As the image data passes through the network layers,
unimportant information is discarded through max pooling layers, that only keep the highest activations.
This leads to translation invariance, meaning the exact position of the target object is not important.
However, CNNs do not have rotation, size, viewpoint, or illumination invariance visualized in figure
This implies that a training example needs to be provided for each major modification of the objects pose
(orientation and position) in order for the CNN to recognize the object from different viewpoints and lighting
conditions.

Geoffrey Hinton, nicknamed the “godfather of deep learning”, is a large opponent of the pooling opera-
tion in convolutional neural networks due to translational invariance and lack of pose information. Hinton
developed an architecture to replace the shortcomings of CNNs called Capsule Networks. The advantage
of the capsule network is to retain more information of 3D space inside the capsules leading to understand
objects from multiple view angles without additional training examples. Capsule networks, only understood
after the publication of the paper Dynamic Routing Between Capsules [29] in 2017, are still in the experi-
mental stage and have not met any widespread adoption for use in object detection. Until the pose-invariant
property of capsule networks can be exploited, large amounts of training examples will be needed to fill the

knowledge gap in convolutional neural networks.

2.3 Neural Network Training Techniques

Most object detectors are trained using supervised learning where each training example has a correct answer
or label. Although the supervised learning method is the most straight forward to implement, it is the most
expensive due to the dependence of labeled data which can be can be rare, time consuming and expensive

to produce.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.1: ITmage demonstrating different views of the same object [20]

There are other learning techniques that can supplement the lack of available labeled data. Semi-
supervised and unsupervised learning makes use of unlabeled data which can be used to increase accuracy
in neural network models especially when real data is limited. These techniques however, are not applicable
for most classification and localization tasks, but more so used for object discovery as done in Croitoru,

Bogolin, and Leordenau’s paper on Unsupervised learning of foreground object detection [7].

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Instead of using unlabeled data, there is the process of creating labeled data synthetically. Synthetic
data has the advantage of being able to produce an infinite number of training examples with numerous
variations and permutations. The use of 3D modeling software can create accurate representations of real
world objects, but can suffer from unrealistic textures and lighting, and can lack subtle low-level details such
as blur, reflection, and graininess that are present in an traditional photograph. This gap between real and
synthetic images can cause a network to not generalize well on real world data, or cause models to overfit to
‘unrealistic’ details as claimed by Shrivastava et al. in their work refining synthetic data through adversarial

training [30].

2.4 Generative Adversarial Networks

Realistic features can be learned and applied to images by the means of generative models. Generative
Adversarial Networks (GANs) introduced by Goodfellow et al. in 2014 [15] is a powerful generative mod-
elling approach consisting of two neural networks competing against each other. GANs play a zero-sum
game, that is, one network benefits when the other network makes a mistake. This generative model can
generate convincing “fake” outputs starting from random noise, permuting the input vector until it becomes
indistinguishable from the “real” dataset it set to mimic.

The framework consists of two neural networks: a generator, which generates new samples that mimics
the real data, and a discriminator that gives a probability whether the data is real or fake. An analogy
Goodfellow [15] uses to describe this framework is a team of counterfeiter vs the police. The counterfeiters
(generator) produce realistic looking money to pass off as real, and the police (discriminator) try to identify
and reject the fake productions. The discriminator is typically employed as a standard convolutional neural
network in when used on image data. The generator is a “deconvolutional” network, which does transposed
convolutions that up-sample the input from a vector to a NxN image. The result of this novel network, if
trained correctly, is the ability to produce images or other sample data that are nearly indistinguishable to

the training dataset. This framework as shown in later sections can be used to modify labeled synthetic

CHAPTER 2. BACKGROUND AND RELATED WORK 11

data.

2.5 Training with synthetic data

The use of synthetic data has a longstanding history in computer vision. Peng and Gaidon |24} |11] make use
of virtual worlds and 3D generated models to supplement neural network training. Sixt, et al. describe the
need for a synthetic dataset due to a niche dataset of barcodes attached to honeybees in their RenderGAN
project [31]. Shrivastava, et al. describe a process to greatly improve a human gaze estimator with a synthetic
dataset made of computer generated eyeballs with added realism by the use of GANs in a refining process
[30]. One approach is the use of 3D CAD models; however, these alone can achieve sub-par performance due
to the lack of realism. Tremblay, et al. [33] argue that realism is not necessary and is intentionally avoided
in their technique of Domain Randomization, of which they trained a very accurate object detector using

the Unreal Engine with cartoonish and unrealistic textures.

Using Synthetic Data on CNNs

Gaidon, et al. experimented with virtual worlds [11] and produced evidence that there is a small gap from
the perspective of a computer vision algorithm between the virtual and real world, providing confidence
synthetic data training is feasible. Peng, et al. [24] discusses possibilities of training a deep object detector
with 3D CAD models for networks that were lacking sufficient data for novel classes. Their research shows
that 3D CAD models capture the shape of a target object but are lacking low level clues such as realistic
object texture and background. Although 3D CAD models lack realistic texture, they show that deep CNNs
are mainly invariant to these low level cues, and can be used to augment training of CNNs especially when

real training data is limited or not well matched to the target domain.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

Is realism necessary?

Synthetic data does not have to be perfectly realistic. Tremblay, et al. claim that unrealistic or cartoonish
training data is an advantage since it can include variations that force the deep neural network to focus on
the important structure of the problem at hand rather than details that may or may not be present in real
images at test time [33]. Instead of focusing on realism, Tremblay, et al. uses the technique of “Domain
Randomization”, in which the parameters of the synthetic data, such as lighting, pose, and object textures,
are randomized in non-realistic ways to force the neural network to learn the essential features of the object
of interest.

Tremblay, et al. used Unreal Engine 4 to generate 100000 low fidelity renders rapidly with randomized
modifications of each example. Their technique highlighted the importance of the 4 major elements of domain
randomization being: lighting, texture, data augmentation, and “flying distractors” - abstract shapes to
mislead the object detectors. Each of these components were removed in an ablation study to determine
which parameter contributed the most to precision. Lighting was deemed most important when observing
that a fixed light source dropped the AP by 6.1 when compared to using randomized light sources. Their
major contribution came from demonstrating accurate object detectors can be trained using synthetic data
alone, achieving 46.3 AP using an single shot detector model, greatly exceeding the VKITTI dataset by 10.2
AP.

As humans, we identify objects based primarily on their shape, for example a car can be distinctly
recognized as a car from its wheels, doors and windows. The color of the paint, graphics or size of the
wheels on the car does not change its designation as a car. As discussed by Geirhos, et al. humans surveyed
accurately identified pictures of cats 75 and 87 percent of the time when shown only silhouettes and edges
respectively. In comparison, a state of the image classifier, GoogLeNet achieved 49% and 28% on the same
data set due to the bias of texture in most object detectors [13]. Geirhos demonstrated that object detection
performance and robustness towards a wide range of image distortions increased when it was biased towards

shape-based representations.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

2.6 Refining synthetic data by domain or style transfer

Synthetic data can be augmented for realism to better match the test set. Generative adversarial networks
can create realistic images from random noise as image inputs. Using this fact, researchers Shrivastava and
Sixt, used 3D CAD models as input instead of random noise into a GAN that acts as a refiner network to
transfer the realistic properties of real data |30} |31]. Shrivastava, et al. note that this refining process can be
done in an unsupervised manner in their SimGAN process, due to the refiner networks job of only transferring
style features from real data onto the 3D models. The real data observed does not need to be labeled, only
inspected for visual features. Key contributions from their work include the use of a self-regularization
term that penalizes large changes between the synthetic and refined images, allowing the synthetic data to
retain their label. Their approach also achieves state of the art results on the MPIIGaze dataset with an

improvement of 21% without any labeled real data [30].

Neural Style Transfer using CNNs

One of the earliest papers surveyed on style transfer was the work of Gatys, Ecker, and Bethge [12]. Their
approach was to exploit the feature extraction qualities of specific layers that contribute content and style.
The deeper layers of CNNs extract higher level, more general features, where as the earlier layers extract
primitives such as shapes, edges, corners, and colors. Using the feature extractors of the middle layers, Gatys
et al. were able to transfer textures and color schemes, while using the deeper layers they can transfer overall
structure of the image.

Neural style transfer has been shown to transfer the style of famous artists to everyday images, creating
beautiful creations. However, for the use of synthetic dataset refining, this approach has limited value. Due
to the nature of the loss function and the extraction of arbitrary middle convolutional layers of the style
network, “realism” is difficult to pinpoint and transfer accurately onto the target image. A better technique
to transfer realism is by using GANs which the loss function is dependent on how well it matches the

distribution of the source dataset. GANs use the overall image response through the discriminator network,

CHAPTER 2. BACKGROUND AND RELATED WORK 14

instead of just style and content features computed in the loss function in order to make the image match

its target.

Using GANs to transfer realism

This paper makes use of the research done by Zhu, Park, Isola, and Efros in their paper “Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks”, and their implementation known as
CycleGAN. The CycleGAN framework is an approach that is similar in practice to SiImGAN, by which style
features are transferred but with retaining the original input image. CycleGAN uses unpaired images to
do cross-domain transfer. This can be used to transform images from one domain to another. For example
a outdoors scene in the summer can be transformed into winter, and vice versa. This application can be
used to transfer desired features such as photo-realism from a real dataset to a synthetic dataset. Instead of
starting from random noise, a synthetically generated training example along with its label can be enhanced
to contain features present in the domain of the source image, which was lacking in the original.

The CycleGAN architecture makes use of 4 networks, two generators G and F, and two discriminators
Dx and Dy. The objective function has a adversarial loss, the result of the discriminators and generators
competing, accompanied by a cycle consistency loss, which ensures the mapping from domain A to B is
reversible. The cycle is maintained by the two generators G and F that learn a mapping to transform the
image from B back to A. This cycle forces the model to be constrained, such that the output image closely
resembles the input image only with the domain specific features modified. The benefit of having paired
examples is that the generators learn which features are unique to the two domains, but CycleGAN learns
this relationship even with unpaired examples due to the cycle constraint.

A major advantage of using CycleGAN compared to other transformation implementations is the use of
unpaired examples. This allows the their open source implementation in Pytorch to be used “out of the

box” to transform synthetic cars into the “real” domain as described in chapter [4]

CHAPTER 2. BACKGROUND AND RELATED WORK 15

2.7 YOLO algorithm for object detection on aerial photography

The YOLOvV3 [26] algorithm is one of the most popular object detection frameworks due to its speed and
accuracy. This algorithm was a breakthrough by viewing object detection as a regression problem instead
of a classification problem as stated by Dalal and Moh [8]. The YOLO object detection framework is not
only excellent in terms of speed and accuracy, it is also very easy to train and deploy. To demonstrate the
use of synthetic data, a task of detecting objects from aerial viewpoint was chosen.

YOLO divides the image into an SxS grid, with each grid having a vector of class probabilities and
bounding box offsets. YOLOv2 and YOLOv3 make use of anchor boxes to predict coordinates of bounding
boxes. Anchor boxes are expected shape of the boxes the objects will fit in. During the classification
step, offsets, how much the anchor boxes will shrink or expand, are predicted instead of predicting exact
coordinates. This simplifies the problem of localization and makes it easier for the network to learn as stated
by Redmon in YOLO9000 [25]. These will be important when constructing a model that can learn from the
training set and localize well on the test set.

AlexeyAB, the author of a very popular fork of the Darknet YOLO object detection framework, lists
that 2,000 images per class is a recommended minimum for sufficient detector performance [1]. This object
minimum is multiplied by various changes in object pose, orientation, and altitude. During the flight of the
drone, the objects of interests (cars in this experiment) change dramatically in appearance from a straight-
on, to a tilted, and from a direct overhead view. These major variations could be seen as separate classes
to an object detector since some of their distinct characteristics, such as wheels, disappear during variations
of camera position. This implies that 2,000 training examples are needed for each major change in altitude
rotation or view angle, which can quickly add up to tens of thousands of annotations, becoming a large

burden to acquire.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

2.8 Summary and objective

Research surveyed contains conflicting statements whether realism contributes or hinders object detection
performance. Depending on the application, there might be a use-case where realism is necessary such as
human gaze estimation in Shrivastava’s work [30], or where realism is avoided in Domain Randomization
[33]. This paper will explore the use of both, and determine which model is suitable for the application of
aerial based object detection.

This paper aims to answer which technique is best to train object detectors without the use of any
human annotated data. This paper uses techniques described by the previous works, but with the following
differences: Randomly initialized weights with no-pretraining, an aerial dataset with a multitude of views
ranging with camera angles from 0 - 90°, and objects from 0 - 360° rotations and the use of GANs to transfer

realism onto a high resolution scene, but highlight the object of interest.

3 Creation of Synthetic Data

The advantage of using synthetic data is that we can represent a real world object, with a replaceable and
highly mutable 3D counterpart. Our goal is to have synthetic training data close enough to the test set such
that the object detector could learn to recognize key features of our target class, Car, without ever seeing the
real thing. Since our goal is to detect from a drone’s perspective, we want the detector to perform robustly
from all possible viewpoints; meaning 0 - 360° rotations of the vehicle, as well as 0 - 90° variations of camera
tilt. The use of 3D modeling software with a Python API allowed the generation large amounts of labeled

data from these desired viewpoints on a variety of car models. Techniques and theory are discussed below.

3.1 3D Model Rendering

Creation of the synthetic data was done using Blender 3D software, a free and open-source 3D computer
graphics software tool set [5|. This application can be used to create detailed and realistic renders of a
variety of shapes and scenes with complex lighting effects. Rendered cars can look identical to their real
world counterparts, at the expense of long render times and a mastery of the full breadth of 3D modeling
techniques and options available. One of the goals of the project was to streamline the time it takes to setup
and start producing labeled synthetic data without requiring a mastery of digital arts or long render times.

The Python interface was used to script a sequence of renderings with variations in camera orientation,
environmental properties, lighting, and object texture. The API was also used to calculate the 2D bounding
box coordinates of the object of interest in relation to the camera’s perspective in the final rendered image.

The algorithm to compute the bounding box is described in algorithm [T}

17

CHAPTER 3. CREATION OF SYNTHETIC DATA 18

Free to use car models with an open license were downloaded from a popular online 3D community
known as TurboSquid [32]. The site also contains many high-poly car models which look identical to their
real-world counterparts, but were for purchase only, and restrictively expensive. Over 50 different free car
models were inspected for accuracy to their real-world counterpart. After quality control, 12 car models
were chosen amongst 46 models. The models hosted were in various formats created from miscellaneous 3D
modelling software. These models were imported into a Blender readable format and cleaned up by applying
base texture, and grouping components, and removing extraneous polygon faces. The meshes were then
joined into a single object in order for the bounding box to encompass the entire car. The car models used
were: a Mercedes Benz 190 SL, Audi A5, Audi R8, Bugatti Veyron, 1970 Chevy Camaro, Dodge Challenger
SRT-10, Mitsubishi Lancer Evolution X, VW GTI MK5, Lamborghini Aventador, VAZ-2106 Zhiguli, and a
Geo Metro.

After obtaining the minimum level of skill to use Blender adequately, the synthetic dataset factory was
operational. The first datasets were created as experiments to test the bounding box calculations and camera
scripting procedures. Animations were used in order make a sequence of movements, and with each frame,
the bounding box was recorded. YOLO training was attempted after a few hundred samples were created,
with obviously dismal results. However, the proof of concept was ready, and could begin to build gigantic

datasets.

3.2 Spins dataset — camera orbits with all encompassing views

The “Spins” dataset achieved the goal of having an orbiting camera from 0 - 360° and 0 - 90° tilt increments.
The camera was constrained to track the cars position and no regardless of camera position or height, the
car would be in the center of the frame. Orbits were done in increments of 4° resulting in 90 images per
orbit, and 0 - 90° in increments of 1° for a total of 8,100 images per sequence. This dataset achieved the
goal of being able to have labeled data for “every possible view angle” of the car (at a fixed altitude). The

dataset had a grey background with a single strip of road with the car in the center of the frame, Fig. [3.]

CHAPTER 3. CREATION OF SYNTHETIC DATA 19

shows images of the dataset at four different angles. This dataset was expected to be an solid baseline for
a car object detector, but as shown in Chapter [5] the result of training on this dataset alone proved to be

inadequate.

(a) 15° (b) 28°

(c) 45° (d) 72°

Figure 3.1: Audi Spin Dataset — 3D rendering of an Audi R8 at different angles of rotation

3.3 Improvements in 3D modeling

After the Spins dataset alone failed to train an object detector, a number of improvements were made leading
to the creation of the “2.0” dataset. The first improvement the 2.0 dataset had over the Spins dataset was
the use of environment backgrounds. An assortment of 24 distinct HDRI (High Dynamic Range Imaging)
images were chosen as the background environment of the scene. Spherical HDRI environments appear
square in aspect ratio, but can be wrapped in a 3D world such that when rendering from any camera angle,

the background image would be portrayed accurately.

CHAPTER 3. CREATION OF SYNTHETIC DATA 20

HDRI images such as car garages, parking lots, grass fields, and forest roads were used to generate
realistic environments for the 3D car models to live in. Examples of a HDRI images are given in Fig. [3.2
The use of HDRI images gave the benefit of not needing to model the entire environment with object shapes,

but instead apply a single image texture. An example of an empty garage with shadow catching is shown in

Fig. 3.3}

(a) Bridge

(b) Garage — note the presence of cars, making
this scene unusable since they are unable to be
labeled, causing the detector to learn them as
true negatives

Figure 3.2: HDRI images

Random Lighting

Tremblay, et al. showed the importance of randomized lighting from multiple sources in their Domain
Randomization paper, [33], by noting an increase in 6.3 AP compared to fixed lighting. This project followed
that advice and used randomized lighting of point sources that cast shadows and reflections across the 3D

models. The Spins dataset used a fixed light source in “Sun” format, where it cast light from an infinite

CHAPTER 3. CREATION OF SYNTHETIC DATA 21

Figure 3.3: Dodge Challenger in an empty HDRI garage with shadows casted

distance and was evenly distributed across the objects. The 2.0 datasets used multiple small lamp sources
that had a clear direction, with individual intensities that could cast a distinct shadow and highlight different
regions of the vehicle. Although the impact of randomized lighting was not entirely clear due to the multiple
changes the 2.0 dataset had over the Spins dataset, it was a visual and subjective improvement. During
experimentation and reproducton of the SimGAN project [30], the appearance and reflection of light in the

eyes of the refined images was the most noticeable effects the GAN produced from synthetic images.

Random X-Y positioning, and random rotations of car objects

The Spins dataset was all encompassing of every possible view angle by the use of an orbiting camera locked
to the car. This required the use of animation procedures which are more difficult to script. The 2.0 dataset
rotated the object of interest itself instead of the car. This achieved the same effect of orbiting the camera,
but had the advantage of no animation sequence and allowed the object to move laterally in the X-Y plane.

Since CNNs are translation invariant, it did not matter where the car was in the frame, but it allowed the

CHAPTER 3. CREATION OF SYNTHETIC DATA 22

car to be in front various environmental objects or behind other cars.

Along with random positioning, the 2.0 dataset included multiple cars in one frame. Depending on how
many cars were in the scene, the cars translation were fixed into regions such that the meshes would not
intersect, but still come close enough such that one car would occlude the other. Occlusion is important for
the detector to learn since it is very common in the test set, where cars are densely packed when parked in
parking spaces.

Rotations were done by placing an invisible “empty axis” as the camera’s focal point, and the car object
would randomly move in the 2D plane of X and Y, but not protruding 50% of its area out of the frame. The
camera tracked the center of the frame, and as the camera rose in height, its tilt automatically adjusted to
keep focus on the ground at all times. A simple slope intercept equation was created such that Y and Z
increased at the same rate, which allowed the object of interest to be in focus and at a fixed distance as the
camera moved (listing . The camera moved in a circular fashion such that the total distance to the car
was fixed as visualized in figure After observing training with this camera setup, it clearly explained
why cars significantly further away in the distance had trouble being detected as discussed in results section
of Chapter[6] Also, a undiscovered pitfall at the time, the lack of camera roll on the X axis led to difficulties

during inference which is also discussed in Chapter [5.2

Listing 3.1: Tracking equation used to keep the camera focused on a point of interest as the camera moves

def compute_cam_equation(start, end, max_steps):
slope = (end — start) / max_steps
def f(x):
return slope *x x + start

return f

def iterate_camera ():
fz = compute_cam_equation (2, 90, 90)
fy = compute_cam_equation(—70, 0, 90)

num_steps = 90

CHAPTER 3. CREATION OF SYNTHETIC DATA 23

for cam_step in range(0, num_steps):
cam_ob.location.z = fz(cam_step)

cam_ob.location.y = fy (cam_step)

Figure 3.4: Screenshot of Blender software demonstrating the X, Y, Z vector of the camera

3.4 Texturing Cars

Texturing of the cars was originally designed to be as realistic as possible. Metallic paint was applied to the
body, with transparent glass for the windshield and tail lights, as well as chrome for the fender and grill for
each of the car models. The base color of the cars were varied with randomized RGB values and intensities,
but was kept to a reasonable range to appear realistic.

Although realistic texture match the real world test sets, it has been shown that CNN based object

CHAPTER 3. CREATION OF SYNTHETIC DATA 24

Figure 3.5: Screenshot of Blender software visualizing the paths the camera was allowed to take by the
spherical black lines. Notice the radius of the sphere is fixed, this results in the object appearing the same
size at all times

detectors can perform better when texture is “unrealistic” and the neural net relies on object shape as its
primary classification means [33]. As humans, we identify objects based primarily on their shape, for example
a car can be easily recognized as a car by its 4 wheels, doors, and windows. The color of the paint or graphics

on the car does not change the fact it is still a car. As discussed in section Geirhos demonstrated that

CHAPTER 3. CREATION OF SYNTHETIC DATA 25

object detection performance and robustness towards a wide range of image distortions increased when it
was biased towards shape-based representations [13].
Following this theory, the 2.0 Dataset applied the following material textures to the body of the car

objects, adopting a mix of realism along with a variety of colors and odd textures for the body paint:
o Glossy (reflective) paint with randomized RGB values
o Diffuse (matte) paint with randomized RGB
e Magic texture (“psychedelic” wave patterns)
e Image textures (common real-world textures) — from the describable textures dataset [6]

Examples of each can be seen in Figure. [3.0]

(a) Glossy BSDF (b) Diffuse BSDF

(¢) Image Texture (d) Magic Texture

Figure 3.6: Various Textures

CHAPTER 3. CREATION OF SYNTHETIC DATA 26

3.5 Performance increases for massive dataset generation

Blender is a high performance 3D modeling software able to produce realistic renders. However, because
it was designed for high amounts of sophistication, the render times can be significantly long. In order to

speed up render times below 5 seconds the following tweaks were done:

Use the Cycles render engine with GPU rendering

Render using a Hilbert Spiral with tile size of 256x256 pixels

Restrict number of light bounces

e Turn on multiple importance for light sources

Reduce number of samples but turn on de-noising to reduce graininess and “fireflies” effects

The most significant render time improvements are from using the GPU and the render tile size of
256x256. Blender’s Cycle engine uses light sources, and light bounces to calculate how the scene will look.
This can have a tremendous effect visually, but also these computations can be expensive. Reducing the
amount of light bounces can decrease render times, but glass and other light sensitive materials can become
opaque and rough and unable to transmit or reflect light accurately which ruins realism. It is recommended

to keep minimum of four light bounces for balance of realism and performance.

3.6 Surreal Dog Dataset — True Negative Examples

Training the object detector with synthetic data had a side effect of a large amount of false positives.
Training using transfer learning from pre-trained weights reduces false positives, but were still present in all
test examples. The neural networks trained with synthetic data are very sensitive to any kind of shape that
seemed to protrude from the background. This is theorized due to the contrast of a vehicle on a somewhat
neutral background. CNNs feature extractors are trained to be sensitives to edges, and because of the neutral

background of most of the synthetic environments, it can become overly sensitive to any objects that are

CHAPTER 3. CREATION OF SYNTHETIC DATA 27

different from the background. Even oddly shaped objects such as picket fences or bushes were commonly
detected as Cars, the only class to be detected. In order to reduce the high amount of false positives, a new
dataset was generated to produce a large amount of abstract and generic shapes that had no label associated
with them. This allowed these abstract shapes and textures to be unlearned during training.

Taken in inspiration from NVIDIA’s Domain Randomization paper, [33], they used “flying distractors”,
abstract shapes that randomly appeared in the scene to cover up portions of the cars, which improved their
AP by 1.1%. The true negatives dataset used in this paper, nicknamed Surreal Dog, included over 15,000
images containing a variety of randomly oriented shapes across 24 HDRI environments. Objects included
were: cones, spheres, cubes, 2D planes, cylinders, toroids, and a British Bulldog. Each object was given
one of the 4 types object textures shown in that were the same as those applied to cars. Toroids were
specifically designed to have a dark grey to black matte texture, and a circumference and thickness to
resemble a car tire. This was to suppress “circle detector” behavior commonly discovered during evaluation
of test sets that contained rooftop buildings with air ventilation units, manholes, and other circular objects
that are falsely identified as cars. This behavior can be explained by the wheel is a key identifying features
of the car, and has a large activation weight when they are present. Impact of the Surreal Dog dataset is

discussed in detail in Chapter [6] Visualization of the Surreal Dog dataset can be seen in Fig.

3.7 Generation of bounding boxes, labels, and metadata

Computing the bounding box of the object was crucial in order to make useful labeled data. The use of
Blender 3D modeling software Python API allows the extraction of any kind of information desired about
the scene or object in focus. The minimum goal is to achieve the 2D bounding box of the object, but having
control of the entire domain allows us to extract metadata such as current camera tilt, object rotation, and
camera distance. This metadata can be used in multi-modal applications where auxiliary numerical data is
fed in along with image data in order to maximize detection accuracy. This project did not have the correct

environment to evaluate a test set with a multi-modal detector so it was left for Future Works in Chapter

CHAPTER 3. CREATION OF SYNTHETIC DATA 28

Figure 3.7: The surreal dog dataset had two primary achievements: Being extremely amusing, and reducing
the amount of false positives by dulling activations

[l The algorithm to calculate the 2D bounding box encompassing the mesh object is shown in Algorithm [I}

For each car in each frame, the bounding boxes were computed, and written to a text file associated
with the image render. Coordinates were converted into “YOLO” format which are relative with respect to
the image size. Each text file contains one row per bounding box annotation, in the form <class-number

x-center y-center box-width box-height>. For this project, all of the objects generated were cars, with a class

label of “1”.

CHAPTER 3. CREATION OF SYNTHETIC DATA

29

Result: 4 X,Y coordinates that encompass the object inspected normalized from 0 to 1
initialization: join separate components (door, windows, tires) into a single mesh

Input: scene, camera object, mesh object, image resolution
begin
compute camera perspective in relation to scene and camera orientation.
compute matrix of mesh coordinates projected into 2D plane as rendered by the camera.
initialize two empty arrays Ix, and ly
L=]
ly =[]
foreach v in mesh vertices do
extract the X, Y position of each vertex
Ix.append(X)
ly.append(Y)
end
min_x = Min(Ix, 0.0)
min_y = Min(ly, 0.0)
max_x = Max(Ix, 1.0)
max_y = Max(ly, 1.0)
pixel_min_ x = img_width * min_x
pixel_min_y = img_height * min_y
pixel_max x = img_width * max_x
pixel_max_y = img_height * max_y
end

Output: bounding box: pixel_min_x, pixel_min_y, pixel_ max_x, pixel_ max_y

Algorithm 1: 2D bounding box calculation of a 3D mesh in relation to camera perspective

4 Using GANs to Refine Synthetic Data

In review, Generative Adversarial Networks (GANs) use a generator network to produce samples from
random noise that are indistinguishable from a target distribution to a discriminator network. GANSs can
also be fed labeled data instead of random noise such that the GAN will learn how to morph the image
to match the desired domain while keeping the general content of the image. GANs are notoriously hard
to train, so this project will use a GAN framework that have the most stability in terms of training and
inference. CycleGAN was chosen for this exact reason, since it allows the ability to retain the original image’s
content, while only transferring domain specific features, such as the stripes of a zebra onto a horse, using
unpaired training examples.

Previous works, such as the SimGAN project [30] have made use of refiner networks that take in a labeled
synthetic input image and is modified only to transfer desired features such as photo-realism. This has the
benefit of preserving the original input image’s characteristics, such as bounding box coordinates and label.
This project is similar in the work of SImnGAN but replacing the refiner network with CycleGAN and will

be focusing on object detection with localization in addition to classification.

4.1 Pre-processing of the synthetic data

The synthetic and real car datasets were processed such that the cars were cropped by their bounding box
coordinates with a padding of 5 pixels. The purpose was twofold, to reduce the size of the input image from
1920x1080 to around 256x256 as done in the CycleGAN paper, and to allow the GAN to only focus on the

details of the cars instead of the environment. This reduces the networks receptive field to relevant regions

30

CHAPTER 4. USING GANS TO REFINE SYNTHETIC DATA 31

instead of processing the whole image.

Cropping the car to fit exactly the bounding box resulted in a paired car to car translation but at the cost
of not maintaining aspect ratio consistency between image shapes. CycleGAN upsampling transformation
outputs a square region of 256x256. however even with oddly shaped crops, the pre-processing stage of does
a resize to 286x286 and a crop to 256x256 before training. An additional experiment to crop the synthetic
objects with square shapes in order to prevent any image distortion was done, but was of similar quality.
During inference on square images, the output was not distorted, and the GAN still learned domain specific
features.

An experiment was done by feeding in the entire scene, but with downscaling instead of cropping. An
experiment with CycleGAN nicknamed spins-2-spins, tried to align a 360 degree dataset of 2299 cars in a
automotive trade show with bright lights, numerous reflections, and other difficult features to model to the
synthetic “Spins” dataset. This led to poor results, since the GAN was trying to understand a complicated
real-world translated into a very bleak synthetic world.

The real aerial cars dataset used for this project contained 2,164 frames, with a total of 29,257 annotations
and bounding boxes around cars. As noted by the large count from a small amount of frames, the cars were
densely packed in the frame allowing overlap and obfuscation. The entire synthetic dataset of over 85,000
frames containing cars were cropped to a total of 111,058 car images. Additional details of these datasets
are described in appendix [A]

The first experiment of using CycleGAN used the entire synthetic dataset containing all of the textures
described and shown in Figure 3.6] These unique textures were attempted to be mapped onto the real

images. This resulted in interesting looking transformations from B to A as seen in Figure

4.2 CycleGAN Training

The CycleGAN environment was setup for the domain A to contain synthetic images, and with domain B

containing the dataset of real cars. CycleGAN learns both the forwards and backwards transformations, so

CHAPTER 4. USING GANS TO REFINE SYNTHETIC DATA 32

Figure 4.1: Image texture mapped into the real domain

it did not matter whether the real cars were sorted in A or B. A forward pass on the network done done
from A (synthetic) to B (real). Domain B contained the “real world” images, consisting of drone datasets
gathered from the DJI Phantom 3 in various locations. The majority of which was taken from the rooftop
parking garage, which was captured at 6 PM, casting shadows and distinct lighting over the cars, which were
noticeably present after CycleGAN transferred features from the real domain onto the synthetic image.
Training was done on a pair of NVIDIA RTX 2070 GPUs with 8 GB RAM each. The batch size was
increased to 4 from 1 to stabilize training loss as demonstrated by the CycleGAN github page, and as
stated in Smith, et al. paper “Don’t decay the learning rate, increase the batch size” [34]. Another benefit of
increasing the batch size was to fully utilize all available memory of the GPUs. Zhu, the author of CycleGAN,
recommended the training to be done with a single GPU with a batch size of 1 for best results. However,
Zhu also used 200 epochs to train the example models such as horse to zebra, and winter to summer, which
had a dataset sizes of around 2,000 images with approximately 1,000 images in each domain. This project
used many more samples in order to best align the pose of each car to one in the real domain, and was

trained to at most 25 epochs.

CHAPTER 4. USING GANS TO REFINE SYNTHETIC DATA 33

An additional experiment was done on a smaller sample size of 2,000 in each domain using a single NVIDIA
GTX 1080 with a batch size of 1 to replicate the CycleGAN paper, however image quality was severely
degraded with no realistic looking features. It is suspected the low number of examples and viewpoints did
not allow the pairing of domain A and B; thus not allowing the generator network to learn how the two
domains can be mapped to each other.

The GAN models were saved every five epochs, and evaluated periodically by visually inspecting the
produced faked images. In CycleGAN, like most other GAN frameworks, the loss functions are not always
correlated to image quality, thus random sampling and observations must be done instead. The images were
very fascinating to look at. The GAN learned extremely realistic features such as: capturing shadows, a
non-uniform lighting with sunlight bright spots being reflected in the paint, refraction of sunlight through
glass, revealing a previously non-existent interior, and amusingly the inclusion of parking lot space markings
on the ground. CycleGAN learns very low-level cues such as blurring and compression of digital images, as

well as field of view and low resolution of an object that appears far away.

Figure 4.2: Lighting was the most prominent feature transferred

CHAPTER 4. USING GANS TO REFINE SYNTHETIC DATA 34

Figure 4.3: GAN refinement and image substitution process.

4.3 Making use of the CycleGAN model to refine synthetic data

After the generative models were of satisfactory performance, it was time to refine massive amounts of
synthetic data to be used in object detector training. The original idea was to refine the entire scene, such
that the original labels did not need to be modified. However, noted in earlier chapters, it was not possible
to refine the entire scene at once. For the training to work, the images had to be cropped to 256x256 or
smaller images to reduce the receptive field of the GAN network.

After the cropped regions of interest were fed through the refining network, it was then stitched back
into the original frame as shown in Figure [£:3] This resulted in having a square boundary of a GAN-refined
background mixed into a synthetic background. Although the image portion was cropped seamlessly, due to
the color changes, the substitution transition is noticeable as shown in Figures[£.:4] and This substitution
can possibly be improved and is expected that it increased the detectors sensitivity to background and
foreground objects. The result of this method are discussed in chapter [6] and further work is discussed in
section [7] This technique however is better than the alternative of feeding the entire image through the

GAN since it would not produce the correct output resolution, or transfer the correct features.

CHAPTER 4. USING GANS TO REFINE SYNTHETIC DATA 35

Figure 4.4: result of the substitution process which leaves a square boundary, but with a realistic looking
car

Figure 4.5: before and after GAN-refined substitution

5 Training the Object Detector

Training was done in incremental stages as more and more data was synthetically produced and refined.
The beginning stages started by training on a few hundred samples, and tweaking the synthetic data as
trends emerged. Eventually 101,671 synthetic images were created, consisting of 85,952 positive examples,

and 15,719 true negative examples. Image augmentations doubled the dataset size to over 200k images.

5.1 Architecture and training strategy

All of the object detection experiments used YOLOv3, but with variations in the network architecture. A
“deep” model was trained using the Darknet-53 backbone as a feature extractor. This feature extractor uses
3x3 and 1x1 convolutional layers with skip connections which allows very deep networks to converge easier as
discovered by Kaiming He et al. in the Residual Networks architecture [17]. The deep architecture had more
difficulty converging on the synthetic dataset with or without pretraining, and produced a large amount of
false positives even when pretrained convolutional weights were used. It is expected that the deeper network
would need many more training iterations and a much larger number of synthetic data training samples due
to the complexity of the model. The YOLOv3 deep architecture was overkill due to the single class Car to be
detected. It is suspected that the very deep model was overfitting the training set, as stated in Goodfellow’s
Deep Learning Book, models with high capacity can simply memorize the training set |14]. Results will be
discussed in chapter [6]

A shallow network known as “Tiny YOLO” was used in replacement of deep YOLO. This model uses

15 convolutional layers with route connections which concatenate the output of two or more layers together.

36

CHAPTER 5. TRAINING THE OBJECT DETECTOR 37

This model differs from the deep network with the addition of maxpooling layers as well as fewer convolutional
layers and no skip connections.

Tiny YOLO hyper-parameters for Blendernet 2.0

Width: 960

Height: 544

Max batches: 50000

e Learning rate: 0.001

Steps 40000, 45000 (each step decreases the learning rate by a factor of 10)

Anchors = 30,32, 65,36, 90,45, 72,88, 119,60, 166,104

5.2 Training from scratch

To determine if the synthetic dataset was sufficient enough to completely replace real image data a model was
trained using randomly initialized weights instead of transfer learning. The pretrained weights of Darknet
YOLO was trained on the ImageNet [28] dataset comprised of 1000 different classes, including trucks and cars.
Using the pretrained weights would be giving a head start to the feature extraction of cars, which would make
it unclear how much the synthetic data contributed to the classification accuracy. If the detector only trained
with synthetic data was able to identify cars in a real world test set, this would indicate the synthetic data is
either realistic enough, or gave enough high level features for the detector learn how to localize and identify
vehicles. Also as pointed out by He, Girshick, and Doll in their “Rethinking ImageNet Pre-Training” paper
[16], transfer learning is not necessary as long as a sufficient amount of training iterations are performed.
Using the tiny YOLO model architecture, training was done on the Spins dataset with no pretraining.
However, due to the lack of variation between each training example of the spins dataset, it did not allow
the object detector to generalize. The lack of a complex background, a grey void, did not let the detector to

become robust to various environments. Along with the lack of texture variety (grey, white, black), and lack

CHAPTER 5. TRAINING THE OBJECT DETECTOR 38

of car types (mostly all sports cars), did not allow the detector to translate any knowledge to the real world.
Training loss rapidly decreased below the single digit range, approximately 0.05, after only a few hundred
iterations. However, when running on the test set, it achieved an AP of 0, unable to localize any reals car
and with random false positives everywhere.

A second attempt at training was using the 2.0 dataset in addition to the Spins dataset comprising of
approximately 80K images. The same Tiny YOLO network architecture was trained for 96,000 iterations to
which the net started showing signs of knowledge of car object features. However the false positive rate was
very high, lowering the average precision. When the 15,000 images of the “Surreal Dog” dataset was added,
the false positive rate dropped to zero with the side effect of the recall rate dropping significantly as well.

The Surreal Dog dataset accomplished the task of reducing false positives, but on closer inspection, the
HDRI background used for a portion of the frames contained real images of cars. Since the dataset had no
labels, everything contained inside the frame was considered “not a car”, penalizing the the network when
it sees any cars. This erroneous section of the dataset was removed, and training was continued again from
96,000 to 115,000 iterations. The detector was at its best performance qualitatively when run on a video
provided from the test set. It achieved 0.65 AP and 0.74 F1 after being evaluated on the ground truth aerial

dataset “newark gt”.

Training with image augmentations for further AP gains

During visual inspection of the test set, it was observed that rotations of the frame completely fooled the
object detector as shown in Figure[6.3] It came as a surprise since it was assumed the synthetic dataset had
all possible rotations of the car itself, however it did not take into account camera rotations on the X axis.
The object itself was allowed to rotate freely in the X-Y plane, but the camera was fixed and could not roll.
It was apparent that a drone’s gimbal can move unexpectedly mid flight, and was not accounted for during
synthetic dataset generation. However, instead of re-rendering thousands of images with camera rolls, a
standard image augmentation library named imgaug [2], written in Python, was able to perform dozens of

transforms on the dataset with a fraction of the processing power to render an image.

CHAPTER 5. TRAINING THE OBJECT DETECTOR 39

Image Augmentations

Contrast variation

e Frame rotation from -25 - 25°

Blurring

Pixel dropout

Salt and pepper noise

Image augmentation allowed the synthetic dataset to be rotated and modified much faster than re-
rendering the entire dataset with variations in camera roll. Image augmentation increased precision and
recall by a large margin. As shown visually in Fig. the detector went from detecting all of the cars
in the frame when faced head on, but loses all of the cars when the camera was rolled by approximately
15°. After image augmentation was applied to all of the frames, including rotations of -25 to 25°, the object

detector was able to capture all of the cars in the frame it previously completely missed.

6 Results and discussion

The results below show that is it possible to train YOLOv3 with synthetic data only, or using transfer
learning with pre-trained weights. A total of 5 Datasets were used to evaluate performance. Rooftop - which
contained 3 distinct view angles, Newark_gt, which was a simple drone flight around an industrial office
facility, and VisDrone, a new public dataset and competition from drone based object detection. These

datasets are described in detail in the appendix section [A]

Table 6.1: Results on the benchmark datasets dataset for the Tiny YOLO models

model name AP Fl-score architecture training set test set

ng-tiny-real 0.91296 0.936269 tiny yolo v3 real aerial only newark_gt
pt-blendernet-3-tiny 0.737134 0.788764 tiny yolo v3 synthetic with pretraining newark_gt
nosurreal-blendernet | 0.764551 0.606936 tiny yolo v3 synthetic without true negative suppression newark_gt
GAN-refined 0.757427 0.591793 tiny yolo v3 GAN-refined synthetic data newark_gt
ng-tiny-real 0.306202 0.425792 tiny yolo v3 real aerial only VisDrone
pt-blendernet-3-tiny | 0.201432 0.341029 tiny yolo v3 synthetic with pretraining VisDrone
pure-synthetic 0.163719 0.290751 tiny yolo v3 synthetic with no pretraining VisDrone
GAN-refined 0.216196 0.360963 tiny yolo v3 GAN-refined synthetic data VisDrone

6.1 Test criteria to evaluate object detector performance

The test set known as Newark Ground Truth, newark_gt was used as a baseline for object detection on
common cars. This basic dataset was used as a typical application use case, which contained a small amount
of cars alongside circular and boxy looking objects that could possibly trigger false positives from the detector.
As shown in table the real model performed very well on the newark_gt dataset, achieving an AP of
0.91 and an F1 score of 0.94. All of the synthetic models achieved similar performance, the best of which
was trained with synthetic data with image augmentations, along with transfer learning. The GAN-refined
network was very sensitives to localizing objects but came with a large amount of false positives which

40

CHAPTER 6. RESULTS AND DISCUSSION 41

brought the overall F1 score much lower than its synthetic counterparts. As shown in Figures and [6.1D]
we can see the effect of the false positive suppression effects when applied to GAN-refined data. The recall is
higher when using only GAN-refined data but at the cost of lower precision. Suppressing these false positives

evens out the graph and produces higher precision, but with a smaller area under the curve or AUC.

10T————==—===

N mAP=0.23
———
1.0 ———————===-__ MAP=0.25 N —— 1[AP0.69, F10.75]
oo ‘-\ —-- 3[AP 0.00, F1 0.00]
SN —= 1[AP 0.76, F1 0.59] 0.8 1 ===~ 5[AP 0.00, F1 0.00]
‘_ —- 3[AP0.00, F1 0.00]
0.8 N --=+ 5[AP 0.00, F1 0.00]
\\
\
0.6
‘1\ 5
[}
g 06 “\ S
@ A g
9 v 204
o A}
g
204
0.2
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
0.0 Recall
0.0 0.2 0.4 0.6 0.8 1.0

Recall

(b) GAN-refined trained detector with false positive sup-
(a) GAN-refined trained detector pression

Figure 6.1: Comparison of detector performance on the Newark_gt test set

VisDrone evaluation

The VisDrone [35] dataset was added as a late entry for completeness to see how the synthetically trained
models performed on this dataset as compared to the real-world model. As shown in table The real-
world model “ng-tiny-real” performed the best, beating the GAN-refined model by 0.10 AP. The VisDrone
dataset captured many different object sizes due to the varying altitudes, which the synthetic dataset was
severely lacking in due to the locked camera distance. The synthetically trained models achieved an average
precision of 0.21 on the VisDrone validation. These numbers cannot be compared directly to the competition
results since the official VisDrone test set annotations are not publicly available. The best of the VisDrone
2018 competitors achieved a high of 0.31 AP using a RetinaNet architecture, and the worst achieving 0.025
using an SSD architecture.YoloV3 implementations scored 0.10 to 0.20 AP [35]. Future work will use this

dataset for all experiments regarding drones, and plans to compete in this competition using synthetic data

CHAPTER 6. RESULTS AND DISCUSSION

are underway.

6.2 More challenging test set; Rooftop Parking

42

In order to stress test the models, and pinpoint which viewpoint the models performed best on, the Rooftop

parking lot dataset was created. The models were then re-evaluated with these subsets.

Table 6.2: Rooftop parking lot test sets

model name AP Fl-score training set test set
ng-tiny-real 0.778249 0.863818 real aerial only rooftop_birdseye
ng-tiny-real 0.680328 0.805278 real aerial only rooftop_tilt
ng-tiny-real 0.587169 0.72944 real aerial only rooftop_low_angles
pt-blendernet-3-tiny | 0.548529 0.698701 synthetic with pretraining rooftop_birdseye
pt-blendernet-3-tiny | 0.375072 0.540215 synthetic with pretraining rooftop_tilt
pt-blendernet-3-tiny | 0.341078 0.505618 synthetic with pretraining rooftop_low_angles
GAN-refined 0.753333 0.82392 GAN-refined synthetic rooftop_birdseye
GAN-refined 0.510713 0.660084 GAN-refined synthetic rooftop_tilt
GAN-refined 0.415674 0.576101 GAN-refined synthetic rooftop_low_angles

As demonstrated in table [6.2] the real data detector outperforms all models trained on synthetic only

datasets. However, the GAn-refined synthetic model came very close to real data performance on the birdseye

subset achieving a score of 0.75 AP vs the real data of 0.78 AP. This is a large achievement since aerial views

are not common in the ImageNet dataset which the Darknet YOLO convolutional weights were trained on.

It can be inferred that the training was largely influenced by the synthetic data training instead of transfer

learning.

Results of image augmentation

Image augmentation was invaluable for the fact that the lack of camera roll in the synthetic dataset was

completely remedied by the use of an easy to use python library. This interesting result shown in figure [6.3]

highlights first hand the side effect of the CNN not being invariant to rotations. The same car object slightly

rotated appears to be an unrecognizable new class to the CNN.

CHAPTER 6. RESULTS AND DISCUSSION 43

(a) Birdseye (b) Tilt

(c) Low Angles (d) Pure synthetic detection

Figure 6.2: Sample of the more difficult rooftop test set with a sample prediction

6.3 Discussion of GAN Refinement

The GAN-refined model had very high recall, able to pick up every single car in a video recorded in a
residential neighborhood. However, like previous training attempts with synthetic data, the false positive
rate was very high, picking up a lot of objects that had “structure”, and seemed to “pop-out” against a
background of a gray street. The detector was very sensitive to these kind of objects, due to the high contrast
of the background vs the object in focus from the synthetic dataset. This detector was trained to 50,000
iterations, achieving a training loss of less than 0.10, and achieved an AP of 0.76 and F1 score of 0.59 on the
newark_gt training set.

Compared with the synthetic only model, pt-blendernet-3-tiny, the GAN-refined model had a higher
AP score, but with a lower F1 score due to a high amount of false positives. In order to reduce the false

positives, “Surreal Dog” came in useful again as can be seen in Fig. With GAN refinement data and

CHAPTER 6. RESULTS AND DISCUSSION 44

(a) Straight view, synthetic detector at 1.0 recall (b) Rotated image, synthetic detector at 0 recall

(c) After image augmentation on synthetic only dataset, recall increased back to 1.0

Figure 6.3: Image augmentation with great positive effects on recall of rotated images (newark_gt)

false positive suppression, the AP dropped to 0.69 with an F1 score of 0.75. Although the model trained with
GAN-refined data did not outperform the pure synthetic model on the newark_gt dataset, the GAN-refined
model had tremendous performance on the rooftop parking lot dataset. Nearly reaching performance of a
real-data detector, the GAN-refined model achieved 0.75 AP and 0.82 F'1 on the Birdseye view rooftop, with
a difference of -0.02 AP and -0.04 F1 score with respect to the real-data model, ng-tiny-real.

It is suspected the GAN-refined model was very good at detecting cars, due to the transfer of realistic
lighting. As pointed out by Tremblay et al. randomized light sources was their most important aspect in
terms of generating useful synthetic data, and increasing AP [33]. The GAN was able to learn very realistic
lighting, reflection of the sun, and shadows, that the synthetic models created by Blender engine never
accounted for. It is possible that one could achieve better lighting with more knowledge of 3D modeling, but

with the cost of longer render times.

CHAPTER 6. RESULTS AND DISCUSSION 45

6.4 Overall consensus

Overall, the synthetic datasets generated were used to train decent performing detectors. It was impressive
what they could achieve on the test sets without ever seeing an example of a real car. There were pros and
cons of training a detector using synthetic data only which can be summarized in table It was shown a
object detector trained with only synthetic data can be deployed in an aerial application as demonstrated
by the success of the synthetic models on the Newark_gt test set. It was clearly demonstrated the object
detectors learned what a car looked like from “all possible” view points which was the major goal of the
project.

It is suspected the real aerial dataset model outperformed the synthetic dataset models due to the fact
that the training domain from the DJI phantom nearly matched exactly the test set. Low level cues and
minor details only captured in real photography made their way into the training set, which was hard to
replicate in the synthetic dataset. GAN-refinement helped bridge this gap by learning realistic features which
resulted in modest AP gains. Real data had a benefit of a large variety of cars with short and far draw
distances that brought diversity the synthetic dataset was lacking. The real datasets had significantly less
false positives, this could be due to the fact the cars blend in easier with the background, and do not “pop
out” as much.

The synthetic dataset was lacking in the following areas: variety of car classes, realistic lighting, camera
roll, and distant cars. However, this is a solvable problem that is addressed in future works in section
Synthetic datasets can be expanded to generate more data in the areas that were lacking.

Overall, the synthetic dataset models performed brilliantly for the fact they had never seen a picture
of a real car before, and were trained solely on computer generated models. The GAN-refined model took
the synthetic datasets to a new level, and achieved near real-data performance. All of this was achieved for
“free”, with help from previously labeled, and previously trained models however. It is still possible to train
a model solely using synthetic data without any real data and achieve precision and recall of respectable

performance.

CHAPTER 6. RESULTS AND DISCUSSION 46

Table 6.3: Analysis of synthetic data

Characteristic Explanation

Not enough small objects in the training set.

Fix with additional data and anchor box size tuning
Excels at varied poses, large objects, obscured objects GAN-refinement + varied textures made it very sensitive

Struggles with distant or small objects

Struggles with false positives Side effect of sensitivity
Excels at 90 degrees views Large quantity of downward facing data produced
(a) GAN-refined trained model before Surreal Dog (b) GAN-refined trained model after Surreal Dog

Figure 6.4: GAN-refined trained model, with false positive suppression

7 Conclusion and Further Research

This project answered all of the research questions that were asked during the development of an aerial based
object detector. It was shown how to overcome the task of acquiring large amounts of labeled data without
relying on human annotation by the use of synthetic data generation. It was shown that synthetic data
can supplement that lack of publicly available data, or when an application has no suitable replacement.
It was shown through the use of CycleGAN, realistic features can be transferred onto synthetic while still
maintaining its label. And finally, it was shown by the use of synthetic data generation along with image
augmentation as a way to brute force a convolutional neural network to learn an object from all possible
pose and viewpoint variations.

The techniques of 3D modeling, image augmentation, false positive suppression, and GAN-Refinement,
allowed the ability to create a vast amount of labeled training data to be used in object detection. 3D
modeling with image augmentation alone achieved surprisingly good results for never having seen a real car
before. GAN-Refined data increased the performance to nearly match a real-data detector by transferring
realistic features onto the synthetic dataset. False positive suppression by the use of abstract shapes and
textures improved object detector training with both pure synthetic and GAN-Refined synthetic data. The
combination of all of the techniques resulted in a high performance object detector with very little cost to
the end user. Real data was necessary in order to train GAN-Refined data, but the impact of this can be
transferred to a limitless supply of synthetic data.

This project solved the problem of of creating high quality labeled data for machine learning applications

is great. It allows users to build prototypes, substitute real data for niche applications, and start training

47

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH 48

without any out of pocket costs. Building machine learning models can be easy with the right algorithm
and dataset. This paper proved synthetic data can be used achieve a good baseline performance on an aerial

object detection vehicle test set without ever seeing a real example of a car.

Future Work

Further work can be done to improve the variety of the synthetic data. As the weak points became apparent
during iterative training of multiple object detection models, improvements were made gradually to the
synthetic rendered dataset. The first obvious improvement to the synthetic dataset is the inclusion of more
3D car models. Majority of the models used were expensive sports cars, which are generally not representative
of common road traffic. A total of 12 car models were used, but increasing this to include common cars,
light trucks, vans, and SUVs would allow the detector to be come even more robust.

3D modeling can also be improved by: camera roll, far away objects or shrunken models, many cars in
one frame of various shapes and positions, better HDRI images (from an aerial perspective), superimposed
images (drone footage) with 3D models overlaid, and more realistic lighting by increasing light bounces and
reflections commonly seen in real data.

Improvements in GAN-refinement can be done by a better substitution method for transferring realism
from the output of CycleGAN onto the synthetic dataset with seamless integration. Although the car textures
are the only portion of the scene that needs to be refined, it should be integrated smoothly into the original
scene without looking out of place. Or instead of substituting the cropped section back into the original
frame, a new bounding box can be generated for the produced 256x256 pixel image.

Competition in the VisDrone challenge is of great interest. Training with real data mixed with GAN-
refined, and pure synthetic data, along with a powerful object detector architecture, would be a serious
contender.

In addition to the improvements above, further research could include ways to simulate thermal imaging
without the need of an IR camera. This would allow object detection during night time, which is a powerful

security application. Other applications like text recognition for license plate identification can be easily

CHAPTER 7. CONCLUSION AND FURTHER RESEARCH 49

done using synthetic dataset generation using the techniques of this paper. The possibilities are endless and

the data can be limitless.

Bibliography

Alexey AB and Joseph Redmon. Darknet. https: //github . com/AlexeyAB/darknet #how—-to -

improve-object-detection. 2016.
aleju. 2015. URL: https://github.com/aleju/imgaug,

Amazon. Amazon Mechanical Turk Participation Agreement. 2018. URL: https://www.mturk.com/

participation-agreement.

N. Bhandary et al. “Robust classification of city roadway objects for traffic related applications”. In:
2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable
Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innova-
tion (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Aug. 2017, pp. 1-6. DOI: |10.1109/

UIC-ATC.2017.8397668.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation.

Blender Institute, Amsterdam, 2017. URL: http://www.blender.org,

Mircea Cimpoi et al. “Describing Textures in the Wild”. In: Proceedings of the IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR). 2014. URL: http://www.robots.ox.ac.uk/~vgg/

publications/2014/Cimpoild/cimpoiléd.pdf.

Toana Croitoru, Simion-Vlad Bogolin, and Marius Leordeanu. “Unsupervised learning of foreground
object detection”. In: CoRR abs/1808.04593 (2018). arXiv: 1808.04593, URL: http://arxiv.org/

abs/1808.04593.

50

https://github.com/AlexeyAB/darknet##how-to-improve-object-detection
https://github.com/AlexeyAB/darknet##how-to-improve-object-detection
https://github.com/aleju/imgaug
https://www.mturk.com/participation-agreement
https://www.mturk.com/participation-agreement
https://doi.org/10.1109/UIC-ATC.2017.8397668
https://doi.org/10.1109/UIC-ATC.2017.8397668
http://www.blender.org
http://www.robots.ox.ac.uk/~vgg/publications/2014/Cimpoi14/cimpoi14.pdf
http://www.robots.ox.ac.uk/~vgg/publications/2014/Cimpoi14/cimpoi14.pdf
http://arxiv.org/abs/1808.04593
http://arxiv.org/abs/1808.04593
http://arxiv.org/abs/1808.04593

BIBLIOGRAPHY 51

[8] R. Dalal and T. Moh. “Fine-Grained Object Detection Using Transfer Learning and Data Augmen-
tation”. In: 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM). Aug. 2018, pp. 893-896. DOI: |[10.1109/ASONAM. 2018.8508293.
[9] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In: CVPR09. 2009.

[10] Dawei Du et al. “The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking”. In:

CoRR abs/1804.00518 (2018). arXiv: 1804.00518. URL: http://arxiv.org/abs/1804.00518.

[11] Adrien Gaidon et al. “Virtual Worlds as Proxy for Multi-Object Tracking Analysis”. In: CoRR abs/1605.06457

(2016). arXiv: [1605.06457. URL: http://arxiv.org/abs/1605.06457.

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. “Image Style Transfer Using Convolutional Neural Networks”.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 00. June 2016,
pp. 2414-2423. DOI: 10.1109/CVPR.2016.265. URL: doi.ieeecomputersociety.org/10.1109/CVPR.

2016.265.

[13] Robert Geirhos et al. “ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness.” In: International Conference on Learning Representations. 2019.

URL: https://openreview.net/forum?id=Bygh9j09KX.

[14] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016.

[15] Tan Goodfellow et al. “Generative Adversarial Nets”. In: (2014). Ed. by Z. Ghahramani et al., pp. 2672

2680. URL: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[16] Kaiming He, Ross B. Girshick, and Piotr Dolldr. “Rethinking ImageNet Pre-training”. In: CoRR

abs/1811.08883 (2018). arXiv:|1811.08883. URL: http://arxiv.org/abs/1811.08883.

[17] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385 (2015).

arXiv:|15612.03385. URL: http://arxiv.org/abs/1512.03385,

https://doi.org/10.1109/ASONAM.2018.8508293
http://arxiv.org/abs/1804.00518
http://arxiv.org/abs/1804.00518
http://arxiv.org/abs/1605.06457
http://arxiv.org/abs/1605.06457
https://doi.org/10.1109/CVPR.2016.265
doi.ieeecomputersociety.org/10.1109/CVPR.2016.265
doi.ieeecomputersociety.org/10.1109/CVPR.2016.265
https://openreview.net/forum?id=Bygh9j09KX
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1811.08883
http://arxiv.org/abs/1811.08883
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

BIBLIOGRAPHY 52

[18]

[23]

[24]

Geoffrey Hinton. Geoffrey Hinton talk ”What is wrong with convolutional neural nets ¢”. Youtube.

2017. URL: https://www.youtube.com/watch?v=rTawFwUvnLE.

Jonathan Hui. https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-

object-detectors-ssd-yolo-fpn-focal-loss-3888677cbf4d. 2018.

Matt Krause. https://stats.stackexchange . com/questions/208936/what-is-translation-

invariance-in-computer-vision-and-convolutional-neural-netwo. 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with Deep Convolu-
tional Neural Networks”. In: Advances in Neural Information Processing Systems 25. Ed. by F. Pereira
et al. Curran Associates, Inc., 2012, pp. 1097-1105. URL: http://papers.nips. cc/paper/4824-

imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Yann Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the

IEEE. 1998, pp. 2278-2324.

Tsung-Yi Lin et al. “Focal Loss for Dense Object Detection”. In: CoRR abs/1708.02002 (2017). arXiv:

1708.02002. URL: http://arxiv.org/abs/1708.02002.

Xingchao Peng et al. “Exploring Invariances in Deep Convolutional Neural Networks Using Synthetic
Images”. In: CoRR abs/1412.7122 (2014). arXiv: 1412.7122. URL: http://arxiv.org/abs/1412.

7122l

Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In: CoRR abs/1612.08242

(2016). arXiv: |1612.08242. URL: http://arxiv.org/abs/1612.08242.
Joseph Redmon and Ali Farhadi. “YOLOv3 An Incremental Improvement”. In: arXiv (2018).

Alexandre Robicquet et al. “Learning Social Etiquette: Human Trajectory Understanding In Crowded
Scenes”. In: vol. 9912. Oct. 2016, pp. 549-565. 1SBN: 978-3-319-46483-1. DOI: [10.1007/978-3-319-

46484-8_33.

https://www.youtube.com/watch?v=rTawFwUvnLE
https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d
https://medium.com/@jonathan_hui/what-do-we-learn-from-single-shot-object-detectors-ssd-yolo-fpn-focal-loss-3888677c5f4d
https://stats.stackexchange.com/questions/208936/what-is-translation-invariance-in-computer-vision-and-convolutional-neural-netwo
https://stats.stackexchange.com/questions/208936/what-is-translation-invariance-in-computer-vision-and-convolutional-neural-netwo
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1412.7122
http://arxiv.org/abs/1412.7122
http://arxiv.org/abs/1412.7122
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://doi.org/10.1007/978-3-319-46484-8_33
https://doi.org/10.1007/978-3-319-46484-8_33

BIBLIOGRAPHY 53

[28]

[31]

[32]

[33]

[34]

Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International Jour-

nal of Computer Vision (IJCV) 115.3 (2015), pp. 211-252. DOI: 10.1007/s11263-015-0816-y.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. “Dynamic Routing Between Capsules”. In:

CoRR abs/1710.09829 (2017). arXiv: [1710.09829. URL: http://arxiv.org/abs/1710.09829.

Ashish Shrivastava et al. “Learning from Simulated and Unsupervised Images through Adversarial
Training”. In: CoRR abs/1612.07828 (2016). arXiv:|1612.07828. URL: http://arxiv.org/abs/1612.

07828

Leon Sixt, Benjamin Wild, and Tim Landgraf. “RenderGAN: Generating Realistic Labeled Data”. In:

CoRR abs/1611.01331 (2016). arXiv: [1611.01331. URL: http://arxiv.org/abs/1611.01331.

The Worlds Source for Professional 3D Models. TurboSquid. 2000. URL: https://www.turbosquid.

com.

Jonathan Tremblay et al. “Training Deep Networks with Synthetic Data: Bridging the Reality Gap by
Domain Randomization”. In: CoRR abs/1804.06516 (2018). arXiv: [1804.06516. URL: http://arxiv.

org/abs/1804.06516|

Jun-Yan Zhu et al. “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Net-
workss”. In: Computer Vision (ICCV), 2017 IEEE International Conference on. 2017. URL: https:

//github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

Pengfei Zhu et al. “Vision Meets Drones: A Challenge”. In: arXiv preprint arXiv:1804.07437 (2018).

https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1710.09829
http://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1612.07828
http://arxiv.org/abs/1611.01331
http://arxiv.org/abs/1611.01331
https://www.turbosquid.com
https://www.turbosquid.com
http://arxiv.org/abs/1804.06516
http://arxiv.org/abs/1804.06516
http://arxiv.org/abs/1804.06516
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

A Datasets used for testing, training, and evaluation

Training Sets

Spins The first of the synthetic dataset, named Spins, consisted of 7 car models: Bugatti Veyron, Lam-
borghini Aventador, Lancer Evolution X, VW GTI MK 5, Audi R8, Dodge Challenger SRTS, and a
1970s Chevy Camaro. Scene was a single road in a grey void background (no environment). Car was
placed in the center of the scene, and the camera was fixed to lock gaze onto the car as it rotated 360°.
Camera Y and Z distance was raised at proportional rates such that the total distance from the car
was fixed as the camera’s tilt increased from 0 to 90°. Camera was rotated 4° per frame from 0 to

360°. Tilt increased in 1° increments per full camera rotation resulting in 8100 unique frames per car.

Two more car models, a Mercedez Benz 190SL and a VAZ-2106 Zhiguli, a Soviet era sedan, were added
to the Spins pool for more diversity. A total of 66,311 frames with an equal amount of labeled bounding

boxes were produced for the Spins dataset.

2.0 The “2.0” dataset consisted of the more advanced Blender techniques, and improvements in variety and
diversity over the spins dataset. Improvements included randomized textures, environments, object
position, object rotation, light sources, and the addition of multiple cars per frame. A total of 25989

frames were produced resulting in a total of 43,225 car examples.

Surreal Dog The “Surreal Dog” dataset was designed to reduce false positives by purposefully creating
images that contained a variety of shapes and textures similar to the cars generated, but without any
actual cars present. Each frame had a empty label file associated with the generated images. This

o4

APPENDIX A. DATASETS USED FOR TESTING, TRAINING, AND EVALUATION 55

was to encourage negative reinforcement to dull the activation of the detector to prevent detection of

objects and textures similar to cars. A total of 15,845 images were created that contained no cars.

Image Augmentation All of the above datasets were augmented using the image augmentation library
ImgAug [2]. A single pass was done across all of the synthetic data, doubling the amount of training
examples. Augmentation techniques were discussed in section [5.2] Future works can expand the

amount of augmentation to let the dataset size reach the millions mark.

Real Data for training competing object detectors In order to rate the performance of an object
detector trained with synthetic data, a detector trained with only real data was used as the baseline
to meet. 3 separate videos were gathered over the course of a few months using a DJI Phantom 3
drone capturing 1080p footage. With permission from Nightingale Intelligent Systems, part of this
dataset was used to train various models for their object detection platform. A total of 953 frames
were extracted from the videos, leading to 12348 bounding boxes, 8786 of those being cars. This

dataset was used to generate the ng-tiny-real object detection model described in chapter [6}

Test Sets

Newark Ground Truth The premise of this paper was that publicly available drone datasets are difficult
to find. This was no exception when trying to find a suitable test case for benchmarking. A test dataset
had to be generated manually for the use in this project. The Newark ground truth dataset was used
as a primary means for evaluating the trained models. It was not shown to any of the detectors during
training time, and was generated solely for evaluation. It was recorded at an office complex in Newark
CA. containing a handful of cars, trucks, and pedestrians. A key feature of this dataset was not the
sheer amount of cars present, but the various objects that can fool object detector such as circular air
vents, square metal objects, and other court yard features. An additional “feature” of this dataset is

overexposure, and motion blur. A total of 195 frames were captured containing 424 examples of cars.

APPENDIX A. DATASETS USED FOR TESTING, TRAINING, AND EVALUATION 56

The footage was captured using a DJI Mavic at 4K resolution. This dataset will be publicly available

to download after publication of this paper.

Rooftop 3 different angles An additional test set was generated to stress object detector performance
with a large amount of objects packed within the frame. A new dataset from a rooftop parking
garage was created and annotated manually for further benchmarking purposes. This dataset was
gathered using the DJI Phantom 3 at 1080P. A total of 860 images were gathered with a total of 22344
annotations. Annotations were created by an existing object detector to label the dataset then and is
reviewed by a human for accuracy and to correct missed objects. Features of this dataset were a large
variety of cars from diverse viewing perspectives. The large number of frames allowed this dataset to
be broken into 3 subsections: Birdseye - top down views (55 - 90° downwards), Tilt - (30 - 55°), and
Low-angles - (0 - 25°). angles. All of the footage was captured at a range of 10-20 meters above ground

level.

Barberry An additional dataset used for visual inspection of model performance was the Barberry dataset:
A residential neighborhood of various tilts, altitudes, and distances, with a large variety of vehicle
types. This dataset was not used for numerical evaluation, rather for visual inspection of where models
were struggling or excelling. This was shot using the DJI Phantom 3 at 1080p, and can be seen during

evaluation of the GAN-refined model in Fig.

	Learning for Free – Object Detectors Trained on Synthetic Data
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	The challenge of getting data
	Object Detection using Convolutional Neural Networks
	Neural Network Training Techniques
	Generative Adversarial Networks
	Training with synthetic data
	Refining synthetic data by domain or style transfer
	YOLO algorithm for object detection on aerial photography
	Summary and objective

	Creation of Synthetic Data
	3D Model Rendering
	Spins dataset – camera orbits with all encompassing views
	Improvements in 3D modeling
	Texturing Cars
	Performance increases for massive dataset generation
	Surreal Dog Dataset – True Negative Examples
	Generation of bounding boxes, labels, and metadata

	Using GANs to Refine Synthetic Data
	Pre-processing of the synthetic data
	CycleGAN Training
	Making use of the CycleGAN model to refine synthetic data

	Training the Object Detector
	Architecture and training strategy
	Training from scratch

	Results and discussion
	Test criteria to evaluate object detector performance
	More challenging test set; Rooftop Parking
	Discussion of GAN Refinement
	Overall consensus

	Conclusion and Further Research
	Bibliography
	Datasets used for testing, training, and evaluation

