On Adversarial Attacks on Deep Learning Models

Nag Mani
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Recommended Citation
DOI: https://doi.org/10.31979/etd.49ee-sknc
https://scholarworks.sjsu.edu/etd_projects/742
On Adversarial Attacks on Deep Learning Models

By: Nag Mani
Advisor: Melody Moh
CS 298 Report

Department of Computer Science
San Jose State University
San Jose, CA, U.S.A.

Spring 2019
Approved by the Designated Project Committee of Project Titled

On Adversarial Attacks on Deep Learning Models

By

Nag Mani

THE DEPARTMENT OF COMPUTER SCIENCE
SAN JOSE STATE UNIVERSITY
April 2019

Dr. Melody Moh Department of Computer Science, SJSU
Dr. Teng Moh Department of Computer Science, SJSU
Dr. Chris Pollett Department of Computer Science, SJSU
ABSTRACT

With recent advancements in the field of artificial intelligence, deep learning has created a niche in the technology space and is being actively used in autonomous and IoT systems globally. Unfortunately, these deep learning models have become susceptible to adversarial attacks which can severely impact their integrity. Research has shown that many state-of-the-art models are vulnerable to attacks by well-crafted adversarial examples. These adversarial examples are perturbed versions of clean data which have small amount of noise added to them. These adversarial samples are imperceptible to the human eye but can easily fool the targeted model. The exposed vulnerabilities of these models raise the question of their usability in safety-critical real-world applications such as autonomous driving and applications in the field of medicine. In this work, I have documented the effectiveness of six different gradient based adversarial attacks on ResNet image recognition model. Defending against these adversaries is a difficult problem and adversarial retraining has been one of the widely used defense technique. Adversarial retraining aims at training a more robust model that is capable of handling the adversarial examples attack proactively. I demonstrate the limitations of the traditional adversarial retraining technique which is effective against some adversaries but fails against more sophisticated attacks. I present a new ensemble defense strategy using adversarial retraining technique which is capable of withstanding six adversarial attacks on cifar10 dataset with accuracy greater than 89.31% and as high as 96.24%.
ACKNOWLEDGEMENT

I would like to extend my heartfelt gratitude to Dr. Melody Moh for being my advisor and one of my first professors at San Jose State University. I am deeply thankful to you for guiding me throughout the project and helping me understand and perform the right experiments.

I am very grateful to Dr. Teng Moh, for taking time out of his busy schedule to help me with my project. His expertise in the field of machine learning and deep learning helped me in understanding some of the difficult concepts of deep learning and eventually completing my project.

I would also like to thank Dr. Chris Pollett for being on my committee. The knowledge I gained from his class on advanced data structures and algorithms helped in analyzing some of the complex algorithms for my project. I am very grateful for his support in my time as a graduate student.

Finally, I would like to thank my family for continually supporting me through graduate school and allowing me the opportunity to pursue a degree in computer science. They have always been there for me and provided me with their emotional support and constant encouragement.
TABLE OF CONTENTS

ABSTRACT ... 4
ACRONYMS ... 7
LIST OF FIGURES .. 8
LIST OF TABLES .. 9
CHAPTER 1. INTRODUCTION .. 10
CHAPTER 2. BACKGROUND AND RELATED WORK ... 13
CHAPTER 3. ADVERSARIAL EXAMPLES GENERATION ALGORITHMS .. 14
 3.1 Fast Gradient Sign Method (FGSM) ... 15
 3.2 Basic Iterative Method (BIM) ... 16
 3.3 Iterative Least-Likely Class Method (ILLC) .. 16
 3.4 DeepFool ... 17
 3.5 Carlini & Wagner L_{2} Attack (CWL_{2}).. 17
 3.6 Carlini & Wagner L_{\infty} Attack (CWL_{\infty}) .. 18
CHAPTER 4. DEFENDING THE MODELS .. 19
 4.1 Challenges of Securing Deep Learning Models .. 19
 4.2 Adversarial Retraining .. 21
 4.3 Proposed Solution .. 21
CHAPTER 5. RESULTS .. 23
 5.1 Experiment Setting .. 23
 5.2 Implementation Details .. 24
 5.3 Adversarial Attacks .. 25
 5.4 Adversarial Retraining: One Model Defense ... 26
 5.5 Adversarial Retraining: Ensemble Defense ... 27
CHAPTER 6. CONCLUSION AND FUTURE WORK ... 32
REFERENCES .. 34
ACRONYMS

FGSM: Fast Gradient Sign Method
BIM: Basic Iterative Method
ILLC: Iterative Least-Likely Method
CWL}_2: Carlini-Wagner L}_2
CWL}_\infty: Carlini-Wagner L}_\infty
LIST OF FIGURES

Figure 1: Clean (left) vs adversarial (right) images generated using CWL₂ attack .. 12
Figure 2: The adversarial examples generation process ... 14
Figure 3: Adversarial retraining process ... 20
Figure 4: Ensemble adversarial retraining prediction process ... 21
Figure 5: Architecture of one residual block .. 23
Figure 6: ResNet model with 34 residual blocks ... 24
Figure 7: Model accuracy under adversarial examples attack ... 26
Figure 8: Comparative analysis of single model adversarial retraining defense .. 27
Figure 9: Ensemble Adversarial retraining defense results .. 29
Figure 10: Comparative analysis of four model ensembles .. 29
Figure 11: Box-plot of variation of four-model ensemble defense under each attack type 30
LIST OF TABLES

Table I: Accuracy of six adversarial retrained models ... 26
Table II: Defense model prediction time .. 31
CHAPTER 1. INTRODUCTION

Global research in academia and industry has promoted the adoption of deep learning applications in every aspect of life. From smart home devices like Amazon echo, Google Home and Facebook portal to industrial applications like deliveries by drone, warehouse automation, medical imaging and self-driving vehicles. The inception of these devices in both personal and industrial setting has been accelerated by the advancements in the field of deep learning. Transforming perception into smart responses/action in real time is possible only due to faster and more accurate image recognition models. For instance, smartphones use face detection and recognition to authenticate the correct user. Tesla uses deep learning to design self-driving features such as object detection, semantic segmentation, lane detection, pedestrian detection, traffic sign recognition, etc., to help it make smart decisions in real-time situations. Smart surveillance security cameras are equipped with face and activity recognition which identify and record any abnormal activity or entry.

However, with the wide-scale adoption of IoT devices, the systems are exposed to a multitude of vulnerabilities. One such vulnerability is adversarial examples. These adversarial examples are carefully crafted inputs, aimed at fooling the model and bringing down the model’s accuracy and real-world performance. These attacks are not easy to detect as they are usually imperceptible to humans, yet they can easily degrade the model’s accuracy. The adversaries are asymmetric in nature and are created in specific ways to compromise the integrity of deep learning models. These have posed major risks in implementing deep learning in safety-critical applications, such as home security, medical imaging, and autonomous vehicles.

In this work, I use multiple gradient-based attacks to showcase their effectiveness against the target model. Defense against these attacks has been a well-researched topic and previous work on the topic of adversarial retraining shows its effectiveness against different gradient based attacks [12]. The proposed approach does add some robustness to the model, yet, the decrease in accuracy is more than 25% in the case of adversarial attacks. This is a significant number when considering the
application of these models in safety-critical environments. I have explored the same idea of adversarial retraining to build more resilient models that can withstand adversarial attacks with high confidence. The main contribution of this work is as follows:

- I provided experimental results of six different gradient-based adversarial attacks, including FGSM, BIM, ILLC, DeepFool, Carlini-Wagner L_2 and L_∞, on ResNet34 model using cifar10 dataset.

- In order to defend the target model against the attacks, I demonstrate that the previously proposed adversarial retraining technique, [10], has limited effectiveness and does not provide transferable security against more sophisticated attacks.

- I proposed that adversarial retraining technique coupled with our ensemble method is capable of withstanding even sophisticated attacks like Carlini-Wagner attacks [4], achieving model accuracy with minimum of 89.31%, and up to 96.24% for DeepFool attack.

The rest of the work is structured as follows: In Section II, I discuss in brief about the background of our topic and some previous related work. Next, in Section III, I review the set of six gradient-based attacks used for our experiment. Section IV describes the details of our defense architecture which encompasses the adversarial retraining technique coupled with the ensemble approach to perform classification. Finally, Section V describes the experimentation results which is followed by future research direction and conclusion.
Figure 1: Clean (left) vs adversarial (right) images generated using CWL₂ attack
CHAPTER 2. BACKGROUND AND RELATED WORK

Though adversarial attacks have been common for a couple of decades, their applications were limited to conventional machine learning methods. For example, variable length of extra padding bits at the end of malware to mask its signature [1], defeating spam filters by appending additional text at end of spam messages are few of the many adversarial attacks which were used against machine learning methods [2].

The idea of adversarial examples attacks which work as a game between an adversary and a machine learning model was first proposed back in 2004 [5]. The approach for attack and defense of the adversarial samples was to play an iterative game which prepared the adversarial examples in an incremental manner. The gradient-based approach was used for the first time to construct adversarial samples back in 2010 [2]. They experimented with multiple models ranging from linear regression, SVM to neural networks. Existence of such adversarial examples for neural networks was shown for the first time back in 2014, where Szegedy researched over the peculiar behavior of neural networks on exposure to such attacks [18].

To counter these adversaries, several defense techniques have been researched upon so far. Adversarial retraining and defensive distillation are some of the widely researched topics. Adversarial retraining involves retraining the target model with adversaries to make it robust against adversarial examples [6, 7, 10]. Defensive distillation works on the idea of a teacher and a student model where soft predictions from the teacher model are used along with the input for making predictions from the student model [16]. However, all proposed defenses have some limitations and have proven to not work against some or more types of adversaries.
CHAPTER 3. ADVERSARIAL EXAMPLES GENERATION ALGORITHMS

The general concept of adversarial examples, in the context of deep learning, can be represented in form of an optimization problem where the aim is to minimize the objective function that constructs the adversarial examples while keeping it as close as possible to a genuine input. This adversarial example is almost imperceptible to the human eye but can fool the deep learning model. This concept can be summarized in the form of the following equation:

\[
G : f(x) \rightarrow y \quad w h e n \ G e \ G , \ x \in [0,1] \ G i \ G , \ y \in \{ y_1, y_2, y_3, \ldots, y_k \} \ a e \ G a \ G a \]

\[
L_f(x_j) = y_j \\
| | x_j - x'_j | | \ s u c h \ t h a t \ 0 < r < \epsilon \ a n d \ x'_j \in [0,1] \\
O b j e c t i v e \ i s \ t o \ m i n i m i z e \ |r| \\
:. f(x'_j) = y'_j \ a n d \ y_j \neq y'_j
\]

Considering an example of image classification where the images are made up of normalized \(x \) pixels and belong to \(k \) different categories. \(f(x) \rightarrow y \) is the function which represents the deep neural...

Figure 2: The adversarial examples generation process

The general concept of adversarial examples, in the context of deep learning, can be represented in form of an optimization problem where the aim is to minimize the objective function that constructs the adversarial examples while keeping it as close as possible to a genuine input. This adversarial example is almost imperceptible to the human eye but can fool the deep learning model. This concept can be summarized in the form of the following equation:

\[
G : f(x) \rightarrow y \\
where, x \in [0,1] \text{is the input,} \\
y \in \{ y_1, y_2, y_3, \ldots, y_k \} \text{are the k outcome labels} \\
\text{Let } f(x_j) = y_j \\
r = | |x_j - x'_j | | \ \text{such that } 0 < r < \epsilon \ \text{and } x'_j \in [0,1] \\
\text{Objective is to minimize } |r| \\
:. f(x'_j) = y'_j \ \text{and } y_j \neq y'_j
\]
network which correctly classifies a sample input image x_j as y_j category. The objective is to create a new input x_j' which is like x_j. Distance measure can be used to quantify the closeness of the two images which is denoted by r. The new image x_j' is constructed by solving the optimization problem of finding out the minimum value of r which is lower bounded by 0 and upper bounded by a constant ϵ. This ϵ controls the overall structural and geometric composition of the synthetic image. A successfully constructed x_j' should be able to produce an output of $f(x_j')$ as y_j' which is not the correct result. For a human, the adversarial sample x_j' is still like the original sample x_j. Hence a robust neural network should also classify it as y_j, but it fails in doing so [14]. This describes a successful creation of an adversarial example and a demonstration of how a simple attack can look like in real world.

The architecture for generating such adversarial examples is shown in Figure 2. For our experiment, I selected six different gradient-based attack algorithms briefly described as follows:

3.1 Fast Gradient Sign Method (FGSM)

For many problems, the precision of an individual input feature is limited. Due to this, a classifier can classify an input x and its adversarial example $\tilde{x} = x + \eta$ to the same class if η is smaller than the precision of the features. Let us consider the following for weight w and the adversarial example \tilde{x}:

$$w^T \tilde{x} = w^T x + w^T \eta$$

(1)

The adversarial perturbation in equation 1 makes the activation grow by $w^T \eta$. The maximum value of perturbation ($||\eta||_\infty$) does not change with the increase in the number of dimensions. But, if the weight vector w has n dimensions and the average magnitude of the weight vector is m, then the activation will grow linearly with ϵnm. For higher dimensions, an infinitesimal number of small changes can be made to the input that results in one large change to the output. This has been called “accidental steganography” and it is a linear and faster way to create adversarial examples.

Reference [6] proposed The Fast Gradient Sign Method of generating adversarial examples. They
hypothesize that it is easy to create adversarial examples for inputs with high dimensions. They also hypothesize that neural networks use linear techniques for faster optimization and hence are prone to linear adversarial attacks.

\[\eta = \epsilon \times \text{sign}(\nabla_x J(\theta, x, y)) \] (2)

Here, \(\theta \) is the parameter of the model, \(x \) is the normal input to the model, \(y \) is the target output for the input, and \(J(\theta, x, y) \) is the cost function for the model. The gradient of the cost function \(\nabla_x \) with respect to the input is calculated. \(\epsilon \) is used to control the amplitude of the perturbation.

3.2 Basic Iterative Method (BIM)

Extending the logic of FGSM, [9] demonstrated with the use of a smartphone how adversarial examples can fool a deep learning model in real-life example. They proposed the algorithm BIM that created samples in an iterative manner with small step size. The algorithm clipped the pixel values of intermediate results whenever the values exceeded the maximum perturbation threshold of \(\epsilon \).

\[
\begin{align*}
 x_0^{adv} &= x, \\
 x_{n+1}^{adv} &= \text{Clip}_{x,\epsilon}(x_n^{adv} + \alpha \times \text{sign}(\nabla_x J(x_n^{adv}, y_{true})))
\end{align*}
\]

where, \(x \): benign input

\(x_n^{adv} \): \(n \)th adversarial sample

\(\alpha \): step size

\(\text{Clip}_{x,\epsilon} \): Clip values when \(x^{adv} > \epsilon \), s.t. \(\epsilon > 0 \)

The final adversarial examples were generated after multiple iterations of the algorithm.

3.3 Iterative Least-Likely Class Method (ILLC)

Along with BIM, [9] also proposed an algorithm to attack the model by tricking the model into selecting the least-likely class of a prediction to be its final result. The argument behind this attack was to create a more interesting attack where the adversarial sample was able to trigger a completely unrelated and absurd output.
\[x_0^{adv} = x,\]
\[x_{n+1}^{adv} = \text{Clip}_{x,\varepsilon}\{x_n^{adv} - \alpha \text{ sign}(\nabla_x f(x_n^{adv}, y_{LL}))\}\]

where, \(x\): benign input

\(y_{LL}\): label of least likely class

\(x_n^{adv}\): \(n^{th}\) adversarial sample

\(\alpha\): step size

Clip values when \(x^{adv} > \varepsilon\), s.t. \(\varepsilon > 0\)

3.4 DeepFool

DeepFool is a method to generate minimal perturbations which is sufficient to mislead the model using iterative linearization approach [13]. Starting with binary classification problem with affine classifiers: \(f(x) = w^T x + b\), the authors assumed that neural networks are linear in nature and each class is separated by a hyperplane from another. Also, to take in account the non-linearity of neural networks, the approach performs the same steps in iterative manner until an adversary is created. They proved that it is possible to create an adversarial example by using \(L_2\) norm in an iterative manner until the \(\text{sign}(f(x)) \neq \text{sign}(f(x + r))\) where \(r\) is the minimum perturbation required. They extended the algorithm to multi class classification and claimed that this approach works with \(L_\infty\) norm as well. DeepFool was able to create adversarial samples by using smaller perturbations, compared to [9], the average perturbations were five times less. DeepFool is considered as one the more sophisticated attacks and readers can refer to the original work for in depth knowledge [13].

3.5 Carlini & Wagner \(L_2\) Attack (CWL\(L_2\))

Carlini & Wagner proposed an attack that was built on the same idea of solving the optimization problem of incorrect prediction objective and minimal distance term [4]. After [13], published their work, where they claimed that defensive distillation increased the robustness of deep learning models which resulted in the drop of the success rate of adversarial examples from 95% to 0.5%, Carlini &
Wagner, challenged the claim by introducing new attack methodology which was successful against both un-distilled and distilled models. In their approach, logits-based loss function was used instead of the softmax cross entropy loss and the target variable was transposed to the arctanh space which helped in solving the problem using modern solvers such as Adam. The approach also used binary search techniques to find the optimal coefficient which balanced the trade-off between prediction and the distance measure. Using the CWL2 attack, they were able to construct more successful adversarial examples with smaller perturbations.

3.6 Carlini & Wagner L infinity Attack (CWL∞)

CWL∞ attack follows the same concept of CWL2 but uses an L∞ distance measure instead of L2 distance. CWL∞ attack is more difficult to optimize when compared to L2 attack since it penalizes only the maximum term. To address the problem, Carlini & Wagner replaced the L2 term in the objective function with a penalty value which started with 1 but decreased monotonically in each iteration of the algorithm [4].

Finally, L∞ attack is an iterative algorithm which only penalizes the largest perturbation value and uses a modified objective function to create an adversary with small perturbation.
CHAPTER 4. DEFENDING THE MODELS

4.1 Challenges of Securing Deep Learning Models

The existence of adversarial examples that can trick a deep learning model into performing poorly is an intriguing concept. It is an open topic of research which is of interest for both attackers and researchers who intend to make resilient deep learning models. But, due to the intrinsic nature of deep neural networks, it has not yet been conclusively proven why such samples exist. And, no universal detection or defense mechanism exists that can protect models from any attack. Based on these facts, there are few challenges pertaining to the adversarial examples that currently restrict the researcher community to make better attacks or defense mechanisms. In this section, the authors discuss few of the factors which offer challenges towards defending against adversarial examples.

In 2014, it was found that adversarial examples created from one dataset were able to attack the same deep neural network trained using a different dataset [18]. This was an interesting observation because it hints at the transferable nature of the adversarial examples attack. Later [15], experimented with adversarial examples that were constructed using one deep neural network architecture to attack a different neural network architecture. The results confirmed the transferability property of the adversarial examples. It also empowered the attackers to attack systems with limited or no knowledge using adversarial examples trained on a different model, [11], further explored this characteristic of adversarial examples and proposed that non-targeted attacks are more transferable compared to the targeted attacks.

The question of why adversarial examples exist is an open topic of research. One possible explanation is that exhaustively covering all possible test cases and corner cases would make models extremely complex. As a result, most models cover only high probability test cases ignoring these examples [17, 18].
Figure 3: Adversarial retraining process

For linear models that take inputs with high dimensions, the chances of creating adversarial examples become infinitesimal. Even slight changes to the input can result in adversarial examples that the model had not seen before. Reference [6], pointed out that this issue is not limited to just neural networks but other linear models as well.

No universal method exists to defend against adversarial attacks; all attacks and defense are application specific and most of them are based on some specific characteristic of neural networks. Though there is some research that claims to provide universal security, but they have failed, given a small change in attack strategy [3]. Hence as of today, it is not possible to have a 100% secure deep neural network which can resist any adversarial example attack.

Though there is no conclusive explanation for the existence of adversarial examples till now, linearity within model architecture is suspected to be one of the reasons [6]. The high dimensionality of the problem adds to the complexity and even a slight perturbation in the input space can possibly result in an adversary. Theoretically, it is possible to prepare all possible adversaries from input space and then use it to train a robust model which will be immune to adversarial attacks [17]. But such an approach is not feasible to implement, hence alternate defense strategies needs to be explored.
4.2 Adversarial Retraining

Adversarial retraining is one of the defense techniques against adversarial examples which uses the adversarial examples for retraining with the objective of building more robust models [6, 7, 10]. Most of the previous work focuses on using FGSM adversaries for adversarial retraining and have shown some promising results on MNIST dataset [12]. But, the problem with such adversaries is that it does not perform well against other types of attacks such as BIM. I extended the same idea of adversarial retraining using adversaries from six different attack models and found out that the problem is not restricted to models retrained with FGSM adversaries. All the six different retrained models did not perform well against one or more of the adversaries.

4.3 Proposed Solution

To create a strong defense strategy, I choose to implement six different gradient-based attack algorithms which included more sophisticated attacks such as ILLC, BIM, DeepFool and Carlini-Wagner attacks along with FGSM. Six different models were retrained using the same pre-trained ResNet34 model and adversaries from each of the six attacks respectively. The adversaries were
constructed from each input batch of clean images and were appended to the input batch which doubled the batch size for each iteration. Hence while retraining each batch contained clean images and their adversarial counterpart. The target model was used for retraining with no transformation in its architecture and with categorical cross entropy loss function. The above described process flow of adversarial retraining is presented in Figure 3.

Each of six retrained models either maintained or improved upon their prediction accuracy of clean images. Upon analysis of the model performance on other adversaries, it was observed that the model trained with FGSM was able to defend against adversaries generated by the ILLC method with an accuracy of 86%. The model retrained with BIM adversaries was able to defend the model against FGSM and ILLC adversaries even more than it could from itself. Similar trends were observed with respect to DeepFool and Carlini-Wagner adversaries. These experiments proved that models retrained using one of the adversaries cannot defend against all but some of the other kind of attacks.

Any single retrained model is not enough to provide substantial defense against all the six adversaries. By using an ensemble of these models, I could achieve better accuracy while encountering adversarial examples attack. The ensemble adversarial defense technique uses four out of the six retrained models to construct a highly robust defense architecture which can withstand even Carlini-Wagner attack with a minimum accuracy of 89.31%. To generate the final prediction from the ensemble of models, I sum up the class-wise individual predicted scores from each model. As depicted in Figure 4, from this final predicted score I select the argmax of the vector to obtain the final prediction category. This strategy is better than hard majority voting technique since it exploits the increased confidence of retrained models for identifying the correct class.
CHAPTER 5. RESULTS

The set of experiments for this work includes the implementation of FGSM, BIM, ILLC, DeepFool, Carlini-Wagner L$_2$ and L$_\infty$ attacks on ResNet34 model using cifar10 dataset. The attack effectiveness of these adversaries is analyzed to understand their relative strengths and weaknesses. The objective is to use these adversaries for defending the target model, such that the defense is transferable to other kinds of attacks as well.

5.1 Experiment Setting

For this experiment, I selected the ResNet model with 34 layers as our target model [8]. The cifar10 dataset was selected because of its size and specification which allowed us to execute such large set of experiments. To implement the attacks and ensemble defense, I used PyTorch framework in python3 and used a computer with the following specifications: Intel i7 processor, 16 GB RAM and 6 GB GPU (GTX 1060). For attack, the model architecture shown in Figure 2 was used to generate adversaries using the target model.

![Figure 5: Architecture of one residual block](image-url)
5.2 Implementation Details

This project has been structured in two parts: the first part involves creating adversaries using six adversary generation algorithm and the second part consists of defending the target model from these adversaries. For creating adversaries to evaluate the six types of attacks in first part of the project, I have used the 10000 images from test set of the cifar10 dataset.

The value of epsilon for FGSM attack was set to 0.1, which ensured that the perturbations added to the original image was in the range of [0,0.1]. Similarly, the starting epsilon value for BIM and ILLC attack was set to 0.001 and the number of maximum perturbations were set to 10. For Deep Fool, CWL2 and CWL∞ attacks number of maximum permissible iterations was set to 10 as well. The loss function in case of DeepFool was categorical cross entropy and for Carlini-Wagner L2 and L∞ attacks it was argtanh.

In part two of the project, the adversarial retraining strategy used the pre-trained weights of the target model that was trained on clean data. The dataset for retraining was prepared by generating adversarial samples from clean train dataset (50000 images) using the six algorithms from part one and the adversarial samples were shuffled with the clean sample to create a new master dataset.
consisting of clean samples and their adversarial counterparts. The model was then retrained using a batch size of 64 and 10 epochs. Loss function was categorical cross entropy and the optimizer used was adadelta. Using the above setup six different retrained models was retrained using the six adversarial algorithms. These six retrained models were used for subsequent experiments pertaining to ensemble strategy. The implementation of the all the attacks and the defense strategy can be found at the following link: https://github.com/mani-nm/Adversarial_Examples

5.3 Adversarial Attacks

The selected set of adversarial attack algorithms were implemented using the target model: ResNet with 34 layers which had a base accuracy of 93.7% on the test set of clean images. The standard set of 10000 test images from cifar10 was used to create adversaries for the experiment. The results of adversarial examples attack on model accuracies is shown in Figure 5. Target model’s base accuracy is plotted with label “No Attack” and its accuracy under different attacks are plotted thereafter. Among the attacks, FGSM was least lethal with model accuracy maintaining at 67.28% which was followed by ILLC at 62.57% which uses a similar attack signature. Among the stronger attacks: model accuracy dropped to 18.32% for BIM and CWL₂ was most effective attack where the model accuracy dropped to 2.04%.
5.4 Adversarial Retraining: One Model Defense

Adversarial retraining was done on the train set of 50000 images from cifar10 using the architecture shown in Figure 3. The pre-trained target model was used for retraining and a static copy of the same model was decoupled and used for producing adversaries as part of the retraining architecture. Base batch size of 64 was used for adversary generation and the generated adversaries were appended to the batch for retraining. Six models were obtained from retraining exercise and their individual effectiveness is presented in Table I, where the bold values highlight the best accuracy for each attack. Each of the retrained models is

Table I: Accuracy of six adversarial retrained models

<table>
<thead>
<tr>
<th>Attack</th>
<th>No Defense Base Accuracy</th>
<th>Adversarial Retrain Defence Using Single Adversary Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Attack</td>
<td>93.7</td>
<td>FGSM 94.34, BIM 93.73, ILLC 94.44, DeepFool 80.36, CWL2 93.14, CWLinf 92.75</td>
</tr>
<tr>
<td>FGSM</td>
<td>67.28</td>
<td>FGSM 85.43, BIM 86.95, ILLC 85.94, DeepFool 81.84, CWL2 86.76, CWLinf 86.74</td>
</tr>
<tr>
<td>BIM</td>
<td>18.32</td>
<td>FGSM 68.29, BIM 72.61, ILLC 68.94, DeepFool 75.32, CWL2 74.26, CWLinf 72.79</td>
</tr>
<tr>
<td>ILLC</td>
<td>62.56</td>
<td>FGSM 86.06, BIM 88.09, ILLC 85.69, DeepFool 83.07, CWL2 88.46, CWLinf 87.76</td>
</tr>
<tr>
<td>CWL2</td>
<td>2.04</td>
<td>FGSM 20.69, BIM 29.25, ILLC 22.08, DeepFool 56.29, CWL2 31.65, CWLinf 31.88</td>
</tr>
<tr>
<td>CWL inf</td>
<td>6.86</td>
<td>FGSM 50.33, BIM 58.12, ILLC 50.82, DeepFool 66.56, CWL2 60.63, CWLinf 59.81</td>
</tr>
</tbody>
</table>

Figure 7: Model accuracy under adversarial examples attack
evaluated against all six types of adversaries, to test their robustness. Model retrained with FGSM adversaries improves the base accuracy of the target model when tested on clean images. In general, FGSM, BIM and ILLC can be defended fairly against adversaries by using any of retrained model. There is some improvement in retrained model accuracy in case of DeepFool and Carlini-Wagner attacks as compared to their respective attack effectiveness on the undefended model. But, the improvement is not enough to allow the model to be used confidently in a real-world scenario.

5.5 Adversarial Retraining: Ensemble Defense

For our next experiment, I created an ensemble of all the retrained models which were used for predicting instead of a single model. The predicted softmax score from each retrained model was summed up and then used for calculating the argmax to finalize the predicted class. The ensemble of six models was able to withstand the adversarial attack from all six attacks with substantial confidence along with slightly improving upon the prediction of clean samples. The results of the six-
model ensemble defense are shown in Figure 6. It gives a better result compared to any single model-based prediction used in adversarial retraining experiment. Even complicated attacks like Carlini-Wagner L_{∞} could be successfully resisted with an accuracy of 88.2% and ILLC was most confidently defended with an accuracy of 95.91%.

The increased accuracy from the ensemble method comes at the price of performance where the prediction time of six model ensemble is 5.6 times that of the single model prediction time. Given most of the models are used in real-time systems, limiting prediction latency is also one of the key factors. Keeping this in mind, the final set of experiments explored the idea of creating an ensemble of the retrained model that are capable of thwarting an adversarial attack and at the same time do not sacrifice a lot of prediction performance.

I experimented with different combinations of model ensembles and realized that an ensemble of four models out of six gave the best performance and accuracy tradeoff. To identify the ideal set of four models, I experimented with different combinations of retrained models. Groups were created based on the following criteria: nature of attack, attack strength and adversarial retrained model’s accuracy. FGSM and ILLC demonstrated similar levels of attack strength and their respective adversarial retrained model can defend one another.
Figure 9: Ensemble Adversarial retraining defense results

Figure 10: Comparative analysis of four model ensembles
Hence, I pick only one of these two in the ensemble and never both. The challenge with adversarial defense was to identify the right combination of other retrained model which could defend against sophisticated attacks like BIM, DeepFool, CWL$_2$ and CWL$_\infty$ attacks. The results of the experiment are shown in Figure 7, using which I can recommend that an ensemble of FGSM, BIM, CWL$_2$ and CWL$_\infty$ gives the most balanced prediction accuracies against all six kinds of attacks. The spread of ensemble prediction accuracy for each kind of attack can be analyzed using the box plots in Figure 8. FGSM, ILLC and DeepFool attacks are defended with consistency using all the four model ensembles, whereas CWL$_\infty$ and BIM do show some spread and appears to perform better with an ensemble of sophisticated models.

Another interesting observation from this experiment is that all the subsets of the ensembles provide comparable defense against all adversaries when compared to six model ensemble and are 33% faster compared to it, as presented in Table II. Using a different set of four models for ensemble in different prediction rounds can protect the ensemble model against further attacks.
Table II: Defense model prediction time

<table>
<thead>
<tr>
<th>Model</th>
<th>Prediction Time/Image (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Model</td>
<td>0.001332</td>
</tr>
<tr>
<td>4 Model Ensemble</td>
<td>0.005055</td>
</tr>
<tr>
<td>6 Model Ensemble</td>
<td>0.007544</td>
</tr>
</tbody>
</table>

The results of the experiment show that the ensemble of these four models can be effectively used to defend against all six of the adversaries. The DeepFool attack which was immune to all single defense approach can be defended with an accuracy of 96.24% and CWL_2 attack could be defended with a confidence of 91.2%. Similarly, BIM and CWL_\infty attacks can be successfully defended against with an accuracy of 93.23% and 91.5% respectively. Hence, the ensemble approach can defend the target model with more confidence against most types of gradient-based adversaries.
CHAPTER 6. CONCLUSION AND FUTURE WORK

Deep Learning has facilitated the application of artificial intelligence in security critical applications by creating highly accurate and precise models. Its vulnerability to adversarial examples, however, has raised serious concerns regarding its full-fledged adoption. In this report, I have discussed the vulnerabilities of deep learning models with respect to adversarial example attacks. Even though some research has been conducted to construct adversarial examples and to defend deep learning models against them, the core idea behind the existence of adversarial examples is still elusive to the research community. Most of the proposed attacks work on a specific model configuration and countermeasures for these are prepared to protect against the corresponding attacks. Carlini & Wagner showcased that the recent existing defense strategies are rigid in structure and can be defeated by using a new loss function in existing attack strategies. Hence, as of now, no universal defense strategy exists for different kinds of adversarial example attacks.

After researching upon the subject, some observations may be derived to guide the future research direction. Firstly, most researchers have chosen to show their work on the MNIST dataset, which is a considerably small and basic dataset. Next, quantifying the robustness of defense must be done against a significant number of attacks which should include both basic and sophisticated attacks. In addition, there exists a need for a standard platform where different attacks can be performed and evaluated on a large scale.

Adversarial examples pose a serious threat to the real-time deployment of deep learning image recognition models. The impact of these attacks can be severe and securing these models against such attacks is of paramount importance. In this work, I selected a set of six strong attacks and demonstrated their effectiveness against state of the art ResNet model. Experimentation with strong attacks is the only way to ensure that strong defense techniques can be explored. I demonstrated that previously proposed adversarial retraining defense technique can only be partially effective and
proposed a new ensemble method which used four different adversarial retrained model to perform model predictions. Results of my experiments show the strengths of the ensemble defense and prove that by using a subset of adversaries, a target model can be defended from some of the unseen attacks.

In my project, I researched and experimented in depth about gradient-based adversaries and for future experimentation attacks other than gradient-based attacks can be explored. Evaluation of my ensemble defense strategy could be evaluated against new types of attacks. Adversarial retraining is one of proactive approaches for defending deep learning models, similar proactive strategies can be researched upon which can increase model’s robustness against such attacks.

Another interesting future work could be to compare the retrained robust models and the original target model to understand the effects the retraining upon the internal weights of the network. Analyzing the differences between the two network weights can shed some light upon the different layers and neurons which adds to the robustness of the retrained network and eventually provides security to the original model.
REFERENCES

