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ABSTRACT 
     Studies of online behavior often consider how users interact online, their posting 

behaviors, what they are tweeting about, and how likely they are to follow other people. 

The problem is there is that no deeper study on the people that a user has interacted with 

and how these other users affect them. This study examines if it is possible to draw similar 

sentiment from users with whom the target user has interacted with. The data collection 

process gathers data from Twitter users posting to popular political hashtags, which the 

highest at the time published were #MAGA and #TRUMP, as well as the tweets of people 

to whom they have tweeted. By applying weights based on the type of interactions as well 

as the amount, study how close the sentiments that the original user expressed are compared 

to the users they tweeted to. The weighting formula described above will be known as the 

Inferred Sentiment Score, or ISS for short. This study presents this scheme of gathering 

data to build user profiles and ISS to determine how similar a user’s sentimental expression 

is to the people they communicate with on Twitter. The main results of this study  show 

that by using the ISS formula that there is a strong correlation of the sentiments expressed 

on Twitter by a user and the users that they communicate with. 

     Keywords—Twitter, Sentiment, User relationship, Stanford NLP 
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1.  Introduction 
     A lot can be said about users on social media based on their data. Users are posting 

pictures, what other users are sharing, what their stances are on certain topics, and what 

they like. Facebook, Instagram, Snapchat, and Twitter are all popular ways for people to 

channel themselves into cyberspace. Social media presents a plethora of information 

researchers can leverage to gain insights into people’s lives and opinions.  

     Twitter is a widely used platform for users to post their opinions and is first of its kind. 

Users write their opinions and create hashtags as a way to form groups of related 

information. For example, if I post my opinion and put #icecream in it, it will add my tweet 

to a list of tweets where people have also put #icecream in their tweets. This makes it 

possible for a user who wants to collectively look at a subject to find other user’s opinions 

on it; all one has to do is search for the hashtag. A hashtag can be thought of as a keyword 

representing the whole tweet. Moreover, Twitter allows for multiple hashtags per tweet, 

thereby creating a graph of related information that allows users to branch out and explore 

relatable content. 

     This makes Twitter an increasingly usable platform for research studies. The data 

relationships already exist and an abundance of what users share allow for incredible 

applications. Researchers use this data for clustering, location statistics, sentiment analysis, 

and improving algorithms for how and with whom users interact. Researchers strive to 

keep making the analysis more accurate by creating word recognition and slang 
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translations. More recently, researchers are using this data to help classify users into 

different categories based on their interests.  

     The motivation to extend the current study is to analyze if users truly surround 

themselves with users with similar sentiments towards certain subjects. For this, the basis 

is the way in which users interact with each other and the ability to determine the sentiment 

of their tweets. This purpose of this study is to explore and find if a weighted strategy can 

be employed in ISS to examine if a user’s sentiments are converging to or diverging from 

the sentiments expressed by the users interacting with target user. To achieve this, weights 

are placed on the amount of interactions, the types of interactions, and the sentiments 

expressed that are shared among users on Twitter. This study’s approach is to collect users 

from political hashtags and build profiles of their tweets and the users they communicated 

with in those tweets. Once all the user’s profiles are built, all the interactions and the types 

of interactions these users have with other users are used to calculate individual scores. 

Then it determines the sentiments of all other users. ISS as proposed by this study will 

provide a percentage of positive and negative sentiments expressed by users who 

communicated with the original user. By considering the percentage of positive and 

negative tweets , they will be compared against the originally collected user’s positive and 

negative sentiment percentages.  

2. Background and Related Studies 
     This next section will go over the related works that were read with relevant 

information. Related work on Trends, User Behavior, Algorithms, Stanford NLP, and data. 
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     2.1 Trends 

      Determining trends and how trends started are important for understanding context. 

Without knowing how a negative or a positive trend is started and continued, it cannot be 

determined how users’ sentiments propagate through other users. According to Shahab 

Saquib and Rashid Ali’s study “Understanding dynamics of trending topics in Twitter”, 

tweets with negative sentiments are promoted by influential users who have a particular 

interest or who want to instigate a sentiment toward a subject[1]. However, this may not 

be the case with positive trending topics where users tend to share their feelings. Here, 

users tend to relate more to a subject[1]. Expanding on the current results, another study 

has shown that someone with many followers can sway users to their side, given post-

factual information about the trend that was running [2]. Over time, given that factual 

information is provided, users who felt a certain way about a subject are more likely to 

change their views[2].  

     Given how information spreads, it is possible that the collection process derives a lot of 

spam or fake accounts. In the USA, especially around the 2016 election, there was a 

significant amount of spam and misinformation being placed on Twitter[5]. The amount of 

this spam varies per topic, but overall, larger the sample sizes of the tweets, the more 

accurate is spam detection[5]. The more spam a user sees, the more it influences them to 

feel the intended sentiments towards particular subjects. This is due to the fact that the 

more of that opinion users see, the more they will accept it as factual, even if not. Spam 

can have a large effect on users who are bombarded with information. The amount of 
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content a person sees on a subject will engage them more in that subject and help shape 

that person’s opinion.  

     In a study by Abbasi, Rehman, Lee, Riaz, and Luo, they explored temporal user 

topics[13]. What they found was that while they cannot determine how a user’s interest 

will change over time, they were able to determine what the user’s current interests were 

based on their tweets[13]. This information is pertinent to back the notion that if a user 

interacts with another person’s tweet in any way, that user has an interest in that subject. It 

is also important to note that users do not change their information frequently, which means 

that influential trends get longer with time and information [9]. As a result, the sentiments 

expressed at the time will truly reflect in the collected data. This is how users behave online 

and how someone of a larger spherical influence can change users’ perception in general 

which may lead to different sentiments being expressed. 

     2.2 User Behavior 

      User behavior is how users act on a social media platform. Platforms use it to provide 

content relevant to the users. In a paper by Dewi, Yudhoatmojo, and Budi, they explored 

how rumors spread on social media[3]. They created a directed weighted graph based on 

retweets, likes, replies, and mentions by followers and users of a confirmed rumor[3]. With 

this approach, they determined that quote, retweet, and reply meant more than what just a 

mention did[3]. They do this by using a weighting scheme based on the amount and where 

the user was in the rumor detection. This means that the more a user interacts with another 

user, the more influence a user will have over the other user[3]. For instance, the more a 
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user interacts with another user, the more they are likely to influence each other[3]. It is 

important to understand how rumors spread, and even more importantly for this paper, how 

much one person’s sentiment in a post may affect the sentiment of another person who sees 

that post. 

     In addition to how users behave through Twitter, a user’s location is tweetable and 

shareable. With the location of a user in a tweet, it is possible to examine the average 

opinion of the area and possibly categorize the users of that area into bias groups. For this 

information, there have been studies that consider location data during disasters[4][10][14]. 

These studies on disasters provide vital information about location tracking of tweets, given 

a distressful situation [4][10][14]. In the study by Luca Venturini and Evelina Di Corso, 

they concluded that about 1 in 100 tweets were directly georeferenced to a particular area 

[4]. In Another study by Eiji Aramaki, Asako Miura, and Mai Miyabe, they revealed that 

while users may not post in the distressed area, users retweeted about the distressed area in 

the larger surrounding area [14]. This may or may not be sufficient for emergency services, 

but it gives a general location that helps define a demographic, such as the demographic of 

the users who are influencing others. 

     Instead of taking into account sentiments, another paper which follows a similar path 

determined how the emotional state relates and influences other users [16]. In this paper, 

Kiichi Tago and Qun Jin monitored the emotional state and applied their own algorithm to 

determine how a user affects other users. The factor to determine was emotional states and 

not sentiments, it employed a similar approach. 
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     2.3  Algorithms 

      The important factor of determining how users who post feel about a certain subject is 

recognizing that there is more than one sentiment that may be expressed in a tweet. This is 

because there is no one driving force behind a tweet. Ahuja, Gupta, Sharm, Govil, and 

Venkataraman have completed multi-algorithmic analysis using, Support Vector Machines 

(SVM), K-Nearest Neighbor, Naïve Bayes, and Decision trees[6]. They have discussed in 

their approach how they used these algorithms to remove stop words, converted skewed 

words back to their original forms, and used those keywords pulled to create vectors of the 

tweets and trained a model to determine the accuracy of this approach. Their modelling 

determined that SVM was the best means to classify emotions expressed in tweets with a 

5-fold validation accuracy of ~90%. 

     In this study, SVM is implemented and tested as a classifier for sentiment classification 

of data. This study is considering sentiment as a factor – mainly, positive and negative. A 

base training set is used for classifying sentiments and tweets are used to see where they 

fall in the SVM interpretation. As shown in Fig. 1, SVM can be tuned for both positive and 

negative sides of a plane, which is then used to classify the sentiment of a user’s tweet. 
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Figure 1. An SVM Implementation of Yes/No 

 

     To break down a tweet into meaningful words that can be used for a score in SVM, TF-

IDF and bag-of-words are used to supplement SVM. TF-IDF has been used to enhance 

SVM and improve classification [7]. Bag-of-words provides a set of positive and negative 

words that are used to filter the tweets. This classifies a users’ sentiment so it can be 

classified for their particular sentiment in a tweet. Bag-of-words is also used to only 

consider the words that express sentiment or that have a sentiment attached to them. 

     The results of the SVM, TF-IDF, and bag-of-words implementation, however, did not 

show promising results. To remediate this and to get better results for sentiment analysis, 

a different approach is chosen to determine sentiment. Stanford University has developed 

a sentiment analysis library that provided satisfactory sentiment results on the test data sets. 
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     2.4  Stanford NLP 

      Since SVM, TF-IDF, and bag-of-words did not perform as well in terms of accuracy 

as Stanford NLP, a myriad of different options were considered. Google and Amazon both 

have solutions for this but unfortunately, they are expensive due to their data-quantity 

pricing model that which is not suitable cost-wise for the large amount of data collected in 

this study. To solve this problem, Stanford’s Natural Language Processor (NLP) library 

which is written in Java is used. Stanford’s NLP uses a combination of binarized tree with 

a Recurrent Neural Network(RNN). The binarized tree allows for sentences to be broken 

down and analysis of different parts of speech to be identified. Once a sentence or phrase 

has been identified, an RNN is used to help select a sentiment for that part of the sentence 

as seen in the binarized tree in Fig. 2. 

     In Fig. 2, the tree form of the Stanford NLP library breaks down one sentence into 

subjects and then multiple adjectives to describe each subject. When there is more than one 

subject or break in a sentence, it will analyze them and pass back a map of sentiments. The 

values passed back from Stanford’s NLP library are “very positive”, “positive”, “neutral”, 

“negative”, and “very negative”. 
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Figure 2. Binarized Tree of Sentence 

 

There is often more than one sentiment passed back for one tweet, as there can be multiple 

thoughts expressed in a tweet. Only “positive” and “negative” will be used for the tweets 

in this study. Hence, the sentiments need to be recategorized. Once the sentiments have 

been recategorized for a tweet, each sentiment Stanford NLP outputs for that tweet is given 

a numeric value: -1 for negative, 1 for positive, and 0 for neutral. For the data that was 

collected, the number of negative tweets is far more than positive tweets. Because most of 

the tweets are negative and being recategorized into positive and negative, neutral tweets 

are given a bias towards negative and value changed to -1. To give the positive side a bias 

of its own, a tie breaker between negative and positive is changed to positive. The reasoning 

behind this is that if the output is neutral and changed to negative, then a tweet that contains 

two positives, a neutral, and a negative, will be in limbo between positive and negative and 

not know which side to choose from. With this approach if the situation above occurs, it is 

clear that it is likely a positive tweet 
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     2.5  Data 

      There is a multitude of issues with users’ speech that tend to limit how researchers 

classify an emotion towards a particular issue. A major one is acronyms and emoticons. To 

rectify this issue, users have compiled large dictionaries to translate these acronyms and 

emoticons into their English equivalent [10][12]. This means when a user types “lmfao” or 

when a user puts an emoticon such as “:-)” or “:(”, they can be factored into the overall 

sentiment of the sentence. This is an issue with Twitter as users originally have a character 

limit of 140 characters, now 280 characters. Often, abbreviations are used in their posts to 

share their opinions. There is no definitive way of incorporating this into Stanford’s NLP 

library that will make a difference in the overall sentence sentiment determination, these 

pieces of text are disregarded as a result. 

     Another issue with textual analysis is that users repeat letters in a word to emphasize a 

feeling. When a user tweets something like “hellllllllllllo”, a translator would need to 

shorten it to the actual word “hello”, so a dictionary can properly categorize it in the 

proposed algorithm[12]. This factor is not covered in this paper but is considered as 

something worth noting is when a user types a word like this, it can only be said that the 

sentiment is strong whether its happiness, sadness, or sarcasm. 

3. Proposed Solution 
       Based on the discussion of the related work on  user behaviors, sentiments, and 

interactions, this study proposes an expanded methodology for understanding users and 

how they influence others online. To do so, a series of steps are outlined in Fig. 3 to analyze 
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and group users. In the first step, data is collected on users based on popular political 

hashtags on Twitter, #Trump and #MAGA. This is done to collect users who post more 

frequently as it is easier to build their profiles. How the data is collected is an important 

part of this study as well. 

       This paper defines the term ‘base user’ for the user who originally tweeted on hashtags. 

Based on this, a ‘leaf user’ is defined as the user who was tagged or mentioned by the base 

user. This study requires monitoring of not just base users, but also leaf users. 

 

Figure 3. Process to Determine Sentiment Relationship 

 

       First, base users and data related to base users is collected and established. Then, data 

is collected on leaf users. This provides a different amount of leaf users for each base user 

and a different number of tweets per leaf user. For example, if data collection starts 
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identifying a new leaf user at the end of the collection process, fewer tweets are collected 

from that new leaf user. However, even if this collection process runs for a long time, there 

is no guarantee that a leaf user would still post. To help counteract this, leaf user 

identification is stopped a month before data collection is. 

       Once data has been collected on the base users and their respective leaf users, the next 

step is to determine the amount of the original base users have the most collected leaf users. 

This filters users who have sufficient amount of data to look at their overall sentiment 

behaviors and their interactions with enough number of leaf users whose data is collectible. 

If there are not a lot of these leaf users whose tweets are collectible, the base user is 

removed from this study as there is not enough data to analyze. This step is important in 

determining who the base users should be because there needs to be satisfactory amount of 

data to determine similarities between users. 

     3.1  Identifying Users 

       The first part of this study is determining base users who comment and interact with 

other users on Twitter. For this study, base users were required to have commented on other 

users’ posts, liked users’ posts, and written their own opinions. An easy method to find a 

group of users like this is to pull posts on currently trending topics. To get these trending 

topics, Twitter has a trending list of all the hashtags that are easily accessible, and part of 

their API allows interested individuals to collect data based on these hashtags. The first 

way is looking for users who post more on the trending political topics, #MAGA and 

#TRUMP. The more a user tweets in general and on these topics, the higher chance that 
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another user will interact with that user. Sometimes these users are called “super users”, or 

rather users who are always communicating their thoughts on what is currently happening 

in the world. This process will exclude users such as celebrities, public officials, and users 

of high public stature. Because even if they are a “super user”, public pressure could offset 

our results as they are not always allowed to speak their true feelings towards certain topics. 

    3.2  Building User Profiles 

      Now that a set of base users has been determined, a process to build the profiles needs 

to be defined. The profile that is built for the user is slightly different from that of the users 

that user interacts with. The user profile consists of types of communications the user used 

with other users, the amount that the user tweeted other users, and the sentiment for each 

tweet that user tweeted. 

      Gathering interactions and determining the average interactions per user are important 

first steps for building user profiles. With this, the amount of impact different individuals 

has on the original user is determined. For example, if a person interacts with another 

person, Person A, more than some other person, Person B, Person A has more influence 

and more impact on that person. The number is used in our calculation as a factor to 

determine how much of the sentiment is imposed on from the original user. Stanford NLP 

is applied to run on each tweet to determine the overall sentiment of the user. The overall 

sentiments of the base users’ tweets are the amount of percentage of positive and negative 

tweets. The percentages are compared against the output of ISS, that is the sum of the leaf 

users’ weighted sentiments percentages. This shows how similar the base users sentiments 
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expressed are compared to those of the leaf users around them. The type of interactions is 

considered in the ISS as well. The more a user comments, or retweets, or quotes, the more 

those actions mean to that user[3]. This is because each user has different preferences on 

communicating with other users. In other words, if a user interacts with users more in one 

way than another, then the more popular the interactions would have more weight for the 

at user. In this case the interactions are quote, tweet, and retweet. 

      For leaf users, there is no need to collect the same amount of data as base users, only 

more than one or two tweets. Only a few tweets from these leaf users that the base user 

interacted with are required. Using Stanford NLP again to classify what the sentiment 

expressed is in a certain tweet. The base users are mapped to the leaf users that have been 

collected, which is made possible by keeping a list of users that the user has tweeted in 

their profile. Now that the base user and the leaf user’s profiles are built, the next step is to 

determine how all this data of their interactions and interaction types, and sentiments can 

be combined. 

     3.3   Development of ISS 

      There are three different parts of the ISS; the amount of weight assigned to an 

interaction type, the amount of interaction that the leaf user has with the base user, and the 

sentiments expressed. 

       In the first part of ISS, the interaction weight factor is the number of interactions the 

base user has with the other user. This is because without diminishment of the weight for 

the interaction between the base user and the leaf users, every interaction would have the 
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same impact on the base user. To determine this factor, this paper proposes the 

diminishment affect in Fig. 4. 

 

𝐴𝑀𝑇$–&
∑ 𝐴𝑀𝑇$–&(
&)*

 

AMTU-K = amount of user K was interacted with in all tweets for a particular user 

Figure 4. Diminishment Factor Based on Interactions 

 

       This diminishes the influence of user that interacts with another user; the more two 

users interact, the more influence they have on each other. Only the base users’ interactions 

with the leaf users that are collectable are considered. This makes the overall study and 

data collection relative to the data that is collected instead of absolute, which is impossible 

to collect.  

       For the next part of ISS, the type of interaction is considered. As stated before, there 

are two different approaches to factor this into the base user’s sentiment estimation. One 

approach is using the values of the type of interactions determined in a study by Fatia 

Kusuma Dewi, Satrio Baskoro Yudhoatmojo, and Indra BudiI [3]. For this study, the 

weighting scheme is based on each individual user rather than the overall amount of type 

of interaction percentages as seen in Fig. 5.  

       In this scenario, the more the base user commits a certain action, such as a like, or a 

retweet, or a mention, the more the interaction is worth. This is based on the assumption 

that the more frequently an interaction is committed compared to others, the more 



 
 

Influence Analysis based on Political Twitter Data 

 

 26 

important that action is for the base user. In other words, if a base user only tweets a few 

times but retweets a lot of other users’ tweets, the retweets mean more than tweets when 

determining their sentiments. 

 

∑ 𝑡𝑤𝑒𝑒𝑡– 𝑡𝑦𝑝𝑒0
1233145–6
0)*

∑ 𝑡𝑤𝑒𝑒𝑡0
1233145–6
0)*

 

tweetsU-K =  all the tweets for a user K 

tweet-typei = retweet, tweet, or quote 

Figure 5. Weight Factor Based on Type of Interaction from Study 

 

       The final part to consider is the sentiment. Sentiment has no diminishing factor as it is 

the percentage of a series of tweets, not the individual tweets. Combining all of these 

factors is the next and final part of the sentiment analysis of the leaf users. ISS is split into 

two parts, positive and negative as seen in Equation 1. To arrive at the diminished result, 

each tweet’s sentiment is multiplied by both interaction types and interaction amount with 

the base user to factor in the fact that different users have different degrees of influence 

based on those weights.  

       Considering all the sentiments expressed by the users around the base user, it is 

considered that a mix of those emotions do exist in the base user. The result of this study 

has two different outcomes: (1) overall sentiment representation of positive and negative 
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tweets. If a user’s positive tweets are over a certain percentage of that user’s tweets, then 

that user is positive, or else they are negative, and (2) the distance between users and their 

overall sentiments to compare how similar they are in their posting behaviors. This way, 

there is a clear method to determine if a user is positive or negative as well as a similarity 

measure to show the level of correlation between base users and their leaf users.  

 

 

ISSP,U = Positive Inferred Sentiment Score of base user U’s leaf users 

ISSN,U = Negative Inferred Sentiment Score of base user U’s leaf users 

ISSPP,U = Positive Inferred Sentiment Score Percentage of base user U’s leaf users 

ISSPN,U = Negative Inferred Sentiment Score Percentage of base user U’s leaf users 

Neg-TweetU-K = Base user U’s leaf user K’s Negative tweet  determined by Stanford NLP 

Pos-TweetU-K = Base user U’s leaf user K’s Positive tweet determined by Stanford NLP 

TweetsU-K = Base user U’s leaf user K’s total collected tweets 

Formula 1. Inferred Relative Sentiment Score, ISS 
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     To provide details of Equation 1, Fig. 6, ISS in Equation 1 is combining all the weights 

with the sentiments for a particular base user for positive and negative. The following 

diagram in Fig. 6 gives an overview of what this equation hopes to achieve and shows its 

intended user.  

 

Figure 6. User Profiles are Stored and Calculated 

 

4. Performance Evaluation 
      This section is going to go over the results from different parts of the study. These 

different parts include data collection, SVM, Stanford NLP, user interactions, sentiments, 

user profiles, ISS results.   
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     4.1  Data Collection Results 

 

Table 1. Results of Data Collection 

Total Base Users 4,866 

Total Leaf Users 8,676 

Total users a Base communicated with 101,332 

Total users a Leaf communicated with 237,221 

Total Base user Tweets 130,518 

Total Leaf user Tweets 232,452 

 

       Table 1 represents data collected over three months. As shown, the match between the 

leaf users and the total users that the base user communicated with is not perfect. This is 

largely in part to profiles being set to private and limitations on collecting the tweets. There 

is also large discrepancy between the number of base user tweets and the number of leaf 

users. This can be attributed to duplicated tweets, users whose data was not collected, and 

multiple tags in the same tweet. 

     4.2  SVM Performance 

      To be able to use SVM, the tweets need is turned into a value. To solve this problem, 

a combination of TF-IDF and bag-of-words is used to break down, weigh the terms 

frequency, and determine the sentiment of qualifying terms. First, the tweets are stripped 

off of any words that were not in the bag-of-words that had positive or negative 

connotations. Then TF-IDF determines the weight of each word from bag-of-words 
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extracted from the tweet and determines its importance. From here, the sum of the TF-IDF 

of the bag-of-words in a tweet create the label. This same technique for creating a label 

was tested on the given set of tweets that already had labels. Using 5-fold validation, as 

seen in Fig. 7., a high accuracy of 70% and a low accuracy  of 51% is not satisfactory for 

this study. 

 

Figure 7. Results of SVM 5-fold Validation 

Instead of looking at optimizing this part of the study, a decision was made to look for 

groups that have already created sufficient ways of labelling sentiment, such as the 

Stanford Natural Language Processing (NLP) research group. 

     4.3 Stanford NLP Performance 

       Since SVM, TF-IDF, and bag-of-words did not produce any usable results for 

sentiment classification. A new sentiment classifier, Stanford’s CoreNLP library is used to 

classify the tweets with a sentiment. Stanford’s CoreNLP tool uses Socher et al’s sentiment 

model with a binarized tree of the sentence to create a Core Mapping to predict the 

sentiment of that tweet[17]. The annotators from their core annotators (“very negative”, 
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“negative”, “neutral”, “positive” and “very positive”) are determined for the tweet. To test 

the accuracy of Stanford’s CoreNLP library, a test set of 2,980 hand labelled tweets with 

labels for positive and negative were compared against Stanford’s NLP library’s outputs.  

Table 2. Results of Original Stanford NLP 

Tweet Sentiment Count 

Positive 313 

Neutral 1,053 

Negative 1,614 

 

 

Table 3. Results of Manually Labelled Tweets 

Tweet Sentiment Count 

Positive 1,021 

Negative 1,959 

       

      In Table 2 and Table 3, there is a mismatch not only in the sentiment labels but the 

proportions. In the manually classified tweets, there are only positive and negative. The 

negative tweets consume about 66% of the total tweets and the positive accounts for only 

34%. In the Stanford CoreNLP, there is a neutral sentiment classification. To determine 

the best way to handle the neutral tweets, the overall data sentiment is considered. This 

study requires positive and negative labels. A bias was introduced from neutral to negative 

after determining the tweet’s context and type. This is done because most the tweets labels 

as neutral were too short and did not provide full context appropriately or was quoting a 
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game or The Bible. Another issue is if all neutral tweets are treated as negative, there is 

still a possibility of misclassification of positive and negative tweets by considering the 

new numbers in Table 4 and Table 5. 

Table 4. Stanford NLP Results Given the Negative  

Tweet Sentiment Count 

Negative Bias 2,646 

Positive 334 

 

Table 5. Reviewed Hand Labelled Tweets Results 

Tweet Sentiment Count 

Negative 111 

Positive 2,869 

        

       After reviewing all the tweets that are hand labelled, some are changed; some from 

negative to positive and from positive to negative after considering possible biases based 

on the tweet’s contents. Introducing the bias and reviewing the hand labelled tweets for 

any personal biases, the accuracy of the Stanford NLP output of the test set is 90%. SVM 

used 5-fold validation to confirm the accuracy of its classification. Stanford’s NLP won’t 

be using 5-fold validation as it does not depend on previous data to create a label. Taking 

that into account, the tweet analyzed by the Stanford NLP will not generate a different 

label. 
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     4.4  User Interactions Results 

      In this study, considering the interactions between users is an important factor in how 

much a user communicates with each other in their tweets. 

Table 6. Base User Tweets and User References 

Total Unique User references in tweets 101,332 

Total Base User tweets 130,518 

Average unique Base user interactions 1.29 

      

      In Table 6, a large portion of users is being referenced with fewer overall tweets. This 

is approximately 1.29 user mentions per tweet. When examining overall how many users 

used these different types in our data, the distribution of tweet types for all collected tweets 

is 64% retweets, 1% quotes, and 35% tweets. This is informative because it gives a rough 

idea of how users are tweeting and what the individual communications collected by this 

study may look like.  

     4.5 Sentiments Expressed Results 

      The results of the sentiments expressed in the whole dataset differ from that of the 

subset Stanford’s NLP used. It is important to note again that Stanford’s NLP doesn’t 

require training, it obeys a set of rules that cannot be changed on how to break down text. 

The amount of overall positive and negative tweets.  
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Table 7. Sentiment amount of All Tweets Collected in This Study 

Total Tweets 362,970 

Total negative tweets 334,891 

Total positive tweets 28,079 

       

      In Table 7 that the percentage of positive to negative tweets is askew. This is expected 

and is acceptable because our training set was a random sample of the overall data 

collected. When choosing the random dataset, it was possible to get only positive or only 

negative tweets. Examining the amount of positive and negative tweets in Table 7, it is 

reasonable that a larger portion was negative. 

     4.6  Building User Profiles 

      Each user is given a user profile in this build. The user profile tracks the tweets of that 

user, a list of the sentiment expressed for each tweet, the amount of interaction per user, 

the interaction type per user, all the interactions per user, and the final score for the user 

given. To examine this study’s collection of data drilled down to a user perspective, there 

is the following table, Table 8. 
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Table 8. User Tweet Statistics 

Average tweets per user 26.80 

Average negative sentiment tweets expressed per user 24.74 

Average positive sentiment tweets expressed per user 2.06 

Average retweet per user 14.70 

Average quote per user .07 

Average original tweet per user 12.03 

       

      In Table 8, it shows the average tweets of each user that has been collected, both base 

user and leaf user, only tweeted around twenty-six to twenty-seven times on average over 

the data collection process. This does not mean that they only tweeted that many times in 

the two to three months data collection period, but that the data sampling for this was only 

able to capture around twenty-six to twenty-seven tweets on average for this dataset. The 

percentages of positive to negative are slightly skewed from what was observed in Stanford  

NLP section; this is because this is not only the test set, but the full dataset with a lot more 

data being considered. 

     4.7  ISS Results 

      There are two different results that will be presented in this study. The first result 

classifies users as positive if the percentage of positive tweets that were collected reach a 

certain threshold. The second considers how close a base users’ negative and positive tweet  

sentiment percentages correlate to the output ISS given their leaf users. 
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      The first result shows how effective ISS is in determining the base user’s positive 

sentiment predicted class compared to the outcome of the leaf users predicted class. To do 

this, different percentages of what defines a user as positive or negative are used. This is 

done for two different reasons: there is no strict definition that states the percentage of 

positive or negative tweets that defines a person positive or negative, and the fact that most 

of the tweets collected in this dataset were negative. 

      Tables 9 and 10 are defined such that ‘Actual’ represents the base users and ‘Predicted’ 

is the output of the formula this paper presents. There are also percentiles listed under the 

predicted header that show the threshold at which a user is determined to be positive. For 

example, the section that read “Positive > 50%” is the threshold for defining users as 

positive, i.e. if a user’s tweets were over 50% positive, then they were defined as a positive 

user. 

 

 

Table 9. Results of Base User Positive Percentages Compared to the percent Output from ISS, with 
Different Percentiles Defining a “Positive” User 
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      Predicting the positive class was difficult as seen in the above tables 9 and 10. Most of 

the tweets were negative; defining a user as a positive or negative person was challenging. 

Traditionally, a positive person would be defined as someone who expressed positive 

sentiments more than 50% of the time in their tweets. It is not until the threshold is lowered 

to 35% positive tweets that define a user as a positive user that there is some intersect. The 

more the threshold is lowered for what defines a user as positive, the more f-measure rises.  

       Table 10  also shows that when the actual class is positive, the predicted class is getting 

increasingly negative as the threshold is lowered. This shows that the leaf user’s sentiments 

are getting increasingly negative as well. There is similar growth for base users who were 

Table 10. Results of Base User Positive Percentages Compared to the Percent Output from ISS, with 
Different Percentiles Defining a “Positive” User 
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determined to be negative, but the surrounding users are generally more positive. 

Considering the fact that the tweets collected from the start were political, it was expected 

to have a low positive percentile rate of their tweets for these users. Though as the 

definition of a positive user changes to lower, the f-measure does increase. 

     For the second part of the results, this study examines how close users’ sentiments are 

to the users they interact with. This is an important distinction from the first part of the 

results, which give a rather true or false result, whereas this second part will examine more 

at how similar or different base users and leaf users are after our formula is applied.  

      The graph in Fig. 8 describes the users who had a similar positive or negative amount 

within a given percentage. For example, if a base user tweeted 30% and the threshold was 

10%, and if the outcome for the leaf users are below 40% and above 20%, then they are 

similar. The graph is also given in a percentiles decimal form, to match the y axis. 

Examining the graph above there is strong evidence to support that base users are pretty 

similar to their leaf users. There are three fields in this graph: “Within Targeted Range”, 

“More Negative”, and “More Positive”. “Within Targeted Range” means that the output of 

ISS outcome percentage fell within the given range of the base user’s sentiment percentage. 

If the output of ISS is more negative than within the target range of the base user, then they 

are added to the “More Negative” field. The “More Positive” is therefore the leaf user 

sentiment outcome percentage that were more positive than the base user they have  

communicated with. 
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      At 1%, the lowest correlation between base years and leaf users is observed, at only 

17% of leaf users falling within a 1% sentiment outcome range of the base users score. 

This tells us that while in the first part of the results, our classification of positive and 

negative may have been ideal with the sentiment distribution of the tweets collected, the 

base users and the leaf users still tweeted along very similar tweet percentages. Notice as 

the range expands from 2% to 20%, the number of leaf users who fall within the “Within 

Targeted Range”, or rather the users range increase steadily. A broad statement can then 

be made about the tweet users collected in this study: while the base users were more 

negative, the users that they communicated with around them were generally as negative 

if not more negative. Another important note about the numbers in this graph is that more 

leaf users are more negative than the base user than more positive.  

5. Future Work 

35% 31% 26%
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Figure 8. Sentiment Percentage Correlation between Base User and Their Leaf Users using ISS given a 
Percentage Threshold 
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      There are many paths that this paper lays out for the future with regards to online 

interactions. It completes a large piece of the larger puzzle of users interacting online. One 

of the future works that can leverage these results could be determining what sentiment is 

mapped to certain topics in tweets. Using ISS, if there is a correlation between the 

sentiment the base users and leaf users output on the topics being tweeted about. Using 

this, another study can see the sentiment correlation between topics.  

      Another future work that this study could be used for is expanding out to determine 

how users feel about the particular subject in the tweet if they can identify the sentiment 

expressed toward the subject of the tweet. This is a long-term study trending for these users 

that can track timelines of when negative sentiments are expressed and correlate that to the 

users around them.  

       With more data collection and a timeline, another study could see if the base users 

surrounded by more positive users reach some form of equilibrium between where the base 

user was to where they are at the new point in time. This paper lays the ground work for 

the general sentiment expressed by others are related to each other. these are some general 

areas one might use this study to move forward in those areas. 

6. Conclusion 
      There is definitely a strong link between users and the users that they communicate 

with online. ISS as presented in this paper shows how close users are similar given different 

factors. By using ISS, that base users are surrounded by both more negative and more 

positive people than them. The data also shows that even though these users tend to be 
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more negative, some are still communicating with more overall positive users. Given ISS, 

considering the factors of how users are communicating, how much they are 

communicating, and the sentiments they are expressing, this study shows that users share 

the similar sentimental posting behavior to those they communicate with.  
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