
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

2-28-2022

Faster Multidimensional Data Queries on Infrastructure Faster Multidimensional Data Queries on Infrastructure

Monitoring Systems Monitoring Systems

Yinghua Qin
San Jose State University

Gheorghi Guzun
San Jose State University, gheorghi.guzun@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

 Part of the Data Storage Systems Commons, Systems and Communications Commons, and the

Systems Architecture Commons

Recommended Citation Recommended Citation
Yinghua Qin and Gheorghi Guzun. "Faster Multidimensional Data Queries on Infrastructure Monitoring
Systems" Big Data Research (2022). https://doi.org/10.1016/j.bdr.2021.100288

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F808&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.bdr.2021.100288
mailto:scholarworks@sjsu.edu

Big Data Research 27 (2022) 100288

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Faster Multidimensional Data Queries on Infrastructure Monitoring

Systems

Yinghua Qin ∗, Gheorghi Guzun ∗

Department of Computer Engineering, San Jose State University, San Jose, CA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2020
Received in revised form 20 June 2021
Accepted 28 October 2021
Available online 17 November 2021

Keywords:
Bit-sliced index
Bitmap index
Multidimensional data
Preference top-k queries
Performance

The analytics in online performance monitoring systems have often been limited due to the query
performance of large scale multidimensional data. In this paper, we introduce a faster query approach
using the bit-sliced index (BSI). Our study covers multidimensional grouping and preference top-k queries
with the BSI, algorithms design, time complexity evaluation, and the query time comparison on a real-
time production performance monitoring system. Our research work extended the BSI algorithms to cover
attributes filtering and multidimensional grouping. We evaluated the query time with the single attribute,
multiple attributes, feature filtering, and multidimensional grouping. To compare with the existing prior
arts, we made a benchmarking comparison with the bitmap indexing, sequential scan, and collection
streaming grouping. In the result of our experiments with large scale production data, the proposed BSI
approach outperforms the existing prior arts: 3 times faster than the bitmap indexing approach on single
attribute top-k queries, 10 times faster than the collection stream approach on the multidimensional
grouping. While comparing with the baseline sequential scan approach, our proposed algorithm BSI
approach outperforms the sequential scan approach with a factor of 10 on multiple attributes queries
and a factor of 100 on single attribute queries. In the previous research, we had evaluated the BSI
time complexity and space complexity on simulation data with various distributions, this research work
further studied, evaluated, and concluded the BSI approach query performance with real production data.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A preference (top-k) query is a critical function in performance
monitoring systems. It enables users to discover top performance
issues and take action promptly.

Based on the monitoring targets, the performance monitoring
systems could be classified into infrastructure performance mon-
itoring systems, database performance monitoring systems, and
application performance monitoring systems. A monitoring system
collects data, analyzes the data, and provides insightful information
to the system administrators. Streaming in real time with small
time-scale granularity, it can be thousands or millions of trans-
actions per second. Performance monitoring data usually contains
hundreds of features covering multiple dimensions of the moni-
toring targets. According to the studies published in [32] and [2],
the ad hoc top-k query on high-dimensional data is one of the top
challenges in data analytics.

* Corresponding authors.
E-mail addresses: yinghuasjsu@gmail.com (Y. Qin), gheorghi.guzun@sjsu.edu

(G. Guzun).

In a performance monitoring system, a top-k query can be a
single attribute top-k query or a multiple attributes top-k query.
A single attribute top-k query is based on one single attribute for
ranking. For instance, a query about “top 10 CPU utilization VM-
s” is a single attribute top-k query based on the “CPU Utilization”
attribute. A multiple attributes top-k query is based on multiple at-
tributes for ranking and typically has preference weights for each
attribute. For example, a query about “lowest 10 performance score
VMs” is a multiple attributes top-k query given that a performance
score formula contains multiple attributes (e.g. Performance Score
= 0.4 * CPU Utilization + 0.6 * Memory Utilization).

In most cases, when the datasets are small, the preference
queries can be answered without pre-processing or indexing
within the response time constraints [6]. Pre-processing the data
and keeping the top-k query result on the storage can improve
the query response time. However, pre-processing can only handle
a limited number of attribute combinations based on a common
time-scale resolution. The computing cost of the pre-processing is
high when the number of combinations is large for features and
temporal resolutions. This issue makes it unfeasible to cover all of
the temporal resolutions and feature combinations for modeling
during pre-processing for the top-k query.

https://doi.org/10.1016/j.bdr.2021.100288
2214-5796/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.bdr.2021.100288
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2021.100288&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yinghuasjsu@gmail.com
mailto:gheorghi.guzun@sjsu.edu
https://doi.org/10.1016/j.bdr.2021.100288
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

In this work, we introduce an optimized multidimensional
grouping top-k query approach using the bit-sliced [23,26] and
bitmap [29] indexing for performance monitoring systems. We
evaluate different types of queries with 80+ properties and at-
tributes of the infrastructure performance monitoring system. The
data are collected in an hourly granularity for one month from a
hybrid cloud data center environment with 9,000 virtual machines.

The project objective is to enable users to perform fast and in-
teractive preference queries based on different time-scale windows
with various criteria in real time. In the preference queries, our ex-
periments cover the performance comparison between a baseline
approach using top-k array sequential scan sorting and two ap-
proaches with bit-sliced and bitmap indexing. In the multidimen-
sional grouping, our experiences cover the performance compari-
son between collection streaming grouping approach and bit-sliced
grouping approach. The purpose of the experiments is to evaluate
the performance gain of using bit-sliced and bitmap indexing for
preference queries. We used a set of synthetic preference queries
for performance evaluation. The speed of response time for index-
ing is the key aspect that we evaluated and recorded during the
experiments.

The project generates a performance comparison matrix for
top-k query use cases and indexing slicing technologies. The data
samples are based on the general data type for hybrid cloud data
centers. The evaluation outcome could be used as a guidance and
reference for the real-time performance monitoring systems per-
forming the top-k query. The bit-sliced and bitmap indexing ap-
proaches proposed in this project enable the users to perform ad
hoc preference queries with the fast response time. The technol-
ogy can be applied to various monitoring systems and time-series
based datasets for data exploration and analytics.

The significant contributions of this project include the follow-
ing items: First, we propose a crossing attribute filtering approach
using a bit-wise operation on top of a bit-sliced indexing algo-
rithm; meanwhile, the project evaluates three types of top-k al-
gorithms: array sort algorithm, binning with bitmaps algorithm,
and bit-sliced algorithm. At the same time, the project evaluates
various types of top-k queries: single attribute top-k queries, mul-
tiple attributes top-k queries, and crossing attribute filtering top-k
queries. Furthermore, the project experiments are based on hybrid
cloud data center with various numbers of records up to 700K.

To further illustrate the technical aspects and experiment re-
sults, the rest of this paper is organized into several sections.
Section 2 presents the background and related work. Sections 3
and 4 present the problem formation of the preference query and
the multidimensional grouping approaches. Section 5 and section 6
show the cost analysis comparison among the algorithms. Sec-
tions 7 and 8 present the experiments and results. Finally, the
conclusion is presented in section 10.

2. Background and related work

In this section, we elaborate on the background of the per-
formance monitoring system, bitmap indexing, bit-sliced indexing,
and top-k query.

2.1. Performance monitoring of data center

In a performance monitoring system [25] for modern data
centers, the monitoring domains are usually broad and deep.
The monitoring domains cover all the components in the physi-
cal infrastructures, virtual infrastructures, container platforms, and
run-time application environments. This integrated model enables
users to have an overview of the availability of the whole data cen-
ter on one screen. Meanwhile, it generally contains deep-dive and
drill-down capabilities for each of the components. The model also

Fig. 1. 5-layer performance monitoring system. Each layer illustrates the components
it contains. An integrated model is at the topology model layer.

enables the users to perform root-cause diagnostics on individual
components. In previous work [25], a layering definition as shown
in Fig. 1 is described.

The physical layer contains the infrastructure components that
a performance monitoring system monitors. The data collection
layer defines various data collection technologies and connec-
tion protocols. The topology model layer enables object-oriented
model integration for the collected data. The dashboard user inter-
face layer defines three performance monitoring domains, which
include infrastructure performance monitoring, database perfor-
mance monitoring, and application performance monitoring.

In this project, we run the top-k query experiments on infras-
tructure performance monitoring data. Through the infrastructure
component API, we collect the production environment data in a
real-time manner.

Meanwhile, the data queries generally need to be capable of
performing across multiple domains to fulfill the analytic require-
ments. Previous work [24] proposed an integrated model-based
approach for data center monitoring using a virtualization infras-
tructure, as shown in Fig. 2. In that example, a virtual center
contains multiple servers. A server contains multiple virtual ma-
chines. A virtual machine contains CPU, memory, disks, etc. Each
type of object has a set of properties and attributes. The CPU ob-
ject has CPU utilization, CPU swap, CPU wait, and CPU co-stop, etc.
performance metrics.

An integrated model brings multidimensional analytic opportu-
nities and challenges. While each object instance has m attributes,
an integrated model with n number of object types would increase
the number of dimensions to n times m.

Although different types of queries are used for the business
analysis on different stages, from descriptive to predictive to pre-
scriptive (Table 1), top-k query is the first step in identifying the
object’s performance issues. An overview dashboard visualizes the
top-k query results and works as the entrance for further analy-
sis and investigations. In this project, we use the virtual machine
operating system performance counters as the metrics for top-k
query experiments.

2.2. Top-k queries

Top-k query technologies have been broadly used in various
fields to get the most important answers from a large answer
space. In the marketing science space, paper [11] presented a way
of selling products and services through top-k probabilistic goods.
[33] defined the probabilistic skyline operator and set a foundation
for the top-k query for the probabilistic skyline. [34] presented a
favourite probabilistic products query with a paralleling algorithm
based on the model of uncertain dynamic skyline query over prob-
abilistic product set. [31] proposed a partitioning solution for the
monochromatic cases, and a pruning heuristics approach for the
bi-chromatic cases on probabilistic reverse top-k queries over un-
certain data. [30] used an effective pruning heuristics approach to

2

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 2. A topology model in an infrastructure performance monitoring system contains objects, attributes, and properties.

Table 1
Progression of Data Analytic in Performance Monitoring Systems.

Descriptive Diagnostic Predictive Prescriptive

Inventory Dependency Forecasting Optimization
Events Root Cause Trending Planning
Metrics Correlation Time-to-Full Modeling

Fig. 3. Top-k query processing techniques classification [9].

discover the influential factors on the probabilistic reverse top-k
queries over uncertain data.

Based on a study on the top-k queries technologies [19], top-
k processing involves query optimization and indexing technology.
Fig. 3 shows the top-k processing techniques discussed in paper
[19].

Various top-k query techniques have been proposed: TA
(Threshold Algorithm) [10], BPA (Best Position Algorithm) [1], IO-
top-k algorithm [4], several database-based top-k query techniques
[5,3], and other various optimizations [7,12]. However, the general
top-k query techniques are not able to address the high dimen-
sional data query challenge [9].

2.3. Bitmap indexing

Bitmap indexing employs the bit(s) (0 or 1) to encode one
distinct attribute value of a column. The most popular encoding
approach is k of N encoding, which uses k bit(s) to encode one
distinct value.

Fig. 4. Bitmap 1-of-N coding example using CPU swap time attribute. Given the
CPU swap time has values of 0, 1, 2,..., or 12, 1-of-N bitmap encoding generates
13 bitmaps. Each bitmap contains N bits. For example, the bitmap-12 has 5 bits
1,0,0,0,0 with the first bit as a set-bit. This represents the first record has CPU swap
time as 12 while other records have different values.

Take CPU swap time (ns) as an example: the following Fig. 4
contains a CPU swap time attribute value ranging from 0 to 12.
1-of-N encoding generates 12 bitmaps while each bitmap contains
N bits. N is the number of records in the dataset.

Bitmap indexing forms a sizeable sparse matrix for a dataset
that has many attributes to index. For example, a table of 100
records with 10 columns that have 10 distinct values for each col-
umn will form a 100x100 matrix for 1-of-10 encoding. A sparse
matrix contains many zeros, which requires compression to op-
timize the storage space. Researchers have developed and imple-
mented various algorithms for storage compression with excellent
query performance at the same time. The commonly used bitmap
compression algorithms include WAH, PLWAH, CONCISE, EWAH,
and Roaring bitmaps.

EWAH [21] utilizes 32/64 bits to compress bitmaps based on
the CPU architecture. It continues constructing 32/64 bits of data
to represent the running data stream. Take 32 bits for example:
the first bit of the 32 bits describes what the current compression
value (0, or 1) is, the next 16 bits reflect how many 32 bits of
current values are compressed, and the last 15 bits represent how
many 32 bits of dirty (raw) data are stored.

The CONCISE [8] algorithm claims a 50 percent reduction in
size compared with WAH. The algorithm uses the mixed fill word
to reduce the worst-case memory footprint. Each 32-bit word is
represented as either a 31-bit literal word or a filled word. The
leftmost bit of a word indicates the original word or filled word
via bit 1 and bit 0. For a filled word, the second bit indicates the
filled/compressed with bit 0 or 1. The next 5 bits represent which

3

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 5. Bitmap Verbatim, WAH, PLWAH, EWAH and CONCISE compression examples.

Fig. 6. Bit-sliced Encoding. In this example, the value of CPU swap time value is
encoded as a binary format and thus generates a four-sliced BSI. Each of the slices
contains n bits while n is the number of records.

bit will be flipped. The last 25 bits count how many 32-bit values
are compressed.

Roaring [6] bitmap has a hybrid data structure which incorpo-
rates compressed and uncompressed bitmaps using sorted arrays.
It separates data into dense and sparse chunks. The dense chunk
contains more than 4,096 integers with a total size of 216 bits per
chunk. Roaring bitmap is a more complex compression approach
compared with the WAH and the CONCISE.

Fig. 5 shows an example of bitmap verbatim and its compres-
sion forms in the compression algorithms: WAH, PLWAH, EWAH,
and Concise.

In this project, we use the Roaring bitmap as the binning
bitmap in the single attribute top-K algorithm.

2.4. Bit-Sliced Index (BSI)

BSI [23,26] stands for Bit-Sliced Index. It uses bitmap [29] as
a data structure. The k-of-N encoding refers to traditional bitmap
encoding, which uses k bit(s) to encode one distinct value of an
attribute. Bit-sliced encoding refers to the “slicing” of the binary
representation of an attribute value set, which uses one bitmap for
one slice. Fig. 6 shows an example of bit-sliced encoding. In a pre-
vious study [18] compared the BSI index approach and Sequential
Top-k Algorithm (STA), as well as other state-of-the-art indexing
techniques for answering top-k queries. It did not evaluate an ap-
proach with the bitmap index. The BSI uses bit-wise operations,
similar to the bitmap index. However, they represent the attribute
data differently. Although there are limitations on multiplication
and sum for bitmaps, the performance of a bitmap for a single
attribute is faster than the array sort approach. In this paper, we
evaluate bitmap for single attribute top-k.

Preference (top-k) query is one of the top challenges in data
analytics for large volume and high dimensional datasets [28,27,
16,15]. Data scientists and researchers have been studying and
proposing using various indexes for large datasets. O’Neil et al. [23]
proposed the bit-sliced indexing for the multidimensional group-
ing query on the data warehouse. Rinfret et al. [26] introduced
the arithmetic of bit-sliced addition, subtraction, top-k, and gen-
eralized range restrictions of non-Boolean form for the use case

Table 2
Notation Description of Top-K Query Algorithms.

Notation Description

n Number of rows/records in the data
m Number of attributes in the data
s, p Number of slices used to represent an attribute
w Computer architecture word size
Q Query vector
b Number of bins use in binning bitmap top-k

of information retrieval. Additionally the bit-vector data structures
have the potential to use compression [13,17,14].

To the best of our knowledge, although the BSI has been re-
searched extensively, it has not been used on real-time perfor-
mance monitoring systems of hybrid cloud data centers. Thus, it is
interesting to explore the feasibility and performance assessments
of this method on data center infrastructure monitoring and opti-
mization.

3. Top-k query proposed approach

In this section, we first define the top-k queries and then de-
scribe the three query algorithms using bit-sliced indexing (BSI),
binning bitmap indexing, and array-sort.

The first query algorithm described in this section is the bit-
sliced top-k query algorithm (BSItop-k). A previous study [18]
introduced the bitmap operation-based slicing approach. In this
project, in addition to the previous study, we propose a new cross
attribute filtering based on BSI. It enables the top-k query to per-
form on various attribute filtering schemes.

The second query algorithm in this paper is the bitmap in-
dexing query algorithm (Bitmaptop-k). In the previous study [18],
bitmap indexing was not used for the top-k query comparison. In
this project, we evaluate a bitmap approach using Roaring com-
pression [22] as an example. Bitmaps are known to become sparse
when encoding a higher range of values. Compression is necessary
in this case, and we chose Roaring compression as it was shown
to perform better than the word-aligned compression variants in
bitmap queries [22].

The third query algorithm in this paper is the array-bubble-sort
top-k algorithm (Arraytop-k). We introduce a simplified top-k array
sort as a baseline for performance comparison.

3.1. Problem formulation

For clarity, we define the notations used further in this paper
in Table 2. The notations are used in the problem formulation de-
scription and cost analysis formulas.

Consider R as a dataset with m attributes. Each data item t in
R has numeric value {r1(t), r2(t), ..., rm(t)}. Q is a query weight
vector with Q = {q1, q2, ..., qm}. S is a scoring function where
S(t) = Sum(q1.r1(t) + q2.r2(t) + ... + qm.rm(t)). K is the number
of top items, and P is the indicator of max (highest) or min (low-
est) for the top items.

A single attribute query (S A Q uery) has input Rr(t), Q q, K , P .
The output is K items whose S(t) = q ∗ r(t) is the K highest or
lowest among all data items.

A multiple attribute query (M A Q uery) has input of the follow-
ing form: R{r1(t), r2(t), ..., rm(t)}, Q {q1, q2, ..., qm}, K , P . The out-
put is K items whose S(t) = Sum(q1.r1(t) +q2.r2(t) + ... +qm.rm(t))
is the K highest or lowest among all data items.

A top-K query usually performs on a subgroup of data based
on various filtering dimensions. For example, a query of “the low-
est 10 performance score VMs in past 1 week” is a top-k query
with date range as filtering. We denote the filtering range as F =
{lowerBound, upper-bound}.

4

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 7. Example of BSI arithmetic applied for finding top-2 tuples given a date range filtering query.

SAQueryFiltering denotes a single attribute query with filtering,
while SAQuery denotes a single attribute query without filtering.

MAQueryFiltering denotes a multiple attributes query with fil-
tering, while MAQuery denotes a multiple attributes query without
filtering.

In the remaining part of this section, we describe the three
approaches, BSItop-k, Bitmaptop-k, and Arraytop-k to answer the
four general top-k preference queries: SAQuery, MAQuery, SAQue-
ryFiltering, MAQueryFiltering.

3.2. BSI hybrid EWAH top-k query execution

In this project, we implement and evaluate the BSI approach by
using the Hybrid EWAH bitmap as a bitmap library [13]. This sec-
tion introduces BSI algorithms for the single attribute top-k query
with cross attribute filtering algorithm (SAQueryFiltering) and mul-
tiple attributes weighted top-k query algorithm (MAQuery).

BSI is an implementation built on top of the bitmap compres-
sion algorithms. In the BSI algorithm, a BSI attribute represents a
metric in the performance monitoring system.

For a crossing attribute filtering process, there are one filtering
BSI attribute and one score BSI attribute. Without losing generality,
we take the date metric as the filtering attribute, and the virtual
machine CPU swap wait (ns) metric as the score attribute. Fig. 7
shows an example of performing a SAQueryFiltering with the BSI
approach.

We split the SAQueryFiltering processing into the following
steps.

Step 1. Generate filtering attribute bitmap A. In this example,
we use the “Date” attribute as the filtering attribute. “Date” at-
tribute represents the data collection time. As discussed in [18],
BSI has a fast “range between” function which uses the bit-wise

operations for the bitmap of each slice. With this, bitmap A is gen-
erated with the set-bits representing included records.

Step 2. Generate score attribute bitmap array B. In this example,
“CPU swap time” is used as the score attribute. Bitmap array B
contains the binary encoding of the attribute values.

Step 3. Mark 0 for the score attribute. To apply the filtering on
the score attribute, we use the bit-wise operation “bitmap A AND
bitmap array B” to mark the value in bitmap array B as zero if its
corresponding bit in bitmap A is not a set-bit.

Step 4. Use the BSI attribute for top-k query. As discussed in
[18], BSI has a fast “TopKMax” function which uses the bit-wise
operations for the bitmap of each slice. From the highest bit to
the lowest bit, the function iterates each bit-slice, enters the top-
k items into bitmap G, and keeps the uncertain items in bitmap
E. When there is enough of top-k in bitmap G, the function stops
looping. If the looping reaches and checks the lowest bit but still
not enough of top-k, the function picks the remaining top-k from
bitmap E which contains a list of tie items. Finally, the function re-
turns the top-k. The return list from BSI top-k function is unsorted.
We add sorting for the return list.

In the BSI top-k query algorithm, we use a function to mark
out-of-range records to be score = 0 for max top-k filtering. Algo-
rithm 1 shows the pseudocode of the SAQueryFiltering steps.

For multiple attributes weighted top-k query algorithm (MA-
Query), the BSI algorithm contains the following steps:

Step 1. Bit-sliced multiply attribute 1 and weight 1.
Step 2. Bit-sliced multiply attribute 2 and weight 2.
Step 3. Sum the two weighted attributes.
Step 4. Using BSI attribute for top-k Query.
The BSI top-k query algorithm for multiple attributes summa-

tion top-k pseudocode 2 is listed below with two attributes as
examples.

5

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Algorithm 1: BSI Single Attribute Top-k with Filtering.
Input: R - dataset;
Q - query weight of the single attribute;
k - number of top items;
P - max or min for the top;
F - filtering range;
Output: T - top k items

1 Function SAQueryFiltering(R,Q ,K ,P ,F)
2 filterAttribute = R.rangeBetween (F)
3 scoreAttribute = R[Q]
4 scoreAttribute.setMark(notIn (filterAttribute))
5 T = top-k (scoreAttribute, k, P)
6 return T

Input: FA - the bitmap of filtering attribute
Output: mark zero for records out of range

7 Function setMark(FA)
8 numberOfSlices = this.bsi.length
9 for i ← 0 to number O f Slices by 1 do

10 this.bsi[i]=this.bsi[i].and(FA)
11 end

Algorithm 2: BSI Multiple Attributes Sum Top-k.
Input: R - dataset;
Q - query weight of the single attribute;
k - number of top items;
P - max or min for the top;
F - filtering range;
Output: T - top k items

1 Function MAQuery(R,Q ,K ,P ,F)
2 scoreAttribute1 = R[1].Multiply(Q[1])
3 scoreAttribute2 = R[2].Multiply(Q[2])
4 scoreAttribute = sum (scoreAttribute1, scoreAttribute2)
5 T = top-k (scoreAttribute, k, P)
6 return T

3.3. Roaring bitmap top-k query execution

The second approach evaluated in this project is the bitmap
approach by using Roaring bitmap [22] as an implementation ex-
ample. Bitmap approach works only for single attribute top-k. The
binning bitmap approach cannot be used with multiple attributes
weighted top-k. Since binning bitmap contains only the position of
the record instead value, it requires the value addition operation to
sum two attributes. It cannot achieve this via a bit-wise operation.
Due to this limitation, the binning bitmap is not applicable for a
multiple attributes top-k query and will be used in our experiment
only for a single attribute query.

We identify four main parts of the main algorithm of the Roar-
ing bitmap top-k query. An example of performing the top-k query
on the roaring bitmap approach is shown in Fig. 8.

Step 1. Generate filter attribute bitmap A.
Step 2. Generate binned score attribute bitmap array B.
Step 3. Iterate the bitmap array B to compute a top-k bitmap.
Step 4. Select top k from the top-k bitmap.
The first step is to generate a filtering bitmap A based on the

filtering criteria. In the Fig. 8 example, we use “date” attribute as
the filtering attribute and “date = 2019.1.10” as the filtering criteria.
In the example figure first step, it generated a filtering bitmap A
as [1,1,1,1,0]. The size of bitmap A is n which is the number of
records in the dataset. A set-bit in bitmap A represents a record
that satisfies the filtering criteria.

The second step is to generate a bitmap array based on the
top-k ranking score attribute. The number of bitmaps generated
is determined by the bin value range definition. To make it a fair
comparison with the bit-sliced approach, in the experiments, we
set 20 as the fixed number of bins to reflect the typical maximum
number of slices in the BSI. The more bins, the more memory re-
quired and the less query time. In Fig. 8 example, without losing

generality, we take VM CPU swap wait (ns) as the top-k ranking
score attribute. In the example figure second step, it generated a
bitmap array B. The size of bitmap B[i] is n which is the number of
records in the dataset. A set-bit in bitmap B[i] represents a record
that has a score value within the bitmap binning value range.

The third step is to compute top-k bitmap based on the filter-
ing bitmap A from step 1 and the score bitmap array B from step
2. Initially, the program sets the bitmap sumB as bitmap B[b-1]
and then perform bit-wise operation “sumB AND A” to get an in-
terim bitmap c. b denotes the number of bins in the score attribute
bitmap array. B[b-1] is the last item in the array. If the cardinal-
ity of bitmap c is equal or greater than k, then it returns bitmap
c as the top-k bitmap for the next step processing. If the cardi-
nality of bitmap c is less than k, then the program iterates over
the bitmap array B in a reverse order to get another bitmap array
B[b-2]. For each of the B[i] where i is iterated from b − 1 to 0, the
system performs a bit-wise operation “sumB = sumB OR B[i]” to
get an updated sumB . After that, the system performs a bit-wise
operation “c = sumB AND A” to filter the result on bitmap sumB
and returns the result as c. The iteration stops until the cardinality
of c is equal or greater than k or the whole array is iterated.

The last step is to perform a sort on the returned bitmap c
from step 3. The size of the result extracted from the above step
is either equal or larger than the top-k number. In either case, the
result is not sorted. Therefore, to make the top-k list result to be
identical across three algorithms, further sorting is performed to
get the final top-k items. The sorting used in this project is the
array top-k selection. Algorithm 3 shows the pseudocode of those
steps.

Algorithm 3: Bitmap Single Attribute Top-k.
Input: R - dataset;
Q - query weight of the single attribute;
k - number of top items;
P - max or min for the top;
F - filtering range;
Output: T - top k items

1 Function SAQueryFilteringBitmap(R,Q ,K ,P ,F)
2 numberOfBins = b
3 while binNumber ≤ number O f Bins do
4 B[binNumber] = RoaringBitmap.bitmapOf(R[Q]
5 .matchIds(binNumber)
6 binNumber ++
7 end
8 A = RoaringBitmap.bitmapOf (F)
9 sumB = B[B.length-1]

10 for i ← B.length to 0 by −1 do
11 sumB = B[i] OR sumB
12 c = sumB AND A
13 if sumA.cardinality ≥ K then break
14 end
15 T = top-k (c, k, P)
16 return T

3.4. Array sequential sort top-k query execution

To compare the performance, we use a sequential sort algo-
rithm as the baseline approach. The complexity of the sequential
sort is O (k × n) where k is the number of top-k ranking and n is
the total number of records.

Given a dataset with the number of records n, for the top-k
query with k < log2 n, a sequential sort is faster than the other
sorting algorithms with the time complexity as O (n log n). In Fig. 9,
the threshold line k < log2 n shows the upper-bound of k is up to
20+ for a several millions dataset. Given that our typical dataset
has less than 1 million data dn = 700K >> 215, a sequential sort
algorithm has optimal performance as a baseline.

6

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 8. Example of Roaring bitmap arithmetic applied for finding top-2 tuples given a date range filtering query.

Fig. 9. Dataset size and top-k threshold line for sequential sort algorithm.

The algorithm of the top-k sequential sort is similar to the reg-
ular bubble sort. The key difference is that it bubbles up only k
items. Algorithm 4 illustrates the single attribute sequential sort
top-k query pseudocode. Algorithm 5 demonstrates the multiple
attributes sum top-k pseudocode with two attributes as an exam-
ple.

4. Multidimensional grouping proposed approach

In this section, we describe the two grouping algorithms using
bit-sliced indexing (BSI) and Java Stream API.

Algorithm 4: Array Single Attribute Top-k.
Input: R - dataset;
Q - query weight of the single attribute;
k - number of top items;
P - max or min for the top;
F - filtering range;
Output: T - top k items

1 Function SAQueryArray(R,Q ,K ,P ,F)
2 for i ← 0 to k by 1 do
3 for j ← 0 to n − k − 1 by 1 do
4 swap the positions if R[Q] (i) >R[Q] (j)
5 end
6 end
7 T = R.range[0,k]
8 return T

Algorithm 5: Array Multiple Attributes Sum Top-k.
Input: R - dataset;
Q - query weight of the single attribute;
k - number of top items;
P - max or min for the top;
F - filtering range;
Output: T - top k items

1 Function MAQueryArray(R,Q ,K ,P ,F)
2 for i ← 0 to k by 1 do
3 s(i) = R[1](i)*Q[1](i) + R[2](i)*Q[2](i)
4 for j ← 0 to n − k − 1 by 1 do
5 s(j) = R[1](j)*Q[1](j) + R[2](j)*Q[2](j)
6 swap the positions if s(j) >s(j)
7 end
8 end
9 T = R.range[0,k]

10 return T

7

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 10. Grouping results of two different types of data granularity: per hour and per four-hours.

The first grouping algorithm described in this section is the bit-
sliced grouping algorithm. We introduce a bit-sliced algorithm for
multidimensional grouping. It enables users to aggregate perfor-
mance metrics on various dimensions for exploratory analysis.

The second grouping algorithm is a baseline approach for per-
formance comparison. We use the Java Stream API for grouping
and summation. The Java Stream API uses functional programming
with simple expression to achieve grouping and summing in one
line. As a built-in library in Java 8, stream API is a suitable baseline
approach for performance comparison.

4.1. Problem formulation

In the performance monitoring system, the majority of the
grouping functions are multidimensional. A typical use case is to
query performance metrics grouping by both monitored object ID
and temporal dimensions. For example, to find out which virtual
machines are the top CPU consumers last week, the performance
monitoring system could query the virtual machine performance
metrics by rolling up to weekly granularity. In anomaly detection,
the system aggregates the metrics on various granularity to find
out the time pattern related anomalies. The temporal granularity
could be 15 minutes, 1 hour, 4 hours, 24 hours, day-of-week, hour-
of-day, and day-of-month, etc. On each of the grouping datasets,
we calculate the aggregate metrics including sum, max, min, mean,
and standard deviation, etc.

Fig. 10 shows the grouping results of two different data granu-
larity values. One is per hour. Another is per four-hours. During the
exploratory data analytic, users usually evaluate various results of
different types of data granularity. In this example, it is to evaluate
what type of granularity would be suitable for anomaly detection.
On the visual level, the four-hours aggregated data has high ac-
curacy for anomaly detection and fewer false-positive alarms than
the per hour data has.

With the annotations described in Table 3, we formulate the
multidimensional grouping problem in this section.

Consider R as a dataset with m attributes. Each data item t
in R has numeric value {r1(t), r2(t), ..., rm(t)}. G is a grouping
input vector with G = {g1, g2, ..., gx}. Q is a query weight vec-
tor with Q = {q1, q2, ..., qm}. O is a grouping output vector with
O = {O 1, O 2, ..., O m)}.

For a multiple attributes grouping (M AGrouping) with sin-
gle score attribute, it has the input of the following form: R ,
Q {q}, G{g1, g2, ..., gx}. The output is O {O 1, O 2, ..., O m}.

Table 3
Notation Description of Grouping Algorithms.

Notation Description

n Number of rows/records in the data
x Number of attributes grouping-by
m Number of attributes rolling-up values after grouping
s Number of slices used to represent an attribute
w Computer architecture word size
c Cardinality of one attribute
d Number of days in a month for data collection
h Number of hours in a day for data collection
t Data collection interval in the unit of minutes
v Number of objects monitored
G Grouping-by attributes
O Grouping query output
Q Query vector

In the remaining part of this section, we describe the two ap-
proaches, BSIGrouping and StreamGrouping to perform the multi-
dimensional grouping: MAGrouping.

4.2. BSI hybrid EWAH grouping

In general, a grouping process contains filtering and summation
operations. The BSI grouping algorithm leverages the bit-sliced in-
dex for both filtering and summation. In the previous project [18],
we have the summation algorithm for BSI but that algorithm is
limited on “bit-sliced bitmap ADD a constant value” operation. In
this project, we introduce an algorithm for the summation inside
the bit-sliced attribute itself. An example of performing grouping
on BSI data is shown in Fig. 11.

We split the grouping processing with BSI into four steps:
Step 1 - Generate grouping attribute bitmap arrays for each

grouping attribute in G{g1, g2, ..., gx)}.
Step 2 - Generate BSI attribute for the score column R{r1(t),

r2(t), ..., rm(t)}.
Step 3 - Generate filtering bitmap array through permutation of

grouping attributes bitmaps.
Step 4 - Filter BSI attribute value by performing a bit-wise op-

eration between bit-slice and the filtering bitmap.
Step 5 - Calculate the sum of the BSI attribute. The position of

the bit-slice is i. i has the range from 0 to s where s denotes the
number of slices of the score attribute BSI. pi is the i power of
2. The cardinality of the bit-slice is ci . In this step, the program
calculates the sum of the product of the cardinality ci and pi .

The summation result is:
∑s

i=1 ci .pi .

8

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 11. Example of BSI arithmetic applied for calculating the sum of CPU swap time metric given a grouping on attributes: date and virtual machine ID.

Algorithm 6: BSI Multidimensional Grouping.
Input: R - dataset;
Q - query weight of the single attribute;
GBBitMaps - group-by attributes bitmaps;
Output: O - grouping output

1 Function MAGroupingBSI(R,Q ,G B BitMaps)
2 filterBitMaps = generatePermutation (GBBitMaps)
3 scoreAttribute = R[q]
4 for each of the filterBitMap i in filterBitMaps do
5 for each of the slice j in scoreAttribute do
6 slice[j] = slice [j] AND filterBitMaps[i]
7 end
8 end
9 O = BSISum (scoreAttribute)

10 return O

Input: scoreAttribute - the BSI of filtered score attribute
Output: O - the summation value of socre attribute

11 Function BSISum(scoreAttribute)
12 numberOfSlices = this.bsi.length
13 for i ← 0 to number O f Slices by 1 do
14 O = O + this.bsi[i] * Math.pow(2, i)
15 end

4.3. Java collection stream grouping

Our project experiments are built on Java 8. On Java 8, there is a
stream API that provides database SQL like query type operations
for Java collection objects. For example, operations include sum,
grouping, and filter, etc. We use this as the baseline approach for
performance comparison with the BSI approach.

In Java Stream, it uses the source data structure collection as
input, and produces pipeline data. On the pipeline data in Java
Stream, we could perform specific operations. The Java Stream
operations use functions as parameters, from simple lambda ex-
pression to complex functionality.

In the Java 8 stream definition, a stream is a pipeline of func-
tions that can be evaluated. Streams can transform data through
either intermediate operations or terminal operations. For inter-
mediate operations, the common examples include map, filter,
distinct, sorted, and peek. For terminal operations, it includes col-
lectors operations such as collect, findAny, etc. The return data of
terminal operations is a map.

9

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Algorithm 7 illustrates using Java Stream to compute the sum
of memory usage of virtual machines having memory allocation
larger than 32GB.

Algorithm 7: Java Stream Example - Filter and Sum.
Input: Data - dataset;
Output: The sum of memory usage of virtual machines having memory

allocation larger than 32GB
1 Data.stream()
2 .map(Memory::getMemoryMemory) .filter(memoryAllocation − >

a.getAllocation() > 32GB) .map(Memory::getMemoryUsed) .reduce(0,
Integer::sum)

In the content of our grouping operation, Java Stream API in-
cludes grouping and sum at the terminal operations. Algorithm 8
illustrates using Java Stream to compute the sum of memory usage
of virtual machines grouping by virtual machine ID.

Algorithm 8: Java Stream Example - Grouping and sum.
Input: R - dataset;
Q - query weight of the single attribute;
G - group-by attributes;
Output: O - grouping output

1 Map<List<String>, Integer> O = Stream.of(data.elements).collect(
Collectors.groupingBy(x -> { ArrayList<String> G=new
ArrayList<String>(); for(int c:G) G.add(x.attributes[c]); return G;
},Collectors.summingInt(R::getScore(R))));

2 return O

Java Stream is a pipeline process and could be expressed in one
line. For clarity, we split the grouping processing with Java Stream
into two steps:

Step 1. Get grouping attributes and score attribute using lambda
functions.

Step 2. Aggregate results using the collector grouping function.
Java grouping B y is a collector which works with the stream API
terminal operation of collect. It supports returning sum, min, max,
and average as the grouping aggregation values.

Fig. 12 shows an example of performing grouping on Java
Stream data.

5. Top-k query cost analysis

In previous paper [18], we analyzed the space complexity of BSI
approach comparing with sorted list and raw data. The BSI space
complexity is 10 times smaller than sorted list and 5 times smaller
than raw data. In this section, we analyze the cost of computing
top-k preference queries in terms of time complexity for three ap-
proaches described in Section 3.

For clarity, we define the notations used in this paper in Ta-
ble 2. The notations are used in the problem formulation descrip-
tion and cost analysis formulas.

Table 4 shows a summary of the complexity of the three ap-
proaches. The rest of this section describes the cost analysis details
for each algorithm.

5.1. BSI hybrid EWAH top-k query

In the BSI top-k approach, the top-k preference queries are pro-
cessed using bit-wise operations over the bit slices. Therefore, the
number of slices (s), the word size of the computer CPU archi-
tecture (w), the number of attributes (m), and the number of
non-zero weights in the query are the key factors of the time
complexity. As analyzed in the article of BSI implementation [18],
for single attribute top-k query with weight 1, the BSI complexity
could be expressed as:

Table 4
Time Complexity of Top-K Query Algorithms.

Approach Single Attribute Multiple Attributes Sum

BSI O
(

s
n

w

)
O

(
sm

n

w

)
Bitmap O

(n
b + kk

)
N A

Array O (nk) O (nk + n)

O
(n

w

)
(1)

For multiple attributes top-k query, with the number of at-
tributes m and weight 1, the BSI complexity can be defined as:

O
(

sm
n

w

)
(2)

5.2. Roaring bitmap top-k query

As shared in the article of Roaring bitmap [22], the two ele-
ments (e.g. A and B) “AND” and “OR” bit-wise operation in the
Roaring implementation have the following complexity:

• Time complexity = O (n) when both two elements are bitmaps;
• Time complexity = O (n) when two elements has one bitmap

and one array;
• Time complexity = O (nlogn) when both two elements are ar-

rays.

Therefore, the best case time complexity is O (n) while the
worst case time complexity is O (nlog(n)).

In this project, we use a binning approach that contains b num-
ber of bins. Each bin is represented as a bitmap. A bin has maxi-
mum n

b number of set bits. In step 3 which computes top-k bitmap
in the bitmap single attribute top-k algorithm, the maximum num-
ber of bit-wise operations is b when the data has skewed distribu-
tion and most of the data fall into lowest value bin. For normally
distributed data, the first highest value bin contains all the top
max items. The number of bit-wise operations is one “and.” There-
fore, step 3 best case time complexity is O

(n
b

)
while the worst-

case time complexity is O
(n

b
n
b

)
.

In step 4, after retrieving the top-k bitmap from step 3, the
number of results extracted is either equal to or larger than the
top-k number. To get a sorted top-k, a further sorting on the ex-
tracted list is performed to get the final top-k items. The sorting
used in this project is the array top-k selection. The complexity
of the sorting depends on the cardinality of the returned top-k
bitmap. For the best case with the number of results extracted
equals to k, its the complexity is O (kk). For the worst case in
which the last bin bitmap is full with n

b items, where n is number
of records of the dataset and b is number of bins, the complexity
is O

(
k n

b

)
.

The combined complexity of step 3 and step 4 has the best case
complexity as:

O
(n

b
+ kk

)
(3)

The worst case complexity is:

O
(n

b

n

b
+ k

n

b

)
(4)

5.3. Array sequential sort top-k query

Quicksort has the time complexity of O (nlog(n)).
Array sequential sort for top-k has the time complexity of

O (nk).
As the line k = log(n) illustrates in Fig. 9, when the k <= log(n),

the top-k array-bubble-sort has better performance than quicksort.

10

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 12. Java Stream Grouping Data Flow.

In this project, we use datasets [20] with sizes of 100K, 300K,
and 700K records. The log(n) figures of those datasets are much
higher than the k = 15. Therefore, the array-bubble-sort has lower
complexity than quicksort for any given k < 20.

In the multiple attributes top-k, other than the sort, there is a
step to multiply the attributes with weights and calculate the sum.
The complexity of the multiplication and sum is O (n).

Therefore, the combined complexity of the array approach is:

O (nk + n) (5)

5.4. Comparison of top-k approaches

To compare the time complexity of those three approaches, we
plot the big O on the Fig. 13. When the number of records ex-
ceeds about 100K, the bitmap worst-case and array-bubble-sort
time complexities are 10 to 100 times bigger than the BSI ap-
proach. Bitmap best case can have either smaller or bigger time

complexity than BSI depending on these moving parameters k, b,
m, s, and w . Fig. 13 is based on a typical parameter set of per-
formance monitoring system: 10 < k < 20, 2 < b < 32, 1 < m < 5,
2 < s < 32, and w = 32 or 64. By varying parameter k, the time
complexity expressions in the bitmap best case and BSI approaches
have same term k ∗ k. Their difference in performance is not af-
fected by different k parameters. Given that n >> k, as k increases,
time complexity of the array-bubble-sort increases in a factor of n
while the time complexities of BSI and bitmap increase in a fac-
tor of k which is much smaller than n. Therefore, without losing
generality, our project top-k query experimental evaluation uses
k = 15.

6. Multidimensional grouping cost analysis

In this section, we analyze the cost of computing top-k pref-
erence queries in terms of time complexity for two grouping ap-
proaches described in Section 4.

11

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 13. Big O comparison of array-bubble-sort, bitmap worst case, bitmap best case,
and BSI. The X-axis is for the number of records. The Y-axis is for time complexity
(O). k, b, m, s, and w are the parameters which impact the big O . BSI big O shows
as a solid red line. Array big O shows as a black dot-line. Bitmap big O has two
lines: worst case as green dotted line and best case as a green solid-line. (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

Table 5
Time Complexity of Grouping Algorithms.

Approach Single Attribute Multiple Attributes

BSI O (sc) O
(
s
∏g

i=1 ci
)

Bitmap N A N A
Array O (n) O (n)

For clarity, we define the notations used further in this paper
in Table 3. The notations are used in the problem formulation de-
scription and cost analysis formulas.

Table 5 shows a summary of the complexity of the three ap-
proaches. The bitmap approach time complexity is listed as NA due
to the high time complexity of using bitmap for summation in the
grouping. The rest of this section describes the details of the cost
analysis for each algorithm.

6.1. BSI hybrid EWAH grouping

In the BSI grouping approach, the grouping rollup is processed
using bit-wise operations over the bit slices. Therefore, the num-
ber of slices (s), the word size of the computer CPU architecture
(w), the number of grouping-by attributes (g), and the cardinality
of the grouping-by attributes are the key factors of the time com-
plexity. For single attribute grouping, the BSI complexity could be
expressed as:

O (sc) (6)

In multiple attributes grouping, with the number of attributes
g , the BSI complexity can be defined as:

O

(
s

g∏
i=1

ci

)
(7)

6.2. Java stream grouping

Based on the Java documentation, the time complexity of Java
Stream API for grouping is O (n). n is the number of records in the
dataset. The time complexity of Java Stream API is:

O (n) (8)

6.3. Comparison of grouping approaches

Java Stream API approach time complexity is determined by the
number of records in the dataset. BSI grouping approach time com-
plexity depends on two factors. One factor is the number of slices
in the score BSI attribute. Another factor is the sum of the car-
dinality of the grouping-by attributes. The number of slices in a
BSI attribute ranges from 0 to 32. The cardinality of grouping-by
attributes varies on different systems.

Taking a temporal dimension grouping as the example, there
are d = 30 days and h = 24 hours per day in a monthly dataset. v
is the number of monitored objects.

For a daily grouping, the time complexity is:

O (dvs) (9)

For an hourly grouping, the time complexity is:

O (dhvs) (10)

The number of records in an infrastructure monitoring system
is determined by the number of objects being monitored and the
data collection interval. For a monitoring system with v number of
virtual machines with t minutes data collection interval, the num-
ber of monthly records is:

n = dh
60

t
v (11)

For a typical infrastructure monitoring system of virtual ma-
chines, the time complexity of Java Stream API is:

O

(
dh

60

t
v

)
(12)

For a generic temporal grouping for the infrastructure monitor-
ing system, the BSI grouping approach has better time complexity
than the Java Stream API approach.

To compare the time complexity of those two approaches, we
plot the big O on Fig. 14.

7. Top-K query experimental evaluation

In this section, we present the results of evaluating the three
approaches: the bit-sliced indexing (BSI), bitmap, and sequential
top-k sort.

We first describe the experimental setup and the datasets used.
Then, we compare the single attribute query performance results
of 80+ individual attributes. Next, we compare the multiple at-
tributes query performance results of 80+ different combinations
of two attributes sum.

In the performance measurement, we don’t measure bin cre-
ation time for the bitmap index. When there are new data stream-
ing in, additional time would be required to fit the new data into
the bins. For BSI, new data are appended to the BSI attributes, thus
there is no need for re-indexing.

7.1. Experimental setup

All the experiments in the project were run on the following
environment configuration.

- OS: Windows 10 Enterprise
- Processor: Intel Core i7-7820 HQ @2.90GHz
- RAM: 32GB
- System Type: 64-bit Operating System, x64-based CPU
- Implementation: Java JDK 1.8 version.

12

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 14. Big O comparison of BSI and Java Stream API for grouping. The X-axis is
for the number of monitored objects (VM as an example). The Y-axis is for time
complexity (O). BSI big O grouping by hours and virtual machines shows as a solid
green line. BSI big O grouping by days and virtual machines shows as a dotted
green line. Java Stream big O shows as a red solid line.

Table 6
Infrastructure Performance Monitoring Data Attributes -
Property, Temporal and CPU Metrics.

Attribute Cardinality

Start Time 2070
End Time 2070
ESX Server 13
Virtual Machine 333
VM UUID 333
datastore name 12
VM CPU used(MHz) 30903
VM CPU totalHz(MHz) 262
VM CPU cores 14
VM CPU percent ready time(%) 82
VM CPU summed percent ready(%) 260
VM CPU latency(%) 505
VM CPU swap wait(ms) 1140
VM CPU coStop(ms) 13564
VM CPU swap wait percent(%) 34
VM CPU coStop percent(%) 189

7.2. Dataset

In this project, we use the hybrid cloud data center virtualiza-
tion infrastructure topology model and data [24]. Fig. 2 demon-
strates the integrated topology model of a typical virtualization
infrastructure of a data center. The integrated model-based ap-
proach facilitates diagnostic analysis. It has been broadly used in
the dependency drill down, root cause diagnostic, and event corre-
lation analytic.

A topology model contains objects, properties, and attributes. In
this project, the top-k queries are based on the object and metric
which can be both used in the filtering criteria. The metric is used
as the score measurement to get the top-k ranking.

The virtual machine performance metrics are collected from the
virtualization hypervisor web service API with hourly granularity
for one month. The dataset [20] contains 9,000 virtual machines,
700K+ rows of records, and 80 different attributes. The size of the
data is around 700K * 80 * 8 bytes = 448 MB. It is pre-processed
to align the units scale. Its attributes are illustrated in Table 6, 7,
and 8.

Table 7
Infrastructure Performance Monitoring Data Attributes -
Memory Metrics.

Attribute Cardinality

Start Time 2070
End Time 2070
ESX Server 13
Virtual Machine 333
VM UUID 333
datastore name 12
VM memory allocated(GB) 33
VM memory used(GB) 316
VM memory capacity(GB) 37
VM memory active(GB) 135
VM memory balloon(GB) 69
VM memory balloon target(GB) 69
VM memory granted(GB) 190
VM memory overhead(GB) 3
VM memory shared(GB) 294
VM memory swapped(GB) 32
VM memory zero(GB) 268455
VM memory shares 20
VM memory reservation(GB) 13

Table 8
Infrastructure Performance Monitoring Data Attributes -
Storage, Availability Metrics and Performance Score.

Attribute Cardinality

Start Time 2070
End Time 2070
ESX Server 13
Virtual Machine 333
VM UUID 333
datastore name 12
VM ds allocated(GB) 209
VM space used(GB) 8545
VM transfer rate(kb/s) 114013
VM uptime percent(%) 38
VM OS uptime seconds(s) 283603
VM Disk Latency score 913
VM CPU contention score 946
VM CPU utilization score 501
VM Memory utilization score 302
VM Memory Balloon score 228
VM Memory Swapped score 96

7.3. Performance measurement: single attribute (CPU swap time)

In the first step of our experiments, we take one performance
metric CPU swap time(ns) as a single attribute for performance
comparisons of the three algorithms. The performance counter CPU
swap time is the time that a virtual machine CPU waits for swap
page-ins. The query response time is captured with and without
crossing attributes filtering.

For the 300K data experiment, the BSI approach is 12 times
faster than the baseline approach top-k sequential sort, but it is 3
times slower than the binning bitmap approach for the use case of
the top-k query without crossing attributes filtering.

The BSI approach is 40 times faster than the baseline approach
top-k sequential sort, and 3 times faster than the binning bitmap
approach for the use case of the top-k query with crossing at-
tributes filtering.

By using the same dataset with VM ID grouping, the total num-
ber of records goes down to 10K after grouping. For this 10K data
experiment, the BSI approach is 4 times faster than the baseline
approach top-k sequential sort, but it is 2 times slower than the
binning bitmap approach for the use case of a top-k query without
crossing attributes filtering.

Meanwhile, the BSI approach is 2 times faster than the baseline
approach top-k sequential sort, and 3 times faster than the binning
bitmap approach for the use case of the top-k query with crossing

13

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 15. Performance comparison of the top-k query from 300k and 10k data with/without crossing attributes filtering for one single attribute CPU swap time. Query time is
measured as nanoseconds. Parameters: n=300K; n= 10K; k =15.

attributes filtering. Fig. 15 demonstrates the query performance re-
sult in nanoseconds unit.

7.4. Performance measurement: single attribute (70+ metrics)

After measuring the top-k query performance of a single at-
tribute CPU swap time, we further analyze 70 more metrics and
their performance distribution. We use the 75, 50, and 25 per-
centiles to present a statistic summary of our measurements.

Based on our measurement results, the BSI and binning bitmap
approaches are both 10 times faster than the array approach. Com-
paring BSI and bitmap approaches, while there are a few attributes
with better performance in the binning bitmap approach, BSI is 2
to 3 times faster on average than the binning bitmap approach on
both the 700K and 200K dataset. Fig. 16 demonstrates the perfor-
mance summary of the 700K dataset single attribute top-k query
performance results in the units of a millisecond and a nanosecond
log 10 scale. Charts A, B, C, D show performance measurements
in the unit of a millisecond, while the charts E and F have their
analyses in a log 10 scale of nanoseconds. Charts A and B are the
measurements for the array, bitmap, and BSI. Charts C and D pro-
vide a zoom-in view with a perceivable comparison on bitmap and
BSI measurements. Charts A, C, E are the results of a 700K dataset,
while charts B, D, F represent the results of a 200K dataset.

7.5. Performance measurement: multiple attributes

After the 70+ single attribute experiments, to further evalu-
ate the multidimensional top-k query performance, we measured
the execution time of multiple attributes sum of both BSI and ar-
ray. To analyze the performance norm of the BSI, binning bitmap,
and sequential sort approaches among all those various attributes
combination, we use the 75, 50, 25 percentiles graph for compar-
ison once again. Based on our measurement results, BSI is about
4 times faster than the sequential sort approach for large dataset
700K data.

Fig. 17 demonstrates the 75, 50, and 25 percentile measure-
ments of 70+ multiple attributes query performance comparison
of BSI and array. In Fig. 17, charts A and B show performance re-
sult in the unit of a millisecond, while charts C and D have their
analyses in the log 10 scale of nanoseconds. Chart A and chart C
are the results of the 700K dataset, while chart B and chart D hold
the results of the 200K dataset. Fig. 18 illustrates the detail view
of each multiple-attributes query performance.

8. Multidimensional grouping experimental evaluation

In this section, we present the results of the evaluation of two
grouping approaches: BSI and Java Stream API.

14

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 16. 700K single attribute top-k query. The figure shows 25, 50, 75 percentiles of top-k query performance. Parameters: n=700K; k =15; Number of single-attribute queries
measured: 75.

15

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 17. The figure shows the top-k query performance measurements of 75 two-attributes combinations on a 700K dataset. Measurement unit: nanoseconds. Parameters:
n=700K; k =15.

8.1. Experimental setup

We run the experiments on the environment with following
configuration.

- OS: Linux CentOS
- Number of Processors: 56
- Processor: Intel(R) Xeon(R) CPU E5-2660 v4 @ 2GHz
- RAM: 256 GB
- System Type: 64-bit Operating System, x64-based CPU
- Implementation: Java JDK 1.8 version.
Table 9 shows the detail information of the process in the ex-

periment environment.

8.2. Dataset

We use the dataset [20] in the grouping experiments. We per-
form the experiments from 1 to 9 grouping dimensions. Each ex-
periment starts with the temporal dimension and the unique ob-
ject id, and then adds object properties related dimensions. In each
of the measures, we aggregate every 75 attributes with grouping
dimensions. Table 10 shows the grouping attributes.

8.3. Performance measurement: multidimensional grouping

In the experiments, we run several dimensions ranging from 1
to 9 for all 75 metrics in a 700K dataset. Table 11 lists the result
in detail. It reveals that the BSI grouping approach is about 10 to
40 times faster than the Java Stream approach.

Table 9
Processor Detail of Grouping Experiment Environment.

Feature: Specification

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 56
On-line CPU(s) list: 0-55
Thread(s) per core: 2
Core(s) per socket: 14
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) CPU 2.00GHz
Stepping: 1
CPU MHz: 1200.073
CPU max MHz: 3200.0000
CPU min MHz: 1200.0000
BogoMIPS: 3999.84
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 35840K

In Table 11, the number of dimensions is the number of group-
ing attributes. The measurement unit is millisecond. The “BSI

16

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 18. The figure shows a detail view of the top-k query performance measurements of 75 two-attributes combinations on a 700K dataset. Measurement unit: nanoseconds.
Parameters: n=700K; k =15.

Table 10
Grouping-by Attributes.

Group-by Attributes Cardinality

Day of the month 30
VM Id 33
VM CPU cores 14
VM memory allocated(GB) 33
VM memory capacity(GB) 37
VM memory reservation(GB) 13
Datastore name 12
VM ds allocated(GB) 209
VM CPU totalHz(MHz) 262

Table 11
Grouping-by Performance Measurement.

Dimensions Stream API (ms) BSI (ms) Times Faster

1 341.98 7.09 47.21
2 482.48 48.47 8.95
3 628.08 49.43 11.71
4 625.03 52.61 10.88
5 650.86 51.35 11.68
6 726.70 50.48 13.39
7 759.08 55.34 12.72
8 797.39 56.39 13.14
9 846.08 59.91 13.12

Times Faster” column shows how many times faster comparing the
BSI approach to the stream API approach.

Fig. 19 shows the average performance comparison between BSI
and Java Stream API for 1 to 9 grouping dimensions. The orange
dotted line shows the linear regression forecast for Java Stream
API performance. The linear forecast formula is shown as Equation
(13).

y = 55.412x + 373.79 (13)

The R squared is 0.9121. The dark gray dotted line shows the
linear forecast for BSI grouping performance. The linear forecast
formula of BSI grouping performance is shown as Equation (14).

y = 4.0784x + 27.506 (14)

The R squared is 0.504. Based on the linear forecasting Equation
(13) and Equation (14), when the number of dimensions increases,
both the BSI approach and the Java Stream API approach consume
more time. The BSI approach time growth rate is two magnitudes
smaller than the Java Stream API approach time growth rate.

8.4. Performance measurement: one dimension

The first dimension used in the experiment is “date.” On the
single dimension experiment, the BSI approach on average is 47
times faster than the Java Stream API approach. Fig. 20 shows the
detailed view of each individual attribute group-by performance
for BSI and Java 8 default stream function.

17

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 19. Multidimensional grouping performance comparison. 700K dataset 1 to 9 dimensions grouping BSI vs. Java 8 stream API. Query time is measured as milliseconds. X
axis is the number of dimensions. Y axis is the performance measurement in millisecond unit.

Fig. 20. The figure shows the performance on a 700K dataset for single dimension
grouping top-k query of the BSI approach vs. the Java Stream API approach. The
query time measurement unit is millisecond.

8.5. Performance measurement: two dimensions

The first two dimensions used in the experiment are “date” and
“virtual machine ID.” On the two dimensions experiment, BSI is
about 8 times faster than the Java Stream API approach. Fig. 21
shows the detailed view of each individual attribute group-by per-
formance for BSI and Java 8 stream API.

Fig. 21. The figure shows the performance on a 700K dataset for two dimensions
grouping top-k query of the BSI approach vs. the Java Stream API approach. The
query time measurement unit is millisecond.

8.6. Performance measurement: three to nine dimensions

When the number of dimensions goes up to 3, 4, 5,......, and
9, the BSI performance becomes consistently 10 12 times faster
than the Java Stream API approach. Fig. 22 presents the detail view
of three dimensions grouping top-k query performance for BSI and
Java Stream API.

18

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

Fig. 22. The figure shows the performance on a 700K dataset for three dimensions
grouping top-k query of the BSI approach vs. the Java Stream API approach. The
query time measurement unit is millisecond.

9. Future work

As future work, we plan on evaluating anomaly detection al-
gorithms using the BSI data structures. In the infrastructure per-
formance monitoring systems, anomaly detection (also outlier de-
tection) is the identification of rare items, events, or observations,
which raises suspicions by differing significantly from the majority
of the infrastructure data.

Typically the abnormal items will translate to some problems
such as system attack, performance problems, or errors in the text.
Anomalies are also referred to as outliers novelties, noise, devia-
tions, and exceptions. To find out the outliers, we usually generate
a baseline range for comparison. A manually defined baseline range
is a static threshold. A machine learning baseline creating from his-
torical data is a dynamic threshold. Generating dynamic thresholds
based on historical data is critical for artificial intelligent anomaly
detection. However, for large scale data in a real-time monitoring
system, dynamic thresholds will need to be generated on every in-
coming data sample with multiple scenarios consideration. Event,
metrics, property, and time are various dimensions categories that
need to be considered.

In a real-time monitoring system, anomaly detection has the
following scenarios:

1. Detecting the incoming data bucket, which has abnormal data
sample event-count comparing previous data buckets. It could de-
tect the number of failed backup jobs in a time window, which is
different from last time windows.

2. Detecting the incoming data bucket, which contains anoma-
lous geographic property information. For example, the transaction
location is different from where it happened before. It could detect
a manual vMotion which moves a VM from one cluster to another
cluster at different geographic locations. It could be used for any
transactions having geographic information.

3. Detecting the incoming data bucket, which has an anomalous
metric. A metric contains the value of min, max, mean, median,
and standard deviation. We use single or multiple values compar-
ison of the incoming data and previous data buckets for anomaly
detection.

4. Detecting the incoming data bucket, which has an anomalous
metric sum. The sum will need to be handled separately. We need

to allow the user to choose to consider the null value as average
or as zero during a sum.

5. Detecting the incoming data bucket, which has an anoma-
lous metric time pattern. A metric time pattern contains the value
of min, max, mean, median, and standard deviation for time-of-
day and time-of-week. The abnormally could be based on single or
multiple values comparison of time-of-day and time-of-week buck-
ets.

6. Detecting the incoming event has an abnormal event time
pattern. For example, a type of event usually only happens in a
certain time pattern, but it abnormally happens outside of that
pattern. While a new job creation usually happens during office
hours, but it is created outside of the office hours now.

For each of those scenarios, there would be a set of baseline
need to be generated for anomaly detection.

The majority of those detection functionalities require dynamic
grouping and summation operations. Given the results obtained in
this work with the bit-sliced data structures and associated al-
gorithms on those grouping and summation operations, we will
explore further the performance gain on using BSI in anomaly de-
tection applications.

10. Conclusions

In this project, we evaluated the usage of bit-slicing and
bitmaps (binning) to determine ranking queries with crossing at-
tributes filtering in performance monitoring systems.

For a single attribute query, the bit-slicing approach is faster,
with a performance gain on both large and small data set up to
170 times faster than the baseline approach array-bubble-sort al-
gorithm, and 2 times faster than bitmap approach. Moreover, by
using the BSI filtering algorithm introduced in this paper, the BSI
algorithm is 3 times faster than the binning bitmap approach in
the use case of crossing attribute filtering.

For a multiple attributes query, there is no applicable bitmap
approach to compare with the BSI approach. Therefore, the ex-
periment of multiple attributes query is performed with BSI and
array-bubble-sort. Overall, the BSI approach is faster, with a perfor-
mance gain up to one order of magnitude faster than the baseline
approach array-bubble-sort algorithm.

For the multidimensional grouping, on the 1 to 9 number of di-
mension evaluations, the BSI approach is consistently two orders
of magnitude faster than the baseline approach Java Stream API.
Meanwhile, based on the linear regression forecasting, the BSI for-
mula slope is two magnitudes smaller than the Java Stream API
formula slope. That implies that the BSI approach will also out-
perform the Java Stream approach in the number of dimensions
over 9.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] R. Akbarinia, E. Pacitti, P. Valduriez, Best position algorithms for top-k queries,
in: Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB Endowment, 2007, pp. 495–506.

[2] R. Akbarinia, E. Pacitti, P. Valduriez, Best position algorithms for efficient top-k
query processing, Inf. Sci. 36 (2011) 973–989, https://doi .org /10 .1016 /j .is .2011.
03 .010.

[3] W.T. Balke, U. Güntzer, Multi-objective query processing for database systems,
in: Proceedings of the 30th International Conference on Very Large Data Bases,
VLDB Endowment, 2004, pp. 936–947.

19

http://refhub.elsevier.com/S2214-5796(21)00105-2/bib58109CEDBF265048E00E346E932D0814s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib58109CEDBF265048E00E346E932D0814s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib58109CEDBF265048E00E346E932D0814s1
https://doi.org/10.1016/j.is.2011.03.010
https://doi.org/10.1016/j.is.2011.03.010
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib2F826CCB7CBECEB5707C98537E7E1B3Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib2F826CCB7CBECEB5707C98537E7E1B3Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib2F826CCB7CBECEB5707C98537E7E1B3Cs1

Y. Qin and G. Guzun Big Data Research 27 (2022) 100288

[4] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, G. Weikum, Io-top-k: index-
access optimized top-k query processing, in: Proceedings of the 32nd In-
ternational Conference on Very Large Data Bases, VLDB Endowment, 2006,
pp. 475–486.

[5] N. Bruno, L. Gravano, A. Marian, Evaluating top-k queries over web-accessible
databases, in: Proceedings 18th International Conference on Data Engineering,
IEEE, 2002, pp. 369–380.

[6] S. Chambi, D. Lemire, O. Kaser, R. Godin, Better bitmap performance with roar-
ing bitmaps, Softw. Pract. Exp. 46 (2016) 709–719.

[7] K.C.C. Chang, S.w. Hwang, Minimal probing: supporting expensive predicates
for top-k queries, in: Proceedings of the 2002 ACM SIGMOD International Con-
ference on Management of Data, ACM, 2002, pp. 346–357.

[8] A. Colantonio, R. Di Pietro, Concise: compressed ‘n’ composable integer set, Inf.
Process. Lett. 110 (2010) 644–650.

[9] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, in: Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Asso-
ciation for Computing Machinery, 2003, pp. 28–36, https://doi .org /10 .5555 /
644108 .644113.

[10] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware, J.
Comput. Syst. Sci. 66 (2003) 614–656.

[11] S. Fay, J. Xie, Probabilistic goods: a creative way of selling products and ser-
vices, Mark. Sci. 27 (2008) 674–690.

[12] P. Gursky, T. Horvath, R. Novotny, V. Vaneková, P. Vojtas, Upre: user prefer-
ence based search system, in: 2006 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2006 Main Conference Proceedings) (WI’06), IEEE, 2006,
pp. 841–844.

[13] G. Guzun, G. Canahuate, Hybrid query optimization for hard-to-compress bit-
vectors, VLDB J. 25 (2016) 339–354, https://doi .org /10 .1007 /s00778 -015 -0419 -
9.

[14] G. Guzun, G. Canahuate, Performance evaluation of word-aligned compression
methods for bitmap indices, Knowl. Inf. Syst. 48 (2016) 277–304.

[15] G. Guzun, G. Canahuate, High-dimensional similarity searches using query
driven dynamic quantization and distributed indexing, Distrib. Parallel
Databases 38 (2020), https://doi .org /10 .1007 /s10619 -019 -07266 -x.

[16] G. Guzun, G. Canahuate, D. Chiu, A two-phase mapreduce algorithm for scal-
able preference queries over high-dimensional data, in: Proceedings of the 20th
International Database Engineering & Applications Symposium, ACM, 2016,
pp. 43–52.

[17] G. Guzun, G. Canahuate, D. Chiu, J. Sawin, A tunable compression framework
for bitmap indices, in: 2014 IEEE 30th International Conference on Data Engi-
neering, IEEE, 2014, pp. 484–495.

[18] G. Guzun, J. Tosado, G. Canahuate, Slicing the dimensionality: top-k query pro-
cessing for high-dimensional spaces, in: Transactions on Large-Scale Data-and
Knowledge-Centered Systems XIV, Springer, 2014, pp. 26–50.

[19] I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-k query processing tech-
niques in relational database systems, ACM Comput. Surv. 40 (2008) 11.

[20] Q.S. Inc, Hybrid cloud data center 700k dataset [online], https://github .com /
Foglight /BSI/, 2019. (Accessed 10 January 2019).

[21] D. Lemire, O. Kaser, K. Aouiche, Sorting improves word-aligned bitmap indexes,
Data Knowl. Eng. 69 (2010) 3–28.

[22] D. Lemire, G. Ssi-Yan-Kai, O. Kaser, Consistently faster and smaller compressed
bitmaps with roaring, Softw. Pract. Exp. 46 (2016) 1547–1569.

[23] P. O’Neil, D. Quass, Improved query performance with variant indexes, ACM
SIGMOD Rec. 26 (1997) 38–49.

[24] Y. Qin, H. Fahimi Chahestani, Z. Song, Systems and methods for integrated
modeling and performance measurements of monitored virtual desktop infras-
tructure systems, US Patent App. 15/201,657, 2019.

[25] Y. Qin, Z. Song, Z.H. Ji, Systems and methods for integrated modeling of moni-
tored virtual desktop infrastructure systems, US Patent App. 10/200,252, 2019.

[26] D. Rinfret, P. O’Neil, E. O’Neil, Bit-sliced index arithmetic, in: ACM Sigmod
Record, ACM, 2001, pp. 47–57.

[27] J.E. Tosado, G. Guzun, G. Canahuate, R. Mantilla, On-demand aggregation of
gridded data over user-specified spatio-temporal domains, in: Proceedings of
the 24th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ACM, 2016, p. 62.

[28] K. Wu, W. Koegler, J. Chen, A. Shoshani, Using bitmap index for interactive
exploration of large datasets, in: 15th International Conference on Scientific
and Statistical Database Management, IEEE, 2003, pp. 65–74.

[29] M.C. Wu, A.P. Buchmann, Encoded bitmap indexing for data warehouses, in:
Proceedings 14th International Conference on Data Engineering, IEEE, 1998,
pp. 220–230.

[30] G. Xiao, K. Li, K. Li, Reporting l most influential objects in uncertain
databases based on probabilistic reverse top-k queries, Inf. Sci. 405 (2017)
207–226, https://doi .org /10 .1016 /j .ins .2017.04 .028, https://www.sciencedirect .
com /science /article /pii /S0020025517306746.

[31] G. Xiao, K. Li, X. Zhou, K. Li, Efficient monochromatic and bichromatic prob-
abilistic reverse top-k query processing for uncertain big data, J. Comput.
Syst. Sci. 89 (2017) 92–113, https://doi .org /10 .1016 /j .jcss .2016 .05 .010, https://
www.sciencedirect .com /science /article /pii /S0022000016300459.

[32] A. Yu, P.K. Agarwal, J. Yang, Top-k preferences in high dimensions, IEEE Trans.
Knowl. Data Eng. 28 (2016) 311–325.

[33] W. Zhang, X. Lin, Y. Zhang, W. Wang, J.X. Yu, Probabilistic skyline operator over
sliding windows, in: 2009 IEEE 25th International Conference on Data Engi-
neering, 2009, pp. 1060–1071, https://doi .org /10 .1109 /ICDE .2009 .83.

[34] X. Zhou, K. Li, G. Xiao, Y. Zhou, K. Li, Top k favorite probabilistic products
queries, IEEE Trans. Knowl. Data Eng. 28 (2016) 2808–2821, https://doi .org /10 .
1109 /TKDE .2016 .2584606.

20

http://refhub.elsevier.com/S2214-5796(21)00105-2/bib69243289F6385C3F58E172A594DC3E5Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib69243289F6385C3F58E172A594DC3E5Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib69243289F6385C3F58E172A594DC3E5Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib69243289F6385C3F58E172A594DC3E5Cs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib90F2562F37DF0BE4FE9AB974174FE9D6s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib90F2562F37DF0BE4FE9AB974174FE9D6s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib90F2562F37DF0BE4FE9AB974174FE9D6s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8B7610A525B4CD7DE09D6D3714B2283Es1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8B7610A525B4CD7DE09D6D3714B2283Es1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibABE416713DB679F95A4DC5A027EF9EECs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibABE416713DB679F95A4DC5A027EF9EECs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibABE416713DB679F95A4DC5A027EF9EECs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib9CB2A948CC4F6AD7F14FFE788C1B70F2s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib9CB2A948CC4F6AD7F14FFE788C1B70F2s1
https://doi.org/10.5555/644108.644113
https://doi.org/10.5555/644108.644113
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib3B5DD8B9103D7900B56A708B960B8720s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib3B5DD8B9103D7900B56A708B960B8720s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib1EC09E41E0F7A48727DF79F03BA169A6s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib1EC09E41E0F7A48727DF79F03BA169A6s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibF1EDFA59CBA4562466DD95093D137F1Fs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibF1EDFA59CBA4562466DD95093D137F1Fs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibF1EDFA59CBA4562466DD95093D137F1Fs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibF1EDFA59CBA4562466DD95093D137F1Fs1
https://doi.org/10.1007/s00778-015-0419-9
https://doi.org/10.1007/s00778-015-0419-9
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibE90B062860D39953B63629E0A0D603E5s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibE90B062860D39953B63629E0A0D603E5s1
https://doi.org/10.1007/s10619-019-07266-x
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib4846D3653EED1434D28EDC269A2E43D4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib4846D3653EED1434D28EDC269A2E43D4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib4846D3653EED1434D28EDC269A2E43D4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib4846D3653EED1434D28EDC269A2E43D4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibA32F55978A5D17EAEF74CFB66A551293s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibA32F55978A5D17EAEF74CFB66A551293s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibA32F55978A5D17EAEF74CFB66A551293s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibC99CF582A8A846F5C03DE69421D9B4C5s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibC99CF582A8A846F5C03DE69421D9B4C5s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibC99CF582A8A846F5C03DE69421D9B4C5s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib04248A655EFDE8ED4C6B304DF5424617s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib04248A655EFDE8ED4C6B304DF5424617s1
https://github.com/Foglight/BSI/
https://github.com/Foglight/BSI/
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibCE4B58D91933BD761423F0DFADC096A4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibCE4B58D91933BD761423F0DFADC096A4s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8C08A1E549F73A50AFE391E61146C998s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8C08A1E549F73A50AFE391E61146C998s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib85ADF5D2D262866CA299AF712D43B9F8s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib85ADF5D2D262866CA299AF712D43B9F8s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8F4C54EA01A3E7AF5A7970CD3FD0A73As1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bib8F4C54EA01A3E7AF5A7970CD3FD0A73As1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibBB41F3349C7A83C544BFE7B957D1C852s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibBB41F3349C7A83C544BFE7B957D1C852s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibBB41F3349C7A83C544BFE7B957D1C852s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibBB41F3349C7A83C544BFE7B957D1C852s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibAC22D399D15FF9372CCB432FCB2F234Bs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibAC22D399D15FF9372CCB432FCB2F234Bs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibAC22D399D15FF9372CCB432FCB2F234Bs1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibFEFED9C0754C9C86AC19F2E2440E0856s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibFEFED9C0754C9C86AC19F2E2440E0856s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibFEFED9C0754C9C86AC19F2E2440E0856s1
https://doi.org/10.1016/j.ins.2017.04.028
https://www.sciencedirect.com/science/article/pii/S0020025517306746
https://www.sciencedirect.com/science/article/pii/S0020025517306746
https://doi.org/10.1016/j.jcss.2016.05.010
https://www.sciencedirect.com/science/article/pii/S0022000016300459
https://www.sciencedirect.com/science/article/pii/S0022000016300459
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibAF7F77FEA9BB7A9F9426FDEAD6096A32s1
http://refhub.elsevier.com/S2214-5796(21)00105-2/bibAF7F77FEA9BB7A9F9426FDEAD6096A32s1
https://doi.org/10.1109/ICDE.2009.83
https://doi.org/10.1109/TKDE.2016.2584606
https://doi.org/10.1109/TKDE.2016.2584606

	Faster Multidimensional Data Queries on Infrastructure Monitoring Systems
	Recommended Citation

	Faster Multidimensional Data Queries on Infrastructure Monitoring Systems
	1 Introduction
	2 Background and related work
	2.1 Performance monitoring of data center
	2.2 Top-k queries
	2.3 Bitmap indexing
	2.4 Bit-Sliced Index (BSI)

	3 Top-k query proposed approach
	3.1 Problem formulation
	3.2 BSI hybrid EWAH top-k query execution
	3.3 Roaring bitmap top-k query execution
	3.4 Array sequential sort top-k query execution

	4 Multidimensional grouping proposed approach
	4.1 Problem formulation
	4.2 BSI hybrid EWAH grouping
	4.3 Java collection stream grouping

	5 Top-k query cost analysis
	5.1 BSI hybrid EWAH top-k query
	5.2 Roaring bitmap top-k query
	5.3 Array sequential sort top-k query
	5.4 Comparison of top-k approaches

	6 Multidimensional grouping cost analysis
	6.1 BSI hybrid EWAH grouping
	6.2 Java stream grouping
	6.3 Comparison of grouping approaches

	7 Top-K query experimental evaluation
	7.1 Experimental setup
	7.2 Dataset
	7.3 Performance measurement: single attribute (CPU swap time)
	7.4 Performance measurement: single attribute (70+ metrics)
	7.5 Performance measurement: multiple attributes

	8 Multidimensional grouping experimental evaluation
	8.1 Experimental setup
	8.2 Dataset
	8.3 Performance measurement: multidimensional grouping
	8.4 Performance measurement: one dimension
	8.5 Performance measurement: two dimensions
	8.6 Performance measurement: three to nine dimensions

	9 Future work
	10 Conclusions
	Declaration of competing interest
	References

