A Hybrid Approach for Multi-document Text Summarization

Rashmi Varma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems Commons

Recommended Citation
DOI: https://doi.org/10.31979/etd.mvrb-td5t
https://scholarworks.sjsu.edu/etd_projects/893

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
A Hybrid Approach for Multi-document Text Summarization

A Project
Presented to
The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
Rashmi Varma
December 2019
The Designated Project Committee Approves the Project Titled

A Hybrid Approach for Multi-document Text Summarization

by

Rashmi Varma

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

December 2019

Dr. Robert Chun Department of Computer Science
Dr. Katerina Potika Department of Computer Science
Ms. Manasi Thakur Tuutkia Inc.
ABSTRACT

A Hybrid Approach for Multi-document Text Summarization

by Rashmi Varma

Text summarization has been a long studied topic in the field of natural language processing. There have been various approaches for both extractive text summarization as well as abstractive text summarization. Summarizing texts for a single document is a methodical task. But summarizing multiple documents poses as a greater challenge. This thesis explores the application of Latent Semantic Analysis, Text-Rank, Lex-Rank and Reduction algorithms for single document text summarization and compares it with the proposed approach of creating a hybrid system combining each of the above algorithms, individually, with Restricted Boltzmann Machines for multi-document text summarization and analyzing how all the approaches perform.
ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr. Robert Chun for his continuous support of my research and for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me during the time of research and writing of this report.

Besides my advisor, I would like to thank the rest of my committee: Dr. Katerina Potika, and Ms. Manasi Thakur, for their encouragement and insights.

My sincere thanks also goes to Mr. Shyam Namashivayam, for offering me the summer internship opportunity at Netapp Inc. and brainstorming the topic with me during my internship.

Lastly, I would like to thank my family: my parents Ravi Varma and Leela Varma, for being patient and supportive throughout my work.
TABLE OF CONTENTS

CHAPTER

1 Introduction .. 1

2 Types of Summarization 3
 2.1 Based on Number of Documents 3
 2.2 Based on Implementing Structure 5
 2.2.1 Cluster-Based Summarizing 6
 2.2.2 Rank-Based Summarizing 8
 2.2.3 Knowledge-Based Summarizing 9
 2.2.4 Graph-Based Summarizing 11
 2.3 Based on Type ... 13
 2.3.1 Abstractive Text Summarization 13
 2.3.2 Extractive Text Summarization 15

3 Relevant Approaches ... 19
 3.1 ROUGE .. 19
 3.2 Latent Semantic Analysis 22
 3.3 Bag Of Words ... 23
 3.4 Restricted Boltzmann Machine 24
 3.5 Text-Rank ... 27
 3.6 Lex-Rank ... 28
 3.7 Reduction Algorithm 28

4 Proposed Solution .. 29
4.1 Data Sets .. 30
4.2 Pre-Processing .. 31
 4.2.1 Tokenization ... 31
 4.2.2 Removing Stop Words 31
4.3 Algorithms Implemented 31
 4.3.1 Part-of-Speech Tagging 32
4.4 Evaluation ... 32
 4.4.1 Precision ... 32
 4.4.2 Recall .. 33
 4.4.3 F-Measure .. 33
5 Experiments and Results 34
 5.1 Evaluation .. 34
 5.2 Sample Summaries 40
 5.2.1 Reduction Summarizer 40
 5.2.2 LSA Summarizer 42
 5.2.3 Text-Rank Summarization 43
 5.2.4 Lex-Rank Summarizer 45
 5.2.5 Summary of Results 46
6 Conclusion and Future Work 47
A Single Document Summarization 53
B Multi-Document Summarization 55
LIST OF TABLES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of folders in each DUC</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Summary of Results of Experiments</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>ROUGE-1 evaluation of single document for DUC2003 Summary</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>ROUGE-2 evaluation of single-document DUC2003 Summary</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>ROUGE-1 evaluation of single document for DUC2004 Summary</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>ROUGE-2 evaluation of single-document DUC2004 Summary</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>ROUGE-1 evaluation of multi-document for DUC2003 Summary</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>ROUGE-2 evaluation of multi-document for DUC2003 Summary</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>ROUGE-1 evaluation of multi-document for DUC2004 Summary</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>ROUGE-2 evaluation of multi-document for DUC2004 Summary</td>
<td>56</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single document Summarization</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Multi-document Summarization</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Layers in RBM</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Term Frequency</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Normalized words</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Text-Rank Algorithm</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>Architecture Diagram</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>F-1 Scores for DUC2003</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>F-1 Scores for DUC2004</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Precision for DUC2003</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Precision for DUC2004</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>Recall for DUC2003</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>Recall for DUC2004</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>Example Summary for Reduction Summarizer [37]</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>Example Summary for LSA Summarizer [37]</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>Example Summary for Text-Rank Summarizer [37]</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>Example Summary for Lex-Rank Summarizer [37]</td>
<td>45</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

Text summarization is the process of shortening text into a concise summary highlighting the important points conveyed in its parent text. Over the years, researchers have come up with elegant solutions to summarize texts. The solutions broadly classify text summarization into two categories: Abstractive summarization and Extractive text summarization.

Extractive text summarization extracts sentences from the original text to create the summary. This is usually done using some statistical analysis to count and rank sentences. The sentences that score high become a part of the summarized subset. Abstractive text summarization, on the other hand, may not include words from the parent text. Abstractive summarization understands the language and context to generate new sentences. The main difference while creating both summarization tools is that abstractive does not necessarily need pre-written text but it does need a large amount of training data.

Text summarization in itself is a complex topic. But this project tackles the problem of summarizing text from multiple documents as well as single documents. The challenge here is not just to summarize but to find common ground across the documents. Different approaches to implement both types of summarizations are implemented and analyzed.

This paper compares different algorithms like Latent Semantic Analysis, Text-Rank, Lex-Rank and Reduction algorithms for single document text summarization. This paper also proposes approaches using Restricted Boltzmann
Machine in combination with LSA and the graph-based approaches for multi-document summarization and analyzes the differences in the summaries generated. The evaluation of these generated summaries is done using ROUGE evaluation.
CHAPTER 2

Types of Summarization

Text Summarization can be classified into various types depending on the use cases. It can be differentiated based on single or multiple documents, based on approaches such as graph-based summarization, cluster-based summarization, rank-based summarization and knowledge-based summarization and can also be based on the type of summarization done: Exhaustive or Abstractive.

2.1 Based on Number of Documents

Single and multi-documents as the names suggest are summarization done from the text of a single document versus the texts from a bunch of documents. A lot of research has been done on summarizing single documents. Multi-document text summarization is a fairly new research area.
Fig. 1 and Fig. 2 explain the structures of single document summarization and multi-document summarization respectively. In single document text summarization, texts from a single document or single source of text are summarized. In multi-document text summarization, multiple documents are collectively summarized to produce a single summary.
This paper explores the other two types in depth.

2.2 Based on Implementing Structure

Based on the research done, summarizations are broadly classified into four techniques: Cluster-Based Summarizing, Rank Based Summarizing, Graph Based Summarizing and Knowledge Based Summarizing.

Figure 2: Multi-document Summarization
2.2.1 Cluster-Based Summarizing

Treating the input documents with an unsupervised learning algorithm was one of the earliest ideas implemented in the field of automatic text summarization. In 1995, McKeown and Radev proposed the use of a modified term frequency - inverse document frequency (TF - IDF) formula to produce clusters of news articles [1]. The input document was compared to the centroid of the cluster obtained from their training data set and the cluster to which the new data would belong was found. The authors implemented this approach during run time by measuring the centroids using TF-IDF as their feature [1]. A summary can be obtained using this approach but since the documents are clustered without any processing, redundancy seems to be a problem with this approach. The output summary could hold a lot of repeating sentences.

The most popular algorithm, MEAD, derives from McKeown and Radev’s approach in [1] and builds on it. The authors introduced two new terms in their approach: cluster-based sentence utility (CBSU) and cross-sentence informational subsumption (CSIS) for evaluation of single and multi-document summaries [2]. CBSU measured the degree to which the new sentence was similar to the cluster and was given a rating from 0 to 10 [2]. A lower score indicated that the sentence was irrelevant to the cluster whereas a higher score meant that the sentence had a close resemblance to the cluster [2]. CSIS complements CBSU. CSIS is a measure which worked on the concept that certain sentences are repeated inside a cluster [2]. Such sentences offer no new value and were therefore needed to be eliminated. The authors also maintained variables to keep track of the chronology of the articles. The authors set a threshold for this variable. Clusters where this variable was greater than 2, were used to produce summaries using the algorithm [2]. The cluster centroids used in
MEAD consist of key words that aren’t just central to a small number of cluster [2]. The authors chose words that were central to all the clusters. The authors then proposed their own metric for evaluating the summaries to decide its measure and to eliminate redundancies. This approach is better than the approach mentioned in [1] as it takes care of the redundancy of sentences.

A sentence clustering approach was proposed in [18] to generate multi-document summaries. In this approach, single document summaries are combined using the sentence clustering method to generate a multi document summary [18]. Each document is first pre-processed, and then features are extracted based on which a summary is created. Then, the sentences appearing in the individual summaries are clustered. Each cluster’s sentences are extracted to create a multi-document summary. The sequence of the sentences is maintained as per the parent document [18]. This approach follows the principles of [1] and [18] and also adds the constraint of coherency to it.

The semantic similarity between words is combined to get semantic similarity between sentences [18]. The authors considered different types of features for Feature Extraction. Some features mentioned in [18] include:

- **Document Feature**: Weight of the sentences are calculated. Weight of a sentence comprises of the weight of content-related words that appear in that document.

- **Location Feature**: The authors gave higher weights to words appearing in the starting and concluding sentences of the document.

- **Sentence reference index (SRI) feature**: This gives more weight to a sentence that precedes a sentence containing pronominal reference. In order to
assign weight to a sentence using SRI feature a list of pronouns is maintained. If a sentence contains a pronoun, then the weight of the preceding sentence is increased.

- **Concept similarity feature**: It is the number of synsets of query words matching with words in the sentence. The set of synsets obtained from WordNet was used to assign concept similarity weight to the sentences.

2.2.2 Rank-Based Summarizing

There are numerous models built to rank sentences or paragraphs to decide on how to summarize a model. Researchers have developed various ways to pre-process the data and then score information to create a summary. The evolutionary optimization algorithm in [4] creates a summary by collecting the relevant sentences from the multiple documents. It forms collections specific to the parent document to avoid redundancies.

An approach using Cosine Similarity was developed by Erkan and Radev [9] where, if the cosine similarity of the documents or the work exceeded the defined threshold, the document was taken into consideration for summarization.

Ma and Wu’s work [3] combined n-gram and dependency word pair for multi-document summarization by defining the syntactic relationships among the words. Every feature in the model represents the co-occurrence of that feature in the model. The weight of these features determines the score of a sentence. A summary is finally formulated based on the score. Higher score translates to higher significance.

The Frequent Document Summarization approach was introduced by Ramanujam and Kaliappan [10] by using a Naive Bayes Classifier to find the
probability of the most frequently used words across documents. The words from
the documents were ranked based on the time-stamp of the documents, thus giving
it a chronological sequence for summarizing. They compared their results with the
results obtained by Radev et al. and their MEAD algorithm in [2].

Allocation (LDA), LDA-Singular Value Decomposition (LDA-SVD) and semantic
relations. LSA and semantic relations have been discussed in the next section.
The approach proposed by the authors broadly breaks the process into performing
pattern-based modelling on the input documents. Pattern based modelling deals with
performing LDA, representing the data and interpreting the sentences. The output
sentences are then scored. Highest ranking sentences are selected and these sentences
are added to the final summary.

The above process yields sentences that are semantically similar to the
information from the parent file but the probability of redundancy is higher in this
approach. Also, there is no check to maintain coherency of the summary. With the
two constraints, the algorithm could potentially perform better.

2.2.3 Knowledge-Based Summarizing

Another approach to summarizing documents is by understanding its semantics
and then attempting to summarize based on that understanding. One of the earliest
approaches was to treat the text summarization problem as maximizing a sub-modular
function under a budget constraint [17]. The authors modified the greedy algorithm
to efficiently solve the budgeted sub-modular maximization problem near-optimally,
and derive new approximation bounds [17]. The sub-modular function maximized by
the authors was:

$$\max_{S \subseteq V} \{ f(S) : \sum_{i \in S} c_i < \beta \}$$

where, V is the ground set of all linguistic units (e.g., sentences) in the document, S is the extracted summary (a subset of V), c_i is the non-negative cost of selecting unit i and B is our budget, and sub-modular function $f(\cdot)$ scores the summary quality [17].

Nenkova [14] proposed searching for entities in the document and assigning weights to them. The frequency of these entities was then calculated, and depending on the frequency, the sentences relating to the entities were generated and added to the summary.

Xiong and Luo [5] explored the use of LSA to summarize multiple as well as single text documents. LSA is a method for extracting and representing the meaning of words by statistical computations applied to a large corpus of text. LSA uses the principle that the aggregate of the words determines the constraints available during the presence or absence of a word. This constraint helps determine the similarity [6]. But using LSA often leads to repetition of words in the summarized text and therefore has a lot of redundancy. Xiong and Luo proposed a unique approach using LSA, where a new method to evaluate a sentence subset based on its capacity to reproduce term projections on right singular vectors was used to reduce redundancy [5].

Rautray and Balabantaray’s work [13] proposes the use of nature-related optimization algorithms as the solution for multi-document summarization. The authors analyze various algorithms like Particle Swarm Optimization (PSO), Differential Evolution (DE), Cat Swarm Optimization and Genetic Algorithms. The authors evaluate the Cuckoo Search algorithm to summarize the documents and compare its results with the above mentioned nature-based optimization problems.
This type of implementation will not only reduce redundancy but may be a good solution for the problem statement.

An interesting approach by creating the semantics and then summarizing was taken by Chatterjee et al. in [11]. The authors used Neural Networks to define a fitness function to express mathematically the quality of the generated summary. The properties taken into consideration were theme similarity, cohesion, sentiments, readability, aggregate similarity and sentence position [11]. They then used Genetic Algorithm to maximize the fitness function, and extract the most important sentences to create the extractive summary. This approach initially creates the semantic evaluation function and then generates the actual summary.

2.2.4 Graph-Based Summarizing

Graphs have always been popular while summarizing as they help track work semantics and order of sentences and words. Wan and Young [12] combined clustering-based techniques with rank-based techniques and graph-based techniques to summarize documents. In their work, the authors assigned weights to intra-document common features and inter-document features. These features were termed as links. Priority was given to intra-document links and these links were incorporated in the multi-document summaries.

A similar approach was taken by J. Christensen et al. in [16]. The authors proposed a two part approach. Firstly, to create intra-document graphs automatically to understand connections between documents like the one proposed in [12]. Secondly, estimating the coherency of the candidate summary.

An example of the document linkage graph is also known as a discourse graph. Once the graph is created, coherence needs to be estimated. Most summaries selected
would be coherent, but the algorithm determines which is the most coherent summary for the input documents.

Su and Xiaojun [7] proposed an extractive multi-document summarization approach that uses the semantic role information mentioned in [5] to improve a graph-based ranking algorithm for summarization. In their work, the authors parsed a sentence to obtain its semantic roles. They introduce the SRRank algorithm to rank the sentence, words, and semantic role simultaneously in a heterogeneous ranking manner [7].

The work in [7] proposed event graphs for information retrieval and multi-document summarization by introducing a document-based representation to filter and structure the details about the events explained in the text. Rule-based models and machine learning were integrated to extract the sentence level event and an information retrieval approach was used to measure the similarity among the documents and queries by estimating the graph kernels across event graphs [7].

Sankarasubramaniam et al. [8] introduced a text summarization approach that constructs a bipartite sentence concept graph. The input sentences were ranked based on the iterative updates and a personalized and query-focused summarization was considered.

An alternate clustering approach proposed by Bannerjee et al. [19] identifies the most important document in the multi-document set. The sentences in the most important document are aligned to sentences in other documents to generate clusters of similar sentences. Then, K-shortest paths from the sentences in each cluster using a word-graph structure are created. Finally, sentences from the set of shortest paths is generated from all the clusters employing a novel integer linear programming (ILP)
model with the objective of maximizing information content and readability of the final summary. The ILP model represents the shortest paths as binary variables and considers the length of the path, information score and linguistic quality score in the objective function [19]. This approach incorporates clustering with ranking and therefore seems pragmatic.

Based on the work done in [11], Chu and Liu [15] also proposed the use of an end-to-end neural network to produce summarization. The neural network proposed was to be a sequence-to-sequence model with no summarized data as input. This way, the model would not have any data related to what the output has to be. The model summarizes data based on context and keeps giving the next probable word as an output, thus generating a summary.

2.3 Based on Type

The two types of summarization, as already mentioned, are abstractive and extractive. One derives sentences from the parent text while the other "learns" the parent text to provide a semantically sound summary of its own.

2.3.1 Abstractive Text Summarization

Abstractive summarization is trickier compared to Extractive as generation of text comes into play instead of selecting sentences from the original body of text.

A. Khan, N. Salim and Y. Kumar proposed the creation of a semantic graph from the input text using Genetic Algorithms (GA) [22]. They stated that most Abstractive summarization algorithms employ the Bag Of Words (BoW) technique to create abstracts but this way does not reduce redundancy. To counter this problem, they proposed to construct a semantic graph whose nodes represent Predicate Argument
Structures (PAS) and edges represent the semantic weight [22]. The semantic weight of the edges are to be obtained from PAS to PAS weights or PAS to Document, which is obtained by running a GA algorithm. The authors then ranked these nodes, and to reduce redundancy, they then applied Jiang similarity [27] and chose the top ranked nodes [22]. These nodes were fed to the language generator which produced the abstract. They evaluated the summary using the ROUGE evaluation technique.

A different approach was undertaken by Chopade and Narvekar where they used fuzzy logic to understand the semantic and syntactical similarity between words instead of graphs [23]. The authors performed feature extraction and gave that as input to the fuzzy system. The features used for the study were title, term weight, named entities number and numerical data presence. The score received was bucketed into important, average and unimportant buckets [23]. The important sentences were used as training data by a Restricted Boltzmann Machine (RBM) with one input layer, two hidden layers and an output layer [23]. Sentences fed to the hidden layer were fed with a bias. The input data to the fuzzy system was pre-processed by tokenizing, removing stop words, stemming, etc. A seed word was accepted from the user and was assigned a random priority value [23]. The authors also created two tables: one which stored the frequency of words per sentence for every document and one with the number of words in the document along with their associated rank. The sentences were ranked and the highest ranked sentences were chosen for the summary creation. The authors obtained a recall of value 1 and an accuracy of 84.73% making fuzzy systems and neural networks a good choice for summarizing texts.

In order to understand the deep learning approach mentioned by [23], the works by Liu, Zhong and Li [24] are studied, where they have used a query-based approach on a neural network to summarize documents. [24] was the first paper to use deep learning
to summarize text in documents. Features used as input to the neural network include term frequency and length of sentences [24]. The RBM mentioned in [23] was first used by Liu, Zhong and Li and is a two layer neural network with three hidden layers [24]. The binary input and output of the RBM model are connected to each other using weighted connections [24] and its parameters are initially randomized. The architecture of this model was divided into three parts [24]:

- Concept Extraction
- Reconstruction and Validation
- Summary generation

The model has three hidden layers to abstract the documents using greedy, layer wise extraction. The first hidden layer is used to filter out accidental and redundant words. The second hidden layer is used to identify key words and their occurrences throughout the documents [24]. Reconstruction and validation phase intends to reconstruct the data distribution by tuning the architecture globally [24]. The authors used dynamic programming (DP) to maximize the highly ranked and important sentences in the summary and to control the length of the summary. Lastly, the quality of the summary was evaluated using ROUGE evaluation, which is discussed in Chapter 3.

2.3.2 Extractive Text Summarization

Extractive text summarization uses statistical metrics or machine learning algorithms to obtain sentences from the parent text that are calculated as relevant and uses these sentences to summarize the parent document. There have been
various approaches for Extractive text summarization. A few of these are explored to understand the research done on this topic.

An approach using Fuzzy Inference was proposed by Suanmali, Salim and Binwahlan, where they performed experiments on the DUC2002 data set [25]. The authors pre-processed their data by first sentences from source text, tokenizing, removing stop words and stemming [25]. The authors proposed using eight features as input to their fuzzy inference system. They first represented all the sentences as vectors. Then each feature was scored between 0 and 1 and the authors aimed to obtain a compression rate of 20% [25].

- **Title Feature**: The authors proposed that if the words in the title of the document matched anywhere in the sentences of the documents, those sentences would have a higher score [25]. They counted all the matches.

- **Sentence Length**: The authors gave more importance to longer sentences over shorter sentences. They state that if a sentence is shorter, it probably consists of author names, date lines and such [25]. The authors also normalized the length of the sentences.

- **Term Weight**: Average of Term-frequency and Inverse Document Frequency (TF-IDF) is considered as a feature.

- **Sentence Position**: The authors have given higher priority to sentences that occur early on in the documents. These sentences were scored more than the other sentences.

- **Sentence to Sentence Similarity**: The authors calculated the similarity between sentences using cosine similarity and used it as a feature [25].
• **Proper noun:** Sentences containing proper nouns are deemed more relevant and scored higher than sentences containing less or no proper nouns.

• **Thematic Words:** The authors computed the top 10 most frequent content words and sentences containing more of these words were scored higher than sentences not containing these words [25].

• **Numerical Data:** Sentences consisting of numerical data or formulae were given a higher score [25].

These eight features were fed as input to a Fuzzy Inference System to summarize. The authors used a triangular membership function which ranked the sentences as Unimportant, Important and Average [25]. The important sentences were collated to give the summary and were evaluated using ROUGE evaluation as in [22].

Alias and Muhammad in their work propose using sequential pattern-based approach for summarizing multiple documents. Their approach starts with tokenizing, removing stop words and pre-processing the documents as the first step [26]. They then implemented a sequential pattern-based mining technique that extracted non-redundant frequent textual patterns [26]. The authors treated each document as a transaction, and if particular sentences popped up in documents, they were determined as textual patterns. They assigned integers to the sentences along with the frequency of these sentences. So, similar sentences had similar integers corresponding to them. The authors then assigned a specific threshold value and extracted sentences that fell above that value [26]. This helped the authors avoid redundant sentences from leaking into the resulting summary. The sequence of the assigned integers was used to determine the sequence of sentences that would go into the resulting summary [26]. The authors evaluated their summary using cosine
similarity. The approach used by Alias and Muhammad, although simplistic, proves to be effective in extracting a summary from multiple documents.
CHAPTER 3
Relevant Approaches

Some of the approaches and terminologies used in the experiments in Chapter 5 for text summarization are discussed.

3.1 ROUGE

Recall-Oriented Redundancy for Gisting Evaluation (ROUGE) is used to automatically determine the quality of summaries by comparing them with those created by humans [28]. Earlier, it was done by judging the cohesiveness, conciseness, grammatical correctness, readability and such. There was no proper way of statistically measuring the correctness of a summary until Saggion et. al. developed methods that measured similarity between summaries using cosine similarity, unit overlap and longest common sub-sequences [30]. It wasn’t until BLEU was developed, that the concept of n-grams could be used for measuring summaries came into the picture [31].

BLEU dealt with precision. It measured how many words or n-grams in the summary obtained were reflected in the reference text. The difference between BLEU and ROUGE is that ROUGE deals with recall. ROUGE measures how many words in the reference text matches that of the generated summary. In a way, both the evaluation methods complement each other like precision versus recall.

ROUGE can be measured in several ways:
3.1.0.1 ROUGE-L

ROUGE-L uses longest common subsequence (LCS) as its measure to calculate the score. It compares the LCS of the summary to that of a reference text and provides a score. To understand sentence level LCS, f-measure is calculated.

\[R_{lcs} = \frac{LCS(X,Y)}{m} \]
\[P_{lcs} = \frac{LCS(X,Y)}{n} \]
\[F_{lcs} = \frac{(1 + \beta^2)R_{lcs}P_{lcs}}{R_{lcs} + \beta^2P_{lcs}} \]

where \(LCS(X,Y) \) is the LCS between X and Y. \(\beta = \frac{P_{lcs}}{R_{lcs}} \). \(\beta \) in such cases is usually set to a high number and the F-1 score is the score to be considered. P, R and F stand for Precision, Recall and F-measure respectively.

3.1.0.2 ROUGE-N

ROUGE-N is the measure of n-gram within the target summary in reference to the reference text.

It is evaluated using the following equation.

\[ROUGE - N = \frac{\sum_{StReferenceSummaries} \sum_{gram_n} count_{match}(gram_n)}{\sum_{StReferenceSummaries} \sum_{gram_n} count(gram_n)} \]

which is basically the ratio of n-grams matched in the resulting summary divided by the total n-grams in the reference text.

ROUGE-N is the metric used for evaluating the summaries generated in this work. ROUGE-1 and ROUGE-2, which calculate the unigram and bi-gram measures
of the text are used for evaluation.

3.1.0.3 ROUGE-W

Weighted LCS is used because regular LCS has trouble differentiating spatial relations within its embedded sequences [28].

The f-measure differs in the equation such that:

\[
R_{wLCS} = f^{-1} \left(\frac{LCS(X, Y)}{m} \right) [28]
\]

\[
P_{wLCS} = f^{-1} \left(\frac{LCS(X, Y)}{n} \right) [28]
\]

\[
F_{wLCS} = f^{-1} \left(\frac{(1 + \beta^2)R_{wLCS}P_{wLCS}}{R_{wLCS} + \beta^2P_{wLCS}} \right) [28]
\]

where \(f^{-1} \) is a function of \(f \).

3.1.0.4 ROUGE-S

The Skip-bigram co-occurrence statistics calculates the overlap or matches between the summary obtained and the reference summary. An example of how skip-bigrams work is shown below:

S1: "Jim likes to eat apples"

S2: "Apples likes to be eaten"

S3: "Jim likes to pick apples"

Here, each sentence has \(C(5,2) [28] = 10 \) skip-bigrams. S1 has the following skip-bigrams:

S1: "("Jim likes", "Jim to", "Jim apples", "Jim eat", "likes to", "likes eat", "likes apples", "to eat", "to apples", "eat apples")"
S2 has the following skip-bigrams:

S2: "("Apples likes","likes to","to be","be eaten","Apples to","Apples be",
Apples eaten","likes be","likes eaten","to eaten")"

S2 has 1 skip-bigram match with S1. S3 has the following skip-bigrams:

S3: "("Jim likes","Jim to","Jim pick","Jim apples","likes to","likes pick","likes apples","to pick","to apples","pick apples")"

S3 has 5 skip-bigram matches with S1. Assuming translations x of length m and Y of length n, the work done in [28] computed F-measure as:

$$R_{skip2} = \frac{SKIP2(X,Y)}{C(m,2)} [28]$$

$$P_{skip2} = \frac{SKIP2(X,Y)}{C(n,2)} [28]$$

$$F_{skip2} = \frac{(1 + \beta^2)R_{skip2}P_{skip2}}{R_{skip2} + \beta^2P_{skip2}} [28]$$

where SKIP2 is the skip-bigram matches between the translations x and Y, β controls the importance of the P and R and C is a combination function [28].

3.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is a method that uses statistical calculations to represent contexts of words and similarity of sentences. It finds out what sentences and words are relevant and flags them out. This quality makes it suitable to find and rank sentences and perform Extractive text summarization.

LSA is implemented in three main steps:

- An input matrix is created, where the text from the documents is represented as a matrix. The sentences form the columns of this matrix, and words become
the rows. The value of the word is stored in the cells of this matrix [33]. For this work, the value of the cell in this matrix is represented the form of term frequency.

- Singular Value Decomposition (SVD) is then implemented to identify patterns between the sentences and words [33]

- Lastly, rows with the highest score are ranked as the most relevant sentences and become a part of the rank selection step.

3.3 Bag Of Words

The Bag of Words model is a popular model in the field of Machine Learning and Natural Language Processing used to extract features from text. For every sentence given, the sentence is tokenized into words and the frequency of the word is used as a feature. To understand this better, consider the following sentences:

"Jim likes playing football"

"Jim likes to eat cake"

"Kate likes talking to Jim"

Each sentence gets treated as a separate document and is processed accordingly. Words are extracted without punctuation and used. The above sentences break down into the following words: "Jim", "likes", "playing", "football", "to", "eat", "cake", "Kate", "talking". These tokens are then converted to vectors. The frequency of these words are counted and for every sentence the presence of a word is denoted as 1 and absence is denoted as 0. This gives 9 unique words from the above sentences in the following format:
"Jim likes playing football" [1,1,1,0,0,0,0,0,0]

"Jim likes to eat cake" [1,1,0,0,1,1,0,0,0]

"Kate likes talking to Jim" [1,1,0,0,1,0,0,1,1]

3.4 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a stochastic neural network which means that it is a neural network where each of its neurons behaves randomly when activated. An RBM typically consists of a hidden layer and a visible layer of neuron. These layers do not have connections between each other but are connected to all the neurons in the other layer [38]. The RBM forms a bipartite graph. These connections are bidirectional ensuring information flow between layers. Fig. 3 shows the connections between the two layers.

![Figure 3: Layers in RBM](image)

The information between layers flows both ways during their usage and the weights are the same in both directions [38].

The input provided to the RBM is usually in a structured format to save
pre-processing time. For the experiments performed for this these, 7 features were used as input to the RBM:

- **TF-IDF**: Term Frequency and Inverse Document Frequency are two measures. Term Frequency is the number of occurrences of a particular set of words in a document. Inverse document frequency is the inverse fraction of all the documents containing that word. The two measures obtained are then multiplied to obtain the TF-IDF score.

- **Cosine Similarity between sentences**: Cosine Similarity is measured by calculating the cosine angle between two vectors. It is denoted as:

 \[
 Similarity = \cos(\theta) = \frac{A \cdot B}{|A| \cdot |B|}
 \]

 An example of cosine similarity would be [39]:

 \textbf{S1: AI is our friend and it has been friendly} \textbf{ S2: AI and humans have always been friendly}

 The term frequency is calculated for the two sentences using BoW. Fig. 4 shows the term frequency for the example being considered.

 ![Figure 4: Term Frequency](image)

 The next time is to normalize the frequencies obtained. Fig. 5 shows the normalization.

 ![Figure 5: Normalized words](image)
On obtaining the normalized form, it served as input to the Cosine Similarity Formula. This gives:

\[\text{Similarity} = (0.302 \times 0.378) + (0.603 \times 0.378) + (0.302 \times 0.378) + (0.302 \times 0.378) + (0.302 \times 0.378) \]

Therefore, the cosine similarity score for the two sentences is 0.684.

- **Sentence Length**: Length of the sentences in every document
- **Sentence Position**: Position of the sentence in the document. The higher the sentence in the document, more relevant it is.
- **Numerical Presence**: Sentences containing numbers were counted and were given more importance
- **Number of Uppercase words**: Upper case words in a sentence were deemed more important as they usually tend to stand for acronyms.
- **Proper Noun Score**: The documents were pre-processed to obtain POS tags. Using these tags, the number of proper nouns per sentence were calculated. This count becomes the proper noun score of that sentence. The intuition behind this is that proper nouns usually are names of people or places, and that usually makes them important in a document. So, the higher the proper noun score, the more important the sentence is deemed.

A vector matrix is created using the words in the sentences of the document and the above mentioned features. The rows of this matrix become the input to the RBM. These sentence vectors with the highest rank contribute to forming the summary. The bias for the hidden and visible layers is randomly selected.
After the first cycle, the new matrix is refined using the randomly selected bias against a set threshold. Rows falling below the threshold are filtered out. Then, a new round is computed.

3.5 Text-Rank

The Text-Rank Algorithm is derived from the Page Rank Algorithm. Page Rank algorithm calculates probability of a web page being linked to another to ensure faster retrieval. Similarly, text-rank computes the similarity of sentences in its matrix.

Fig. 6 shows the steps that make up the Text-Rank algorithm. The text from the input document is collated. If it’s multiple documents, it is combined into one. These texts are then split into independent sentences. These sentences are converted to vectors. This can be done in various ways. One could compute frequency of words or TF-IDF, etc. The similarity matrix is created by computing the similarity between these vectors. Sentences with the highest similarity are ranked and become a part of the final summary.
3.6 Lex-Rank

Lex Rank is derived from Page Rank where it correlates the sentences and their contextual relations with each other. Lex Rank first generates a graph with the sentences as nodes and the similarity between them becoming the edges, similar to Page Rank [34]. The similarity can be calculated in various ways, one such way being the BoW method [35]. Measure is done using TF-IDF for the BoW model. The idf-modified-cosine formula is used to measure the similarity between sentences and compute it as per the methods followed by Text-Rank [35].

3.7 Reduction Algorithm

One of the basic algorithms that simply reduces sentences by elimination. After pre-processing the data, the sentences in the document form the nodes of a graph. The edges of the graph are weights that are computed. One way to compute weights is to use term frequency. After creating the whole graph, sentences with the highest weights get chosen to be put in the summary. A set threshold can be used and sentences that that fall below it can be eliminated.
A hybrid solution is proposed to solve the problem of text summarization. The solution starts by implementing Latent Semantic Analysis to rank and reduce the sentences, and then uses these focused sentences as input to a Restricted Boltzmann Machine to produce effective summaries.

Fig. 7 shows the proposed architecture of the solution.

In the above architecture, yellow denotes the input and output of the system. Namely, the DUC data sets are used as input: DUC2003 and DUC2004. The output obtained by this system is a summary of the folders input. A breakdown of the data set and its contents is provided in Chapter 5.
The blue boxes in the architecture denote the evaluation and pre-processing done on the input and output obtained. For evaluation, the ROUGE evaluation technique is used. It is discussed in Chapter 3.

The red boxes denote the main algorithms/approaches used in the solution. Latent Semantic Analysis (LSA) and Restricted Boltzmann Machines (RBM) are used to obtain a calculated and intuitive summary. The solution is called hybrid as, while LSA is a strictly extractive process, RBM is a mixed process as it relies on probabilistic stochastic calculations to determine what word/sentences to include in the summary.

4.1 Data Sets

The Document Understanding Conferences (DUC) are conferences held to evaluate and promote text summarizations. They collect data as a means to provide a uniform data set for the purpose of summarization. DUC contains data sets from 2001 to 2007 [29]. For the purpose of this project, DUC2003 and DUC2004 were chosen.

<table>
<thead>
<tr>
<th></th>
<th>DUC2003</th>
<th>DUC2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 1: Number of folders in each DUC

Combined, both folders contain a total of 868 files. Each of these files contain news articles from sources like the New York Times, etc. The following is an excerpt of a paragraph from a DUC2003 file.

"After vowing to combat fraud, online auction service eBay Inc. finds itself the subject of a fraud investigation being conducted by the city’s Department of Consumer Affairs."
4.2 Pre-Processing

Various types of pre-processing has been done on these files. The original data set files are in an unstructured file format by default. The files had to be converted to text format for easy handling. The files were also extracted from the web so were in HTML format. Natural Language Toolkit (NLTK) in Python was used to remove the HTML tags and obtain the main body. On obtaining the main body, variety of pre-processing steps were performed.

4.2.1 Tokenization

Tokenizing a sentence is basically splitting the sentence to its basic entity. In this case, individual words. Therefore, a sentence like "Jack likes apples." will be tokenized to "Jack", "likes" and "apples". Tokenization makes working with sentences easier.

4.2.2 Removing Stop Words

NLTK English language stop word list was used to eliminate stop words occurring in the documents. Stop words are redundant and unimportant words such as "a", "an", "has", etc.

4.3 Algorithms Implemented

As explained in Chapter 3, experimentation with a variety of algorithms was done to summarize the texts. Single document summarization was performed on the documents and then the results were compared with the results obtained from multi-document summarization.
4.3.1 Part-of-Speech Tagging

Parts-of-Speech (POS) tagging is the grammatical break down and matching of words in a sentence to their reactive parts of speech. POS are broadly classified into eight types: nouns, adjectives, verbs, prepositions, pronouns, conjunctions, adverbs and interjections. POS is a supervised learning algorithm which uses features like first word, last word, next word, etc.

4.4 Evaluation

There are two popular ways to evaluate text summaries, both dependent on the concept of calculating n-grams: BLEU and ROUGE. Since, both methods are complementary to each other (one deals with precision, while the other calculates Recall), evaluation was done using only one. All the summaries generated are evaluated using the ROUGE-1 and ROUGE-2 score. ROUGE-1 calculated the unigrams present in the summary when compared to the reference texts. ROUGE-2 calculates the bigrams present in the generated summary when compared with that of the reference texts. The reference text used in all algorithms mentioned above is the unsummarized text.

The ROUGE Summary generates scores in the form of the F-measure, Precision and Recall.

4.4.1 Precision

Precision in this study is the measure of relevant sentences obtained from the retrieved sentences [36].

\[
\text{Precision} = \frac{\text{RelevantSentences}_{\text{fromDocument}} \cap \text{RetrievedSentences}_{\text{fromDocument}}}{\text{RetrievedSentences}_{\text{fromDocument}}}
\]
4.4.2 Recall

Recall is the measure of relevant sentenced retrieved from the sentences available [36].

\[
Recall = \frac{RelevantSentences from Document \cap RetrievedSentences from Document}{RelevantSentences from Document}
\]

4.4.3 F-Measure

F-measure is the harmonic mean of precision and recall [36]

\[
F = \frac{2 \times Precision \times Recall}{Precision + Recall}
\]
CHAPTER 5
Experiments and Results

As per the architecture diagram, the data was pre-processed before the individual algorithms were applied. The algorithms compressed the size of the document by an average of 30%. LSA was implemented on single documents to optimize them before using them as input for the RBM.

RBM was implemented with various parameters and the best result was observed for 8 hidden states with a learning rate of 0.1. The input for the RBM are the single documents created by the LSA and other graph-based algorithms. Multiple algorithms belonging to the same folder are merged and input to the RBM. Experimentation with different algorithms as mentioned in Chapter 3 was done to understand how the summaries differ and which approach yields better results.

For each of the summarizing approaches, the performance of the algorithms was observed after summarizing single documents and multiple documents. The examples shown contain the highlighted green sentences as the sentences chosen to be in the final summary.

For the multiple document approach, single documents were collated into one, and the algorithms were implemented on the combined file.

5.1 Evaluation

ROUGE-1 is the ratio of the unigram score between the summary obtained and the reference text. Implementing ROUGE-1, it was observed that all the algorithms combined with the RBM machine performed poorly compared to their individual
counterparts.

ROUGE-2 is the measure of bigrams when comparing the summary obtained to that of the reference text. Like ROUGE-1, it was observed that the scores with RBM were lower than that of the individual algorithms.

Both ROUGE-1 and ROUGE-2 split the results into precision, recall and F-1 scores. Since there were 4 independent algorithms that had been implemented individually, as well as in combination with RBM, a lot of summaries were generated and had to be evaluated.

![Figure 8: F-1 Scores for DUC2003](image)
Fig. 8 and Fig. 9 compare the F-1 scores for ROUGE-1 and ROUGE-2 for single and multi-documents for DUC2003 data set and DUC2004 data set respectively. Since F-1 score is the harmonic mean of precision and recall, it is observed that LSA, Reduction and Lex-Rank algorithms, when applied independently to the collated documents, seem to yield an almost perfect score for DUC2003 and only Reduction algorithm applied independently to the collated documents yielded an almost perfect score for DUC2004.

For the combination algorithms, LSA and Lex-Rank combined with RBM seem to perform better on both data sets. To understand the F-1 scores obtained better, the precision and recall parameters are also observed for both the data sets.
Figure 10: Precision for DUC2003

Figure 11: Precision for DUC2004
Precision is the measure of how many sentences considered for summary were actually relevant in comparison to the text in the parent document. Since the approaches with the independent algorithms fell mainly under extractive text summarization, the sentences in the summary were actually a subset of the parent text. Therefore, these approaches should ideally yield a precision of 1. For the combination algorithms, the input were summarized documents and precision was calculated between the summary generated and the original parent text document, the expected precision should be lower than 0.7.

Fig. 10 and Fig. 11 compare the Precision for ROUGE-1 and ROUGE-2 for single and multi-documents for DUC2003 data set and DUC2004 data set respectively. As stated above, it is observed that the single algorithm implementations yielded almost perfect precision as expected, except for Text-Rank. Combination algorithms with LSA and Reduction also yielded a higher precision. This can be attributed to the Reduction algorithm failing to reduce the parent document drastically.
Recall, as discussed in Chapter 4, is the measure of how many sentences retrieved
by the algorithm in the summary are actually relevant to the summary. A higher recall measures the effectiveness of the algorithm. Fig. 12 and Fig. 13 compare the Recall for ROUGE-1 and ROUGE-2 for single and multi-documents for DUC2003 data set and DUC2004 data set respectively.

For DUC2003, most individual algorithms have a perfect recall for multiple document summarization and Lex-Rank in combination with RBM seem to be giving the best recall for multiple documents. For single documents, Text-Rank yielded the best Recall.

5.2 Sample Summaries
5.2.1 Reduction Summarizer

Reduction Summarizer was implemented on the DUC data sets for both single and multiple documents.

The summarizer obtained a reduction of an average of 40% for multi-document summarization on the DUC data sets. A snippet from CNN [37] was taken to show how the summarizers summarized.
For the second time this month, Republican President Donald Trump failed to carry a Republican gubernatorial candidate across the finish line in a deep-red state.

Last time, Kentucky was the stage.
This time it was Louisiana. Gov. John Bel Edwards defeated Republican Eddie Rispone 51% to 49% in Saturday's runoff election.
This came after Edwards failed to reach a majority in an election last month, in which the Republican candidates combined actually beat the Democrats combined by a 52% to 47% margin.
The Democrat's victory Saturday is another demonstration off the limits of Trump's appeal and the importance of candidate quality even in our deeply polarised age.
Trump won it by 20 points in 2016.
Currently, the President's approval rating percentage in the state is in the 50s. His last minute visit to Louisiana last week wasn't enough just as it wasn't enough in Kentucky on the eve of that election.
Louisiana.
John Bel Edwards defeats Trump-backed businessman in close race, CNN projectsLike with Kentucky -- and indicative of the Trump era generally speaking -- the election returns showed Republicans had key abatements of support in urban and suburban areas.
Edwards emerged with 90% of the vote in urban Orleans Parish and 66% of the vote in partially urban and partially suburban East Baton Rouge Parish.
They are home to the two most populous cities (New Orleans and Baton Rouge) in the state.
Trump did lose both of those in 2016.
Yet Democrat Hillary Clinton only won Orleans with 81% and East Baton Rouge with 52%. Edwards' 90% in Orleans is particularly impressive given he took 87% of it in 2015, when he first won election statewide with 56% of the vote.
The movement of suburban areas away from the Republicans is most clearly seen in Jefferson Parish, on the border with Orleans.
Edwards won it with 57% of the vote on Saturday.
This was impressive. Clinton won a mere 41% of the vote there in 2016.
Heck, Edwards took a bare majority of 51% in his 2015 victory.

Figure 14: Example Summary for Reduction Summarizer [37].

In the summary shown in Fig. 14, there are about 15 complete sentences. The green highlighted texts are the sentences picked by the Reduction Summarizer, whose workings have been explained in Chapter 3. The Reduction Summarizer picked 9 sentences for the final summary and it can be observed that these sentences do cover
the gist of the actual text. For this particular example, the summarizer reduced the original text to 60%.

5.2.2 LSA Summarizer

The LSA Summarizer’s implementation is shown in Fig. 15.

For the second time this month, Republican President Donald Trump failed to carry a Republican gubernatorial candidate across the finish line in a deep-red state. Last time, Kentucky was the stage. This time it was Louisiana. Gov. John Bel Edwards defeated Republican Eddie Rispone 51% to 49% in Saturday’s runoff election. This came after Edwards failed to reach a majority in an election last month, in which the Republican candidates combined actually beat the Democrats combined by a 52% to 47% margin. The Democrat’s victory Saturday is another demonstration off the limits of Trump’s appeal and the importance of candidate quality even in our deeply polarised age. Trump won it by 20 points in 2016. Currently, the President’s approval rating percentage in the state is in the 50s. His last minute visit to Louisiana last week wasn’t enough just as it wasn’t enough in Kentucky on the eve of that election. Louisiana. Democratic Gov. John Bel Edwards defeats Trump-backed businessman in close race, CNN projectsLouisiana's Democratic Gov. John Bel Edwards defeats Trump-backed businessman in close race, CNN projectsLike with Kentucky -- and indicative of the Trump era generally speaking -- the election returns showed Republicans had key abatements of support in urban and suburban areas. Edwards emerged with 90% of the vote in urban Orleans Parish and 66% of the vote in partially urban and partially suburban East Baton Rouge Parish. They are home to the two most populous cities (New Orleans and Baton Rouge) in the state. Trump did lose both of those in 2016. Yet Democrat Hillary Clinton only won Orleans with 81% and East Baton Rouge with 52%. Edwards' 90% in Orleans is particularly impressive given he took 87% of it in 2015, when he first won election statewide with 56% of the vote. The movement of suburban areas away from the Republicans is most clearly seen in Jefferson Parish, on the border with Orleans. Edwards won it with 57% of the vote on Saturday. This was impressive. Clinton won a mere 41% of the vote there in 2016. Heck, Edwards took a bare majority of 51% in his 2015 victory.

Figure 15: Example Summary for LSA Summarizer [37].
The same snippet was used to generate summaries using all the combinations of algorithms. LSA Algorithm picks 10 sentences from the summary as part of the summarization. For this example, the summary reduced the original text to 66.67%.

5.2.3 Text-Rank Summarization

Fig. 16 shows an example of Text-Rank Algorithm's summarization.
For the second time this month, Republican President Donald Trump failed to carry a Republican gubernatorial candidate across the finish line in a deep-red state.

Last time, Kentucky was the stage.
This time it was Louisiana. Gov. John Bel Edwards defeated Republican Eddie Rispone 51% to 49% in Saturday’s runoff election.
This came after Edwards failed to reach a majority in an election last month, in which the Republican candidates combined actually beat the Democrats combined by a 52% to 47% margin.
The Democrat’s victory Saturday is another demonstration of the limits of Trump’s appeal and the importance of candidate quality even in our deeply polarised age.
Trump won it by 20 points in 2016.
Currently, the President’s approval rating percentage in the state is in the 50s.
His last minute visit to Louisiana last week wasn’t enough just as it wasn’t enough in Kentucky on the eve of that election.
Louisiana.
John Bel Edwards defeats Trump-backed businessman in close race, CNN projects like with Kentucky -- and indicative of the Trump era generally speaking -- the election returns showed Republicans had key abatements of support in urban and suburban areas.
Edwards emerged with 90% of the vote in urban Orleans Parish and 66% of the vote in partially urban and partially suburban East Baton Rouge Parish.
They are home to the two most populous cities (New Orleans and Baton Rouge) in the state.
Trump did lose both of those in 2016.
Yet Democrat Hillary Clinton only won Orleans with 81% and East Baton Rouge with 52%. Edwards' 90% in Orleans is particularly impressive given he took 87% of it in 2015, when he first won election statewide with 56% of the vote.
The movement of suburban areas away from the Republicans is most clearly seen in Jefferson Parish, on the border with Orleans.
Edwards won it with 57% of the vote on Saturday.
This was impressive. Clinton won a mere 41% of the vote there in 2016.
Heck, Edwards took a bare majority of 51% in his 2015 victory.

Figure 16: Example Summary for Text-Rank Summarizer [37].

This summarizer gives a similar result as of that to the LSA. 10 matches to the parent text were observed, thus giving us a reduction of 33.33%.
5.2.4 Lex-Rank Summarizer

Fig. 17 shows an example of how Lex-Rank Summarization summarizes the sample text.

For the second time this month, Republican President Donald Trump failed to carry a Republican gubernatorial candidate across the finish line in a deep-red state.

Last time, Kentucky was the stage.

This time it was Louisiana. Gov. John Bel Edwards defeated Republican Eddie Rispone 51% to 49% in Saturday's runoff election.

This came after Edwards failed to reach a majority in an election last month, in which the Republican candidates combined actually beat the Democrats combined by a 52% to 47% margin.

The Democrat's victory Saturday is another demonstration of the limits of Trump's appeal and the importance of candidate quality even in our deeply polarized age.

Trump won it by 20 points in 2016.

Currently, the President's approval rating percentage in the state is in the 50s.

His last minute visit to Louisiana last week wasn't enough just as it wasn't enough in Kentucky on the eve of that election.

Despite Louisiana.

John Bel Edwards defeats Trump-backed businessman in close race, CNN projectsLike with Kentucky -- and indicative of the Trump era generally speaking -- the election returns showed Republicans had key abatements of support in urban and suburban areas.

Edwards emerged with 90% of the vote in urban Orleans Parish and 66% of the vote in partially urban and partially suburban East Baton Rouge Parish.

They are home to the two most populous cities (New Orleans and Baton Rouge) in the state.

Trump did lose both of those in 2016.

Yet Democrat Hillary Clinton only won Orleans with 81% and East Baton Rouge with 52%. Edwards' 90% in Orleans is particularly impressive given he took 87% of it in 2015, when he first won election statewide with 56% of the vote.

The movement of suburban areas away from the Republicans is most clearly seen in Jefferson Parish, on the border with Orleans.

Edwards won it with 57% of the vote on Saturday.

This was impressive. Clinton won a mere 41% of the vote there in 2016. Heck, Edwards took a bare majority of 51% in his 2015 victory.

Figure 17: Example Summary for Lex-Rank Summarizer [37].
The Lex-Summarizer chooses 10 sentences, the same as the Text-Rank Summarizer, as it follows a similar construction methodology. Here too the reduction is 33.33%.

5.2.5 Summary of Results

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sentences in Summary</th>
<th>Sentences in Parent text</th>
<th>Percentage Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction</td>
<td>9</td>
<td>15</td>
<td>40%</td>
</tr>
<tr>
<td>LSA</td>
<td>10</td>
<td>15</td>
<td>33.33%</td>
</tr>
<tr>
<td>Text-Rank</td>
<td>10</td>
<td>15</td>
<td>33.33%</td>
</tr>
<tr>
<td>Lex-Rank</td>
<td>10</td>
<td>15</td>
<td>33.33%</td>
</tr>
</tbody>
</table>

Table 2: Summary of Results of Experiments

Table 2 gives us a summary of the results of all the experiments. It is observed that Reduction algorithm reduced the summaries by the most percentage. The other three algorithms seemed to have reduced by the same amount.
CHAPTER 6
Conclusion and Future Work

Restricted Boltzmann Machines (RBMs) are lower level neural nets with at least one visible layer and one hidden layer. Like other neural networks, RBMs require large amount of training data to provide a better output. In this study, the RBM was used in combination with other algorithms to provide it with a refined input. But the data sets, DUC2003 and DUC2004 provided a small amount of data. The RBM hybrid models were expected to yield the best results but, on observing and comparing, these models fell short. This lack of performance can be attributed to the lower amount of data fed as input to the models. Like all neural networks, RBM would probably perform better if the input data was large in number.

Individually it is observed that the LSA, Lex-Rank, Text-Rank, Reduction Algorithms provide a higher ROUGE score, but when combined with RBM, the score drastically reduces. After observing and comparing the scores, Lex-Rank proved to be one of the best algorithms for text summarization for both single and multiple document summarization.

It was also observed that ROUGE scores for the multi-document summarizing remains almost the same for both data sets. We cannot infer much from this as we provided the RBM with lesser data. We hope that on increasing the size of the data set, the values will most likely differ.

Even in the individual algorithms, Reduction algorithms only removes redundancy and doesn’t actually perform complex operations. Reduction algorithm was used as baseline for comparing the other algorithms.
For future work, the same algorithms could be implemented by using all the DUC documents, from 2001-07 as input. This would ensure that RBM got a large amount of data to train on, and this would hopefully provide a significantly better result.

Recurrent Neural Networks (RNN) have been proven to learn from parent texts to generate keyword related shorter texts. This theory can be applied to text summarization and it’s results can be compared with the work done in this thesis.

Lastly, an evaluation using BLEU can be done to observe the differences in the approaches taken. The output, though similar, would still give a different way of viewing the results.
LIST OF REFERENCES

[29] https://www-nlpir.nist.gov/projects/duc/intro.html [03,04]

APPENDIX A

Single Document Summarization

For the single document, summarization, summarization algorithms were implemented on every single document. The original text became the reference and the summarized text became the hypothesis to evaluate the ROUGE score.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.158</td>
<td>1</td>
<td>0.856</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.796</td>
<td>1</td>
<td>0.0414</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.59</td>
<td>1</td>
<td>0.304</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.59</td>
<td>1</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 3: ROUGE-1 evaluation of single document for DUC2003 Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.094</td>
<td>1</td>
<td>0.049</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.0466</td>
<td>1</td>
<td>0.0238</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.031</td>
<td>1</td>
<td>0.016</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.0313</td>
<td>1</td>
<td>0.159</td>
</tr>
</tbody>
</table>

Table 4: ROUGE-2 evaluation of single-document DUC2003 Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.238</td>
<td>1</td>
<td>0.135</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.226</td>
<td>1</td>
<td>0.127</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.238</td>
<td>1</td>
<td>0.133</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.238</td>
<td>1</td>
<td>0.135</td>
</tr>
</tbody>
</table>

Table 5: ROUGE-1 evaluation of single document for DUC2004 Summary
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.162</td>
<td>1</td>
<td>0.884</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.167</td>
<td>1</td>
<td>0.909</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.16</td>
<td>1</td>
<td>0.088</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.162</td>
<td>1</td>
<td>0.088</td>
</tr>
</tbody>
</table>

Table 6: ROUGE-2 evaluation of single-document DUC2004 Summary
APPENDIX B

Multi-Document Summarization

For multiple document summarization, input documents were combined into one text file and was treated as one single document and was processed it in such a way that importance was given to sentences with numbers, title-related words and proper nouns. This way, there was a lower chance of missing out on important text. The documents were also cross checked for repetition, to avoid redundancy.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LSA + RBM</td>
<td>0.31</td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>LexRank + RBM</td>
<td>0.707</td>
<td>0.979</td>
<td>0.553</td>
</tr>
<tr>
<td>TextRank + RBM</td>
<td>0.36</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td>Reduction + RBM</td>
<td>0.627</td>
<td>0.979</td>
<td>0.554</td>
</tr>
</tbody>
</table>

Table 7: ROUGE-1 evaluation of multi-document for DUC2003 Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LSA + RBM</td>
<td>0.627</td>
<td>0.948</td>
<td>0.457</td>
</tr>
<tr>
<td>LexRank + RBM</td>
<td>0.635</td>
<td>0.1</td>
<td>0.465</td>
</tr>
<tr>
<td>TextRank + RBM</td>
<td>0.36</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td>Reduction + RBM</td>
<td>0.63</td>
<td>1</td>
<td>0.465</td>
</tr>
</tbody>
</table>

Table 8: ROUGE-2 evaluation of multi-document for DUC2003 Summary
Table 9: ROUGE-1 evaluation of multi-document for DUC2004 Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.074</td>
<td>0.41</td>
<td>0.04</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.226</td>
<td>1</td>
<td>0.127</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LSA + RBM</td>
<td>0.635</td>
<td>1</td>
<td>0.465</td>
</tr>
<tr>
<td>LexRank + RBM</td>
<td>0.635</td>
<td>0.465</td>
<td>0.386</td>
</tr>
<tr>
<td>TextRank + RBM</td>
<td>0.36</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td>Reduction + RBM</td>
<td>0.556</td>
<td>0.989</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Table 10: ROUGE-2 evaluation of multi-document for DUC2004 Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>F-1 Score</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSA</td>
<td>0.074</td>
<td>0.41</td>
<td>0.04</td>
</tr>
<tr>
<td>LexRank</td>
<td>0.167</td>
<td>1</td>
<td>0.909</td>
</tr>
<tr>
<td>TextRank</td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>Reduction</td>
<td>0.99</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LSA + RBM</td>
<td>0.556</td>
<td>0.989</td>
<td>0.386</td>
</tr>
<tr>
<td>LexRank + RBM</td>
<td>0.41</td>
<td>0.44</td>
<td>0.56</td>
</tr>
<tr>
<td>TextRank + RBM</td>
<td>0.36</td>
<td>0.39</td>
<td>0.51</td>
</tr>
<tr>
<td>Reduction + RBM</td>
<td>0.556</td>
<td>0.989</td>
<td>0.386</td>
</tr>
</tbody>
</table>