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ABSTRACT

Assessing Wildfire Damage from High Resolution Satellite Imagery Using
Classification Algorithms

by Ai-Linh Alten

Wildfire damage assessments are important information for first responders, govern-

ment agencies, and insurance companies to estimate the cost of damages and to help

provide relief to those affected by a wildfire. With the help of Earth Observation satellite

technology, determining the burn area extent of a fire can be done with traditional remote

sensing methods like Normalized Burn Ratio. Using Very High Resolution satellites can

help give even more accurate damage assessments but will come with some tradeoffs;

these satellites can provide higher spatial and temporal resolution at the expense of better

spectral resolution. As a wildfire burn area cannot be determined by traditional remote

sensing methods with higher spatial resolution satellites, the use of machine learning can

help predict the extent of the wildfire. This research project proposes an object-based

classification method to train and compare several machine learning algorithms to detect

the remaining burn scars after the event of a wildfire. Then, a building damage assessment

approach is provided. The results of this research project shows that random forests can

predict the burn scars with an accuracy of 86% using high resolution image data.

Keywords—Very High Resolution, wildfire burn severity, damage assessment,

machine learning, Geographic Information Systems, remote sensing.
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1 INTRODUCTION

The news of wildfires spreading in the Western United States has caught the attention

of many people nationally and internationally. According to the Congressional Research

Service (CRS), wildfires have increased every year dramatically since the 1990s. The

annual average of land burned in the 1990s was 3.3 million acres, in the 2000s it was 6.9

million acres, and in recent years it gets as high as 10 million acres [1]. The Western U.S.

is especially susceptible to combustion due to hot temperatures and dry vegetation [2]. In

2017 and 2018, California experienced some of the most destructive fires in which many

homes and lives were lost. Cal Fire [3] reported that the October 2017 Tubbs Fire and

November 2018 Camp Fire destroyed 5,636 and 18,804 homes respectively. However,

getting rapid information about the estimated wildfire damages in urban areas is not always

easy. Firefighter Nation [4] discusses several wildfire detection surveillance technologies:

ground-based visual systems, ground-based non-visual sensors, manned and unmanned

aircrafts, and satellites. Each surveillance technology comes with unique challenges like

the cost of direct human operability, wide-area coverage, massive data storage, and good

temporal frequency.

Of these surveillance technologies, Very High Resolution (VHR) Earth Observation

(EO) satellites are a good data source that can provide highly accurate damage assessments

at spatial scales between 0.3 to 2 meters. EO satellites solve the problem of direct

human operability and temporal frequency in order to provide faster decision making [5].

Commercial satellite companies are now moving their satellite images into the cloud in

response to the “Big Data” issue of data storage and management [5]. VHR satellites

capture multispectral images between the visible light range and near-infrared of the

electromagnetic spectrum (VNIR). Although VHR satellites capture images at incredibly

high resolutions, they cannot provide burn severity assessments via traditional remote

sensing methods without the availability of short-wave infrared (SWIR). For the past

1



decade, a trend of machine learning classification algorithms has been able to provide

wildfire burn severity assessments. These algorithms look for returns from the carbon

stocks on land in the visible red and NIR range [6].

To make up for the lack of the SWIR in VHR imagery, this research project proposes

an object-based classification method using supervised machine learning algorithms to

determine the burn severity with only the VNIR bands. The high resolution satellite

images are first broken up into segments via an image segmentation algorithm called

Super Linear Iterative Clustering (SLIC) that groups pixels by color similarity and spatial

proximity [7]. These segments are then used to extract the band values and the spectral

indices from the satellite imagery as the features. Following the creation of the new dataset,

three main experiments using several classification algorithms provided by Scikit-Learn

and Apache Spark will be evaluated and compared. The first experiment will judge

if binary classification will be sufficient to identify if the land has been burned. The

second will determine if multi-class land use classification will be possible with just

the VHR imagery. And lastly, if prior classification methods will be able to justify the

need to use a distributed system like Spark for training and making predictions on large

amounts of satellite data. Once the best classification algorithm is selected from the binary

classification and multi-class classification experiments, the model will be used to prepare

map visuals of the burn scar and land usage. This research project will also propose a

workflow for creating the building damage assessment maps.

This report will be organized as follows. Chapter 2 will go over the current state-

of-the-art burn severity methods using classification algorithms. This section will also

review several literature that propose different map visualization methods for building

damage assessments. Chapter 3 will then go over the technical approach for the project

as well as the development environments used. The motivation behind the selection of

the satellite image data collection will be discussed in Chapter 4. Image preprocessing
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and data transformation methods will be presented in Chapter 4.3. Chapters 5.1–5.3 will

go over the results from the three experiments using Scikit-Learn and Spark. The map

visualization methods will be proposed in Chapter 5.4. Lastly, Chapter 6 will discuss the

results from the three experiments and conclude in Chapter 7.
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2 BACKGROUND AND RELATED WORK

This background study and review will survey the various classification algorithms that

help create burn severity maps. It will also discuss methods to provide map visuals using

Geographical Information Systems (GIS). Two questions will be answered in this review:

What features and classification algorithms using a single satellite image data source will

be suitable for providing wildfire burn severity? How should the damage assessment be

conducted for a suitable visualization that accurately represents the information? The

research papers reviewed will be split into two main parts: burn severity and damage

assessments. A breakdown of the review is shown in Fig. 1.

Fig. 1: Organization diagram of the literature review.

2.1 Burn Severity

Burn severity describes the results after a fire has burned by reporting the loss of

vegetation, amount of water content in the soil, and discoloration of the soil. Levels of

burn severity—high, medium, and low—make up the burn area. Burn severity can also

be represented by many subclasses between the soil and tree canopies usually with five

strata per the Composite Burn Index (CBI) [6]. CBI is well understood by experts in
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ecology. For the focus of this study, burn severity will be used to help provide the damage

assessment.

Machine learning algorithms are statistical algorithms that try to approximate what the

overall population is given a subsample. Machine learning makes predictions based on

what it has learned about the population. As an example, the population is all wildfires

in the U.S. that have occurred, and a subsample could be the Camp Fire that occurred

in November of 2018 in Paradise, California. Classification algorithms are supervised

learning models that predict discrete classes of objects. They learn off predictor variables

that describe the population. In remote sensing, several classification algorithms are

suggested by Holloway and Mengersen [8]: logistic or multinomial regression, support

vector machines, classification and regression trees (CART), random forests (RF), K

nearest neighbor (k-NN), pixel classification like spectral mixture analysis (SMA), and

neural networks. In the following sections, feature extraction methods for useful predictor

variables will be explored as well as a few studies that create burn area maps using

classification algorithms.

2.1.1 Feature Extraction

In this section, papers discussing feature extraction for burn severity and damage

assessments are covered. There are three main features that will be discussed for feature

extraction. First, remote sensing features can potentially provide the spectral information

necessary to determine the extent of the wildfire burn. The other two features involve

image processing techniques. The feasibility of using image segmentation for object-based

classification and image gradient orientation for determining the spatial characteristics of

the burned vegetation will be explored.

2.1.1.1 Remote sensing features: There are many feature extraction methods for

image classification using the spectral information of satellite data. Meng and Zhao [6]

summarized many of these methods from other sources. They have found that many burn
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severity methods use some of the following: spectral signatures, spectral indices (SIs), and

endmembers by spectral unmixing. Meng and Zhao [6] suggests that changes in spectral

signatures are seen by the reduced water content of the vegetation in the visible NIR

and mid-infrared (MIR) range. For SIs, many vegetation spectral indices were used like

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil

Adjusted Vegetation Index (SAVI), Modified SAVI (MSAVI), and Integrated Forest Index

(IFI).

SI =
band1 −band2

band1 +band2
(1)

Newer bi-temporal SIs like Normalized Burn Ratio (NBR), differenced NBR (dNBR),

and relative dNBR (RdNBR) were popularized for identifying the change in pre- versus

post-fire imagery [6].

dSI = SIpre −SIpost (2)

Endmembers were used for a classification technique called Spectral Mixture Analysis

(SMA) which describes the spectrum’s distribution and defines endmembers by class like

soil and vegetation [6].

Equations 1 and 2 shows examples of the normalized difference ratio equations. SI

takes the difference of two bands (band1 and band2) selected from the satellite image

and then normalizes to a range of -1 to 1. dSI is the change between the pre-event and

post-event image. For example, NDV I = NIR−Red
NIR+Red and dNDV I = NDV Ipre −NDV Ipost .

2.1.1.2 Image segmentation: Mitri and Gitas [9] provided a feature extraction

technique using image segmentation in order to classify burn severity. In their methodology,

they segmented an IKONOS satellite image and classified the segmented objects via fuzzy

logic. The image segmentation is done using a bottom-up region-merging algorithm in

order to provide three levels of segmentations in the image [9, Fig. 2]. This segmentation

and merging technique in remote sensing is known as Object-based Image Analysis
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(OBIA). What image segmentation algorithm [9] used is not mentioned, but it can be

assumed it is an algorithm that can only use visible color bands since IKONOS is only a

4-band sensor (red, green, blue, NIR). A more recent study by Wang et al. [10] describes

a deep hierarchical representation and segmentation approach for high resolution satellite

images. This paper uses a fast scanning image segmentation via deep learning to split

and merge segmented regions [10]. This way, segmentation is robust for any spatial scale

and can represent the different types of vegetation between canopy to surface. Region

Adjacency Graph (RAG) is used to determine how the merging is done hierarchically by

relating the border elements. This region merging of segments is done in a bottom-up

fashion as well [10]. With image segmentation, this can be used to provide an object-based

classification method rather than pixel-based. Segments can represent a variety of things

like trees, buildings, water, etc.

Fig. 2: Different levels of image segmentation. Source: [9].

2.1.1.3 Image gradient orientation: Although the primary focus for extracting

features will be for burn severity, it is also important to know the spatial characteristics that

come with vegetation as well as damaged buildings within areas of dense vegetation. Ye et

al. [11] proposes a method to detect damaged buildings from earthquakes using a feature
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called Local Gradient Orientation Entropy (LGOE). They found that the probability of

multiple gradient orientations is greater for a damaged building than for an intact building.

This way, shadows of the building don’t need to be used as a feature since it is influenced

by solar elevation, weather condition, and distance between the buildings [11]. LGOE is a

Prewitt gradient operator Table 1 used locally within each building. Angles chosen are a

step of 15 degrees between 0 and 180 degrees [11]. Oriented gradients could be a good

predictor variable for both vegetation and buildings affected by a forest fire. Other known

image gradient operators that can be used are Sobel, Robert, and Laplace. Histogram of

Oriented Gradients (HOG) and Gabor filters can also be used as textures for a feature

descriptor.

Table 1: Image Gradient: Prewitt Operator

Horizontal
orientation

Vertical
orientation

Mask
(−1 −1 −1

0 0 0
1 1 1

) ( 1 1 1
0 0 0
−1 −1 −1

)

Image Result

2.1.2 Classification Algorithms

For the past ten years, a trend of machine learning algorithms has been used for

identifying burn areas in satellite images. Some algorithms used are principal component

analysis (PCA), support vector machines (SVM), neural networks (NN), convolutional

neural network (CNN), deep belief network (DBN), autoencoder, spectral angle mapper

(SAM), random forests, and decision trees [6], [12]. In this review, six journal articles [13]–

[18] providing wildfire burn severity are classified by the following algorithms: SVM,
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artificial neural networks (ANN), SAM, Gaussian process regression (GPR), support

vector regression (SVR), and RF. The following sections will also cover the steps in the

data mining process from these articles.

2.1.2.1 Preprocessing: Off the sensor, images from satellites are affected by

atmospheric conditions, sun angle, and cloud cover which need to be retouched in order to

make the image real color. Geometric corrections are also required if the image is taken off-

nadir. Off-nadir is the angle between how the satellite is positioned and surface of the Earth

during the scanning process. Although many providers of satellite images like Google

Earth Engine makes the correction for these images automatically, many others provide

only raw images that need preprocessing. For atmospheric correction (aka. radiometric

conversion), several studies [15], [16], [18] used dark object subtraction to reduce the

absorption and scattering of light energy as it passes through the Earth’s atmosphere.

Fixing illumination is done topographically, minimizing view-angle brightness, cloud

masks, and water masks [15], [18]. Merging multiple images is done by data fusion and

image mosaicking [15], [16]. Orthorectification also helps remove the effects of off-nadir

by making the image more planimetrically correct [16]. In [17], data reduction of pixels is

resolved by removing any unburned vegetation pixels that are more than 3,000 m from

burned pixels. This helps with the spatial autocorrelation problem when neighboring pixels

are unrelated.

2.1.2.2 Feature selection: Many features as described in Section 2.1.1 are used for

the classification of burn severity. These predictor variables Table 2 are either represented as

a pixel or an object for pixel-based [13], [14], [16], [17] and object-based classification [15],

[18]. Although most methods used post-fire images for representing the reflectance and

spectral indices, some research calls for the use of both pre-fire and post-fire images in

order to use dSIs between two image dates [16], [17]. The last column in Table 2 shows

which satellite sensor is used for the features. This determines what radiance values and
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SIs will be used. It is preferable to use multispectral VHR satellites for the goal of this

research, however [15], [17] show the use of hyperspectral satellites for burn severity

classification. Meng et al. [16] use Multiple Endmember Spectral Analysis (MESMA)

procedure to determine an endmember spectra library for burned and non-burned oak,

pine, wetland, shrub, and grass. Hultquist et al. [15] describes the use of internal image

texture (TXIT) and neighborhood texture (GEOTEX) within each image segment. Ramo

et al. [17] uses Euclidean distance between pixels and wildfire burn hotspots for spatial

correlation.

Table 2: Selected Features

Name Reflectance
value SIs dSIs Endmember Image

gradients EO sensor(s)

G.P. Petropoulous et
al. [13] X

Landsat-5
TM

G.P. Petropoulous et
al. [14] X

Landsat-5
TM

C. Hultquist et
al. [15] X X X MASTER

R. Meng et al. [16] X X

WorldView-
2, LiDAR,
Thermal

LiHT
R. Ramo et al. [17] X X X MODIS

L. Collins et al. [18] X X

Landsat-5
TM, 7

ETM+, 8
OLI/TIR

Some research used dimension reduction techniques to reduce the number of predictor

variables before training the classification algorithms. Hultquist et al. [15] suggests using

minimum redundancy feature selection (mRMR) to rank the predictor variables in terms

of ability to predict the correct class. They found that TXIT, GEOTEX, NBR, NDVI, and

a few radiance values best correlated to CBI [15]. Meng et al. [16] chose the top eight

SIs using separability analysis. Ramo et al. [17] merged the results of features selected
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by the Boruta RF algorithm, logistic regression, and an Entropy-based filter to keep for

training classification algorithms. Of the eight features selected by their method, the

top features were NDWI, NBR, and hotspot distance [17]. Collins et al. [18] used Gini

Impurity statistic and found that dNDWI and dNDVI had the greatest influence on the RF

classifier. According to the feature selection methods, SIs, dSIs, and image textures will

be valuable predictors for model construction.

2.1.2.3 SVM: Several kernel-based algorithms were suggested to perform

multiclassification on burn severity classes. SVM for classification, SVR for regression,

and GPR is used among many works providing burn area mapping as shown in Table 3 [13],

[15], [18]. SVM is a supervised algorithm that linearly separates classes with a hyperplane

by minimizing the margin between them. Petropoulos et al. [13] suggests using a pair-wise

binary classification strategy to classify the following types of land cover: burn area,

agricultural, scrubland, forested, and urban. With a train and test split of 180 and 60 pixels

per class, they trained and tested the SVMs on several kernels: polynomial, radial basis

function, and sigmoid [13]. In their test, they had 95.87% overall accuracy and 0.948

kappa coefficient. Their burn area class had 100% accuracy using SVM [13]. SVR handles

non-linear problems by using a different kind of slack variable to perform regression [15].

GPR is like SVR but has a Bayesian context and infers functional relationships from the

training data [15]. Hultquist et al. [15] compares both SVR and GPR on MASTER image

plots labelled by CBI values. SVR and GPR had RMSE values of around 0.30 to 0.35. The

use of SVMs shows promise in identifying burn area as well as other kinds of land cover

classes. However, according to the results in [15], random forests were able to outperform

both SVR and GPR.

2.1.2.4 Random forests: Random forests (RFs) is the most commonly used burn

severity classification algorithm [15]–[18]. RFs are an ensemble of decision trees that

can assign a class by voting for categorical data or averaging for continuous data [18].
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Collins et al. [18] analyzed 16 fires in Victoria, Australia from pre- and post-fire Landsat

imagery using the RF classifier in R and visualized with Google Earth Engine (GEE).

From 16 fires, a sample 10,855 pixels were generated, and nine SIs were used as features

— each pixel labelled as unburnt, crown unburnt, partial crown scorch, crown scorch,

and crown consumption. Collins et al. [18] tested the model stability using 16-fold cross

validation where one fire is left out in each iteration. With 95% confidence, they were able

to determine the overall training accuracy as 91% and overall testing accuracy as 85% [18].

Their results show that SIs and dSIs are very promising variables to use in training data for

the RF model. Hultquist et al. [15] and Ramo et al. [17] used similar techniques and were

able to show that RF could outperform many other algorithms like multiple regression,

SVM, SVR, and ANN. Meng et al. [16] preferred a hybrid approach including multiple

datasets with the multispectral satellite data — including LiDAR and Thermal infrared

to generate more SIs and endmembers that represent burned vegetation. Although their

classification accuracy of 84% looks promising, the use of external data sources beyond

a single satellite platform can be complicated and will require many preprocessing and

co-registration steps to align the different data sources. Most of the work is done manually

rather than automatically [18].

2.1.2.5 Other algorithms: Many other algorithms were also explored in burn

severity classification. ANN, SAM, multiple regression, and C5.0 to name a few [14],

[15], [17]. ANNs are a composed of simple processing units and are designed like neurons

interconnected in a brain. Petropoulos et al. [14] uses a multi-layered feed-forward ANN

with a logistic activation function to delineate burn area and classify other land cover types

from Landsat imagery in ENVI software. This is compared to SAM which is a spectral

classifier that can determine similarity in image spectra by calculating the angles between

them. Small angles indicate high similarity and large angles indicate low similarity [14].

ANN had an accuracy of 90.29% overall and outperformed SAM which had 83.82% [14].
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Table 3: Classification Algorithms and Results

Name ML
algorithms

Cross-
validation Accuracy

G.P. Petropoulous et
al. [13] SVM N/A 95.76%

overall

G.P. Petropoulous et
al. [14]

ANN;
SAM N/A

95.29%
overall;
83.82%
overall

C. Hultquist et
al. [15]

Multiple
regression;
RF; SVR;

GPR

Grid search,
empirical

Bayes

0.54 RMSE;
0.28 RMSE;
0.38 RMSE;
0.39 RMSE

R. Meng et al. [16] RF N/A 84% overall

R. Ramo et al. [17] RF; SVM;
ANN; C5.0 N/A

0.42 CE, 0.43
OE; 0.17 CE,
0.81 OE; 0.05
CE, 0.75 OE

L. Collins et al. [18] RF 16-fold 87% overall

According to Hultquist et al. [15], multiple regression is typically a commonly used

algorithm for non-linear prediction on predictor variable like CBI. Compared to RF, SVR,

and GPR, it had the worst performance [15]. An almost unheard-of algorithm in burn

severity classification, C5.0, is used by Ramo et al. [17] as it can estimate the probability

of burned area. C5.0 uses a gain ratio criterion to select important attributes during tree

construction. It outperformed SVM and ANN and was able to have good performance

similar to RF [17].

2.2 Damage Assessment Methods

Damage assessments report the losses after an accident or natural disaster. They

estimate what can be restored, and how much time and cost it will take for recovery. This

helps the government, first-responders, insurance companies, and others to help evacuate,

shelter, and replace what is lost [19]. For the focus of this study, building and structure
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damage assessments will be explored to report on the estimated number of damaged and

destroyed buildings in residential areas.

2.2.1 Map Visualization

In the following sections, building damage assessment visualization methods via

image-based and vector-based will be reviewed. Most current building damage assessment

techniques are for earthquakes rather than wildfires. However, the methods described

by [11], [20]–[24] will be applicable for wildfires as well.

2.2.1.1 Semantic segmentation: Georeferenced raster data can provide for a way

to visualize results from semantic segmentation. A damage assessment study by Trekin et

al. [20] uses VHR imagery from DigitalGlobe’s OpenData program that provides pre- and

post-fire images in December 2017 of the Thomas Fire that occurred in Ventura, Santa

Barbara, California. Trekin et al. [20] prepared training data from Open Street Map’s

(OSM) building layer and Google Map’s imagery that is 3-band with just a visible range

of red, green, and blue channels. From the OSM vector, they create a 1-band pixel mask

which is a picture of white pixels (building) and black pixels (no buildings). A semantic

segmentation approach for change detection with CNN is trained on Google pre- and

post-fire aerial images and OSM building pixel mask to make predictions on whether the

building pixels have changed after the wildfire [20]. For visualization they used a semantic

segmentation image map that shows that the black pixels as non-damaged buildings, gray

pixels as damaged buildings, and white as everything else [20]. Using raster can be a good

way to represent the map visual of whether buildings are destroyed or not; but with poor

classification performance, some pixels may be randomly guessed which causes buildings

to be disproportionate and have no clear separability between each other. This can be

seen in the result after testing the pre-trained CNN on DigitalGlobe’s Open Data images

when some buildings are either misclassified, merged with another building next to it, or

show irregular shape [20, Fig. 3(a)]. Building vectors may be better suited for showing
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(a) semantic segmentation (b) color-coded building polygons

(c) dasymetric map

Fig. 3: Map visualization examples for damage assessments. Source: [11], [20], [21].

the results of what buildings have been harmed or destroyed without ever changing the

shape of the original building polygon.

2.2.1.2 Color-coded building polygons: Using color-coding on building polygons

is the most popular of the visualization methods for building damage assessment [11], [22]–
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[24]. It is the most intuitive to implement and easy to interpret. This kind of visualization

is a good example of using both remote sensing data and vector data of building polygon

data. Ye et al. [11] uses a Quickbird image (4-band with 0.61m resolution) after an

earthquake in Yushu, China in 2010 and a vector of 101 buildings to provide the visual. A

quick classification is done with LGOE to classify and color the buildings as damaged

(red) and undamaged (blue). Buildings incorrectly classified are labelled as commission

error (yellow) and omission error (purple) [11, Fig. 3(b)].

Their method had 86% overall accuracy when correctly classifying the damage status.

Similarly, Sofina and Ehlers [22], [23] uses a Quickbird image over the same area but

uses a Canny edge detector and grey co-ocurrence matrix to select buildings that have

high frequency. Both k-means and k-NN is then used to perform a binary classification to

label building vectors as intact or destroyed, giving them 78% and 84% overall accuracy.

Guida et al. [24] demonstrates the use of Synthetic Aperature Radar (SAR) with building

vector data. They perform a Coherent Change Detection algorithm to get point locations

of changes within the images. The points are then intersected with the building polygons

in order to classify as destroyed, highly damaged, moderately damaged, or negligible to

slight damage [24]. Use of color-coding is very simple and can be used with a satellite

image of the event as a base overlay. Building polygons will work well with small scale

maps, however, may not be able to be visualized on larger scale maps. It may be necessary

to provide an aggregated visual of the buildings at larger map scales like pie chart maps

or thematic maps.

2.2.1.3 Thematic maps: The use of thematic maps can represent the number of

damaged buildings within a geographical area. Miura et al. [21, Fig. 3(c)] provides a

dasymetric map visual to represent the number of buildings that were destroyed during

an earthquake in Metro Manila, Philippines in the year 2001. From IKONOS imagery,

they came up with a time-series based land cover classification using edge detection
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and a hybrid simulation method to get the capacity spectrum. It is unclear how the

damage ratio is determined from their methodology, but it is multiplied to the number of

buildings in each pixel (about three buildings per pixel) in order to get a heatmap-like

result [21, Fig. 3(c)]. They were able to determine that about 180,000 buildings were

destroyed. This method avoids the need of requiring a complete building vector data in

order to produce a map. Miura et al. [21] points out that GIS data of buildings are not

always up to date and available in many regions, as Manila had only 280,000 buildings

in their 1987 GIS data whereas in 1989 it is estimated to have 910,000 buildings. So, it

is important to continue to update the geodatabase of buildings in order to use it for a

damage assessment.

Semantic segmentation, building polygons, and thematic maps are all good visualiza-

tion techniques that can be useful for wildfire damage assessments. Rasters with semantic

segmentation can provide a map visual but may not be easy to provide as a layer for

WebGIS as they will typically need to be converted to web map tiles. Building vector

layers can be for web map services and desktop GIS programs since it represents discrete

data and is aesthetically pleasing. Vector layers also keeps the shape of the building

polygons without ever altering it. Building vectors are not always available in every

country or region. Hence, thematic maps can be a good replacement if there is no building

vector data. However, it can provide an estimate of the number of buildings that have been

destroyed in a wildfire.
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3 TECHNICAL APPROACH

This chapter proposes the methods for assessing wildfire damage using high spatial

resolution EO satellites. Fig. 4 gives an overview of the steps taken to make a wildfire

damage assessment and will be discussed in the following chapters 4–5.4. First, Chapter 4

will discuss which satellite sensors and images were used for the experiments. Second,

Chapter 4.3 will discuss the image preprossessing methods and methods to transform the

data into objects to label for supervised learning. Next, several supervised machine learning

algorithms will be compared in three separate burn severity classification experiments:

binary classification, multi-class classification, and multi-class classification with Spark

MLLib in chapters 5.1–5.3. Finally, providing a solution to visualize the map with GIS

methods in Chapter 5.4.

3.1 Three Experiments: Binary, Multi-class Classification, and Spark

In this project, the three experiments for binary, multi-class classification, and multi-

class classification with Spark are explored as possible ventures for determining burn

severity with high resolution EO satellite imagery. The first experiment’s goal is to see

if it is possible to determine separability between things that are burned by the fire and

things that are not. The multi-class classification burn severity experiment is to understand

the predictive ability of the models for various land usage types and its ability to detect

the burned regions.

In the third experiment, the feasibility of using Spark MLLib for determining burn

severity is also explored. Apache Spark is well known for its fast and efficient distributed

data processing on Big Data. It is based off of the MapReduce distributed processing

framework that can split data into chunks to distribute and to parallelize the computations

across the cluster. Spark is made faster than MapReduce by caching data in memory

and runs multi-threaded tasks in Java Virtual Machine (JVM) processes [25]. Spark

is very suitable for handling Big Data at sizes larger than a petabyte. Spark MLLib
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Fig. 4: Methods for the wildfire damage assessment.

makes use of the distributed data processing for training machine learning algorithms at

scale [25]. Although the data used in this project is not large enough to be considered

as Big Data, Spark should still be considered in any machine learning project involving

copious amounts of EO data. This project will demonstrate a proof-of-concept using Spark

for multi-class classification and determine if the algorithms and tools provided by MLLib

will be sufficient for determining burn severity.
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Fig. 5: The four steps taken in each experiment. Only the Spark experiment will go
through first three steps.

In chapters 5.1–5.3, the steps taken to evaluate the binary classification and multi-class

classification models will be the same for all three experiments as shown in Fig. 5. All

models will be measured by their cross-validation performance and their test accuracy,

precision, recall, and F1-scores. In the fourth step, the model that has the maximum

precision score will be hyperparameter tuned. Only the third experiment with Spark will

not be hyperparameter tuned.

3.2 Python Modules

Throughout the duration of this project, the Python programming language is used as

it provides the most useful modules for geospatial data analysis. The following modules

are used in this project:

• Scikit-Learn: a free software library providing an extensive set of tools for data

mining and data analysis and is built on NumPy, SciPy, matplotlib, and joblib. This

project uses many of its provided supervised learning algorithms such as random

forests, SVM, k-NN, and multi-layer perceptron (MLP). Scikit-Learn also provides

tools for k-fold cross-validation and hyper-parameter tuning via exhaustive grid

search. Scikit-Learn does not provide many strategies for scaling for Big Data as

most of the models will learn from data that fits on the main memory and only can

do multi-core parallelism using the CPU [26].

• Scikit-image: a free collection of image processing algorithms. This project uses the

SLIC segmentation algorithm, regionprops, and morphology libraries [27].
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• Pyspark: the Python library for Spark. This utilizes Spark’s functionality of running

independent processes on a cluster of nodes. Pyspark MLLib also provides a variety

of classification algorithms and grid search for parameter tuning [28].

• Pandas and Geopandas: an open-source library with DataFrame objects for data

manipulation with integrated indexing. The geospatial version, Geopandas, allows

for storing Shapely geometry objects, such as Polygons, Points, and LineStrings [29].

Geopandas can read and write any vector files like GeoJSON and ESRI Shapefiles.

• Geospatial modules

– Shapely: used to create Polygons.

– Pyproj and Fiona: used for projecting Shapely geometries into a new spatial

reference.

– Rasterio: used for reading in satellite images and store as NumPy array objects.

This supports any raster data extensions like GeoTIFF.

– GDAL: used for translating image data into Byte and perform a linear contrast

stretch.

– Rasterstats: used for the zonal statistics function to overlay Shapely polygons onto

a raster image and returns the specified statistic.

3.3 Development Platform

3.3.1 Local Desktop

During the first few stages of the project, this enviornment was used for data collection,

data preprocessing and transformation, and for the first experiment on binary classification.

This setup had the following specifications:

• Windows 10 x64-based

• Intel Core i7 processor

• 16 GB RAM

• NVIDIA GeForce GTX 970M
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3.3.2 AWS EC2 for Scikit-Learn

For the machine learning stages of the project, AWS EC2 instances were used for

cross-validating models, hyperparameter tuning, and for creating the predictions for

map visuals. Joblib multi-core processing was utilized for maximum efficiency of the

provided hardware in the EC2 instance. For cross-validation and hyperparameter tuning

the following system is used:

• EC2 Type: c5.9xlarge

– 36 virtual CPUs

– 72 GB memory

– EBS-optimized storage

Then for making the predictions for the map visuals, the following EC2 instance was used:

• EC2 Type: c5.24xlarge

– 96 virtual CPUs

– 192 GB memory

– EBS-optimized storage

3.3.3 AWS EC2 for Spark

Lastly, a Spark cluster with a master and slave node was created on AWS EC2 instances

by an open-source tool called Flintrock. Data files used for Spark MLLib is stored in the

Hadoop Distributed File System (HDFS). Each node had the following specifications:

• EC2 Type: m5ad2xlarge

– 8 virtual CPUs

– 32 GB memory

– EBS-optimized storage
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4 DATA COLLECTION AND PROCESSING

Many commercial EO satellite sensors provide VHR images at spatial resolutions

0.31m–2m [30]. When collecting the satellite image data, some criteria were kept in mind.

According to Satellite Imaging Corporation [30], many high resolution EO satellites in

orbit today sense the visible and near-infrared (VNIR) portion of the electromagnetic

spectrum between wavelengths 450nm–950nm. Most commercial satellites offer one

panchromatic band and four multispectral bands: blue, green, red, and near-infrared.

Another motivation to use VHR commercial satellites is their ability to image the same

area at a high temporal frequency between one to three days. In this section, the Areas of

Interest (AOI) and satellite sources will be selected given the following criteria: images

must be of recent fires with the highest number of destroyed structures, images must have

four VNIR bands, and the satellite sensor have frequent revisit times.

4.1 Areas of Interest

In this project, two California wildfires were used as the AOIs. The Camp Fire in Butte

County, the most destructive fire to date, burned about 149,000 acres of land and destroyed

18,804 buildings. This fire lasted between the dates November 8, 2018 to November 25,

2018 [3]. As this is quite a large area, most of the experiments were done over the city of

Paradise. The selected satellite images over Paradise were used for the data creation and

machine learning phases of the project.

The second AOI is the Tubbs fire of the October 2017 Northern California fires. This

fire reached across Sonoma, Napa County, Lake, and Santa Rosa County, burned a total of

36,807 acres of land between October 8, 2017 to October 31, 2017. This fire destroyed a

total of 5,643 structures [3]. The AOI selected is mostly centered around Coffey Park in

the city of Santa Rosa and is used in an experiment in Chapter 5.4 to verify if the trained

classification model has good predictability in an urban area.
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4.2 Satellite Sources

4.2.1 WorldView-3

WorldView-3 is a commercial high resolution EO satellite that offers up to spatial

resolutions of 31cm. DigitalGlobe (now Maxar Technologies), provides VHR satellite

imagery through their Open Data Program for disaster response [31]. This archive includes

pre-event and post-event imagery of the Camp Fire in 2018 and Tubbs Fire in 2017. Table 4

summarizes the specifications of the WorldView-3 satellite. Although WorldView-3 has an

impressive number of spectral bands, the Open Data Program only provides data from their

satellite sensors in the visible band range: red, green, and blue. All images provided by

DigitalGlobe’s Open Data Program are also processed by orthorectification, atmospheric

compensation, dynamic range adjustment, and pan-sharpening [32]. So by default, each

image has already undergone an image histogram stretch and will be at 31cm spatial

resolution. For this project the images for each AOI were selected:

• Paradise, CA

– Pre-fire image

∗ Date: 9/10/2018

∗ ID: 1040010042A1A800

∗ Data type: Byte

∗ Coordinate System: EPSG 4326

– Post-fire image

∗ Date: 11/25/2018

∗ ID: 10400100455BCD00

∗ Data type: Byte

∗ Coordinate System: EPSG 4326

• Santa Rosa, CA

– Pre-fire image
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∗ Date: 6/21/2017

∗ ID: 105001000A632800

∗ Data type: Byte

∗ Coordinate System: EPSG 4326

– Post-fire image

∗ Date: 10/17/2017

∗ ID: 1040010034141800

∗ Data type: Byte

∗ Coordinate System: EPSG 4326

4.2.2 Sentinel-2

As the goal of this project is to be able to use high resolution EO satellite sensors

in the VNIR spectrum, the need for a near-infrared band is critical in the experiments.

As the DigitalGlobe Open Data Program does not offer a NIR band with their images,

Sentinel-2 NIR images were collected from the Registery of Open Data on AWS [33].

Table 4 describes the specifications of Sentinel-2. Each Sentinel-2 NIR image has a spatial

resolution of 10m and corrected by radiometric and geometric but has no atmospheric

correction [34]. As Sentinel-2 has a revisit time of 5 days, the images chosen must fall

within a week of when the WorldView-3 images were taken. The following images of

each AOI were selected:

• Paradise, CA

– Pre-fire image

∗ Date: 9/7/2018

∗ ID: S2B MSIL2A 20180907T184909 N0206

R113 T10TFK 20180907T224321

∗ Data type: 16-bit unsigned integer

∗ Coordinate System: EPSG 32610
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– Post-fire image

∗ Date: 12/6/2018

∗ ID: S2B MSIL2A 20181206T185749 N0207

R113 T10TFK 20181206T203841

∗ Data type: 16-bit unsigned integer

∗ Coordinate System: EPSG 32610

• Santa Rosa, CA

– Pre-fire image

∗ Date: 6/19/17

∗ ID: S2A MSIL1C 20170619T184921 N0205

R113 T10SEH 20170619T185728

∗ Data type: 16-bit unsigned integer

∗ Coordinate System: EPSG 32610

– Post-fire image

∗ Date: 10/17/2017

∗ ID: S2A MSIL1C 20171017T185401 N0205

R113 T10SEH 20171017T185935

∗ Data type: 16-bit unsigned integer

∗ Coordinate System: EPSG 32610

4.3 Data Processing

This chapter proposes methods for preprocessing and data transformation. The purpose

of these steps is to transform the satellite image data into Shapely Polygon objects that

can be labelled for supervised learning.

4.3.1 Preprocessing

4.3.1.1 Atmospheric compensation: As satellites off-the-sensor are affected by

atmospheric conditions, preprocessing the images is required to remove the haze-like
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Table 4: Satellite Sources Specifications

Satellite Spectral res. Spatial res. Temporal
Freq. Other notes

WorldView-3

Panchromatic: 450–800nm

8 Multispectral
Coastal: 397–454nm

Blue: 445–517nm
Green: 507–586nm
Yellow: 580–629nm

Red: 626–696nm
Red Edge: 698–749nm

NIR1: 765–899nm
NIR2: 857–1039nm

PAN: 0.31m
MS: 1.85m

daily

Altitude:
617km, Orbit:

sun-
synchronous

10:30am
descending

node,
Affiliation:

Maxar
Technologies

Sentinel-2

13 Multispectral
Coastal: 422–464nm

Blue: 426–558nm
Green: 524–596nm
Red: 634–696nm

Veg Red Edge: 689–719nm
Veg Red Edge: 725–755nm
Veg Red Edge: 760–800nm

NIR: 727–939nm
Narrow NIR: 843.7–885.7nm

Water vapour: 924–964nm
SWIR-Cirrus: 1345–1405nm

SWIR: 1519–1705nm
SWIR: 2020-2380nm

C: 60m
B: 10m
G: 10m
R: 10m

R.Edg.: 20m
NIR: 10m

N-NIR: 20m
Water: 60m

SWIRC: 60m
SWIR: 20m

5 days

Altitude:
786km, Orbit:

sun-
synchronous

10:30am
descending

node,
Affiliation:
European

Space Agency

appearance of the images. As mentioned in the previously, the WorldView-3 images

have already been preprocessed but the Sentinel-2 images will need to be touched up. In

Section 2 at page 9, many preprocessing methods were previously defined in the literature

review. For atmospheric compensation on Sentinel-2 images, the European Space Agency
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(ESA) provides a program called Sen2Cor that can be executed on the Sentinel-2 product

in the SAFE format. All Sentinel-2 images for this project were corrected using Sen2Cor.

4.3.1.2 Clip images: The WorldView-3 and Sentinel-2 images do not have the

same spatial extent, so the overlapping regions between the images were used as the

new spatial extent. In the GIS software, ArcGIS Pro, all images were clipped using the

Geoprocessing Clip operation. For each of the images collected over Paradise, its new

spatial extent are the minimum coordinates (-121.693595°, 39.6547937°) to the maximum

coordinates (-121.4990501°, 39.8639716°) in the EPSG:4326 WGS 84 coordinate system.

The same clip operation is also done for the Santa Rosa images where its new spatial

extent is (-122.783466°, 38.408008°) to (-122.694943°, 38.496289°) in EPSG:4326. The

Sentinel-2 images were also projected from EPSG:32610 to EPSG:4326 at this step.

4.3.1.3 Rescale and linear contrast stretch: Using GDAL’s translate utility, the

Sentinel-2 images were converted to the Byte data type and were linearly stretched to the

minimum value (zero) and a hand-selected maximum value between the pre-event and

post-event image. This step is required for the Sentinel-2 images since the WorldView-3

images were already preprocessed by dynamic range adjustment and will need a similar

pixel distribution. Fig. 6 and Fig. 7 demonstrates the pixel distribution of all bands from

the WorldView-3 and Sentinel-2 Paradise images.
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(a) Pre-fire and Post-fire images

(b) Image histograms of red, green, and blue bands.

Fig. 6: WorldView-3 image histograms of Paradise.
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(a) Pre-fire and Post-fire images

(b) Image histograms of the NIR band.

Fig. 7: Sentinel-2 image histograms of Paradise.
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4.3.2 Data Transformation

For extracting features of the satellite images, only the images of Paradise are used

in sampling. The next subsections describe the methods of extracting features by image

segmentation and computing spectral indices.

4.3.2.1 Converting pixels to objects via image segmentation: While taking

advantage of WorldView-3’s high spatial resolution, image processing segmentation

algorithms can be utilized to divide up an image into small areas. For converting the

image into segments, the SLIC algorithm provided by scikit-image is used to cluster pixels

by k-means on the 5-D Lab color space [7]. This segmentation step is only done on the

Paradise pre-fire image.

Fig. 8: SLIC Image segmentation example on Paradise pre-fire image.

Prior to performing SLIC segmentation, the WorldView-3 image is split into 36 image

chunks. Then, a select eight of the image chunks is segmented by SLIC with parameters

n segments set to 5000 and compactness set to 10. The compactness parameter controls the
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color-similarity and proximity between segments and n segments initializes the number

of centers for k-means [7]. This results in a total of 14,086 segments that range in areas

of approximately 750–2,300 square meters in size for each. Fig. 8 shows an example of

SLIC segmentation breaking up a pre-fire image.

4.3.2.2 Vectorize image segments: Using rasterio and Shapely, each image

segment is vectorized into a Polygon geometry and stored into a GeoDataFrame. This

allows for quick indexing on the segment index when adding new features for the dataset.

A preview of this GeoDataFrame is provided in Fig. 9.

Fig. 9: Preview of the intial GeoDataFrame.

4.3.2.3 Feature extraction: Digital numbers (DNs), spectral indices (SIs), and

dSIs were extracted from the segments as features for the dataset. These features were

selected as many burn severity classification algorithms have commonly used them to

train their models as mentioned in Table 2. The steps for extracting features for the dataset

is as follows.

1) Extract WorldView-3 band digital numbers:

For each segment, the mean digital numbers (DNs) are extracted by using Scikit-

Image’s regionprops method and is stored into the GeoDataFrame. This is done for

both the pre-fire and post-fire images of Paradise. A DN is the value of a pixel ranging

from 0 to 255. DNs represent the reflected energy emitted from the ground [35].

2) Extract Sentinel-2 band DNs with zonal statistics:
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Because Sentinel-2 does not have the same spatial resolution as WorldView-3, the

pixel sizes will differ in size and another method to extract the mean pixel value

of a segment will be required. The zonal stats method in the rasterstats library is

used to extract the mean value of the Sentinel-2 pre-fire and post-fire pixels within

each segment. These values are also stored into the GeoDataFrame. Fig. 10 shows

the overlapping vector of the segment on the Sentinel-2 image. Pixels highlighted in

gray are selected and the mean pixel value is used as the new DN.

Fig. 10: Example of regionprops and zonal statistics.

3) Compute SIs:

Lastly, SIs and dSIs of the pre-fire and post-fire image segments are calculated by

the Equations 1 and 2. A total of twelve SIs were created between all combinations

of the image bands. This makes six SIs for the pre-fire image bands and six SIs for

the post-fire image bands. Then six dSIs between the pre-fire and post-fire SIs were

computed and stored into the GeoDataFrame as in Fig. 11.
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Fig. 11: Preview of the complete GeoDataFrame.

4.3.3 Final Dataset

After completing the preprocessing and feature extraction steps, the GeoDataFrame is

then downloaded as an ESRI Shapefile for manual labelling using ArcGIS Pro. This final

dataset has a total of 14,086 samples and 26 features with two target classes:

• 8 bands: red, green, blue, near-infrared mean pixels. There are two VNIR bands for

each pre-fire and post-fire segment. Their DNs are in the range [0, 255].

• 12 SIs: all combinations of spectral indices from the VNIR bands. For example,

Green−Blue
Green+Blue , Red−Green

Red+Green , Red−Blue
Red+Blue , NIR−Red

NIR+Red , etc. There are two for each pre-fire and

post-fire segment. These SIs are based off of Equation 1 where band1 has a higher

wavelength than band2. These SIs range between [-1, 1].

• 6 dSIs: all changes between the SIs from their respective pre-fire and post-fire images

as specified in Equation 2. dSIs range between [-2, 2].

• 1 burn class: this is the first target class where 1 represent a burned sample and 0

represents a non-burned sample.
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Fig. 12: Examples of land class. Photos from WorldView-3 of the Camp Fire.

• 1 land class: this is the second target class with the following land-use classes.

These classes are inspired by the concept of remote sensing’s land-use land-cover

classification and California’s biomes [36]. Examples of each class are shown in

Fig. 12.

– Forest

– Grassland

– Shrubland

– Urban

– Water
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(a) Number of samples in each class.

(b) Bar chart of number of segments per land class.

Fig. 13: Table and bar chart that shows the number of segments per land and burn class.
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5 EXPERIMENTAL DESIGN

5.1 Experiment #1: Binary Classification

For the first experiment, a binary classification using the burn class label is performed

on a variety of classification algorithms provided by the Scikit-Learn library. First, nine

supervised learning algorithms will be compared in a stratified 10-fold cross-validation

and using the results of each test after training. Then, the best model will be hypertuned

by a 5-fold grid search. The dataset in this experiment is split into a train and test set of

67% and 33% respectively. The samples were stratified to ensure balance of the target

class in both the train and test sets:

• Xtrain = 9,437 segments x 26 features

• Xtest = 4,649 segments x 26 features

• ytrain = 6,056 burnt segments + 3,381 not-burnt segments

• ytest = 2,983 burnt segments + 1,666 not-burnt segments

5.1.1 Cross-Validation

Nine base classifiers provided by the Scikit-Learn library are selected for cross-

validation. These include random forests, logistic regression, Gaussian Naive Bayes,

Bernoulli Naive Bayes, stochastic gradient descent (SGD), k-nearest neighbors (k-NN),

decision trees, support vector machines (SVMs), and multi-layer perceptron (MLP) neural

network. Then a stratified 10-fold cross-validation is performed on each model using the

training dataset. Of these base models, only SVM’s n iter parameter is set to 10,000

iterations since training the SVM model had problems with convergence without limiting

the iterations. Scikit-Learn’s SVM base model uses the radial basis function (RBF) kernel.

The accuracy, precision, recall, and F1-score from the 10-fold cross-validation is provided

with their 95% confidence intervals in Table 5 and is sorted by the descending precision

score.
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The top four algorithms with the highest precision are random forests, MLP, k-NN,

and decision trees. These four models show good stability with low confidence intervals.

Random forests has the best performance overall in accuracy, precision, and F1-score.

SVM with the RBF kernel had the worst performance in accuracy and precision. SGD has

volatile confidence intervals across all evaluation metrics and would not be considered

reliable.

Table 5: Cross-Validation Results for Binary Classification

Model Accuracy Precision Recall F1-Score
Random Forests 85.71% ± 1.76% 88.62% ± 1.97% 89.37% ± 2.12% 89.21% ± 1.13%

MLP 84.23% ± 1.97% 87.07% ± 5.33% 91.27% ± 12.15% 87.60% ± 4.27%
k-NN 83.30% ± 1.51% 85.15% ± 1.49% 89.63% ± 3.17% 87.32% ± 1.31%

Decision Tree 80.33% ± 2.20% 84.73% ± 1.22% 84.63% ± 2.43% 84.70% ± 0.89%
SGD 77.06% ± 3.22% 83.71% ± 13.22% 82.40% ± 31.71% 69.25% ± 44.22%

Gaussian Naive Bayes 81.29% ± 1.95% 83.64% ± 2.25% 88.09% ± 2.04% 85.80% ± 1.41%
Logistic Regression 83.13% ± 2.28% 83.60% ± 2.39% 91.73% ± 2.41% 87.47% ± 1.64%

Bernoulli Naive Bayes 76.07% ± 1.92% 75.28% ± 1.84% 93.41% ± 1.41% 83.37% ± 1.15%
SVM 71.09% ± 2.13% 69.71% ± 1.34% 97.21% ± 1.94% 85.71% ± 1.36%

5.1.2 Evaluation

After cross-validation, the remaining test dataset resulted in the evaluation scores

shown in Table 6 on page 39. Although not reported previously in the cross-validation,

the evaluation scores are also provided for SVMs trained with the linear and polynomial

kernel. Each of the model’s confusion matrices are shown in Fig. 23, 24, and 25 in

Appendix A.1. All of the classifiers had correctly predicted 83%–97% of the burnt

segments. However, only random forests, MLP, k-NN, and the decision tree models had

accurately predicted 73%–78% of the non-burned segments. Of these models, random

forests has the best accuracy and precision scores of 85.65% and 88.32% respectively.

Only second to random forests, MLP also has high accuracy and precision scores of

84.94% and 88.24% respectively. SVM with the RBF kernel has the worst in performance

with an accuracy of 71.67%. However, SVM improves to 82.79% with the linear kernel

and 85.31% with the polynomial kernel.

38



Table 6: Binary Classification Evaluation Scores

Model Accuracy Precision Recall F1-Score
Random Forests 85.65% 88.32% 89.47% 88.89%

MLP 84.94% 88.24% 88.30% 88.27%
k-NN 83.54% 85.05% 90.21% 87.55%

Decision Tree 80.38% 85.16% 84.08% 84.62%
SGD 77.26% 81.43% 83.64% 82.52%

Gaussian Naive Bayes 80.43% 82.24% 88.64% 85.32%
Logistic Regression 83.20% 83.12% 92.62% 87.62%

Bernoulli Naive Bayes 75.26% 74.67% 92.99% 82.83%
SVM with RBF 71.67% 70.22% 96.98% 81.46%
SVM with linear 82.79% 82.23% 93.36% 87.44%

SVM with polynomial 85.31% 85.94% 92.19% 88.95%

5.1.3 Hyperparameter tuning

As it is determined from the evaluation that the random forest model has the

best predictability on the binary burn class, the random forest base model parameters

from Scikit-Learn are hypertuned. The steps described in this section are inspired by

Koehrsen’s [37] hyperparameter tuning methods by using the best parameter ranges from

the random search and then applying them to the exhaustive grid search. Using the same

train and test dataset, a stratified 5-fold cross-validation splitting strategy is used for both

random and grid search. First, a random selection of 25 parameters are chosen for the

random grid search with the following parameter grid:

Listing 1: Random search parameter grid
1 {‘n_estimators’: [10, 114, 219, 324, 428, 533, 638, 743,

847, 952, 1057, 1162, 1266, 1371, 1476, 1581, 1685,
1790, 1895, 2000],

2 ‘max_features’: [‘auto’, ‘sqrt’, ‘log2’],
3 ‘max_depth’: [10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100,

None],
4 ‘min_samples_split’: [2, 5, 10, 15, 100],
5 ‘min_samples_leaf’: [1, 2, 5, 10],
6 ‘bootstrap’: [True, False]}
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Then, a new parameter grid is hand-selected by the best parameter sets from the random

search with precision scores of more than 80%. The exhaustive grid search is performed

on 480 possible combinations of parameters from the following grid in Listing 2:

Listing 2: Grid search parameter grid
1 {‘n_estimators’: [200, 650, 1100, 1550, 2000],
2 ‘max_features’: [‘auto’, ‘sqrt’],
3 ‘max_depth’: [55, 70, 80, 90],
4 ‘min_samples_split’: [5, 10],
5 ‘min_samples_leaf’: [1, 2, 5],
6 ‘bootstrap’: [True, False]}

After the grid search, the random forest model with the highest precision score is selected

with the best parameters as follows in Listing 3:

Listing 3: Best parameters from grid search

{‘bootstrap’: False, ‘max_depth’: 55,
‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 2,
‘min_samples_split’: 5, ‘n_estimators’: 200}

The best random forest model had an accuracy of 87.4% (+/- 1.2%), a precision score

of 88.6% (+/- 1.0%), a recall score of 92.3% (+/- 1.0%), and a F1 score of 90.4% (+/-

0.9%). Fig. 14 shows the improvements of the evaluation scores from the base models

to the models selected by the random and exhaustive grid search. The selected random

forests model from the grid search improved in accuracy by +1.75% from the base model.

5.2 Experiment #2: Multi-class Classification

In the second experiment, multi-class classification using both the burn class and

land class is performed on Scikit-Learn classification algorithms like in Chapter 5.1. The

target values are label encoded from the combination of both the burn class and land class

starting from 0–8. The dataset is then split 67% for training and 33% for the test and is

stratified. The training set contains 9,437 segments with 26 features and the test set has

4,649 segments with 26 features. Fig. 15 shows the number of samples that are in each

train and test set.
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Fig. 14: Random and grid search results for binary classification.

5.2.1 Cross-Validation

Similarly to Chapter 5.1, this experiment uses the same nine base classifiers from

Scikit-Learn. Table 7 shows the results from multi-class classification on each model using

a stratified 10-fold cross-validation. The evaluation metrics used in this experiment are

overall accuracy, weighted precision, weighted recall, and weighted F1-score.

Fig. 15: The distribution of train and test sets used in multi-class classification.
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Like the binary classification results in Chapter 5.1, random forests remains the top

algorithm with an accuracy of 77.14% and a weighted precision of 76.45%. MLP and

k-NN also remain in the top three. SGD, SVM with the RBF kernel, and Bernoulli Naive

Bayes has the worst performance across all metrics.

Table 7: Cross-Validation Results for Multi-class Classification

Model Accuracy Precision Recall F1-Score
Random Forests 77.14% ± 2.72% 76.45% ± 3.74% 77.35% ± 3.18% 76.47% ± 3.11%

MLP 74.97% ± 3.58% 74.67% ± 3.47% 74.12% ± 3.07% 72.73% ± 3.44%
k-NN 72.96% ± 2.90% 72.30% ± 2.98% 72.96% ± 2.90% 72.41% ± 2.91%

Gaussian Naive Bayes 64.28% ± 2.00% 70.69% ± 1.51% 64.28% ± 2.00% 65.92% ± 1.68%
Decision Tree 69.52% ± 3.23% 69.45% ± 2.68% 69.55% ± 3.21% 69.62% ± 2.65%

Logistic Regression 71.51% ± 2.42% 67.55% ± 2.92% 71.51% ± 2.42% 68.81% ± 2.36%
SGD 53.88% ± 22.54% 65.58% ± 15.00% 60.65% ± 9.54% 50.15% ± 22.64%
SVM 56.42% ± 1.39% 65.14% ± 3.40% 56.42% ± 1.39% 50.73% ± 1.87%

Bernoulli Naive Bayes 61.15% ± 2.82% 57.03% ± 4.37% 61.15% ± 2.82% 56.49% ± 2.54%

5.2.2 Evaluation

In Table 8 on page 43, overall accuracy, weighted precision, weighted recall, and

weighted F1-score are reported for testing the models. The corresponding confusion

matrices in Appendix A.2 are normalized to show the predictions made for the nine

classes. It can be observed that random forests, MLP, k-NN, and decision trees were able

to have some good predictions on the forest, grassland, and water classes. From the results

given in Table 8 on page 43, random forests has the highest overall accuracy and weighted

precision scores of 78.25% and 77.56% respectively. All of the SVM models had the worst

performance with overall accuracies between 25.17%–57.28%. Random forests accurately

predicted 81.7% of the non-burned forest segments and 85.8% burned segments as shown

in Fig. 26(a) on page 67. 83.9% of the water segments were accurate. For the grassland

land class, random forests had classified 76.4% of the burnt segments correctly, however,

not burnt had only 56.1% correct. Lastly, for the urban land class random forests had

predicted 51.1% as burned and 29.3% as not burned.
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Table 8: Multi-class Classification Evaluation Scores

Model Overall
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
F1-Score

Random Forests 78.25% 77.56% 77.82% 77.17%
MLP 77.44% 74.01% 74.45% 73.47%
k-NN 73.39% 72.66% 73.39% 72.85%

Decision Tree 70.51% 70.42% 70.51% 70.45%
SGD 70.25% 67.28% 70.25% 67.47%

Gaussian Naive Bayes 64.68% 72.07% 64.68% 66.64%
Logistic Regression 73.33% 69.25% 73.31% 70.72%

Bernoulli Naive Bayes 63.17% 57.44% 63.17% 58.38%
SVM with RBF 57.28% 65.27% 57.28% 52.10%
SVM with linear 38.72% 44.63% 38.72% 38.43%
SVM with poly 25.17% 41.70% 25.17% 28.05%

5.2.3 Hyperparameter tuning

Since random forests proved to have the best performance, similarly to Chapter 5.1,

the random forests base model from Scikit-Learn are hypertuned using random search

and grid search. Listing 1 on page 39 provides the random grid parameters in which 25

sets of parameters will be randomly selected. Then, the top hand-picked parameters with

weighted precision scores above 80% from the random search produces the following

parameter grid in Listing 4:

Listing 4: Grid search parameter grid
1 {‘n_estimators’: [325, 518, 712, 906, 1100],
2 ‘max_features’: [‘auto’, ‘log2’],
3 ‘max_depth’: [55, 65, 80, None],
4 ‘min_samples_split’: [2, 10],
5 ‘min_samples_leaf’: [1],
6 ‘bootstrap’: [True, False]}

Listing 5: Best parameters from grid search

{‘bootstrap’: False, ‘max_depth’: 80,
‘max_features’: ‘auto’, ‘min_samples_leaf’: 1,
‘min_samples_split’: 2, ‘n_estimators’: 906}
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The best model selected after the exhaustive grid search had an overall accuracy of

79.5% (+/- 1.0%), weighted precision of 79% (+/- 1.2%), weighted recall of 79.5% (+/-

1.0%), and a weighted F1-score of 79% (+/- 1.0%). In Fig. 16, it can be seen that the

overall accuracy of the random forest model improved by +1.25% from the base model

after the grid search.

5.3 Experiment #3: Multi-class Classification with Spark

For the last experiment, the validity of using Spark MLLib for burn severity classifica-

tion is explored. Because Spark datasets like Resilient Distributed Datasets (RDDs) are

of a different data structure than NumPy and pandas, some preprocessing is required in

order to transform the current dataset into a format that is suitable for Spark. For MLLib,

it requires the use of a file format called LIBSVM that represents a labelled sparse feature

vector:

label index1:value1: index2:value2 index3:value3...

Fig. 16: Random and grid search results for multi-class classification.

44



Fig. 17: An example of a single row in the LIBSVM file format.

For this case, label would be replaced with the label-encoded land class 0–8 like in

Chapter 5.2. In the LIBSVM file, there are a total of 26 indices and values for each label

as respective to the dataset shown in Fig. 15 on page 41.

Since Spark MLLib has no functionality to stratify the dataset, four LIBSVM files are

created after using Scikit-Learn’s function train test split. The distribution of the train

and test datasets are shown in Fig. 15. MLLib then reads the LIBSVM file to transform

into its RDD data structure.

As for the remainder of this experiment, a 10-fold cross-validation is performed using

Spark MLLib’s CrossValidator and ParamGridBuilder. Spark MLLib’s CrossValidator can

only perform a grid search so a ParamGridBuilder has to be coupled with it. In order

to simulate a 10-fold cross validation, one parameter is passed to ParamGridBuilder. It

is also important to note that Spark MLLib’s CrossValidator currently has no ability to

stratify the data in each of the k-folds and the avgMetrics function reported the overall

accuracy by default. After performing cross-validation on the training set, the results from

the test will be provided.

5.3.1 Evaluation

Table 9 shows the cross-validation results and evaluation metrics for each model. The

only classification algorithms provided by Spark are random forests, logistic regression,

decision trees, linear SVM, and MLP neural network. MLP has the best overall accuracy

of 73.7% from cross-validation and also has the highest overall accuracy of 75.76% during

the test. Random forests did not perform as well as MLP with an overall accuracy of

73.44%. The “Time (s)” column in Table 9 shows the amount of time it took for 10-fold
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cross validation to finish in seconds. Random forests and decision tree completed the

cross-validation within 30 seconds. Linear SVM took 15 minutes and MLP took about 9

minutes to complete.

Because CrossValidator does not stratify the dataset during k-fold, the results from

Spark did not resemble the results from Scikit-Learn for multi-class classification. The

trained machine learning models in Spark were not used for the map visuals in Chapter 5.4.

Table 9: Spark Cross-Validation and Test Results

Model
CV

Accu-
racy

Time
(s)

Overall
Accuracy

Weighted
Precision

Weighted
Recall

Weighted
F1

Random Forests 69.80% 33.83 73.44% 68.08% 73.44% 70.30%
MLP 73.70% 599.82 75.76% 73.56% 75.76% 74.40%

Decision Tree 71.50% 23.32 73.33% 71.70% 73.33% 72.28%
Logistic Regression 70.51% 41.58 74.49% 70.60% 74.49% 72.12%

Linear SVM 66.41% 929.82 70.72% 67.77% 70.72% 74.40%

5.4 Map Visualizations

For creating the map visuals, a pixel-wise classification of the images from the cities

of Paradise and Santa Rosa are used to predict the burn severity and assess the building

damage. Pixel-wise classification is inspired by the remote sensing method to classify

each pixel in the satellite image by a semantic class. Both the hyper-tuned random forests

model trained on the binary classes and the model from the multi-class classification using

Scikit-Learn are used in the pixel-wise classification. Fig. 18 demonstrates the methods

used to produce the predicted image masks and classified building vectors.

First, Sentinel-2 satellite images were reshaped without aliasing to match the image

dimensions of the WorldView-3 satellite images due to differing spatial resolutions (10m

and 31cm). Then all images were unraveled and spectral indices (SIs) were computed for

every pixel. In this case, the WorldView-3 image of Paradise has a dimension of 39,682

x 46,217 which makes 1,833,982,994 total pixels and 26 features in the new dataset.
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Fig. 18: Pixel-wise classification flowchart.

Then, the image array is chunked into arrays of size 100 and is divided among multiple

processes running in parallel with synchronous execution on an AWS EC2 instance with

96 CPUs. Each subprocess uses the image array chunks as inputs for the trained random

forest model and provides predictions as an image mask. The image masks are combined,

cleaned, and then written to a GeoTIFF raster for the map visual.

Lastly, a California building dataset provided by Microsoft is brought in to create a

map with color-coded building polygons. The building dataset provided by Microsoft is

extracted by using the ResNet34 DNN on aerial images [38]. To classify each building as

damaged or unharmed, zonal statistics by majority vote is used in conjunction with the

building overlay and the binary image mask of the burned and non-burned predictions.

On the AWS EC2 instance with 96 virtual CPUs and 192 GB memory, the Paradise

image with a dimension of 39,682 x 46,217 completed its binary mask in about 2,500

47



seconds (41.67 minutes). For making the multi-class map of land use and burn classes, it

was much slower and took around 14,600 seconds (4 hours) to complete.

5.4.1 Damage Assessment Map of Paradise, CA

The maps in Fig. 19, 20, and 21 are the result of the binary classification and multi-

class classification with the random forest model. Fig. 19 shows a portion of the satellite

image over Paradise with the color-coded buildings as an overlay and a transparent red

layer as the binary image mask of the burn predictions. According to the zonal statistics,

a total of 8,722 buildings were classified as unharmed, 3,798 buildings were damaged,

and 83 were not classified. The results of these statistics are only an approximation as

Fig. 19: Building damage assessment map of Camp Fire.
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the Microsoft US Building Footprints did not include all buildings and the random forest

did not have good predictability on the urban areas as seen in Fig. 20. The binary map

and multi-class map in Fig. 21 do not show the same burn severity extent of the wildfire.

The multi-class raster shows that most pixels were classified as burned forest or burned

grassland but not many areas were considered unharmed by the fire. Some parts of the

city of Paradise were classified as urban, however, most was considered to be part of the

forest. The lakes and the rivers in the image were correctly identified as water.

5.4.2 Burn Severity Map of Santa Rosa, CA

In this final test, the trained random forest model was tested on another wildfire image

of the October 2017 Tubbs Fire in Santa Rosa. Fig. 22 shows the predictions made for the

burn severity map. However, since Santa Rosa is mostly urban, the random forest model

Fig. 20: A closer look at a neighborhood within Paradise.
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Fig. 21: A comparison of two image masks of Paradise. (Left) binary image mask with
burn predictions. (Right) multi-class map.

could not make good predictions. This can be seen in Fig. 22 where the suburban Coffey

Park has been completely destroyed but the predictions are completely off the mark.
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Fig. 22: Post-fire image of Sonoma with binary mask.
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6 DISCUSSION OF RESULTS

Using high resolution Earth Observation (EO) satellite data for determining the

severity of the burn after a wildfire is made possible with machine learning. In the three

experiments, the models were able to predict burn with just the spectral information

between the visible and near-infrared (VNIR) electromagnetic spectrum. This section will

compare the behavior of the classification algorithms on the dataset from the proposed

methods, discuss the results of state-of-the-art methods in burn severity, and comment on

Spark and its potential for damage assessments.

6.1 Comparing Classification Algorithms

This section will discuss the results of the classification algorithms from the ex-

periments. A lot of the machine learning classification algorithm’s performances are

dependent on their data distribution and class separability. Refer to Appendix B to view

the exploratory data analysis for the Paradise dataset.

6.1.1 Random Forests and Decision Trees

Because random forests is the best algorithm for determining burn severity, it is

important to know how this model is able to have good predictability with the dataset of

bands and spectral indices in the VNIR spectrum. First of all, this model is an ensemble

of decision trees, it proves to have better performance than any single decision tree since

it is scalable to high-dimension datasets [39]. Decision trees have the ability to infer

rules and will work well with numerical data like the spectral indices (SIs) [26]. The

decision tree model provided by Scikit-Learn and Spark does not have pruning, so it is

susceptible to overfitting on the majority class. Hence, forest and the grassland classes

had good predictability for both models. Water also had good predictability since water

has the lowest reflectance in near-infrared compared to all other land classes that were

higher. Likely, both models were able to make good decision rules for SIs involving the
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near-infrared band. In Appendix B.1 the pair plots show that the burned urban class has a

cluster within the SIs including the near-infrared band. However, it is interleaved among

the forest land classes so decision rules for splitting the SI features for urban has shown to

make incorrect predictions like in Fig. 26(a) on page 67.

6.1.2 Multi-Layer Perceptron

MLP has the ability to learn non-linear models which is well suited for the object-based

dataset [26]. MLP had comparable results to random forests in terms of performance. The

base model in the second experiment didn’t have many good predictions on the unharmed

urban class, however, the predictions were good for forest, grassland, and water.

6.1.3 K-Nearest Neighbors

The k-nearest neighbors (k-NN) worked surprisingly well on the segments dataset.

Given that the burn class and land classes were separable within many SIs with the

near-infrared band, it is likely that k-NN was able to make its decisions by learning the

instances that were closer together [26]. Scikit-Learn uses five neighbors according to its

default parameter n neighbors.

6.1.4 Naive Bayes

In the experiments involving Scikit-Learn, both Gaussian and Bernoulli Naive Bayes

was tested. Bernoulli had poor accuracy since it is only suitable for discrete datasets,

however, Gaussian has the ability to make good fit on continuous data [26]. Naive Bayes is

also very reliant on its conditional independence between the features. The model showed

low performance in the multi-class classification experiment as many of the SIs and bands

in the visible light range are linearly dependent and correlated as shown in Fig. 34 on

page 77.
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6.1.5 Models with One-vs-Rest and One-vs-One

6.1.5.1 SVM: A lot of burn severity classification algorithms had suggested

using SVM for predicting the burn levels. It is very good with high-dimension datasets

and has a variety of kernels. For multiclass classification, Scikit-Learn uses a One-vs-One

classification model whereas Spark uses One-vs-Rest [26], [28]. SVM could not handle

the class imbalance for multiclass classification.

6.1.5.2 Logistic regression and stochastic gradient descent: Logistic regression

and stochastic gradient descent are both linear models and use the One-vs-Rest scheme

in Scikit-Learn [26]. Both of these algorithms also suffered the class imbalance problem

reporting lower precision scores in multiclass classification.

6.2 Results and Comparisons with Existing Methods

The methods proposed by Petropoulous et al. [13], [14] is the earliest of many burn

severity with classification algorithms and provided the baseline methods for this project.

Petropoulous et al. [13], [14] set up two experiments comparing ANN and a One-vs-One

SVM model using a single post-fire image from Landsat-5 TM (30m spatial resolution).

Similarly to the methods described in [13], [14] the dataset sampled pixels with 5 land

use classes: agricultural, scrubland, forested, urban areas, burn. However, the methods

described in this paper sampled about 1,250 pixels and trained models over a 75% and 25%

train and test split–whereas the dataset in this research project provides 14,086 objects

as samples. So, the results of the evaluation metrics will differ significantly. Reportedly,

Petropoulous et al. [13], [14] were able to get 100% accuracy on their burn area class

for both the SVM and ANN models. Overall, SVM got 95.87% accuracy and ANN

90.29% overall accuracy. Although the results in this research project may seem inferior

in comparison, the models in [13], [14] do not demonstrate how they would behave with

unseen instances.
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Collins et al. [18] provides a very good methodology to train a random forest model

to identify five burn severity classes and compare the results to Normalized Burn Ratio

(dNBR). The data is labelled differently in [18] as they were able to sample pixels

for severity levels between the crown and partial crowns of vegetation. Similarly, they

extracted SI features from the multispectral satellites Landsat-5 TM, Landsat 7 ETM+, and

Landsat 8 OLI/TIRS (15m spatial resolution) for the dataset. A total of 10,855 pixels were

sampled and randomly shuffled into a train and test set split by 70% and 30% respectively.

Using a random forest model with 500 trees, their results 16-fold cross validation report a

91% overall accuracy and their test score reports an overall of 85% accuracy. Their results

from pixel-wise classification outperform the random forest model trained by objects in

this research project. This could mean that using just VNIR bands will not be sufficient

for burn severity classification.

6.3 Thoughts on Spark

Using Spark MLLib is also another potential way of determining burn severity and

providing damage assessments for very large amounts of data (Big Data). Even though

Spark provides a fast and efficient method to train machine learning algorithms, MLLib

currently comes with many limitations. MLLib’s CrossValidator library does not provide

a method to stratify the LIBSVM data during k-fold cross-validation and it is difficult to

make the models improve with a grid search. The Scikit-Learn’s random forest model

trained with stratified samples had better overall accuracy than Spark’s. It could not

provide many of the classification algorithms that you would find in Scikit-Learn, hence

it is impossible to try k-NN and SGD. Multinomial Naive Bayes was also provided in

MLLib, but could not be trained on a dataset that has negative values.

Despite the limitations, it would be very useful to use a distributed system like Spark

to cut down the time it requires to perform pixel-wise classification. It would have been

especially useful when performing the parallel computations to generate pixel masks
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mentioned in the previous Chapter 5.4. Instead of using a 96 CPU machine that takes four

hours to make an 18 billion pixel map, a distributed cluster could provide more virtual

CPUs to complete building the map in much shorter time span.
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7 CONCLUSION AND FUTURE WORK

This research project explored the feasibility of using machine learning classification

algorithms for burn severity and damage assessments with Very High Resolution (VHR)

satellite imagery. With an object-based classification method proposed, it is possible to

utilize the information in the visible and near-infrared spectrum without using shortwave-

infrared for delineating burn scars. Random forests demonstrated its capability to predict

burn and many other land classes like vegetation. However, random forests and other

classification algorithms will need to improve their predictions for burned and damaged

urban areas. Spark MLLib models have shown that they are capable of multi-class

classification for burn severity. However, Spark will need large amounts of data to train

its models in order to justify using it for distributed data processing. The workflow for

creating the map visuals was also presented with a pixel-wise classification approach. This

approach can help provide the building damage assessment by combining both raster and

vector data. With this, it is possible to use VHR imagery as a source for providing post-fire

damage assessments. As images are captured daily, providing this crucial information

quickly to the first responders and other involved parties will help provide disaster relief

in a timely manner after a wildfire has occurred.

In future work, it would be good to see if the random forest model can improve

on predicting the burn severity in urban areas by providing more samples. The random

forest model should also be trained on several images of wildfires from different times

and seasons to ensure that model is robust to different sun angle conditions. It would

also be beneficial to see if the proposed methods in this paper will work on a single

VHR satellite source that provides all four VNIR bands at a high spatial resolution. And

with this high resolution, the image gradients mentioned in the related works on page 7

will be considered as a new spatial feature to see if that can help with improving the

predictions made on the burned urban areas. Lastly, Deep Neural Networks (DNNs) are
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not commonly used in burn severity classification for wildfires. Since the multi-layer

perceptron algorithm showed favorable results for predicting the burn after a wildfire, it

would be worth the venture to try DNN libraries such as Tensorflow and Keras.
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Appendix A

CONFUSION MATRICES

A.1 Experiment #1: Binary Classification Confusion Matrices

(a) Random forests (b) MLP

(c) K-NN (d) Gaussian Naive Bayes

Fig. 23: Confusion matrices with burn class
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(a) Decision trees (b) Logistic Regression

(c) Stochastic gradient descent (d) SVM with rbf

Fig. 24: Confusion matrices with burn class (cont.)
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(a) Bernoulli Naive Bayes

Fig. 25: Confusion matrices with burn class (cont. 2)
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A.2 Experiment #2: Multi-class Classification Confusion Matrices

(a) Random forests

(b) MLP

Fig. 26: Confusion matrices with multi-class

67



(a) K-NN

(b) Gaussian Naive Bayes

Fig. 27: Confusion matrices with multi-class (cont.)
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(a) Decision trees

(b) Logistic Regression

Fig. 28: Confusion matrices with multi-class (cont. 2)
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(a) Stochastic gradient descent

(b) SVM with rbf

Fig. 29: Confusion matrices with burn class (cont. 3)
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(a) Bernoulli Naive Bayes

Fig. 30: Confusion matrices with burn class (cont. 4)
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Appendix B

EXPLORATORY DATA ANALYSIS

In order to understand how the results of the machine learning algorithms behave

with the data, it is best to go back to the roots of the data and understand its statistical

distributions, data dependencies, and class separability. The figures in this section are

based on a 5% stratified subsample of the dataset of objects mentioned in Section 4.3.3.

(a) binary burn class

(b) land use with burn class

Fig. 31: Average Digital Number value of the binary burn class and multi land use class
in each VNIR band obtained from the post-fire Paradise image.
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B.1 Separability of the Classes

First, it is important to verify if the classes are separable between burn and not-burned

classes. Fig. 31 shows the binary and multi class of the average digital number (DN) of

each band in the electromagnetic spectrum. DNs are the 8-bit numbers from 0–255 that

represent the photon energy and radiances recorded by the satellite detector [35]. Since

the burn and not-burnt class has no overlap, it is possible that these two classes will be

separable. In the multiclass case, there is some overlap with the water, burned urban, and

burned forest classes.

The spectral indices (SIs) in the visible and near-infrared (VNIR) range should also

have good statistical distance between their distributions. Fig. 32 shows an example of

the SI of the near-infrared and red bands (aka. NDVI, Normalized Difference Vegetation

Index). As it can be seen, the post-fire image shows that there is separability between the

burned and non-burned classes in NDVI. However, for the dNDVI that takes the difference

between the pre- and post-event image bands do not show an obvious separability.

Fig. 32(a) and 32(c) show the distributions for the land use class with the burn class.

In order to quantify their statistical distance, the M-statistic is proposed by Fornacca

et al. [40]:

M =
µ1 −µ2

σ1 +σ2
(3)

If the value of M is close to 1, it has good separation between the two classes. The

separability is more prominent if M is greater than 1. However, if M is equal or less than

0 then it has poor separation. It can be seen in Table 10 that the SIs within the visible

spectrum have poor separability for the binary burnt and not-burnt class. The SIs with a

near-infrared band have better separability in comparison.

Fig. 33 shows the pair plots of the band values feature space for the post-fire SIs. The

y-axis represents band1 and the x-axis represents band2 in the Equation 1. Feature space
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(a) NDVI of post-image with burn class (b) dNDVI of pre- and post-fire with burn class

(c) NDVI of post-fire with multi class (d) dNDVI of pre- and post-fire with multi class

Fig. 32: Class distributions of NDVI.

Table 10: M-statistics of the burn class for select SIs

SI Name M-statistic
SI nr post 0.51

dSI nr 0.28
SI ng post 0.42

dSI ng 0.29
SI nb post 0.40

dSI nb 0.27
SI rg post -0.45

dSI rg -0.22
SI rb post -0.55

dSI rb -0.28
SI gb post -0.35

dSI gb -0.16

plots are usually nice to see what the spectral indices might be and if there is any way to

distinguish the classes. Any plot that looks linear will likely have an SI value closer to 0
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for all classes. In Fig. 33 all of the SIs with the near-infrared band do not revolve around

0 and are not linear.

B.2 Data Dependencies

Data dependencies are important for some machine learning algorithms that will care

about the independence between features or dependence of the features to the target

class. This section will just cover some of the highlights that can be seen in the Pearson

correlation coefficient heatmaps in Fig. 34. When the coefficient is closer to 1 or -1, this

means there is linear dependence between the features and will be correlated. When the

coefficient is closer to 0, the features are uncorrelated.

In Fig. 34(a) the bands in the VNIR range have high correlation, but the post-fire green

band and red band are uncorrelated to the post-fre near-infrared band (0.24). Fig. 34(c)

shows that the pre-fire SIs are highly correlated to each other whereas the post-fire

SIs are not correlated to each other. Pairs of the SIs with their corresponding pre- and

post-fire values are correlated if involving only the visible bands. However, they are mostly

uncorrelated if they each have a near-infrared band. Fig. 34(b) shows that dSIs that have a

near-infrared band with high correlation. Lastly, Fig. 34(d) shows that all post-fire SIs and

their dSIs with a near-infrared band have a high correlation (-0.31 to -0.38) to the burn

class than SIs with green and blue. On the other end of the spectrum, post-fire SIs with a

red band have a high correlation (0.4 to 0.47) to the burn class.

75



(a) binary burn class

(b) land use with burn class

Fig. 33: Pair plot feature space of post-fire SIs.
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(a) Band values, pre- and post-fire (b) dSIs

(c) SIs, pre-and post-fire (d) Burn target class

Fig. 34: Pearon correlation coefficient heatmaps.
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