Bioinformatics Metadata Extraction for Machine Learning Analysis

Zachary Tom
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Artificial Intelligence and Robotics Commons, and the Bioinformatics Commons

Recommended Citation
DOI: https://doi.org/10.31979/etd.s3ta-b264
https://scholarworks.sjsu.edu/etd_projects/964

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Bioinformatics Metadata Extraction for Machine Learning Analysis

A Project
Presented to
The Faculty of the Department of Computer Science
San José State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science

by
Zachary Tom
December 2020
The Designated Project Committee Approves the Project Titled

Bioinformatics Metadata Extraction for Machine Learning Analysis

by

Zachary Tom

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2020

Wendy Lee, Ph.D. Department of Computer Science
Fabio Di Troia, Ph.D. Department of Computer Science
William Andreopoulos, Ph.D. Department of Computer Science
Next generation sequencing (NGS) has revolutionized the biological sciences. Today, entire genomes can be rapidly sequenced, enabling advancements in personalized medicine, genetic diseases, and more. The National Center for Biotechnology Information (NCBI) hosts the Sequence Read Archive (SRA) containing vast amounts of valuable NGS data. Recently, research has shown that sequencing errors in conventional NGS workflows are key confounding factors for detecting mutations. Various steps such as sample handling and library preparation can introduce artifacts that affect the accuracy of calling rare mutations. Thus, there is a need for more insight into the exact relationship between various steps of the NGS workflow— the metadata- and sequencing artifacts. This paper presents a new tool called SRAMetadataX that enables researchers to easily extract crucial metadata from SRA submissions. The tool was used to identify eight sequencing runs that utilized hybrid capture or PCR for enrichment. A bioinformatics pipeline was built that identified 298,936 potential sequencing artifacts from the runs. Various machine learning models were trained on the data, and results showed that the models were able to predict enrichment method with about 70% accuracy, indicating that different enrichment methods likely produce specific sequencing artifacts.
ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Wendy Lee for her invaluable guidance and continuous support throughout the development of this project. I also extend my gratitude to Dr. Fabio Di Troia and Dr. William Andreopoulos for their advice and feedback. Finally, I would like to thank my girlfriend, family, and friends for their constant support and encouragement throughout my academic endeavour.
TABLE OF CONTENTS

List of Tables .. viii

List of Figures ... x

1 Introduction .. 1
 1.1 Next Generation Sequencing ... 2
 1.2 Variants and Artifacts ... 3
 1.3 Genome in a Bottle ... 4
 1.4 Sequence Read Archive ... 4
 1.5 Metadata .. 4

2 Literature Review- Sequencing Artifacts and Metadata 5
 2.1 Sequencing Artifacts.. 5
 2.1.1 Artifacts as a Confounding Factor ... 5
 2.1.2 Causes of Artifacts .. 6
 2.1.3 Solutions for Artifacts ... 6
 2.2 Lack of Relevant Metadata ... 7
 2.3 Tools for Metadata Extraction .. 9
 2.3.1 Entrez Direct UNIX Command Line Tool 10
 2.3.2 Pysradb ... 11

3 Materials and Methods ... 13
 3.1 SRAMetadataX .. 13
 3.1.1 SRAdb SQlite Package ... 13
 3.1.2 SQLite3 Python Package ... 14
 3.1.3 Python Fire ... 14
 3.1.4 Methods .. 15
 3.1.4.1 __init__ ... 15
 3.1.4.2 download_sradb ... 15
 3.1.4.3 all_sm_lcp ... 15
 3.1.4.4 terms ... 16
 3.1.4.5 keyword_match .. 16
 3.1.4.6 table_info ... 17
 3.1.4.7 query ... 17
 3.1.4.8 srx_sa_lcp ... 17
 3.2 Bioinformatics Pipeline .. 17
 3.2.1 Sequence Download and Conversion 18
 3.2.2 Quality Control .. 18
 3.2.3 Adapter Trimming ... 19
 3.2.4 Mapping to Reference Genome 19
LIST OF TABLES

Table 1. Protocol steps keywords [1] .. 8
Table 2. SRAdb query results [1] .. 9
Table 3. Runinfo metadata table fields searched 10
Table 4. pysradb metadata fields ... 11
Table 5. Chosen SRA run accessions .. 26
Table 6. Confusion Matrix ... 32
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Primary tables of the SRAdb package [1]</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>Components of the bioinformatics pipeline</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>Partial output of terms function search for NA12878 and hybrid/PCR</td>
<td>25</td>
</tr>
<tr>
<td>6.</td>
<td>Experiment page for run ERR1831349 with 'hybrid' and 'NA12878' terms highlighted</td>
<td>26</td>
</tr>
<tr>
<td>7.</td>
<td>FastQC report per base sequence quality graph for run ERR032971</td>
<td>27</td>
</tr>
<tr>
<td>8.</td>
<td>Tab-delimited artifacts file for ERR032971 in the final format ingested by the machine learning pipeline</td>
<td>28</td>
</tr>
<tr>
<td>9.</td>
<td>Excerpt of dataframe containing all artifacts and associated enrichment procedure class</td>
<td>28</td>
</tr>
<tr>
<td>10.</td>
<td>Prediction class balance in the dataset between hybrid capture (HC) and PCR</td>
<td>29</td>
</tr>
<tr>
<td>11.</td>
<td>Counts of the 20 most frequent artifacts</td>
<td>30</td>
</tr>
<tr>
<td>12.</td>
<td>Proportion of hybrid capture vs. PCR for each set of most frequent artifacts</td>
<td>30</td>
</tr>
<tr>
<td>13.</td>
<td>Excerpt of artifacts and their target encoding</td>
<td>31</td>
</tr>
<tr>
<td>14.</td>
<td>Classification report for the prediction</td>
<td>32</td>
</tr>
<tr>
<td>15.</td>
<td>ROC curve for the prediction</td>
<td>33</td>
</tr>
<tr>
<td>16.</td>
<td>ROC curve for the prediction with RFE to 20 features and oversampling</td>
<td>33</td>
</tr>
<tr>
<td>17.</td>
<td>ROC curves for 10-fold cross-validated models</td>
<td>35</td>
</tr>
<tr>
<td>18.</td>
<td>Guidelines for submitting data and metadata to the SRA</td>
<td>42</td>
</tr>
<tr>
<td>19.</td>
<td>Sample SRA experiment submission page</td>
<td>43</td>
</tr>
</tbody>
</table>
Fig. 20. SRAdb package download with status bar. 44
Fig. 21. Submissions that used the NA12878 genome, Illumina HiSeq 2000, whole genome sequencing, and PCR, and contain sm/lcp data. 44
Fig. 22. Query for metainfo about the SRAdb SQLITE database. 44
Fig. 23. Study abstract/library construction protocol data for SRX7949756 and SRX321552. .. 45
Fig. 24. Fields of the experiment table. 45
Fig. 25. Submissions that contain the terms ‘NA12878’ and ‘PCR’. 45
1 Introduction

In recent years there has been an explosion in genetic research and technologies. Companies like 23 and Me have grown at incredible rates, in conjunction with a sudden worldwide fascination with discovering ancestral history and ethnic makeup [4]. Individuals can send a sample of saliva to 23 and Me from which DNA will be extracted and used to discover a wide range of genetic information. Genetic technologies are also used to determine diseases that individuals are more susceptible to and to develop personalized medicine. These advanced insights are made possible through a process called sequencing.

Sequencing is the technique through which a person’s DNA is read. Original sequencing methods from the 1980s to early 2000s were slow and expensive. For example, the Human Genome Project was a worldwide collaboration that for the first time successfully sequenced a single human genome. While it was an immensely important and groundbreaking endeavor, it took over 10 years to complete, lasting from 1990 to 2003 [5]. Clearly, there was a need for a faster sequencing technology, and that need was met through the advent of Next Generation Sequencing in the early 2000s. NGS is a faster and cheaper sequencing technology, capable of sequencing a human genome in just 24 hours. As a result, through the improved sequencing method of NGS, advancements have been made in personalized medicine, genetic disease studies, and more [6], [7].

When using NGS for medical and genetic investigation, scientists are typically looking for mutations, or changes, in DNA. Recently however, research has shown that sequencing errors, also called artifacts, occur frequently in conventional NGS workflows. These artifacts are problematic because they appear to be relevant mutations, while in reality they are artificially produced from steps of the NGS workflow and thus are not relevant. Consequently, artifacts negatively affect scientists’ ability to detect relevant, naturally occurring mutations [8] [9]. Various steps of the workflow can introduce these artifacts. For
example, certain chemical reagents used to extract DNA can cause erroneous mutations to appear, and some methods for preparing DNA for sequencing can cause oxidation that also introduces artifacts [7]. It is important for these artifacts to be accurately detected and removed, because then better personalized medicine can be developed and genetic diseases can be more efficiently predicted and treated. The important question then is which steps of the NGS workflow cause which artifacts to occur?

This question can be answered by applying machine learning algorithms to a dataset consisting of sequencing artifacts and associated metadata that includes sample preparation techniques and library construction protocol data. However, this specific metadata is not easy to obtain. Research has shown that out of all submissions in the NCBI SRA, a small minority report such information. Furthermore, there are no tools capable of extracting the specific metadata relevant to the sequencing artifacts. In this project, a newly developed tool called SRAMetadataX is used to extract the metadata. Then, a bioinformatics pipeline is used to process sequencing data and identifying potential artifacts. Finally, machine learning is applied to demonstrate how the metadata can be used in conjunction with variant calling data to elucidate a relationship between the steps of the NGS workflow and resulting artifacts.

1.1 Next Generation Sequencing

Next generation sequencing is also commonly referred to as massively parallel or deep sequencing [10]. This is because the cardinal speed of NGS is due in large part to its ability to parallelize the sequencing process, drastically decreasing the amount of time required to sequence a sample. Three basic steps define the NGS workflow: library preparation, sequencing, and data analysis [11]. Library preparation is crucial to success and consists of DNA or RNA fragmentation, adapter ligation, and amplification/enrichment (Fig. 1). NGS is also called deep sequencing because genomic regions are sequenced multiple times,
sometimes hundreds or even thousands of times. Deep sequencing is advantageous in that it can better detect rare variants, also called single nucleotide polymorphisms (SNPs).

![Next Generation Sequencing workflow](image)

Fig. 1: Next Generation Sequencing workflow [2]

1.2 Variants and Artifacts

Variants are nucleotide substitutions at a specific position in the genome. They are often SNPs, but only when they are present in 1% or more of a population [12]. Variants are important because they can affect how an individual responds to drugs and pathogens, and how they develop diseases. Artifacts on the other hand, are variants introduced by non-biological processes. They are born from steps of the sequencing workflow, namely sample manipulation and library construction. Artifacts are harmful in that they, if not properly identified and accounted for, can detract from the pool of relevant, naturally occurring variants and mislead analysis [13].
1.3 Genome in a Bottle

Genome in a Bottle (GIAB) is a consortium hosted by the National Institute of Standards and Technology that consists of public, private, and academic groups. GIAB has characterized multiple human genomes for use in benchmarking. By utilizing sequencing data generated from a wide variety of platforms and technologies, they have identified high confidence variant calls and regions [14]. These high confidence variants are ones that developed from natural biological processes, and can be distinguished from sequencing artifacts. Thus, the GIAB data is essential for identifying potential sequencing artifacts.

1.4 Sequence Read Archive

The SRA is a public database that houses DNA sequencing data, most commonly generated by NGS through high throughput sequencing [15]. It was established by the NCBI, and is run in collaboration with the DNA Data Bank of Japan (DDBJ) and the European Bioinformatics Institute (EBI). Since its inception in 2007, the SRA has seen rapid growth in volume of data stored and significance among open access journals [16]. Thus, the SRA has been chosen as the primary resource for metadata extraction and processing for this project.

1.5 Metadata

Various metadata exists for every SRA sequencing run submission. This metadata accompanies the actual sequencing data, which consists of sequences of nucleotides-adenine (A), cytosine (C), thymine (T), and guanine (G) - that make up the DNA sample. Metadata fields include run accession, run date, instrument model, library strategy, sample ID, and more [15]. The fields that are of most interest, however, are design description, library strategy, library construction protocol, instrument model, platform parameters, and study abstract. These fields contain the sample manipulation and library construction protocol steps (if reported) that can produce sequencing artifacts.
2 Literature Review- Sequencing Artifacts and Metadata

In the following sections, the ways in which the relationship between steps of the NGS workflow and consequent sequencing artifacts have been researched are presented. Then, the dearth of metadata is examined and existing tools are surveyed to show the need for a tool that can extract relevant metadata.

2.1 Sequencing Artifacts

2.1.1 Artifacts as a Confounding Factor

Sequencing artifacts affect researchers’ ability to accurately identify rare mutations. They dilute the pool of relevant, biologically occurring mutations with their artificial origins. There are many ways in which sequencing artifacts have been shown to be confounding factors. L. Chen et al. [17] discovered that sequencing artifacts decreased the accuracy of determining low frequency mutations, specifically in tumor-associated cells. In fact, they discovered that artifacts can make up over 70 percent of all discovered mutations, thus making conventional methods for identifying mutations inadequate. In confirmation of L. Chen et al.’s approach, X. Ma et al. [18] tracked the sequencing artifact rate of specific bases and found a substitution error rate of 10^{-5} to 10^{-4}. They found that for nucleotide substitution types of A to C and T to G, error rates hovered in the 10^{-5} range, while for substitution types of A to G and T to C, error rates ranged all the way up to 10^{-4}. In line with L. Chen et al. and X. Ma et al., M. Costello et al. [8] discovered that sequencing artifacts were found at low allelic fractions, specifically novel transversion artifacts of the type C to A and G to T. All approaches surveyed indicate that sequencing artifacts negatively affect the accuracy in determining relevant mutations. This decrease in accuracy prevents optimal diagnosis of disease and production of personalized medicine, and thus it necessitates investigation into the mechanisms that cause sequencing artifacts to occur.
2.1.2 Causes of Artifacts

The NGS workflow is a complicated process with many steps. Due to the rapid nature of the sequencing process that reads through vast amounts of data, there is much room for error to be introduced in the form of artifacts at any step. J. M. Zook et al. [19] found that sequencing artifacts are primarily produced due to physical or chemical agents that are known to cause mutations. This source of artifacts has been most active in specialized samples including circulating tumor DNA and ancient DNA. Contrary to J. M. Zook et al., B. Arbeithuber et al. [6] discovered that sequencing artifacts primarily have their origin in a non-biological mechanism. They identified the origin as being oxidative DNA damage that occurred during sample preparation. Specifically, damage occurred due to acoustic shearing in samples that had contaminants from the extraction process. In partial agreement with B. Arbeithuber et al., B. Chapman et al. [20] determined that in addition to sample handling, multiple other steps of the NGS workflow contribute to the occurrence of sequencing artifacts, including library preparation, polymerase errors and polymerase chain reaction (PCR) enrichment steps. In fact, they found that PCR enrichment resulted in a six-fold increase in the total error rate. Every article reviewed investigated the causes of sequencing artifacts and found the origin to be at least one step of the NGS workflow, if not multiple. The researchers did not claim to have found the sole cause of artifacts, but rather each discovery was a piece of the puzzle that together indicates that many nucleic acid handling and sequencing steps of the NGS workflow are responsible for the occurrence of confounding sequencing artifacts.

2.1.3 Solutions for Artifacts

A wide array of established causes of sequencing artifacts naturally provides motivation for a diverse set of solutions. Proposed solutions range from being cause specific when in relation to a single known artifact origin, to general cures, such as improving sequencing platforms, that will ameliorate the negative effects of many NGS steps. B. Arbeithuber et
al. [6] proposed a specific solution to their discovered oxidative DNA damage origin. Their solution is to introduce antioxidants that reduce overall DNA oxidation. Furthermore, they suggest informatics methods to accurately filter the sequencing artifacts from their data sets. In support of B. Arbeithuber et al., B. Carlson [21] suggests analysis methods that can be used to pinpoint sequencing artifacts in very deep coverage sequencing data. They further detail novel sequence data metrics to use in detection and measurement of said artifacts in the main bioinformatics pipeline, before rare mutations are attempted to be determined. Contrary to the proposed solutions of B. Arbeithuber et al. and B. Carlson, M. A. Depristo et al. [9] suggest general laboratory process changes that can be made to decrease the frequency of sequence artifacts. This includes buffer exchanging all DNA samples into Tris-EDTA buffer as a measure to remove possible contaminants contained in the original buffer. They further suggest post-sequencing analytical methods that can be used to screen out obvious artifacts present in the sequencing data. They propose operations such as applying a universal threshold to remove potential artifacts and the use of a newly designed filter that takes into account artifacts’ unique properties including sequencing read orientation and low allelic frequency.

Overall, in spite of the many opportunities for artifacts to be introduced throughout the NGS workflow, there are many solutions for dealing with the artifacts that all of the surveyed literature proposed. Solutions can be more effective when tied to a specific known cause; however, general solutions that attempt to improve the overall accuracy of the NGS workflow have a wider impact and broader potential application. The latter is the kind of solution developed for this project.

2.2 Lack of Relevant Metadata

Before artifacts can be accurately and efficiently accounted for in sequenced DNA, their origins must be determined. As described in the previous section, it is known that steps of the NGS workflow cause sequencing artifacts, but the exact relationship between
specific steps and the artifacts they cause is mostly unknown. Once these relationships are elucidated, specific steps can be taken to prevent the artifacts from occurring. Thus, the best general solution to dealing with artifacts is to accurately identify their sources. This however, can only be done if the appropriate metadata, such as sample manipulation and library construction protocol data, are provided in conjunction with sequencing data. Unfortunately, submissions to the SRA often do not contain the necessary metadata. The SRA does not require comprehensive metadata to be submitted along with NGS data and has a complicated process for submission that makes it difficult for researchers to quickly upload their data and metadata. See: A.1

A study by J. Alnasir and H. Shanahan [1] investigated the lack of metadata in SRA submissions. The researchers performed queries for keywords associated with essential protocol steps of the sample preparation workflow for NGS. They used the SRAdb SQLite database hosted by Bioconductor, which is a continuously updated database containing all of the metadata in the SRA [22]. Keywords included fell into three categories: fragmentation, adapter ligation, and enrichment, and included words such as 'shear', 'nebulisation', 'adapter', 'kinase', 'pcr', and 'phusion'. The full list of keywords can be seen in Table 1.

Table 1: Protocol steps keywords [1]

<table>
<thead>
<tr>
<th>Fragmentation</th>
<th>Adapter-ligation</th>
<th>Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td>shear</td>
<td>adapter</td>
<td>clone%</td>
</tr>
<tr>
<td>restriction</td>
<td>ligat%</td>
<td>clonin%</td>
</tr>
<tr>
<td>digest</td>
<td>blunt%</td>
<td>vector%</td>
</tr>
<tr>
<td>fragment</td>
<td>phosphorylat%</td>
<td>pcr</td>
</tr>
<tr>
<td>breaks</td>
<td>overhang</td>
<td>amplifi%</td>
</tr>
<tr>
<td>acoustic</td>
<td>t4-pnk</td>
<td>polymerase</td>
</tr>
<tr>
<td>nebulisation</td>
<td>t4</td>
<td>taq</td>
</tr>
<tr>
<td>nebulization</td>
<td>pnk</td>
<td>phusion</td>
</tr>
<tr>
<td>nebuliz</td>
<td>kinase</td>
<td>temperat%</td>
</tr>
<tr>
<td>nebulis</td>
<td>a-tail</td>
<td>thermal%</td>
</tr>
<tr>
<td>sonic</td>
<td></td>
<td>anneal%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>denature%</td>
</tr>
</tbody>
</table>
J. Alnasir and H. Shanahan ran queries for these keywords on various fields of the SRAdb including study abstract, study description, design description, and library construction protocol. These fields correspond to listed sections in a SRA experiment submission page. See: A.2. They found that less than approximately 20% of submissions contained keywords in any one of the three categories of fragmentation, adapter ligation, and enrichment, and only approximately 4% of submissions had annotations for all three. About 50% of all records were found to contain no library construction protocol data whatsoever. A complete overview of results can be seen in Table 2 below.

Table 2: SRAdb query results [1]

<table>
<thead>
<tr>
<th>Field</th>
<th>Fragmentation</th>
<th>Adapter Ligation</th>
<th>Enrichment</th>
<th>All steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>study_abstract</td>
<td>376 (1.27%)</td>
<td>138 (0.47%)</td>
<td>941 (3.18%)</td>
<td>12 (0.04%)</td>
</tr>
<tr>
<td>study_description</td>
<td>292 (0.98%)</td>
<td>136 (0.51%)</td>
<td>488 (1.65%)</td>
<td>53 (0.18%)</td>
</tr>
<tr>
<td>design_description</td>
<td>1,632 (0.34%)</td>
<td>896 (0.19%)</td>
<td>2159 (0.45%)</td>
<td>653 (0.14%)</td>
</tr>
<tr>
<td>lib_construct_protocol</td>
<td>11,705 (2.79%)</td>
<td>6,382 (1.53%)</td>
<td>16,779 (4.00%)</td>
<td>2,691 (0.64%)</td>
</tr>
<tr>
<td>library_selection</td>
<td>1,493 (0.36%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>lib_construct_protocol</td>
<td>29,799 (7.10%)</td>
<td>24,486 (5.84%)</td>
<td>31,782 (7.57%)</td>
<td>17,021 (4.06%)</td>
</tr>
<tr>
<td>experiment_attribute</td>
<td>422 (0.10%)</td>
<td>1,026 (0.24%)</td>
<td>2,814 (0.67%)</td>
<td>129 (0.03%)</td>
</tr>
</tbody>
</table>

Evidently, J. Alnasir and H. Shanahan have shown that the metadata needed to determine the relationship between steps of the NGS workflow and sequencing artifacts is considerably lacking throughout the entire SRA. Despite this deficiency, there are still roughly 85,000 submissions that contain at least some metadata, and approximately 17,000 that contain metadata for all relevant categories. This amount of data is enough to experiment with machine learning algorithms and elucidate a relationship.

2.3 Tools for Metadata Extraction

Not many tools have been developed for metadata extraction. The programs that exist are limited in the scope of metadata they are able to access or only extract predefined partial metadata that the SRA makes readily available.
2.3.1 Entrez Direct UNIX Command Line Tool

Entrez is a search engine developed by the NCBI that searches all databases simultaneously using a single user submitted query [23]. Entrez Direct (EDirect) is a tool that runs Entrez queries from a UNIX command line on machines that have the Perl programming language installed. It provides various functions including ‘esearch’, which performs Entrez searches, ‘elink’ to search links between databases, ‘efetch’ to download database entries, ‘einfo’ for retrieving information on indexed fields, and more [24]. EDirect improves upon the online Entrez portal in that it allows users to programatically search the NCBI databases and perform actions that are not possible when solely using Entrez. EDirect can be used for metadata extraction when the efetch function is called on the runinfo table; however, the metadata it extracts consists of a predefined set of fields that do not cover key sample preparation and library construction protocol steps. Table 3 lists the set of fields searched.

Table 3: Runinfo metadata table fields searched

<table>
<thead>
<tr>
<th>Table</th>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>runinfo</td>
<td>Run, ReleaseDate, LoadDate, spots, bases, spots_with_mates, avgLength, size_MB, AssemblyName, download_path, Experiment, LibraryName, LibraryStrategy, LibrarySelection, LibrarySource, LibraryLayout, InsertSize, InsertDev, Platform, Model, SRAS Study, BioProject, Study_Pubmed_id, ProjectID, Sample, BioSample, SampleType, TaxID, ScientificName, SampleName, g1k_pop_code, source, g1k_analysis_group, Subject_ID, Sex, Disease, Tumor, Affection_Status, Analyte_Type, Histological_Type, Body_Site, CenterName, Submission, dbgap_study_accession, Consent, RunHash, ReadHash</td>
</tr>
</tbody>
</table>

While numerous metadata fields are searched, many correspond to information about the tissue samples from which the DNA was extracted and the traits of the organism from which the tissue samples came. The desired metadata like library construction protocol, study abstract, and sample description is omitted.
2.3.2 Pysradb

Pysradb is a python package developed by S. Choudhary at the University of Southern California [25]. The tool provides a command line interface for extracting metadata from the SRA and for downloading sequence data. It is built upon the SRAdb SQLite database hosted by Bioconductor. While pyrsradb provides easy access to SRA metadata and is comprehensive in the functions it can perform, like Entrez Direct it is limited in the metadata it provides and does not extract the key sample preparation and library construction protocol data that is associated with sequencing artifacts. Testing of pysradb’s metadata function on a SRA submission showed that a limited set of metadata fields are extracted, indicated in Table 4 below.

Table 4: pysradb metadata fields

<table>
<thead>
<tr>
<th>Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>study_accession</td>
</tr>
<tr>
<td>experiment_accession</td>
</tr>
<tr>
<td>experiment_title</td>
</tr>
<tr>
<td>experiment_desc</td>
</tr>
<tr>
<td>organism_taxid</td>
</tr>
<tr>
<td>organism_name</td>
</tr>
<tr>
<td>library_strategy</td>
</tr>
<tr>
<td>library_source</td>
</tr>
<tr>
<td>library_selection</td>
</tr>
<tr>
<td>sample_accession</td>
</tr>
<tr>
<td>sample_title</td>
</tr>
<tr>
<td>instrument</td>
</tr>
<tr>
<td>total_spots</td>
</tr>
<tr>
<td>total_size</td>
</tr>
<tr>
<td>run_accession</td>
</tr>
<tr>
<td>run_Total_spots</td>
</tr>
<tr>
<td>run_total_bases</td>
</tr>
</tbody>
</table>

Furthermore, pysradb does not allow users to dictate terms to search for within the collection of metadata. This means that specific fragmentation methods or library prep kits for example cannot be searched for, thus eliminating the possibility of identifying submissions based on specific sample manipulation/library construction protocol methods or tools. Additionally, users have no say in the kinds of metadata extractions they can
perform, and are limited to using the provided metadata function. Consequently, a tool that provides the ability to extract a broader range of metadata fields, enables users to search for specific terms, and allows users to customize extraction queries, would allow for more kinds of research to be conducted.
3 Materials and Methods

In this chapter, the resources used to construct SRAMetadataX for metadata extraction, the bioinformatics pipeline for identifying artifacts, and the machine learning model for determining a relationship are described. Details on the processes by which these components have been developed are also provided.

3.1 SRAMetadataX

SRAMetadataX, short for SRA metadata extractor, is a python program that provides a command line interface for extracting metadata from the SRA. The tool abstracts the complexity of querying a database for specific fields and combinations of terms, while providing a comprehensive set of well documented methods that cover a broad range of functionality. Most importantly, SRAMetadataX enables extraction of key sample manipulation and library construction protocol data. SRAMetadataX is available for download on Github [26].

3.1.1 SRAdb SQLite Package

SRAMetadataX utilizes the curated SRAdb SQLite database hosted by Bioconductor. SRAdb contains all of the metadata in the SRA, and is continuously updated to include new submissions [22]. It was developed by J. Zhu and S. Davis of the National Cancer Institute at the NIH. The data is derived from the SRA XML data that the NCBI makes available for download. The database contains a collection of tables including, 'fastq', 'sra', and 'metaInfo', but the primary tables are 'study', 'run', 'experiment', 'sample', and 'submission' as seen in Fig. 2 [1]. SRAMetadataX uses these primary tables as the sources for metadata extraction. In order to run SRAMetadataX, users must have the SRAdb package installed on their machine, so automatic installation has been implemented.
3.1.2 SQLite3 Python Package

The SRAdb package is a SQLite database, so in order to extract data from it, SRAMetadataX uses the sqlite3 python module written by G. Haring. The SQL interface provided by sqlite3 is compliant with the Python Enhancement Proposal 249 database API specification [27].

3.1.3 Python Fire

Python Fire is a library that provides functionality for generating a command line interface from python components [28]. Although not an official Google product, it was developed by D. Bieber at Google Brain and is now an open source project. SRAMetadataX uses Fire to implement its command line interface.
3.1.4 Methods

SRAMetadataX is comprised of methods that interface with the SRAdb metadata package, along with auxiliary functions for download and installation. They operate by constructing and executing SQL queries based on user input to allow for flexibility while abstracting complexity. The core methods are described in detail in the following sections.

3.1.4.1 __init__

Upon initialization, SRAMetadataX attempts to connect to the SRAmetadb.sqlite file provided by the SRAdb package. If it does not find the database in the current directory or if the user has not previously entered a path to the database, SRAMetadataX prompts the user to download it or enter a path. After the location of the database has been determined, whether through download or an entered path, the program connects to the database and sets the cursor for executing queries. If a path was entered by the user, the path is saved for future use.

3.1.4.2 download_sradb

If the SRAmetadb.sqlite file is not found and the user chooses to download the database when prompted, this function is called. Alternatively, users are able to call the function manually at any time, but an error will be raised if the database is found to already exist. The function first attempts to download the database from an Amazon Web Services S3 bucket; if that download fails, it attempts to download from the NIH. While the file is downloading, a status bar is provided to indicate progress. Once downloaded, the file is extracted and a simple query for metadata about the database file is run to verify it works.

3.1.4.3 all_sm_lcp

This function returns submission accessions for all SRA experiments that contain sample manipulation/library construction protocol data. Additionally, users can submit a term or list of terms that submissions also need to contain. For example, a user could pass the term "Illumina" to the function so that results are first narrowed down to runs
sequenced using an Illumina platform. Then, that set of entries is narrowed down to only ones that contain sample manipulation/library construction protocol data.

3.1.4.4 terms

Terms searches the database for submissions that contain all user provided terms. It searches the following columns: 'title', 'study name', 'design description', 'sample name', 'library strategy', 'library construction protocol', 'platform', 'instrument model', 'platform parameters', and 'study abstract'. Essentially, it searches any field that could possibly contain data linked to the occurrence of sequencing artifacts. Some fields allow for free-form text entry, so these blocks of text are searched for the occurrence of the keywords at any point. Users can enter a single term, a list of terms, or the path to a file containing terms. The function returns run accessions by default, but can also return study accessions if the user specifies to.

3.1.4.5 keyword_match

The keyword match function enables users to extract keywords from metadata based on a predefined list of terms. Relevant keywords include parameters such as the fragmentation method, enrichment step, reagents used for DNA extraction, library prep kit, sequencing platform, and more. It is important that these keywords are extracted accurately and consistently so they can later be used as features for machine learning analysis. The more uniform the parameters are between artifacts, the more accurately the model will be able to elucidate a relationship between the parameters and artifacts. Keyword_match ensures relevant parameters are extracted accurately and uniformly by matching text against a list of keywords. Users can enter a csv file that dictates keywords per category (fragmentation methods, reagents, platforms), or use the predefined set provided by SRAMetadataX. Users are required to provide a list of submissions to perform keyword matching on. This list can be generated via other functions such as 'all_sm_lcp' or 'terms'. Doing so enables users to narrow down the set of entries to ones that have desired characteristics, such as a
specific genome. Results are returned in a csv file and saved to a SRAMetadataX specific "parameters" table in the sqlite database.

3.1.4.6 table_info

The table info function returns information about the sqlite database tables. If no parameter is passed, it returns all tables contained in the database. Users can specify a table name to get a list of all fields contained within the table.

3.1.4.7 query

The query function allows users who have experience with SQL to enter a custom query. It provides greater flexibility in situations where none of the provided methods are able to perform a unique task a user wants. Additionally, the method is used internally by other functions of SRAMetadataX. Users can access the database scheme easily in order to construct the query by using the 'table_info' function.

3.1.4.8 srx_sa_lcp

This function extracts study abstract and/or library construction protocol data for an SRA experiment or list of experiments. Users can specify the type of data they want to extract. A sample use case would be to first narrow down entries to ones that contain sample manipulation/library construction protocol data and a specific term using the all_sm_lcp function. Then, results can be passed to srx_sa_lcp to extract the desired data.

3.2 Bioinformatics Pipeline

In order to identify sequencing artifacts from the SRAMetadataX extracted sequencing runs, a bioinformatics pipeline was developed. Given a list of run accessions, it produces a variant calling file containing probable sequencing artifacts for each run. The script can be executed on a compute cluster and submitted to multiple nodes to be run in parallel. The file is available on Github and only requires slight modification to paths to be run on any machine or cluster [26]. An overview of the pipeline is illustrated in Fig. 3 below. The actions performed and tools used are described in the following sections.
3.2.1 Sequence Download and Conversion

The first step of the pipeline is downloading sequencing runs. This action is performed by using the ‘prefetch’ function of the SRA Toolkit. The SRA Toolkit is a collection of libraries and tools from the NCBI for accessing and converting data housed in the SRA [29]. The runs are then converted into a usable format called FASTQ, via the fastq-dump function of the toolkit. FASTQ is a format used for encoding nucleotide sequences and associated quality scores. It is text-based, with the sequence bases and quality scores encoded using a single ASCII character [30].

3.2.2 Quality Control

Before proceeding further, the raw sequencing data needs to be evaluated for quality to identify any problems to be aware of. This is accomplished by using FastQC, a tool developed by S. Andrews of Babraham Bioinformatics that runs analysis on next generation sequencing data [31]. Reports are generated that can be viewed in a web browser.
3.2.3 Adapter Trimming

Next, adapters are trimmed from sequencing reads. In the process of NGS library preparation, adapters are ligated to DNA fragments to allow them to attach to the flow cell lawn for eventual sequencing. Adapter sequences need to be removed from reads because they can interfere with downstream analyses, including reference genome alignment [32]. Adapter trimming is done using Trimmomatic, a tool developed by A. Bolger et al. that can handle both single-end and paired-end data [33].

3.2.4 Mapping to Reference Genome

In the process of high throughput sequencing, many short reads are generated that represent fragments of the original DNA sequence. Thus, the reads need to be mapped to a reference genome in order to build the full sequence and identify variants. In this pipeline, mapping is performed by a tool called BWA, short for Burrows-Wheeler Aligner. BWA maps sequences against large reference genomes, such as the human genome [34]. For this project, the Genome Reference Consortium Human Build 38 (hg38) was used as the reference genome.

3.2.5 Variant Calling

Next, variant calling is performed. This is the process by which the newly constructed sequence and the reference genome are compared, and differences are identified. These differences are the variants, and results are stored in a variant calling file (vcf). Variant calling is conducted by using bcftools, a set of variant calling utilities that are a part of the SAMtools suite, written by H. Li [35]. It is important to note that at this point, it is unknown whether identified variants are naturally occurring mutations or sequencing artifacts.

3.2.6 Variant Filtering

In the final step of the pipeline, variants are filtered against GIAB high confidence calls. GIAB has produced browser extensible data (BED) files that contain the chromosome
coordinates of biologically occurring variants by analyzing data generated from a diverse set of platforms and methods. A package called BEDTools developed by A. Quinlan et al. is used to determine the intersection between generated variants and GIAB high confidence regions, and then bcftools is used to extract only the variants that differ from the GIAB calls [36]. These variants are likely sequencing artifacts. Generated variants that do not intersect with the GIAB calls cannot reliably be identified as artifacts, because they may be biologically occurring variants that have yet to be confidently characterized.

The data undergoes post processing as the last step of the script. This processing includes converting the vcf files to a tab-delimited format for easier ingestion by the machine learning pipeline. It is done by using a package called VCFtools hosted on Sourceforge. VCFtools provides a set of methods for working with variant calling data in vcf file formats [37]. The vcf-to-tab function outputs abnormal column names, so simple bash functions were used to correct the columns.

3.3 Machine Learning Pipeline

After metadata was extracted from specific sequencing runs using SRAMetadataX and their artifacts identified via the bioinformatics pipeline, machine learning was applied to the data to elucidate a relationship between the artifacts and sample manipulation/library construction protocol parameters. To facilitate model development and enable reproducibility, the machine learning pipeline was developed in a Jupyter notebook and is available on Github [26]. The dataset, components of the pipeline, and models developed are discussed in the following sections.

3.3.1 Data Description

The dataset consists of artifactual variant calls produced by the bioinformatics pipeline that differ from the GIAB high confidence calls. The variant calling files contain three columns: chromosome, position, and reference allele/alternate allele. The reference allele
is the nucleotide/sequence of nucleotides that the GIAB characterized genome contains, and the alternate allele is that of the sequencing run that differs from the reference.

3.3.2 Data Pre-Processing

The data is imported into a Pandas data frame for use in the machine learning pipeline. Pandas is a python library developed by W. McKinney for data manipulation [38]. Each variant calling file is imported separately, and additional columns are added and populated with user defined numerical values associated with each sample manipulation or library construction protocol parameter. The three original columns of the variant calling file are combined into one, because the chromosome, position of the artifact on the chromosome, and artifact itself together make up one data point. Finally, all data frames are combined into a single data frame.

3.3.3 Data Evaluation

Before training a model and running prediction, the data is evaluated in order to determine quality and explore patterns. First, the level of redundancy in the dataset is examined. Every sequence read run consists of a set of unique artifacts. Between sequencing runs, there should be a number of repeat artifacts to indicate a pattern that can be potentially attributed to sample manipulation / library construction protocol variables. Next, the balance between classes is evaluated. There needs to be as much balance amongst prediction classes as possible in order to reduce bias towards one prediction over the other. If there is an imbalance, oversampling can be conducted. Finally, the data is visualized to further evaluate quality. The n most frequent artifacts found in the dataset are determined to see if any are a good predictor of the outcome variable, operating under the assumption that the more frequently an artifact appears, the more likely it has a specific cause. A histogram is generated to visualize artifact frequencies, and a stacked bar graph is produced that indicates the proportion of each of the n frequent artifacts that falls
into each prediction class. All graphs were generated using Matplotlib, a python plotting library developed by J. Hunter et al. [39]. The data for the experiments conducted for this project is presented in the results section.

3.3.4 Baseline Model

The machine learning approach that is best suited for elucidating a relationship between sequencing artifacts and sample manipulation/library construction protocol parameters is supervised learning. This is because supervised learning maps an input to an output based on labeled input-output pairs, and all of the data used for this project is labeled, whether it’s the sequencing artifacts or sample/library parameters. Classification and regression algorithms are supervised learning approaches, and between the two categories classification is better suited to the problem at hand. Given a sequencing artifact, the goal is to identify to which of a set of sample manipulation/library construction protocol categories the artifact belongs, or in other words classify it. Regression algorithms on the other hand, seek to predict a continuous outcome variable based on the values of input variables.

Potential classification algorithms include logistic regression, support vector machines, k-nearest neighbors, random forest, and more. All of these algorithms were used for analysis in this project, but for the first experiment conducted logistic regression was used, and was chosen for its ease of implementation and short training time, and later 10-fold cross validation showed it to perform as well as all the others. A logistic regression model predicts discrete values, and is best suited for binary classification. It uses the logistic function as its transformation function, where the function is seen in Equation 1 and its sigmoid curve is shown in Fig. 4.

\[h(x) = \frac{1}{1 + e^{-x}} \]

(1)
Fig. 4: Standard logistic sigmoid function [3]

The output, h(x), represents probabilities and thus lies within the range of 0 to 1. A threshold is applied to force calculated probabilities into a binary classification.

For the experiments, the enrichment class of library construction protocol steps was investigated. Metadata was extracted for sequencing runs that used the NA12878 GIAB characterized genome and performed either PCR or hybrid capture for target enrichment. Thus, the two prediction classes for the logistic regression model were PCR and hybrid capture. The training data was the variant calls, each consisting of the chromosome, position of the call on the chromosome, reference allele, and variant allele. The variant calls are categorical data, so they were encoded to transform them into numerical values recognizable by the logistic regression model. For model training and prediction, the Scikit-learn library was used. Scikit-learn is a python machine learning library developed by D. Cournapeau that provides implementations for classification, regression, and clustering algorithms [40].

3.3.5 Performance Evaluation

To evaluate the performance of the logistic regression model, a confusion matrix was built using the Scikit-learn metrics package. A confusion matrix depicts the number of
correct and incorrect predictions divided over the two prediction classes. Additionally, a classification report was generated to determine precision, recall, and the F1 score.

Precision is a measure of the proportion of positive test instances correctly identified by the model and is defined as the number of true positives over the total number of positives (Equation 2).

Recall evaluates the ability of the classifier to accurately identify positive test instances and is defined as the number of true positives over the number of true positives plus false negatives (Equation 3).

F1 is the harmonic mean of precision and recall and is defined as 2 times the product of precision and recall over the sum of precision and recall (Equation 4). A good F1 score is indicative of both a good precision and good recall value.

\[
P = \frac{TP}{TP + FP} \tag{2}
\]

\[
R = \frac{TP}{TP + FN} \tag{3}
\]

\[
F1 = 2 \left(\frac{P \times R}{P + R} \right) \tag{4}
\]

Finally, a receiver operating characteristic (ROC) curve was generated and the area under the curve (AUC) was calculated. The ROC curve computes the ratio of the true positive rate to the true negative rate and evaluates how well the classifier is able to separate the prediction classes. The closer the AUC is to 1, the better the classifier is able to distinguish the classes. All results are presented in the following chapter.
Chapter 4: Results

4 Results

In the following sections, results from extracting metadata with SRAMetadataX, producing artifacts with the bioinformatics pipeline, and applying machine learning are presented and discussed.

4.1 SRAMetadataX Performance

Every function of SRAMetadataX was thoroughly tested to ensure viability. Sample output for each core function can be viewed in Appendix B. The tool was able to extract all relevant metadata fields queried with execution time between 30 seconds and 5 minutes. Functions such as 'all_sm_lcp' and 'terms' that search the entire SRAdb took the longest to complete, but that behavior was expected since the SRAdb package is over 30 gigabytes in size.

The main function used for the experiments conducted was 'terms'. The SRAdb was searched for submissions matching the terms 'NA12878, hybrid' and 'NA12878, PCR'. Fig. 5 shows a snapshot of the results. In Fig. 6, the SRA experiment page for submission ERR1831349 is displayed with the terms highlighted to validate the accuracy of the results.

Fig. 5: Partial output of terms function search for NA12878 and hybrid/PCR
Out of each list of run accessions returned, four were chosen for artifact detection and are listed in Table 5.

Table 5: Chosen SRA run accessions

<table>
<thead>
<tr>
<th>Hybrid Capture</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERR1831349</td>
<td>ERR032972</td>
</tr>
<tr>
<td>ERR1905889</td>
<td>SRR1620964</td>
</tr>
<tr>
<td>ERR1905890</td>
<td>ERR1679737</td>
</tr>
<tr>
<td>ERR1831350</td>
<td>ERR032971</td>
</tr>
</tbody>
</table>

4.2 Identifying Artifacts

The pipeline successfully processed the eight chosen sequencing runs and generated variant calling files consisting of suspected artifacts. Quality control checks using FastQC
showed good quality raw sequence data. An example per base sequence quality graph from the FastQC report is shown in Fig. 7 for run ERR032971. As expected, the quality of the sequence drops towards the end, likely due to the sequence adapter. Thus, adapter trimming is performed next using Trimmomatic in order to reduce bias in downstream analysis.

![Per base sequence quality graph](image)

Fig. 7: FastQC report per base sequence quality graph for run ERR032971

Variant calling files initially included auxiliary fields such as unique identifier, Phred-scaled quality score, and applied filters. These fields were dropped during conversion to tab-delimited format. A snapshot of the final variant calling file for ERR032971 consisting of suspected artifacts is shown in Fig. 8.
4.3 Application of Machine Learning

4.3.1 Data Pre-Processing

Each tab-delimited artifacts file was imported as a Pandas dataframe, and the associated hybrid capture/PCR class was added as a binary column ‘y’, with hybrid capture labeled as 0 and PCR labeled as 1. The dataframes were concatenated and cleaned up for readability. An excerpt from the final dataframe is seen in Fig. 9. The total number of artifacts in the dataset was 298,936.
Thus, the categorical input variable consisted of the chromosome, position, reference allele, and artifact allele, and the binary predict variable consisted of the target enrichment procedure- either hybrid capture or PCR.

4.3.2 Data Exploration

The dataset was evaluated for redundancy, and it was found that 192,157 of the 298,936 artifacts are unique- approximately 64%. This means that about 36% of the dataset consists of artifacts that occur two or more times across various sequencing runs, indicating that they are less likely chance occurrences. Next, the dataset was evaluated for prediction class balance, and it was found that 151,042 artifacts originated from DNA enriched through hybrid capture and 147,894 from PCR (Fig. 10). Thus, the classes are well balanced and oversampling was not required.

![Fig. 10: Prediction class balance in the dataset between hybrid capture (HC) and PCR](image)

Finally, the data was evaluated for artifact frequency operating under the hypothesis that the more frequently an artifact appears, the more likely it has a specific cause. The 20 most frequent artifacts are shown in Fig. 11. The distribution of enrichment procedure amongst each group of most frequent artifacts is shown in Fig. 12.
Chapter 4: Results

Fig. 11: Counts of the 20 most frequent artifacts

Fig. 12: Proportion of hybrid capture vs. PCR for each set of most frequent artifacts
Based on the results, these artifacts appear to be a decent predictor of enrichment protocol step. There is a slight bias for hybrid capture among the majority of frequently occurring artifacts, except in the case of five which are close to a 50% distribution.

4.3.3 Encoding

One-hot encoding was first attempted, but resulted in a kernel crash likely due to the high cardinality of the artifact feature that required too much memory. Thus, target encoding was used instead. With target encoding, categorical values are replaced with the mean of the target variable. The first five artifacts of the dataset and their encoded value are displayed in Fig. 13.

<table>
<thead>
<tr>
<th>CHROM</th>
<th>POS</th>
<th>REF</th>
<th>ALT</th>
<th>y</th>
<th>CHROM</th>
<th>POS</th>
<th>REF</th>
<th>ALT</th>
<th>Encoded</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr10</td>
<td>169950</td>
<td>AC</td>
<td>CA</td>
<td>0</td>
<td>chr10</td>
<td>170475</td>
<td>AA</td>
<td>ATGA/AAATGA</td>
<td>0.491958</td>
</tr>
<tr>
<td>chr10</td>
<td>2171125</td>
<td>CT</td>
<td>CTTT</td>
<td>0.023332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr10</td>
<td>239537</td>
<td>TTGT</td>
<td>TTGTGT</td>
<td>0.059643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr10</td>
<td>277066</td>
<td>GTTTTT</td>
<td>GTTTTT</td>
<td>0.241475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 13: Excerpt of artifacts and their target encoding

4.3.4 Model Training and Prediction

The dataset was split into train and test blocks with a ratio of 70% train and 30% test. Because the data consists of only one feature, the artifacts, it was reshaped so that the logistic regression model could ingest it. After training, prediction was performed on the test set with a threshold of 0.5, and an accuracy of 70% was achieved.

4.3.5 Performance Evaluation

The confusion matrix for the prediction is seen in Table 6. It shows that 62,465 correct predictions were made, and 27,216 incorrect predictions were made.

The classification report is shown in Fig. 14. The average precision score indicates that when an artifact is predicted to have been produced via PCR, it is correct about 74% of the time. The average recall score indicates that for all the artifacts actually produced
via PCR, 70% have been correctly identified. The accuracy indicates that of the entire test set, 70% of the predicted enrichment methods were the enrichment method used to produce the corresponding artifact.

![Table 6: Confusion Matrix](image)

<table>
<thead>
<tr>
<th>n = 89681</th>
<th>Predicted: HC</th>
<th>Predicted: PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual: HC</td>
<td>21858</td>
<td>23475</td>
</tr>
<tr>
<td>Actual: PCR</td>
<td>3741</td>
<td>40607</td>
</tr>
</tbody>
</table>

The ROC curve is shown in Fig. 15. The AUC of 0.70 indicates that the model is able to distinguish between PCR and hybrid capture 70% of the time. It is within the 0.7 - 0.8 range, so not outstanding but acceptable. An AUC of 0.5 corresponds to a model with no skill that makes purely random predictions. Thus, the results obtained indicate that the model is able to identify enough of a pattern in the dataset to make non random predictions.

4.3.6 Experiment 2

In experiment 2, one hot encoding was attempted by reducing the cardinality of the artifacts feature. The dataset was cut down to the 3000 most frequent unique artifacts for a total of 15,776 artifacts. Then one hot encoding was performed. Next, recursive feature elimination (RFE) was conducted in order to reduce the 3000 features to the 20 best performing ones. After applying logistic regression, a slightly increased accuracy of
71% was achieved, but with an AUC of 0.49, indicating failure on the models part to be able to distinguish between PCR and hybrid capture. The ROC curve is shown in Fig. 16. Even after reducing to 100, 500, and 1000 features, a similar AUC was always obtained.

Furthermore, the model was never able to accurately predict PCR. This was likely due to imbalance among the prediction classes, because after being reduced to the 3000
most frequent artifacts there was a new imbalance among the prediction classes with approximately 11500 hybrid capture and 4500 PCR. Thus, oversampling was performed using the Synthetic Minority Oversampling Technique which at a high level creates synthetic samples from the minority class by randomly choosing one of the k-nearest neighbors for an observation and using it to create a similar, but randomly tweaked, new observation \[41\]. After oversampling there was a balance of 7933 artifacts for each of hybrid capture and PCR. Then, RFE was performed to cut the data down to 20 features, but a lower accuracy of 0.28 was achieved with an AUC of 0.49, and this time no correct hybrid capture predictions were made. Possibly with more data than just the 3000 most frequent artifacts the model would have done better, but 3000 was about the maximum the kernel could take for one hot encoding before crashing. So for the rest of the experiments target encoding was used.

4.3.7 Experiment 3

In experiment 3, multiple classification models were tested including k-nearest neighbors, support vector machine, random forest, and multilayer perceptron. For each model 10-fold cross validation was performed in order to estimate its skill. By doing cross-validation, an estimate was made for how each model would perform on unseen data. Results of cross validation showed all models to have an accuracy of 69% +/- 1% except for the k-nearest neighbors model which achieved an accuracy of 66% +/- 5%. The AUC of each model saw an improvement over previous experiments, as seen in Fig. 17. All had an AUC of 0.77 except the k-nearest neighbors model which obtained an AUC of 0.76. These AUCs indicate that the models were able to effectively distinguish between hybrid capture and PCR.
Fig. 17: ROC curves for 10-fold cross-validated models
5 Conclusion and Future Work

5.1 Conclusion

In this project, a tool called SRAMetadataX has been developed that provides a command line interface for easy and comprehensive extraction of SRA metadata, including sample manipulation and library construction protocol steps. The tool was used to identify sequencing runs that utilized the GIAB characterized NA12878 genome and hybrid capture or PCR for enrichment. Eight runs were chosen from the set and fed to a bioinformatics pipeline to identify 298,936 potential sequencing artifacts. Machine learning models were built and trained on the data to elucidate a relationship between enrichment method and sequencing artifacts. Review of the results showed that the models were able to predict enrichment method with about 70% accuracy, indicating that different enrichment methods likely produce specific sequencing artifacts.

5.2 Future Work

Future work can be done to improve upon SRAMetadataX and the machine learning application. SRAMetadataX would benefit from a method of quality control to ensure that the identified experiments that contain desired parameter keywords have actually used the parameters for their intended purposes. This could be done by reporting the section of surrounding text for each parameter to the user. Alternatively, natural language processing (NLP) could be implemented for more advanced verification of intended use. NLP could also be experimented with as a method for keyword matching.

Further application of machine learning will help to elucidate the relationship between sample manipulation and library construction protocol steps and the artifacts they cause. The main objective of this project was to develop a tool that could extract rare metadata that other existing tools can not. Thus, the application of machine learning in this project was a proof of concept, and further experimentation with more data would likely result in
higher accuracy and insight. Additionally, it would be beneficial to conduct an experiment in which all of the sequencing runs that have a specific artifact are amalgamated, and machine learning is applied to see if any of the various sample manipulation/library construction protocol variables seem to be a good predictor of that artifact.
References

Appendix A

Sequence Read Archive

A.1 SRA Submission Guidelines

Fig. 18: Guidelines for submitting data and metadata to the SRA.
A.2 SRA Experiment Page

SRX9252086: Homo sapiens B lymphocytes
1 ILLUMINA (Illumina HiSeq 2500) run: 941.1M spots, 282.3G bases, 107.3Gb downloads

Design: The sample used in the project is NA12878 cell line DNA that has not been amplified, and has been

Submitted by: South-East University

Study: Genome-wide identifying of G-quadruplex structures directly by whole-genome resequencing

Sample: Genome-wide identifying of G-quadruplex structures directly by whole-genome resequencing

Library:
- **Name:** CGCGGT+CTACCGCT
- **Instrument:** Illumina HiSeq 2500
- **Strategy:** WGS
- **Source:** GENOMIC
- **Selection:** RANDOM
- **Layout:** PAIRED

Runs: 1 run, 941.1M spots, 282.3G bases, 107.3Gb

<table>
<thead>
<tr>
<th>Run</th>
<th># of Spots</th>
<th># of Bases</th>
<th>Size</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR1278281S</td>
<td>941,079</td>
<td>282.3G</td>
<td>107.3Gb</td>
<td>2020-10-07</td>
</tr>
</tbody>
</table>

Fig. 19: Sample SRA experiment submission page.
Appendix B

SRAMetadataX Function Output

B.1 download_sradb

![Image of SRAdb package download with status bar.](Fig. 20: SRAdb package download with status bar.)

B.2 all_sm_lcp

![Image of command output.](Fig. 21: Submissions that used the NA12878 genome, Illumina HiSeq 2000, whole genome sequencing, and PCR, and contain sm/lcp data.)

B.3 query

![Image of command output.](Fig. 22: Query for metainfo about the SRAdb SQLite database.)

B.4 srx_sa_lcp

B.5 table_info

B.6 terms
Appendices

Fig. 23: Study abstract/library construction protocol data for SRX7949756 and SRX321552.

Fig. 24: Fields of the experiment table.

Fig. 25: Submissions that contain the terms ‘NA12878’ and ‘PCR’.