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ABSTRACT 
 

Cloud computing and cloud-based hosting has become embedded in our daily lives. It is 

imperative for cloud providers to make sure all services used by both enterprises and consumers have 

high availability and elasticity to prevent any downtime, which impacts negatively for any business. To 

ensure cloud infrastructures are working reliably, cloud monitoring becomes an essential need for both 

businesses, the provider and the consumer. This thesis project reports on the need of efficient scalable 

monitoring, enumerating the necessary types of metrics of interest to be collected. Current understanding 

of various architectures designed to collect, store and process monitoring data to provide useful insight 

is surveyed. The pros and cons of each architecture and when such architecture should be used, based 

on deployment style and strategy, is also reported in the survey. Finally, the essential characteristics of 

a cloud monitoring system, primarily the features they host to operationalize an efficient monitoring 

framework, are provided as part of this review. While its apparent that embedded and decentralized 

architectures are the current favorite in the industry, service-oriented architectures are gaining traction. 

This project aims to build a light-weight, scalable, embedded monitoring tool which collects metrics at 

different layers of the cloud stack and aims at achieving correlation in resource-consumption between 

layers. Future research can be conducted on efficient machine learning models used on the monitoring 

data to predict resource usage spikes pre-emptively. 

 

Index Terms - Cloud computing, cloud monitoring, cloud metrics, container runtime (CRI), guest 

operating system (OS), hypervisor, infrastructure as a service (IaaS), key performance index 

(KPI), multi-tenancy, operating system (OS), platform as a service (PaaS), software as a service 

(SaaS), system information gatherer and reporter (SIGAR), Time-Series Database (TSDB), virtual 

machine  
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I. INTRODUCTION 

 
The National Institute of Standards and Technology’s (NIST) definition of 

cloud computing includes certain characteristics [1], one of which is Measured 

Service. It is important to understand what measured service is and why it is needed. 

The services to be measured need metrics to be defined for that purpose. NIST 

defines a metric as “knowledge about a cloud property through both its definition 

(e.g., expression, unit, rules) and the values resulting from the measurement of the 

property” [4]. 

As enterprises and consumers use the cloud more and more [2], cloud 

providers need to provide certain Service Level Agreements (SLA) to their 

customers. These SLAs can be bound legally if an enterprise is purchasing the 

service. To provide SLA, the cloud service provider must define the metric, such 

as uptime of a service and make sure the uptime does not fall below a certain 

threshold [3]. However, the cloud is a complex environment with multiple layers, 

and customers can have various requirements for monitoring their services. A 

customer, running serverless workloads in the cloud would be interested in 

response times, service uptimes and connections being made to their applications, 

whereas a customer using Infrastructure-as-a-service (IaaS) would be interested in 

monitoring workloads, CPU, memory and storage utilizations. As a cloud service 

provider, this becomes an increasingly complex problem on how to provide 
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monitoring information in multiple levels. In spite of having multiple stand-alone 

monitoring tools built by several cloud providers in the market, there is the lack of 

a single service-based monitoring tool in the market which can integrate with the 

middle-stack of multiple cloud providers. Also, in spite of large data provided by 

the monitoring tools, we do not see any predictive machine learning models 

implemented which can predict usage or billing which can be immensely helpful 

for businesses that have high activity in seasonal times, for example, Christmas, or 

Thanksgiving. The information gathered from monitoring is extremely important 

and forms the basis for multiple decisions in terms of operational cost planning and 

preemptive billing forecasting for a cloud service provider, as well as, consumer. 

[5] 

Padhy et al. states that current monitoring systems for the cloud are not 

resilient and do not have a trust boundary for data access. Assuming Byzantine 

failure model, the paper discusses on how state model replication will allow the 

system to endure arbitrary faults, yet recover and continue working. The paper 

proposes a publish-subscribe mechanism for event handling which can be 

trustworthy. “Trust” has been covered in two ways: primarily authenticated 

information, and secondly, reliable information. [16] Authenticated information 

alludes to the fact that, data coming from the IaaS layer is indeed correct and is 

coming from the correct reporter. The reliability aspect is more specific to the data 
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integrity itself and that the data is correctly marked and tenanted. However, if a 

major failure does happen at the IaaS layer, Veeraraghavan et al. proposes a system 

to mitigate such failures through traffic management. This is one of the ways a 

service provider can act if their data centers hosting cloud infrastructure are failing. 

The paper describes how continuous verification and dependency management 

handles such when the failures occur. [17] The impact of such failures on highly 

available and distributed systems running in scaled data centers are explored in the 

paper presented by Yuan et al. Such services are most commonly exposed at the 

PaaS layer and is an integral requirement for cloud architects to define as they are 

designing their environments. [18] 

This literature survey focuses on exploring the categorizations of monitoring 

metrics in Section II, popular architectures pertaining to monitoring solutions in 

Section III, inferring essential characteristics for any cloud monitoring solution in 

Section IV, and thereby determining the final conclusion from the literature survey 

in Section V. The literature survey answers these questions: How different are 

monitoring metrics of specific importance for different cloud consumers and 

providers? What are the different monitoring architectures and the trade-offs 

between them? What are the essential features of cloud monitoring systems? This 

survey uses references from published papers and conference proceedings. Fig. 1 

shows the organization of the literature survey. 
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Fig. 1. Organization of literature survey 
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II. METRICS 

Before we start monitoring, it is imperative to understand what to monitor. 

As mentioned previously, monitoring happens at multiple layers of the cloud model 

which can be application, network, middle-ware or physical. The literatures 

surveyed mention monitoring done at different layers with metrics that can be 

broadly classified as: 

A. Workload-based: These KPIs (Key Performance Index) measure cloud 

workloads based on application level metrics. Shao et al. [6], Tovarňák et al. [8] 

both developed agent-based systems to monitor at the Software-as-a-Service 

(SaaS) layer where they mention KPIs such as response time between services, 

Inter Process Communication (IPC) response time, number of thread counts, 

number of I/O (Input/Output) computations, etc. Moses et al. proposes a new 

kind of abstracted metric by utilizing the basic IPC metric and assigning weights 

to it for each VM or workload for which the IPC is monitored. To analyze the 

success or failure of VM migration due to shared resource contention, Moses et 

al. incorporates the QoS (Quality of Service) value of the ith workload/VM and 

the corresponding IPC, and measures the Qos-Weighted throughput 

performance metric. [15] 

B. Compute-Based: Tovarňák et al. [8], Alhamazani et al. [2], Rodrigues et al. [3] 

focus on monitoring at IaaS/ Platform-as-a-Service (PaaS) layer mentioning 
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metrics as system uptime, disk throughput, storage I/O, CPU usage, CPU 

allocations, memory usage, memory allocations, virtual machine creation and 

release times. 

C. Network-Based: Dhingra et al. [9], Tovarňák et al. [8], Alhamazani et al. [2], 

Rodrigues et al. [3] mention the metrics to measure the status of network 

connectivity which focus on packet counts, link throughput, Network Interface 

Cards (NIC)/vNIC interface statuses. 

D. Events: Dhingra et al. [9], Calero et al [11], Rodrigues et al. [3] mention events 

sent by cloud components, which primarily are asynchronous changes that take 

place at IaaS/PaaS layers. The authors use these events to trigger workflows or 

make certain decisions based on correlation of the data being sent by the events 

and the data being collected by metric monitoring 
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III. ARCHITECTURES 

Once the KPIs or metrics are defined on what to monitor, an architecture is 

required in how the monitoring is to be achieved. NIST has provided a standard 

literature around the “Cloud Services Metric Model” or “CSM”, which provides 

the definitions and descriptions for how metrics should be and how their values can 

be determined. However, to determine the value, a metric need to be collected, 

stored and calculated upon to provide such information. Collection of monitoring 

data takes a few specific architectures: 

A. Centralized: Shao et. al [6] developed a centralized architecture by employing 

a monitoring tool in each VM which sends the runtime information to a central 

database and monitoring agent. Shao et al. employed a server-agent style 

architecture where a monitoring agent is deployed on each virtual machine 

which is equipped with different monitoring facilities like Hyperic’s System 

Information Gatherer and Reporter (SIGAR) cross-platform API (Application 

Programming Interface), JVM (Java Virtual Machine) agent, Filters, and JMX 

interface. SIGAR API is used to provide runtime information about the 

infrastructure regardless of their platforms, JVM agent monitors the health of 

JVM, Filters intercept messages passed to and from the monitoring device and 

thus help to understand the interacting behavior between users and services. The 

technique of service probing where the monitoring code is embedded with target 
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code is also employed. This information is then instantiated to an abstraction 

called the runtime model for cloud monitoring (RMCM) which is then 

validated, and if flagged, an alarm is sent to the central monitoring center. 

Huang et. al [7] employed a push and pull algorithm for a centralized hub-spoke 

model where change of status between “producers” and “consumers” are being 

tracked continuously. For the push phase, the producer is the initiator and it 

sends out status information when it detects a change in degree greater than the 

threshold called User Tolerant Degree (UTD). For the pull-phase, the consumer 

is the initiator and requests the producer for a status update. The abstraction 

service that provides a control-plane to program and manage the producers and 

consumers based on programmer’s intent is centralized. Both architectures 

assume a single point of aggregation of all data, which is simple to implement 

and provides data across the different layers of the cloud model. Moses et al. 

focuses on monitoring shared resource contention, especially Last-Level Cache 

(LLC), and aims at improving the overall datacenter throughput via VM 

migration while maintaining the SLAs. The approach proposed is called MIMe 

(Monitor Identify and Migrate), in which VMs suffering due to resource 

contention are identified and prioritized for migration to achieve improved 

weighted throughput. Moses et al. employs a centralized architecture where a 

centralized policy server collects the cache occupancy of each VM and acts as 
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a scheduler to identify candidates for migration. [15] Centralized architectures 

can take advantage of existing methods, like polling of collection of data and 

storing them easily in a singular place. The literatures also point out that a major 

disadvantage of a centralized paradigm is scalability. As more cloud services 

are spun up or horizontally scaled, the amount of data generated can be quite 

overwhelming. It also introduces a single point of failure, wherein if the 

centralized monitoring service fails, then the monitoring for the whole cloud is 

stopped until the service is back up again. 

B. Embedded: Tovarňák et. al [8] developed an embedded model by employing 

an event- based daemon called Ngmon at the core of the guest operating system 

of each VM which listens on an UNIX domain socket and collects data across 

all layers. Dhingra et. al [9] developed an architecture with one Dom0 agent per 

physical host, and a VM agent per VM both communicating with the metric 

collector. Both of these models do not assume any aggregation point. Instead, it 

is a direct generation of the monitoring data. The central principle of both of 

these architectures is agents or scripts within a code which sends data back. The 

“agents” provide real time information as code or services are executed and 

provides immensely granular data with details. The major disadvantage is that 

as agents reside inside the guest OS (Operating System) or hypervisor, there are 

many compatibility and portability considerations to take care of. The survey 
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finds that the Dom0 agent [9] can work only with Xen hypervisor, and Ngmon 

agent [8] can work only in Linux based environments. In spite of this 

disadvantage, the embedded monitoring is one of the best ways to monitor 

services which are multi-tenanted, since both the Dom0 agent and Ngmon can 

determine the per VM or tenant effort. Long Zhang et al. propose a resilient 

architecture and solution for observability within applications itself which can 

be monitored through a framework. They aim to automatically improve 

exception handling in an already running or executed code. They propose a 

system called TRIPLEAGENT, which embeds a component which allows for 

monitoring, fault injection and validation. The paper goes on to elaborate on the 

design and deployment of the agent. Even though an embedded architecture, the 

design does heavily borrow from centralized command and control paradigms 

to control fault injection and analysis. The monitoring agent is used to collect 

dynamic data such as stack distance (method reporting the fault vs the method 

generating the fault), number of method exceptions etc. The monitoring agent 

provides a report to the developer when experiments are conducted. In a 

distributed cloud environment, and particularly at the SaaS and PaaS layer, 

where hardware is completely abstracted, having a tool to determine the effect 

of problems such as memory out of bound, or Disk IO failures causing 

operational issues in code execution helps in maintaining uptime and SLA for 
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that service. [19] 

 

Fig. 2. Triple Agent Architecture [19] 

C. Decentralized: Anderolini et. al [10] designed a decentralized model by 

developing a “probe process” which collects performance and utilization 

indexes on each hardware and software resource on each monitored node and 

thereby the information is received by the collection agent. The collection agent 

validates the metric data, compresses it and send it to a dedicated collector node, 

which can then plot it in real time or sent it to a distributed analyzer with a set 

of analyzer nodes for map-reduce processing. These collector and analyzer 

nodes indicate that there is no single point of aggregation, but multiple services 

running in tandem collecting certain parts of data. Skvortsov et al. [12] 

compared the decentralized model of EXCESS and ECO2 monitoring. The 

EXCESS model comprises of ATOM (neAr-real Time Monitoring fraMework) 

which includes a monitoring server called MONITOR and multiple light-weight 

collector agents called ACTORS. In the ATOM architecture, the ACTORS 

continuously sample node and application specific data, and send that to the 
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MONITOR. In the ECO2 model, multiple Zabbix agents are employed on each 

physical node and VM that collect the metric data and send it to a Zabbix server 

running on a dedicated VM. All of these architectures achieve excellent 

scalability by increasing the number of collector nodes [10], ACTORS or 

Zabbix agents [12]. Yuan et al. thoroughly investigated distributed failures in 

large scale cloud environments running PaaS services which are used heavily. 

Hadoop, Mongo, Cassandra, DynamoDB, Kafka etc. are services which are 

used by cloud architects to create system designs and workflow for their 

applications. Region and geo-redundancy are generally assumed in a cloud 

environment, in which case, all PaaS layer components are, by extension, 

distributed. Monitoring in such an environment is challenging and costly, since 

at PaaS, the infrastructure has been already reserved and every vCPU thread and 

memory are being billed. So, knowing what to monitor for is extremely 

important to make sure applications are not starved to execute due to heavy 

monitoring burdens. Yuan et al. focus primarily on understanding the sequence 

of failures that manifests due to one or more temporal errors. Generally, these 

errors propagate and culminate in component failures which reaches the user. 

The entire manifestation is less understood; however, individual failures can be 

isolated and has been studied in great detail, including categorization of root 

causes and symptoms. The manifestation of the failure tends to be very 
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complex, even though the cause could be very simple. As per the paper “almost 

all (92%) of the catastrophic system failures are the result of incorrect handling 

of non-fatal errors explicitly signaled in software.” The paper goes on to report 

that the complexity of a failure requires more than one input to manifest, and 

there is specificity to these inputs. It also concludes that a lot of the failures stem 

from daily operational tasks such as adding/removing nodes (assuming service 

is configured for auto-scaling), configuration changes made to the service and 

network partitioning. [18] 

D. Service Oriented Architecture (SOA): SOA monitoring is a relatively new 

paradigm of monitoring where the monitoring of workloads or services itself is 

a service at the PaaS layer. This architecture is gaining traction in recent times 

and not well-explored, hence the survey did not find multiple references to 

report. In this case, the monitoring is handled through a dedicated VM or a 

dedicated service which integrates at the middleware. Calero et. al [11] 

developed this new plug-in service dedicated for monitoring called 

“MonPAAS” (Monitoring-Platform-As-A-Service). MonPAAS application 

integrates with the infrastructure layer implemented with Openstack and the 

platform layer coupled with the monitoring software NAGIOS. The MonPAAS 

service is responsible for managing MVMs (monitoring VM) per tenant. 

Topology changes in either the physical or virtual layer are intercepted by 
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MonPAAS. It is configured as a cloud consumer for security and isolation 

purposes. Since the monitoring architecture is service oriented, it provides 

unprecedented flexibility in “what” to be monitored and “how” to report, based 

on “rules” set by the administrator. As monitoring is itself a service, this 

architecture also provides unprecedented scalability. However, it does so at the 

cost of being too resource heavy as dedicated VMs are allotted for the purpose 

of running the service. Simonsson et al. proposed the emerging concept of 

“Observability” which extends the traditional idea of monitoring to help 

understand and correlate the internals of applications and infrastructures. This 

is essential as microservice based cloud applications are becoming more and 

more ubiquitous. Analyzing microservice performance is now an absolutely 

essential part of monitoring application health. Observability leverages 

structured event logs, multiple metrics and tracing to correlate distributed but 

related events, which is very common in microservice based architecture, for 

example, a user request that spans through multiple microservices. To evaluate 

resiliency in production environment, and face real-world uncertainties, 

Simonsson et al. mentions the concept of “Chaos Engineering”. In this concept, 

first a steady state of the application is hypothesized based on monitorable 

metrics. Then a real-world failure simulation is injected into the production 

environment such as disk full or unavailable third-party services. These 
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experiments are done after deployment, and continuously to build confidence in 

the production system. Automation and minimizing the blast-radius (impact of 

the chaos engineering experiment) are the final steps. To achieve observability 

and perform chaos engineering experiments in containerized applications, 

Simonsson et al. proposed CHAOSORCA which is comprised of a monitor, a 

perturbator, and an orchestrator. The collection of system information at 

runtime is the responsibility of the monitor component, and it helps to attain 

observability and connect system level failures to application-level behavior by 

providing KPI information at the container level, operating system level, and 

application level. The perturbator injects system failures at runtime which is 

defined as “<s, e, d> where s is the system call, e is the error code and d is the 

delay before the call is invoked”. The orchestrator acts as an interface between 

these two and helps to generate reports and conduct chaos experiments. [14] 

Fig. 3. CHAOSORCA Architecture [14] 
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Fig. 4. MonPAAS Architecture [11] 
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IV. CHARACTERISTICS OF CLOUD MONITORING 

Cloud monitoring systems need to have certain characteristics to effectively 

monitor cloud workloads. Survey on popular cloud monitoring tools such as 

NAGIOS, Cloud Watch, OpenNebula, MonPAAS etc., ascertained certain generic 

characteristics which have been corroborated extensively by the literatures 

reviewed. These characteristics can be generically detailed as: 

A. Monitoring at scale: A cloud monitoring solution should be able to monitor 

massively distributed workloads and provide information with relatively low 

margin of error. Anderolini et. al [10] achieved scale by increasing the number 

of collector and analyzer nodes with increment in input data stream. Calero et. 

al [11] on the other hand achieved scalability by creating more MVMs on 

demand. Veeraraghavan et al. proposes “Maelstorm” to drain traffic in case of 

a failure and redirect the information to a set of services which are not in failed 

state. Nicolas et al, discusses an observability framework for monitoring large 

scale workloads executing in micro-services. [20] 

B. Monitoring at different layers: A cloud monitoring solution should be able to 

monitor at multiple layers within the cloud model. Tovarňák et. al [8] achieved 

this by deploying Ngmon (event-based daemon) listening to an UNIX socket 

that collects data across all layers. Calero et. al [11] achieved monitoring 

capability at different layers by integrating the MonPAAS with the message 

queue from the infrastructure layer and with agents in the platform layer through 
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APIs. Long et al. focuses specifically on microservices running on docker 

containers. They propose ChaosOrca, a chaos engineering tool for fault- 

injection, monitoring, reporting and analysis at the micro-service layer. [19] 

Nicolas et al. discuss more generically of the framework and proposes designs 

on auto-scaling of the observability framework itself using IaaS monitoring as 

an input. [20] 

C. Interoperability: A cloud monitoring solution must be agnostic to the cloud 

model as they are implemented by different cloud providers. Shao et. al [6] 

achieved this by instantiating RMCM (Runtime Model for Cloud Monitoring) 

from the raw data which essentially hides the underlying heterogeneity of the 

cloud platform. Tovarňák et. al [8] on the other hand designed an event-based 

object from the performance and utilization metrics collected by the embedded 

agent. Marcio et al. proposes a paradigm of “Monitoring Slice” which is per 

tenant in a cloud hosted environment. Each slice is monitored using multiple 

tools at multiple layers, controlled though a centralized policy engine called 

“FlexACMS”. The tool is specifically to create and manage monitoring slices 

irrespective of the monitoring solutions being employed. [21] 

D. Shared services: A cloud monitoring solution should be able to monitor 

services which are shared across multiple resources such as multi-tenant 

systems and should be non-intrusive to the core workload. Calero et. al [11] 

achieved resource monitoring in a multi-tenant system by employing a 

dedicated monitoring VM (MVM) per tenant. Moses et al. describe shared 
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resource monitoring mostly at the PaaS and hypervisor layers controlling VM 

lifecycle. They create a novel approach on how to identify VMs based on their 

behavior for migration, achieving determinism in auto-scaling and aggregation. 

Since all resources in cloud are generally shared and tenanted, using a technique 

to aggregate loads in predictable patterns helps in troubleshooting when issues 

do occur. Tovarňák et. al [8] achieved this property by deploying the Ngmon to 

be the core service of the guest OS, and to monitor resource usage per VM, i.e. 

tenant on it. Dhingra et. al [9] also achieved this property by employing the 

Dom0 agent at the hypervisor level which can determine per VM usage. 

 

 

 

 

 

 

 

 

 

 

 

 



Hybrid Cloud Workload Monitoring as a Service   

 20 

V. PROPOSED ARCHITECTURE  

There are multiple monitoring solutions in the cloud and infrastructure space 

and each one of them, have their own advantages and disadvantages. Generally, the 

monitoring solution architectures have three major components, a timeseries 

database, a collector agent framework and a visualization dashboard. This project 

implements the same tuple: influx for timeseries, self-developed collectors and 

self-developed visualization system. 

To monitor resource usage, most open source cloud monitoring software 

(Prometheus, Graphite, Sysdig) depend heavily on the orchestration layer 

(openStack, Kubernetes, AWS). It is rare for the same systems to collect details 

from the IaaS layer below. The IaaS layer monitoring is generally left to more 

commercial solutions such as NAGIOS or CACTI. In this project the monitoring 

methods implemented for PODs or the applications layer is extended to the IaaS 

layer (BareMetal and VMs) as well. The rationale behind this approach is to collect 

the VM usage metrics as reported by the VM host rather than the hypervisor. 

Hypervisor level metrics collection can report burst usage due to CPU steal cycles. 

The project VMs all reside in shared services and do not have dedicated resources 

assigned, hence dynamic CPU contention needs to be addressed. If CPU steal 

cycles are incorporated in the calculations, then results can be erroneous. 
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To monitor resource usage of the PODs or the containers, most open source 

cloud monitoring software gather data from an orchestration system perspective, 

i.e. the metrics of resource usage by PODs are reported by the orchestration layer 

instead of an application within the POD. This project not only collects POD 

utilization statistics, but the same stats are reported directly by the application itself. 

This makes monitoring agent scalable along with the application without complex 

auto-scale logic and enables close monitoring of the application health. 

 

 

Fig. 5.  Generic Orchestration Layer Collection vs Collection w/ Embedded Custom Code at 
Multiple Layers 

All monitoring solutions provide alerts and error management but co-

relation of any type is either commercialized such as Sysdig and InfluxDB 

enterprise, or generally ignored. Some basic co-relations such as VM affinity of 

PODs, or evictions due to resource shortages which are incredibly useful for 

operators could easily be added and this project aims to do so. 
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The open source monitoring solutions are created by adding multiple 

different types of software together. Generally, the setup of such systems is fairly 

easy, but the rules to define and collect metrics has a steep learning curve. 

Prometheus, for example, provides an excellent enterprise level collection 

framework, but the config files can become very large and increasingly complex if 

very granular metrics are targeted. This becomes cumbersome in future stages to 

manage and control. In this project, programmatic methods are employed to collect 

the metrics which is much simpler and deeply integrated with application code. 

Since this project targets a very specific use case, unlike Prometheus which is more 

generically built for enterprise level use cases, the framework is lightweight and 

collects only specific data points and generates lower monitoring overhead. 

The approach adopted for cloud monitoring is such that multiple best 

practices are combined to achieve monitoring at different layers, which facilitates 

correlation of application level resource utilization to platform level resource 

utilization, and allows us to gain insights about the containerized cloud application 

as a whole. 

Firstly, the code responsible for gathering metrics is coupled with the code 

generating workload, in a containerized environment. This approach ensures that 

the monitoring agent is embedded with application logic, and thus KPI metrics are 

collected at application layer (PaaS). An agent is also employed at the IaaS layer 
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by running a code natively on each VM of the Kubernetes cluster which collects 

the same metrics at VM level. Three levels of workload are generated (high, 

medium, low) and are replicated at factor of three to run on the Kubernetes cluster. 

The KPI data generated at the VM level is compared with KPI data generated at 

the application layer to infer the number and types of workload running on each 

VM. This continuous monitoring at different layers of key parameters gives 

granular information about the application’s internal state, and thus helps in 

determining the source of failure in case of performance bottleneck, in spite of the 

cloud system’s inherent complexity. Thus, the proposed architecture aims at 

achieving observability.  

The KPI metrics are collected at the IaaS layer by the APIs provided by the 

SIGAR (System Gatherer and Reporter) library which gives low-level operating-

system and hardware level information and is ported to various OS environments. 

This simple API driven metric collection ensures the monitoring mechanism is non-

intrusive to the core-workload. In the PaaS layer, a bash script is employed to 

continuously monitor CPU and memory percentages of processes running within 

the container via the Linux Top command. 
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Fig. 6. Project Framework Architecture 
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VI. IMPLEMENTATION 

 
The architecture displayed in Fig. 6 is designed for the process-flow shown below. 

 

Fig. 7. Process Flow Diagram 

The environment for the project is created to showcase multi-cloud deployment 

and collection for workloads running across them. The cloud providers used for the 

environment are the AWS EC2 and the GCP Compute engine. Hosted services provided 

by these service providers were not used. Instead the clusters and all corresponding 

services are run natively in the VMs to mimic an IaaS deployment. Two independent 

VMs apart from the cluster VMs are used. One VM hosts the timeseries database and 

the analyzer for aggregation of the raw data & correlation. The other VM hosts the 

webserver for visualization. The operating system used is Ubuntu 18.04 LTS. The VM 

specifications are 2vCPU, 2GB RAM, 10GB Volume. 
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The orchestration layer used for this project is Kubernetes. The k8s cluster 

consists of one master node and seven worker-nodes. Five of the worker-nodes are 

hosted in GCP. The master node, and two worker-nodes reside in AWS. The connection 

between GCP and AWS is achieved via a classic VPN tunnel. The tunnel is created by 

first reserving a static IP address on GCP, and then creating a customer service gateway 

attached to a VPN service gateway deployed through site-to-site VPN on AWS. Both IP 

ranges, on AWS and GCP, are redistributed through static routes and the tunnel is 

created using the IKEv1 pre-shared key method. Information provided by the AWS VPN 

endpoint is used to create the two tunnels on GCP. Once the above steps are completed, 

the tunnel is negotiated and brought up. Firewall rules on both sides, AWS and GCP, 

need to be added to allow for the traffic from one VPC to come to the other. 

Fig. 8. VPN Tunnel Set-up 

The orchestration service is then loaded with a messaging service for all the 

information to be passed from the containers to the database. To achieve this, the Kafka 

service is deployed on the k8s cluster to allow for inter-component information 

exchange. The database used is InfluxDB for its timeseries capability and storage for 

metrics data. 
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Spring boot applications are developed with Apache Kafka dependencies. These 

containerized applications have two shell-scripts mounted inside of it. The first script 

runs at entry-point to install and execute the Linux Stress-ng tool, which in turn simulates 

CPU, and Memory stressors. The second script is executed periodically by the 

application to fetch CPU and memory utilization percentages via the Linux Top 

command. These applications are tagged into three categories as “High load”, “Low 

load”, “Medium load”, as per their respective stressors and are modeled as Kafka 

Producer applications which write the KPI metrics to the Kafka message queue under 

three different topics corresponding to their load generation. The table below shows the 

range of CPU % utilization generated by the stressors for each application type. 

Table 1. Load Generation per Application Type 

Application Type % CPU Load generated 

High Load 50 ~ 80 

Medium Load 25 ~ 50 

Low Load 10 ~ 20 

Three spring boot applications are developed which are modeled as Kafka 

Consumers and are responsible for reading the messages on the queue per topic and 

writing them to the database. 

Another spring boot application is developed which is also containerized and 

serves as the Webserver, and is responsible for reading the KPI metrics from the database 

and displaying information to the user in a graphical format. APIs are designed so that 



Hybrid Cloud Workload Monitoring as a Service   

 28 

users can view workload per type of application (“High load”, “Low load”, “Medium 

load”) over time. 

Finally, Java agents are run natively on each VM of the cluster which gathers the 

information about its resource utilization with SIGAR API and the number and types of 

containers running on the VM over time. Thus, KPI metrics are gathered at the PaaS, as 

well as, the IaaS layer. The table below shows all the databases and measurements and 

corresponding metric types. 

Table 2. KPI Metrics Storage 

Database Measurement Description 

KPIDB-HIGH Stats KPI metrics for all applications tagged as High-Load 

KPIDB-MED Stats KPI metrics for all applications tagged as Medium-Load 
KPIDB-LOW Stats KPI metrics for all applications tagged as Low-Load 
VMKPI VmStats KPI metrics for all VMs 
PODCOUNT ContainerCount Number and type of applications 

that are running on each VM at each time-stamp 
 

The data written to InfluxDB by the above applications is a time-series data which 

is essentially a sequence of data-points sorted over time, measuring the same metric. 

This data needs to be processed to gain insights from it. For this purpose, a new set of 

Spring-boot applications are employed which generates the mean of CPU consumption 

& memory consumption percentages over 1-minute time-windows. An Influx-Client is 

set up inside the Analyzer application which provides integration with the InfluxDB API 

to perform these analyses. In the diagram below, the process of aggregation by the 

analyzers is shown. 
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Fig. 9. Analyzer Work Process 
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VII. RESULTS & OBSERVATIONS 

There were few exceptions observed which had to be remediated for proper 

running of the project. The first and foremost observation was when SIGAR libraries 

were used inside the container, the VM usage and container usage percentage were 

observed to be exactly the same. SIGAR worked well when running in VMs for system 

level monitoring since it directly queries the host CGROUP drivers and reports back the 

entire VM usage. But, when called from inside the container, SIGAR reported the entire 

VM usage since the container CGROUP is a child of the host CGROUP.  

Because of this, the Linux top command is customized to determine the process 

utilization from inside the container. Top -b -n 3 -d 0.1 -p <pid> calculates KPI metrics 

per process in batch mode with three iterations and delay of 100 milliseconds between 

screen updates. Reading the usage from orchestration/k8s layer was avoided due to 

discrepancy issues as shown in Fig. 20.  

The second finding of the experiment showed high CPU usage by the stress-ng 

memory stressor tool, as CPU was consumed by threads either performing read/write or 

stalled by other threads. Memory activity performed outside CPU cache resulted in 

longer execution time than CPU clock cycle, making the kernel scheduler to mark the 

threads busy, and as a result, the memory stressor consumed high scheduling time. This 

resulted in a resource bottleneck on the 2vCpu VMs. Hence, only one memory stressor 

was deployed, due to CPU shortage.  
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For the following experimentation, the cluster VMs were run for 7 hours and a 

workload was generated to collect KPI metrics. The table below shows the number of 

raw data points collected for each of the application types and the VM hosts. 

Table 3. KPI Metric Collection 

Metric Type # Raw data points measuring KPI metrics 

VmStats (IaaS) [CPU & memory utilization %] 18914 

KPIDB-LOW [CPU & memory utilization %] 4356   

KPIDB-MED [CPU & memory utilization %] 4278 

KPIDB-HIGH [CPU & memory utilization %] 5636 

 

A. Identification of POD distribution across VMs: The distribution of PODs and 

optimal VM resource utilization is a complex problem. From an orchestration 

layer point of view, the k8s load balancer assigns PODs to VMs based on current 

resource utilization. However, in many cases, future usage spikes can lead to load 

mismatches resulting in eviction of PODs and cluster failures. With VM resource-

scaling, this can be minimized, but in resource strapped clusters, the situation can 

quickly become very grim with multiple containers restarting and evicting, 

causing working containers to fail as well. 

The first result deals with matching the load characteristics of the VM to 

that of the applications inside of PODs over time. If one application in a POD is 

using the VM resources at 80%, and another POD is scheduled on the same VM 

which requires a similar amount of CPU, the failure can cascade. The applications 
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within the PODs have random sleep times in between load generations to 

randomize the usage spikes. This simulates usage spikes of an actual production 

environment. A cloud-admin operator can pre-emptively move PODs from a 

heavily loaded VM to an idle VM by profiling applications based on their generic 

resource utilization characteristics over-time and closely identifying applications 

running on a VM and thereby predicting a future usage spike. Thus, POD eviction 

scenarios can be avoided altogether. 

The cluster VM with hostname cworker6 is chosen to visualize and 

identify POD distribution in it. 

 

Fig. 10. cworker6 [CPU utilization %] 

 

Fig. 11. cworker6 [Number and type of Containers] 

As it is observed the VM cworker6 has one instance of “Medium Load” 

and one instance of “High Load” application running on it, all the “High Load” 

and “Medium Load” applications’ CPU utilization plots are overlaid with that of 

cworker6 to identify the ones are running on the VM. 
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Fig. 12. producer-high-9sv7k vs cworker6 [CPU utilization %] 

 

Fig. 13. producer-high-j8k2w vs cworker6 [CPU utilization %] 

It is observed that PODs producer-high-9sv7k and producer-high-j8k2w 

show CPU utilizations that does not match with cworker6, i.e. they show CPU 

utilization in time-frames where VM cworker6 is idle. Hence, they can be 

eliminated from consideration. 

 

Fig. 14. producer-high-n5wwl vs cworker6 [CPU utilization %] 

 

Fig. 15. producer-med-7dqsj vs cworker6 [CPU utilization %] 
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Fig. 16. producer-med-vz6qm vs cworker6 [CPU utilization %]  

Similarly, PODs producer-med-7dqsj and producer-med-vz6qm can be 

eliminated since they show CPU utilization in time-frames where VM cworker6 

is idle. 

 

Fig. 17. producer-med-9k25t vs cworker6 [CPU utilization %] 

Hence, the VM cworker6, has POD producer-high-n5wwl and producer-

med-9k25t running on it. This kind of information is extremely useful from the 

cloud admin point of view to predict future resource usage patterns and possible 

resource bottlenecks. This correlation can be further automated and improved by 

employing machine-learning algorithms to enable the cloud-admin to take pre-

emptive actions. 

An experimentation was performed using the widely popular open source 

Prometheus collector & associated Grafana dashboard alongside this project 
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framework tool to perform comparative analysis on the same KPI data. 

Prometheus is essentially a TSDB (Time Series Database) and has a custom query 

language. It is purposefully built for numeric time series and supports exporters 

to collect detailed data from multiple data sources.  

In context of the use case to match VM and POD load characteristics,  

first and foremost, advantage of this project framework is that it does application 

profiling (tagging applications as per their load characteristics) and storing that 

information into the InfluxDB as illustrated in Fig 8. Whereas, Prometheus allows 

us to get information about number of the pods running on each node, but there is 

no built-in application profiling involved.  

Prometheus exporters infer POD usage as reported by the kubelet cadvisor 

in the k8s orchestration layer. However, in this project framework, the PaaS level 

KPI metrics are reported as seen by the application running inside the POD, which 

has a distinct advantage in inferring actual application health, rather than overall 

POD usage. The following graphs show an overlaid comparison between CPU 

utilization reported by the project framework tool to the same reported by 

Prometheus. 

The POD utilization reported by Prometheus and the application utilization 

reported by the project framework vary by a small percentage as seen in the graphs 

below, since POD utilization takes all processes into account including k8s infra 

services, instead of just the profiled application. 
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VM cworker6 with PODs producer-high-n5wwl and producer-med-9k25t 

is chosen to perform the overlaid comparison of CPU metrics reported by 

Prometheus and the project framework tool. 

 

Fig. 18. producer-med-9k25t [CPU utilization % Prometheus vs Project Framework] 

 

Fig. 19. producer-high-n5wwl [CPU utilization % Prometheus vs Project Framework] 

A snapshot of CPU% metric and corresponding timestamp reported by 

Prometheus and Project Framework is shown in the table below to identify the 

deviation in metric percentage and timestamp reported. 
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Table 4. PMT vs Project Framework [ Metric & Timestamp] 

Project 
Framework 
CPU% metric & 
Timestamp 

PMT CPU % 
metric & 
Timestamp  

Δ Time Δ CPU % Metric 

30% 09.03.03 25% 09.03.45 +42s +5% 
25% 09.03.24 24% 09.03.56 +32s +1% 
30% 09.03.36 28% 09.03.57 +21s +2% 
25% 09.03.55 24% 09.04.26 +31s +1% 
30% 09.04.30 29% 09.04.42 +12s +1% 
25% 09.04.50 24% 09.05.10 +30s +1% 
30% 09.05.11 29% 09.05.25 +14s +1% 
30% 09.05.29 28% 09.06.10 +41s +2% 
25% 09.05.47 23% 09.06.22 +35s +2% 
45% 09.28.16 39% 09.28.47 +31s +6% 
45% 09.28.33 47% 09.29.01 +28s -2% 
46% 09.29.05 46% 09.29.15 +10s 0% 
35% 09.29.22 38% 09.29.47 +25s -3% 
50% 09.29.39 47% 09.29.51 +12s +3% 
50% 09.29.54 47% 09.30.12 +18s +2% 

 

Another observation is that for overall VM utilization Prometheus reports 

a CPU utilization burst whereas SIGAR (used in the IaaS layer monitoring in this 

project) does not report so. It is suspected that, since kubernetes uses cgroupfs 

driver for resource management, the cgroup hierarchy have caused Prometheus to 

report the burst. Since SIGAR queries the linux kernel directly the utilizations 

reported is as seen by the linux kernel itself. If actual application utilization per 

VM needs to monitored this CPU burst can be misleading.  



Hybrid Cloud Workload Monitoring as a Service   

 38 

 

Fig. 20. cworker6 [CPU utilization % Prometheus vs Project Framework] 

 The burst usage reported from the Hypervisor perspective is illustrated in the 

diagram below. The hypervisor allocates CPU cycles on demand to VMs and reserves 

the rest (for instances to be scheduled in future, or probable future CPU cycle demands 

of the existing instances). Generally, a hypervisor allocates a specific amount of CPU 

cycles to each shared VM, for example a T3.small instance is entitled to 1.0 GHz clock 

speed (40%) of the AWS XEN hypervisor with 2.5 GHz clock speed. If the VM 

consumes 40%, then as per the hypervisor the VM is utilizing 100% of its allocated CPU 

resources. If the VM requires more clock speed e.g. 50% then it is shown as a burst and 

the hypervisor reports >100% utilization. This is a source of contention for tools using 

cgroupfs to monitor the CPU cycle usage since the hypervisor is stealing resource from 

any arbitrary VM in its shared resource pool to provide the resource to the VM asking 

for the burst.  
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Fig. 21. Representation of CPU Cycle Steal  

Other comparison factors were: 

1. Deviation in metric and time: Metrics reported by both frameworks show a 

deviation of -5% ~ +5% as observed in Table 4. However, since the project 

framework tool is embedded while Prometheus collects metrics via endpoint 

scraping, there was a 30 seconds delay on average in the collection timestamp 

by Prometheus in comparison to embedded collection agent implemented in 

this project. This is a significant advantage of push model followed by this 

project in comparison to pull model followed by Prometheus. 

2. Ease of setup: Prometheus is enterprise grade hence setup is complicated. 

ConfigMaps and exporters needs to be setup for data collection. The project 

implements a simpler setup (minutes compared to hours) since its geared for a 

specific use case. 
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3. Monitoring overhead: The monitoring agent in the framework implemented in 

the project is deeply coupled with the application code, hence it does not 

require additional resources to run, and can be scaled in and out as the system 

evolves. Whereas for the Prometheus deployment had to be set up on a separate 

node to run it as a service, and it incurred additional resource cost on the 

cluster. An experimentation was performed with the cluster was horizontally 

scaled from 8 to 20 VMs. For each cluster state, Prometheus and Project 

Framework Tool were used as collector for 2 hours, to compare their overhead. 

 

Fig. 22. Average CPU utilization % of Cluster [PMT vs Project Framework] 
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B. Preemptive identification of POD evictions in a resource-strapped cluster: 

In a resource-strapped cluster, a resource bottleneck can occur easily if the 

applications are replicated at a higher factor and the application usage exceeds 

physical capacity of the cluster. As a result, multiple pods get evicted and the 

k8s replication controller tries to bring them back up. This results in a cascading 

eviction scenario and ultimately results in cluster failure. The k8s orchestration 

layer itself does not report any problem in this scenario. The tool implemented 

in this project reports PODs started and evicted per VM in every 15minutes and 

current VM health, to indicate possible cluster failure.  

A rule-book is designed in the agents running on the VMs as depicted in 

the following table. This helps to anticipate cluster failure and evictions pre-

emptively. 
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Table 5. VM Health Rule Book 

#High Load Apps #Medium Load Apps #Low Load Apps VM Health 

>=2 0 or more 0 or more Red 

1 1 1 Red 

0 or more >=3 0 or more Red 

0 or more 0 or more >=5 Red 

1 >=2 0 or more Red 

1 0 or more >=2 Red 

0 2 >2 & <5 Red 

1 0 1 Yellow 

1 1 0 Yellow 

0 2 <=2 Yellow 

0 1 >=3 & <5 Yellow 

0 0 >=4 & <5 Yellow 

0 1 <3 Green 

0 0 <4 Green 

1 0 0 Green 

 

For this experimentation after initial cluster setup of each application type 

of replication factor three which runs in stable state, a cluster health state and 

PODs started per VM snapshot is taken. 
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Fig. 23. PODs started per VM after initial set up 

 

Fig. 24. VM Health after initial set up 

Table 6. Applications per VM after initial set-up 

 

 

 

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8 

1 High 1Medium 

1 Low 

1 High 

1 Low 

0 1Medium 

1 Low 

1High 1Medium 0 
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Next application type High Load was scaled by three more instances.  

 

Fig. 25. PODs started per VM after first scale 

 

Fig. 26. VM Health after first scale 

Table 7. Applications per VM after first scale 

 

 

 

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8 

2 High 1Medium 

1 Low 

1 High 

1 Low 

1 High 1Medium 

1 Low 

1High 1Medium 

1High 

0 
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Next application type Medium Load was scaled by three more instances. 

 

Fig. 27. PODs started per VM after second scale 

 

Fig. 28. VM Health after second scale 

Table 8. Applications per VM after second scale 

 

 

 

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8 

2 High 

1Medium 

1Medium 

1 Low 

1 High 

1 Low 

1 High 
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1Medium 

1 Low 
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1Medium 

1Medium 

1High 
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Next application type High Load was scaled by three more instances. 

 

Fig. 29. PODs started per VM after third scale 

 

Fig. 30. VM Health after third scale 

 

Table 9. Applications per VM after third scale 

 

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8 

3 High 

1Medium 

1Medium 

1 Low 

1 High 

1 High 

1 Low 

1 High 

1Medium 

1Medium 

1 Low 

1 High 

1High 

1Medium 

1Medium 

1High 

0 
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Fig. 31. Evictions after third scale 

It is seen despite of cworker1 in “Red” health state PODs getting scheduled 

on it, which resulted in multiple evictions on it. PODs got repeatedly scheduled 

and evicted on it resulting in cascading evictions. 

Whereas, in absence of such simple API-driven health check, cloud-admin 

user has to either perform command-line query on the k8s master to get such 

information, or customize PromQL query to monitor kubelet-evictions metrics for 

the namespace required. 

C. Identification of VM affinity for Applications: An experimentation was 

performed where PODs of each application type were deleted repeatedly over 100 

iterations, and the VM hosts on which they were brought back up by the k8s 

replication controller was tracked. Even though affinity was not set for PODs as 

part of initialization, it was observed that k8s load balancing algorithm tends to 

schedule specific applications/PODs in specific VMs. There were two 

motivations to conduct this experiment: 
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1.     The first one is to highlight, that if the application failure occurs i.e. the POD 

is not evicted due to resource bottleneck, k8s load balancer does not consider it to 

be a failure scenario and tends to schedule the PODs on the same VMs over time. 

2.    The second is to identify, if the same application or similar applications are 

failing over time, where are they re-manifesting. The experiment follows the 

PODs over multiple failures deployed as part of a replication controller to identify 

affinity to any particular VM hosts. 

 

Fig. 32. VM affinity per Application Type 
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VIII. CONCLUSION & FUTURE WORK 

In this paper, the existing and well-researched cloud monitoring architectures are 

surveyed and the use-cases each are targeted for are reported. The essential 

characteristics that any cloud monitoring solution should offer are discussed. With the 

survey it is inferred that containerized, service-oriented monitoring solutions which are 

efficient from a usability point-of-view, and offers “observability” are gaining traction 

in recent times. This project builds such a tool which provides containerized monitoring 

solution and combines multiple best practices such as embedded agents, scalable and 

service-oriented framework. 

The framework implemented successfully eliminates resource utilization bursts 

as reported by the hypervisor by monitoring at different layers and provides consistent 

data for the use-case of actual process load monitoring on the host VMs. The tool also 

employs a unique solution to monitor host VM health by tagging applications as per their 

load, and monitoring the number and type of applications running on each VM. This 

health monitoring indicates possible cluster failure pre-emptively. However, as the 

monitoring framework is deeply integrated with application, any additional update in the 

monitoring metrics requires rolling upgrade of the application images. 

The tool implemented is compared with widely popular Prometheus/Grafana 

monitoring stack to derive a comparative performance evaluation, and as expected the 

metrics reported by both vary by a small percentage, since the tool monitors application 



Hybrid Cloud Workload Monitoring as a Service   

 50 

health from inside the container while Prometheus collects data about the application 

from the orchestration layer. 

As future work, the data collected by the monitoring tools can be analyzed by 

machine-learning algorithms and trained models can be used to predict the VM health 

dynamically. The VM health logic can be incorporated with the Kubernetes load 

balancing algorithm or any other orchestration engine algorithms to enhance the POD-

scheduling mechanism. For example, dynamic “taints” can be used to stop scheduling 

PODs on high usage VMs. Also, the VM affinity checker can be coupled with the 

Kubernetes load balancing algorithm to dynamically shift PODs to different VM host 

which is in a stable state, after a certain threshold of affinity for the current host has been 

reached. Additionally, developing a user-management system is another notable future 

work that can be incorporated as part of the service-oriented architecture, to notify admin 

users in case of deteriorating cluster health. 
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