
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2-5-2021

Hybrid Cloud Workload Monitoring as a Service Hybrid Cloud Workload Monitoring as a Service

Shreya Kundu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Databases and Information Systems Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Kundu, Shreya, "Hybrid Cloud Workload Monitoring as a Service" (2021). Master's Projects. 978.
DOI: https://doi.org/10.31979/etd.bwu7-ycay
https://scholarworks.sjsu.edu/etd_projects/978

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/978?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F978&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Hybrid Cloud Workload Monitoring as a Service

 i

Hybrid Cloud Workload Monitoring as a Service

A Project Report

Presented to

The Faculty of the Department of Computer Science San José State University

In Partial Fulfillment

Of the Requirements for the Class CS 298

By

Shreya Kundu

Dec 2020

Hybrid Cloud Workload Monitoring as a Service

 ii

© 2020

Shreya Kundu

ALL RIGHTS RESERVED

Hybrid Cloud Workload Monitoring as a Service

 iii

The Designated Project Committee Approves the Project Titled

Hybrid Cloud Workload Monitoring as a Service

by

Shreya Kundu

Approved For The Department Of Computer Science

San José State University

Dec 2020

Dr. Robert Chun Department of Computer Science

Dr. Thomas Austin Department of Computer Science

Mr. Amit Dutta Technical Product Manager, Cisco Systems

Hybrid Cloud Workload Monitoring as a Service

 iv

ABSTRACT

Cloud computing and cloud-based hosting has become embedded in our daily lives. It is

imperative for cloud providers to make sure all services used by both enterprises and consumers have

high availability and elasticity to prevent any downtime, which impacts negatively for any business. To

ensure cloud infrastructures are working reliably, cloud monitoring becomes an essential need for both

businesses, the provider and the consumer. This thesis project reports on the need of efficient scalable

monitoring, enumerating the necessary types of metrics of interest to be collected. Current understanding

of various architectures designed to collect, store and process monitoring data to provide useful insight

is surveyed. The pros and cons of each architecture and when such architecture should be used, based

on deployment style and strategy, is also reported in the survey. Finally, the essential characteristics of

a cloud monitoring system, primarily the features they host to operationalize an efficient monitoring

framework, are provided as part of this review. While its apparent that embedded and decentralized

architectures are the current favorite in the industry, service-oriented architectures are gaining traction.

This project aims to build a light-weight, scalable, embedded monitoring tool which collects metrics at

different layers of the cloud stack and aims at achieving correlation in resource-consumption between

layers. Future research can be conducted on efficient machine learning models used on the monitoring

data to predict resource usage spikes pre-emptively.

Index Terms - Cloud computing, cloud monitoring, cloud metrics, container runtime (CRI), guest

operating system (OS), hypervisor, infrastructure as a service (IaaS), key performance index

(KPI), multi-tenancy, operating system (OS), platform as a service (PaaS), software as a service

(SaaS), system information gatherer and reporter (SIGAR), Time-Series Database (TSDB), virtual

machine

Hybrid Cloud Workload Monitoring as a Service

 v

ACKNOWLEDGEMENTS

I want to thank my mentor Dr. Robert Chun for his continuous mentorship throughout this project

and for motivating me to deliver my best. I would also like to thank my committee members, Dr. Thomas

Austin and Mr. Amit Dutta for taking interest in my project and providing valuable feedbacks.

I thank my parents for their encouragement and support. Lastly, I thank the God almighty, for

giving me this privilege and opportunity to pursue my dreams.

Hybrid Cloud Workload Monitoring as a Service

 vi

TABLE OF CONTENTS

I. Introduction…………………………………………………………………………....1

II. Metrics ...5

A. Workload- Based… ... 5

B. Compute-Based… ... 5

C. Network-Based… .. 6

D. Event-Based… .. 6

III. Architectures .. 7

A. Centralized .. 7

B. Embedded ... 9

C. De-centralized………………………………………………………………...…. 11

D. Service-oriented…………………………………………………………………..13

IV. Characteristics of Cloud Monitoring… ... 17

V. Proposed Architecture. ... 20

VI. Implementation………………………………………………………………………. 25

VII. Results & Observations……………………………………………………………….30

A. Identification of POD distribution across VMs………………………………….. 31

B. Pre-emptive Identification of Cluster Failure……………………………………. 41

C. Identification of VM affinity for Applications……………………………………47

VIII. Conclusion & Future Work……………………………………………………………49

Hybrid Cloud Workload Monitoring as a Service

 vii

LIST OF TABLES

Table 1. Load Generation per Application Type ……………………………………………………………….27

Table 2. KPI Metrics Storage…………………………………………………………………………………………….28

Table 3. KPI Metric Collection………………………………………………………………………………………….31

Table 4. PMT vs Project Framework [Metric & Timestamp] ………………………………………….. 37

Table 5. VM Health Rule Book……………………………………………………………………………………….. 42

Table 6. Applications per VM after initial set-up……………………………………………………………… 43

Table 7. Applications per VM after first scale………………………………………………………………….. 44

Table 8. Applications per VM after second scale……………………………………………………………… 45

Table 9. Applications per VM after third scale…………………………………………………………………. 46

Hybrid Cloud Workload Monitoring as a Service

 viii

LIST OF FIGURES

Figure 1. Organization of literature survey…………………………………………………………… 4

Figure 2. Triple Agent Architecture………………………………………………………………… 11

Figure 3. CHAOSORCA Architecture………………………………………………………………. 15

Figure 4. MonPAAS Architecture……………………………………………………………………. 16

Figure 5. Generic Orchestration Layer Collection vs Collection w/ Embedded Custom Code at

Multiple Layers……………………………………………………………………………………… 21

Figure 6. Project Framework Architecture…………………………………………………………... 24

Figure 7. Process Flow Diagram………………………………………………………………………25

Figure 8. Analyzer Work Process……………………………………………………………………. 26

Figure 9. VPN Tunnel Set-up ………………………………………………………………………. 29

Figure 10. producer-high-9sv7k vs cworker6 [CPU utilization %] ……………………………….…32

Figure 11. cworker6 [Number and type of Containers] ……………………………………………...32

Figure 12. producer-high-9sv7k vs cworker6 [CPU utilization %] ………………………………….33

Figure 13. producer-high-j8k2w vs cworker6 [CPU utilization %] ……………………………….... 33

Figure 14. producer-high-n5wwl vs cworker6 [CPU utilization %] …………………………………… 33

Figure 15. producer-med-7dqsj vs cworker6 [CPU utilization %] …………………………………. 33

Figure 16. producer-med-vz6qm vs cworker6 [CPU utilization %] …………………………………34

Figure 17. producer-med-9k25t vs cworker6 [CPU utilization %] …………………………………. 34

Figure 18. producer-med-9k25t [CPU utilization % Prometheus vs Project Framework] …………. 36

Figure 19. producer-high-n5wwl [CPU utilization % Prometheus vs Project Framework] …………36

Figure 20. cworker6 [CPU utilization % Prometheus vs Project Framework] ………………………38

Figure 21. Representation of CPU Cycle Steal……………………………………………………… 39

Hybrid Cloud Workload Monitoring as a Service

 ix

Figure 22. Average CPU utilization % of Cluster [PMT vs Project Framework] ………………. 40

Figure 23. PODs started per VM after initial set up……………………………………………… 43

Figure 24. VM Health after initial set up…………………………………………………………. 43

Figure 25. PODs started per VM after first scale………………………………………………….44

Figure 26. VM Health after first scale……………………………………………………………. 44

Figure 27. PODs started per VM after second scale……………………………………………… 45

Figure 28. VM Health after second scale…………………………………………………………. 45

Figure 29. PODs started per VM after third scale………………………………………………... 46

Figure 30. VM Health after third scale…………………………………………………………… 46

Figure 31. Evictions after third scale……………………………………………………………... 47

Figure 32. VM affinity per Application Type…………………………………………………….. 48

Hybrid Cloud Workload Monitoring as a Service

1

I. INTRODUCTION

The National Institute of Standards and Technology’s (NIST) definition of

cloud computing includes certain characteristics [1], one of which is Measured

Service. It is important to understand what measured service is and why it is needed.

The services to be measured need metrics to be defined for that purpose. NIST

defines a metric as “knowledge about a cloud property through both its definition

(e.g., expression, unit, rules) and the values resulting from the measurement of the

property” [4].

As enterprises and consumers use the cloud more and more [2], cloud

providers need to provide certain Service Level Agreements (SLA) to their

customers. These SLAs can be bound legally if an enterprise is purchasing the

service. To provide SLA, the cloud service provider must define the metric, such

as uptime of a service and make sure the uptime does not fall below a certain

threshold [3]. However, the cloud is a complex environment with multiple layers,

and customers can have various requirements for monitoring their services. A

customer, running serverless workloads in the cloud would be interested in

response times, service uptimes and connections being made to their applications,

whereas a customer using Infrastructure-as-a-service (IaaS) would be interested in

monitoring workloads, CPU, memory and storage utilizations. As a cloud service

provider, this becomes an increasingly complex problem on how to provide

Hybrid Cloud Workload Monitoring as a Service

 2

monitoring information in multiple levels. In spite of having multiple stand-alone

monitoring tools built by several cloud providers in the market, there is the lack of

a single service-based monitoring tool in the market which can integrate with the

middle-stack of multiple cloud providers. Also, in spite of large data provided by

the monitoring tools, we do not see any predictive machine learning models

implemented which can predict usage or billing which can be immensely helpful

for businesses that have high activity in seasonal times, for example, Christmas, or

Thanksgiving. The information gathered from monitoring is extremely important

and forms the basis for multiple decisions in terms of operational cost planning and

preemptive billing forecasting for a cloud service provider, as well as, consumer.

[5]

Padhy et al. states that current monitoring systems for the cloud are not

resilient and do not have a trust boundary for data access. Assuming Byzantine

failure model, the paper discusses on how state model replication will allow the

system to endure arbitrary faults, yet recover and continue working. The paper

proposes a publish-subscribe mechanism for event handling which can be

trustworthy. “Trust” has been covered in two ways: primarily authenticated

information, and secondly, reliable information. [16] Authenticated information

alludes to the fact that, data coming from the IaaS layer is indeed correct and is

coming from the correct reporter. The reliability aspect is more specific to the data

Hybrid Cloud Workload Monitoring as a Service

 3

integrity itself and that the data is correctly marked and tenanted. However, if a

major failure does happen at the IaaS layer, Veeraraghavan et al. proposes a system

to mitigate such failures through traffic management. This is one of the ways a

service provider can act if their data centers hosting cloud infrastructure are failing.

The paper describes how continuous verification and dependency management

handles such when the failures occur. [17] The impact of such failures on highly

available and distributed systems running in scaled data centers are explored in the

paper presented by Yuan et al. Such services are most commonly exposed at the

PaaS layer and is an integral requirement for cloud architects to define as they are

designing their environments. [18]

This literature survey focuses on exploring the categorizations of monitoring

metrics in Section II, popular architectures pertaining to monitoring solutions in

Section III, inferring essential characteristics for any cloud monitoring solution in

Section IV, and thereby determining the final conclusion from the literature survey

in Section V. The literature survey answers these questions: How different are

monitoring metrics of specific importance for different cloud consumers and

providers? What are the different monitoring architectures and the trade-offs

between them? What are the essential features of cloud monitoring systems? This

survey uses references from published papers and conference proceedings. Fig. 1

shows the organization of the literature survey.

Hybrid Cloud Workload Monitoring as a Service

 4

Fig. 1. Organization of literature survey

Hybrid Cloud Workload Monitoring as a Service

 5

II. METRICS

Before we start monitoring, it is imperative to understand what to monitor.

As mentioned previously, monitoring happens at multiple layers of the cloud model

which can be application, network, middle-ware or physical. The literatures

surveyed mention monitoring done at different layers with metrics that can be

broadly classified as:

A. Workload-based: These KPIs (Key Performance Index) measure cloud

workloads based on application level metrics. Shao et al. [6], Tovarňák et al. [8]

both developed agent-based systems to monitor at the Software-as-a-Service

(SaaS) layer where they mention KPIs such as response time between services,

Inter Process Communication (IPC) response time, number of thread counts,

number of I/O (Input/Output) computations, etc. Moses et al. proposes a new

kind of abstracted metric by utilizing the basic IPC metric and assigning weights

to it for each VM or workload for which the IPC is monitored. To analyze the

success or failure of VM migration due to shared resource contention, Moses et

al. incorporates the QoS (Quality of Service) value of the ith workload/VM and

the corresponding IPC, and measures the Qos-Weighted throughput

performance metric. [15]

B. Compute-Based: Tovarňák et al. [8], Alhamazani et al. [2], Rodrigues et al. [3]

focus on monitoring at IaaS/ Platform-as-a-Service (PaaS) layer mentioning

Hybrid Cloud Workload Monitoring as a Service

 6

metrics as system uptime, disk throughput, storage I/O, CPU usage, CPU

allocations, memory usage, memory allocations, virtual machine creation and

release times.

C. Network-Based: Dhingra et al. [9], Tovarňák et al. [8], Alhamazani et al. [2],

Rodrigues et al. [3] mention the metrics to measure the status of network

connectivity which focus on packet counts, link throughput, Network Interface

Cards (NIC)/vNIC interface statuses.

D. Events: Dhingra et al. [9], Calero et al [11], Rodrigues et al. [3] mention events

sent by cloud components, which primarily are asynchronous changes that take

place at IaaS/PaaS layers. The authors use these events to trigger workflows or

make certain decisions based on correlation of the data being sent by the events

and the data being collected by metric monitoring

Hybrid Cloud Workload Monitoring as a Service

 7

III. ARCHITECTURES

Once the KPIs or metrics are defined on what to monitor, an architecture is

required in how the monitoring is to be achieved. NIST has provided a standard

literature around the “Cloud Services Metric Model” or “CSM”, which provides

the definitions and descriptions for how metrics should be and how their values can

be determined. However, to determine the value, a metric need to be collected,

stored and calculated upon to provide such information. Collection of monitoring

data takes a few specific architectures:

A. Centralized: Shao et. al [6] developed a centralized architecture by employing

a monitoring tool in each VM which sends the runtime information to a central

database and monitoring agent. Shao et al. employed a server-agent style

architecture where a monitoring agent is deployed on each virtual machine

which is equipped with different monitoring facilities like Hyperic’s System

Information Gatherer and Reporter (SIGAR) cross-platform API (Application

Programming Interface), JVM (Java Virtual Machine) agent, Filters, and JMX

interface. SIGAR API is used to provide runtime information about the

infrastructure regardless of their platforms, JVM agent monitors the health of

JVM, Filters intercept messages passed to and from the monitoring device and

thus help to understand the interacting behavior between users and services. The

technique of service probing where the monitoring code is embedded with target

Hybrid Cloud Workload Monitoring as a Service

 8

code is also employed. This information is then instantiated to an abstraction

called the runtime model for cloud monitoring (RMCM) which is then

validated, and if flagged, an alarm is sent to the central monitoring center.

Huang et. al [7] employed a push and pull algorithm for a centralized hub-spoke

model where change of status between “producers” and “consumers” are being

tracked continuously. For the push phase, the producer is the initiator and it

sends out status information when it detects a change in degree greater than the

threshold called User Tolerant Degree (UTD). For the pull-phase, the consumer

is the initiator and requests the producer for a status update. The abstraction

service that provides a control-plane to program and manage the producers and

consumers based on programmer’s intent is centralized. Both architectures

assume a single point of aggregation of all data, which is simple to implement

and provides data across the different layers of the cloud model. Moses et al.

focuses on monitoring shared resource contention, especially Last-Level Cache

(LLC), and aims at improving the overall datacenter throughput via VM

migration while maintaining the SLAs. The approach proposed is called MIMe

(Monitor Identify and Migrate), in which VMs suffering due to resource

contention are identified and prioritized for migration to achieve improved

weighted throughput. Moses et al. employs a centralized architecture where a

centralized policy server collects the cache occupancy of each VM and acts as

Hybrid Cloud Workload Monitoring as a Service

 9

a scheduler to identify candidates for migration. [15] Centralized architectures

can take advantage of existing methods, like polling of collection of data and

storing them easily in a singular place. The literatures also point out that a major

disadvantage of a centralized paradigm is scalability. As more cloud services

are spun up or horizontally scaled, the amount of data generated can be quite

overwhelming. It also introduces a single point of failure, wherein if the

centralized monitoring service fails, then the monitoring for the whole cloud is

stopped until the service is back up again.

B. Embedded: Tovarňák et. al [8] developed an embedded model by employing

an event- based daemon called Ngmon at the core of the guest operating system

of each VM which listens on an UNIX domain socket and collects data across

all layers. Dhingra et. al [9] developed an architecture with one Dom0 agent per

physical host, and a VM agent per VM both communicating with the metric

collector. Both of these models do not assume any aggregation point. Instead, it

is a direct generation of the monitoring data. The central principle of both of

these architectures is agents or scripts within a code which sends data back. The

“agents” provide real time information as code or services are executed and

provides immensely granular data with details. The major disadvantage is that

as agents reside inside the guest OS (Operating System) or hypervisor, there are

many compatibility and portability considerations to take care of. The survey

Hybrid Cloud Workload Monitoring as a Service

 10

finds that the Dom0 agent [9] can work only with Xen hypervisor, and Ngmon

agent [8] can work only in Linux based environments. In spite of this

disadvantage, the embedded monitoring is one of the best ways to monitor

services which are multi-tenanted, since both the Dom0 agent and Ngmon can

determine the per VM or tenant effort. Long Zhang et al. propose a resilient

architecture and solution for observability within applications itself which can

be monitored through a framework. They aim to automatically improve

exception handling in an already running or executed code. They propose a

system called TRIPLEAGENT, which embeds a component which allows for

monitoring, fault injection and validation. The paper goes on to elaborate on the

design and deployment of the agent. Even though an embedded architecture, the

design does heavily borrow from centralized command and control paradigms

to control fault injection and analysis. The monitoring agent is used to collect

dynamic data such as stack distance (method reporting the fault vs the method

generating the fault), number of method exceptions etc. The monitoring agent

provides a report to the developer when experiments are conducted. In a

distributed cloud environment, and particularly at the SaaS and PaaS layer,

where hardware is completely abstracted, having a tool to determine the effect

of problems such as memory out of bound, or Disk IO failures causing

operational issues in code execution helps in maintaining uptime and SLA for

Hybrid Cloud Workload Monitoring as a Service

 11

that service. [19]

Fig. 2. Triple Agent Architecture [19]

C. Decentralized: Anderolini et. al [10] designed a decentralized model by

developing a “probe process” which collects performance and utilization

indexes on each hardware and software resource on each monitored node and

thereby the information is received by the collection agent. The collection agent

validates the metric data, compresses it and send it to a dedicated collector node,

which can then plot it in real time or sent it to a distributed analyzer with a set

of analyzer nodes for map-reduce processing. These collector and analyzer

nodes indicate that there is no single point of aggregation, but multiple services

running in tandem collecting certain parts of data. Skvortsov et al. [12]

compared the decentralized model of EXCESS and ECO2 monitoring. The

EXCESS model comprises of ATOM (neAr-real Time Monitoring fraMework)

which includes a monitoring server called MONITOR and multiple light-weight

collector agents called ACTORS. In the ATOM architecture, the ACTORS

continuously sample node and application specific data, and send that to the

Hybrid Cloud Workload Monitoring as a Service

 12

MONITOR. In the ECO2 model, multiple Zabbix agents are employed on each

physical node and VM that collect the metric data and send it to a Zabbix server

running on a dedicated VM. All of these architectures achieve excellent

scalability by increasing the number of collector nodes [10], ACTORS or

Zabbix agents [12]. Yuan et al. thoroughly investigated distributed failures in

large scale cloud environments running PaaS services which are used heavily.

Hadoop, Mongo, Cassandra, DynamoDB, Kafka etc. are services which are

used by cloud architects to create system designs and workflow for their

applications. Region and geo-redundancy are generally assumed in a cloud

environment, in which case, all PaaS layer components are, by extension,

distributed. Monitoring in such an environment is challenging and costly, since

at PaaS, the infrastructure has been already reserved and every vCPU thread and

memory are being billed. So, knowing what to monitor for is extremely

important to make sure applications are not starved to execute due to heavy

monitoring burdens. Yuan et al. focus primarily on understanding the sequence

of failures that manifests due to one or more temporal errors. Generally, these

errors propagate and culminate in component failures which reaches the user.

The entire manifestation is less understood; however, individual failures can be

isolated and has been studied in great detail, including categorization of root

causes and symptoms. The manifestation of the failure tends to be very

Hybrid Cloud Workload Monitoring as a Service

 13

complex, even though the cause could be very simple. As per the paper “almost

all (92%) of the catastrophic system failures are the result of incorrect handling

of non-fatal errors explicitly signaled in software.” The paper goes on to report

that the complexity of a failure requires more than one input to manifest, and

there is specificity to these inputs. It also concludes that a lot of the failures stem

from daily operational tasks such as adding/removing nodes (assuming service

is configured for auto-scaling), configuration changes made to the service and

network partitioning. [18]

D. Service Oriented Architecture (SOA): SOA monitoring is a relatively new

paradigm of monitoring where the monitoring of workloads or services itself is

a service at the PaaS layer. This architecture is gaining traction in recent times

and not well-explored, hence the survey did not find multiple references to

report. In this case, the monitoring is handled through a dedicated VM or a

dedicated service which integrates at the middleware. Calero et. al [11]

developed this new plug-in service dedicated for monitoring called

“MonPAAS” (Monitoring-Platform-As-A-Service). MonPAAS application

integrates with the infrastructure layer implemented with Openstack and the

platform layer coupled with the monitoring software NAGIOS. The MonPAAS

service is responsible for managing MVMs (monitoring VM) per tenant.

Topology changes in either the physical or virtual layer are intercepted by

Hybrid Cloud Workload Monitoring as a Service

 14

MonPAAS. It is configured as a cloud consumer for security and isolation

purposes. Since the monitoring architecture is service oriented, it provides

unprecedented flexibility in “what” to be monitored and “how” to report, based

on “rules” set by the administrator. As monitoring is itself a service, this

architecture also provides unprecedented scalability. However, it does so at the

cost of being too resource heavy as dedicated VMs are allotted for the purpose

of running the service. Simonsson et al. proposed the emerging concept of

“Observability” which extends the traditional idea of monitoring to help

understand and correlate the internals of applications and infrastructures. This

is essential as microservice based cloud applications are becoming more and

more ubiquitous. Analyzing microservice performance is now an absolutely

essential part of monitoring application health. Observability leverages

structured event logs, multiple metrics and tracing to correlate distributed but

related events, which is very common in microservice based architecture, for

example, a user request that spans through multiple microservices. To evaluate

resiliency in production environment, and face real-world uncertainties,

Simonsson et al. mentions the concept of “Chaos Engineering”. In this concept,

first a steady state of the application is hypothesized based on monitorable

metrics. Then a real-world failure simulation is injected into the production

environment such as disk full or unavailable third-party services. These

Hybrid Cloud Workload Monitoring as a Service

 15

experiments are done after deployment, and continuously to build confidence in

the production system. Automation and minimizing the blast-radius (impact of

the chaos engineering experiment) are the final steps. To achieve observability

and perform chaos engineering experiments in containerized applications,

Simonsson et al. proposed CHAOSORCA which is comprised of a monitor, a

perturbator, and an orchestrator. The collection of system information at

runtime is the responsibility of the monitor component, and it helps to attain

observability and connect system level failures to application-level behavior by

providing KPI information at the container level, operating system level, and

application level. The perturbator injects system failures at runtime which is

defined as “<s, e, d> where s is the system call, e is the error code and d is the

delay before the call is invoked”. The orchestrator acts as an interface between

these two and helps to generate reports and conduct chaos experiments. [14]

Fig. 3. CHAOSORCA Architecture [14]

Hybrid Cloud Workload Monitoring as a Service

 16

Fig. 4. MonPAAS Architecture [11]

Hybrid Cloud Workload Monitoring as a Service

 17

IV. CHARACTERISTICS OF CLOUD MONITORING

Cloud monitoring systems need to have certain characteristics to effectively

monitor cloud workloads. Survey on popular cloud monitoring tools such as

NAGIOS, Cloud Watch, OpenNebula, MonPAAS etc., ascertained certain generic

characteristics which have been corroborated extensively by the literatures

reviewed. These characteristics can be generically detailed as:

A. Monitoring at scale: A cloud monitoring solution should be able to monitor

massively distributed workloads and provide information with relatively low

margin of error. Anderolini et. al [10] achieved scale by increasing the number

of collector and analyzer nodes with increment in input data stream. Calero et.

al [11] on the other hand achieved scalability by creating more MVMs on

demand. Veeraraghavan et al. proposes “Maelstorm” to drain traffic in case of

a failure and redirect the information to a set of services which are not in failed

state. Nicolas et al, discusses an observability framework for monitoring large

scale workloads executing in micro-services. [20]

B. Monitoring at different layers: A cloud monitoring solution should be able to

monitor at multiple layers within the cloud model. Tovarňák et. al [8] achieved

this by deploying Ngmon (event-based daemon) listening to an UNIX socket

that collects data across all layers. Calero et. al [11] achieved monitoring

capability at different layers by integrating the MonPAAS with the message

queue from the infrastructure layer and with agents in the platform layer through

Hybrid Cloud Workload Monitoring as a Service

 18

APIs. Long et al. focuses specifically on microservices running on docker

containers. They propose ChaosOrca, a chaos engineering tool for fault-

injection, monitoring, reporting and analysis at the micro-service layer. [19]

Nicolas et al. discuss more generically of the framework and proposes designs

on auto-scaling of the observability framework itself using IaaS monitoring as

an input. [20]

C. Interoperability: A cloud monitoring solution must be agnostic to the cloud

model as they are implemented by different cloud providers. Shao et. al [6]

achieved this by instantiating RMCM (Runtime Model for Cloud Monitoring)

from the raw data which essentially hides the underlying heterogeneity of the

cloud platform. Tovarňák et. al [8] on the other hand designed an event-based

object from the performance and utilization metrics collected by the embedded

agent. Marcio et al. proposes a paradigm of “Monitoring Slice” which is per

tenant in a cloud hosted environment. Each slice is monitored using multiple

tools at multiple layers, controlled though a centralized policy engine called

“FlexACMS”. The tool is specifically to create and manage monitoring slices

irrespective of the monitoring solutions being employed. [21]

D. Shared services: A cloud monitoring solution should be able to monitor

services which are shared across multiple resources such as multi-tenant

systems and should be non-intrusive to the core workload. Calero et. al [11]

achieved resource monitoring in a multi-tenant system by employing a

dedicated monitoring VM (MVM) per tenant. Moses et al. describe shared

Hybrid Cloud Workload Monitoring as a Service

 19

resource monitoring mostly at the PaaS and hypervisor layers controlling VM

lifecycle. They create a novel approach on how to identify VMs based on their

behavior for migration, achieving determinism in auto-scaling and aggregation.

Since all resources in cloud are generally shared and tenanted, using a technique

to aggregate loads in predictable patterns helps in troubleshooting when issues

do occur. Tovarňák et. al [8] achieved this property by deploying the Ngmon to

be the core service of the guest OS, and to monitor resource usage per VM, i.e.

tenant on it. Dhingra et. al [9] also achieved this property by employing the

Dom0 agent at the hypervisor level which can determine per VM usage.

Hybrid Cloud Workload Monitoring as a Service

 20

V. PROPOSED ARCHITECTURE

There are multiple monitoring solutions in the cloud and infrastructure space

and each one of them, have their own advantages and disadvantages. Generally, the

monitoring solution architectures have three major components, a timeseries

database, a collector agent framework and a visualization dashboard. This project

implements the same tuple: influx for timeseries, self-developed collectors and

self-developed visualization system.

To monitor resource usage, most open source cloud monitoring software

(Prometheus, Graphite, Sysdig) depend heavily on the orchestration layer

(openStack, Kubernetes, AWS). It is rare for the same systems to collect details

from the IaaS layer below. The IaaS layer monitoring is generally left to more

commercial solutions such as NAGIOS or CACTI. In this project the monitoring

methods implemented for PODs or the applications layer is extended to the IaaS

layer (BareMetal and VMs) as well. The rationale behind this approach is to collect

the VM usage metrics as reported by the VM host rather than the hypervisor.

Hypervisor level metrics collection can report burst usage due to CPU steal cycles.

The project VMs all reside in shared services and do not have dedicated resources

assigned, hence dynamic CPU contention needs to be addressed. If CPU steal

cycles are incorporated in the calculations, then results can be erroneous.

Hybrid Cloud Workload Monitoring as a Service

 21

To monitor resource usage of the PODs or the containers, most open source

cloud monitoring software gather data from an orchestration system perspective,

i.e. the metrics of resource usage by PODs are reported by the orchestration layer

instead of an application within the POD. This project not only collects POD

utilization statistics, but the same stats are reported directly by the application itself.

This makes monitoring agent scalable along with the application without complex

auto-scale logic and enables close monitoring of the application health.

Fig. 5. Generic Orchestration Layer Collection vs Collection w/ Embedded Custom Code at
Multiple Layers

All monitoring solutions provide alerts and error management but co-

relation of any type is either commercialized such as Sysdig and InfluxDB

enterprise, or generally ignored. Some basic co-relations such as VM affinity of

PODs, or evictions due to resource shortages which are incredibly useful for

operators could easily be added and this project aims to do so.

Hybrid Cloud Workload Monitoring as a Service

 22

The open source monitoring solutions are created by adding multiple

different types of software together. Generally, the setup of such systems is fairly

easy, but the rules to define and collect metrics has a steep learning curve.

Prometheus, for example, provides an excellent enterprise level collection

framework, but the config files can become very large and increasingly complex if

very granular metrics are targeted. This becomes cumbersome in future stages to

manage and control. In this project, programmatic methods are employed to collect

the metrics which is much simpler and deeply integrated with application code.

Since this project targets a very specific use case, unlike Prometheus which is more

generically built for enterprise level use cases, the framework is lightweight and

collects only specific data points and generates lower monitoring overhead.

The approach adopted for cloud monitoring is such that multiple best

practices are combined to achieve monitoring at different layers, which facilitates

correlation of application level resource utilization to platform level resource

utilization, and allows us to gain insights about the containerized cloud application

as a whole.

Firstly, the code responsible for gathering metrics is coupled with the code

generating workload, in a containerized environment. This approach ensures that

the monitoring agent is embedded with application logic, and thus KPI metrics are

collected at application layer (PaaS). An agent is also employed at the IaaS layer

Hybrid Cloud Workload Monitoring as a Service

 23

by running a code natively on each VM of the Kubernetes cluster which collects

the same metrics at VM level. Three levels of workload are generated (high,

medium, low) and are replicated at factor of three to run on the Kubernetes cluster.

The KPI data generated at the VM level is compared with KPI data generated at

the application layer to infer the number and types of workload running on each

VM. This continuous monitoring at different layers of key parameters gives

granular information about the application’s internal state, and thus helps in

determining the source of failure in case of performance bottleneck, in spite of the

cloud system’s inherent complexity. Thus, the proposed architecture aims at

achieving observability.

The KPI metrics are collected at the IaaS layer by the APIs provided by the

SIGAR (System Gatherer and Reporter) library which gives low-level operating-

system and hardware level information and is ported to various OS environments.

This simple API driven metric collection ensures the monitoring mechanism is non-

intrusive to the core-workload. In the PaaS layer, a bash script is employed to

continuously monitor CPU and memory percentages of processes running within

the container via the Linux Top command.

Hybrid Cloud Workload Monitoring as a Service

 24

Fig. 6. Project Framework Architecture

Hybrid Cloud Workload Monitoring as a Service

 25

VI. IMPLEMENTATION

The architecture displayed in Fig. 6 is designed for the process-flow shown below.

Fig. 7. Process Flow Diagram

The environment for the project is created to showcase multi-cloud deployment

and collection for workloads running across them. The cloud providers used for the

environment are the AWS EC2 and the GCP Compute engine. Hosted services provided

by these service providers were not used. Instead the clusters and all corresponding

services are run natively in the VMs to mimic an IaaS deployment. Two independent

VMs apart from the cluster VMs are used. One VM hosts the timeseries database and

the analyzer for aggregation of the raw data & correlation. The other VM hosts the

webserver for visualization. The operating system used is Ubuntu 18.04 LTS. The VM

specifications are 2vCPU, 2GB RAM, 10GB Volume.

Hybrid Cloud Workload Monitoring as a Service

 26

The orchestration layer used for this project is Kubernetes. The k8s cluster

consists of one master node and seven worker-nodes. Five of the worker-nodes are

hosted in GCP. The master node, and two worker-nodes reside in AWS. The connection

between GCP and AWS is achieved via a classic VPN tunnel. The tunnel is created by

first reserving a static IP address on GCP, and then creating a customer service gateway

attached to a VPN service gateway deployed through site-to-site VPN on AWS. Both IP

ranges, on AWS and GCP, are redistributed through static routes and the tunnel is

created using the IKEv1 pre-shared key method. Information provided by the AWS VPN

endpoint is used to create the two tunnels on GCP. Once the above steps are completed,

the tunnel is negotiated and brought up. Firewall rules on both sides, AWS and GCP,

need to be added to allow for the traffic from one VPC to come to the other.

Fig. 8. VPN Tunnel Set-up

The orchestration service is then loaded with a messaging service for all the

information to be passed from the containers to the database. To achieve this, the Kafka

service is deployed on the k8s cluster to allow for inter-component information

exchange. The database used is InfluxDB for its timeseries capability and storage for

metrics data.

Hybrid Cloud Workload Monitoring as a Service

 27

Spring boot applications are developed with Apache Kafka dependencies. These

containerized applications have two shell-scripts mounted inside of it. The first script

runs at entry-point to install and execute the Linux Stress-ng tool, which in turn simulates

CPU, and Memory stressors. The second script is executed periodically by the

application to fetch CPU and memory utilization percentages via the Linux Top

command. These applications are tagged into three categories as “High load”, “Low

load”, “Medium load”, as per their respective stressors and are modeled as Kafka

Producer applications which write the KPI metrics to the Kafka message queue under

three different topics corresponding to their load generation. The table below shows the

range of CPU % utilization generated by the stressors for each application type.

Table 1. Load Generation per Application Type

Application Type % CPU Load generated

High Load 50 ~ 80

Medium Load 25 ~ 50

Low Load 10 ~ 20

Three spring boot applications are developed which are modeled as Kafka

Consumers and are responsible for reading the messages on the queue per topic and

writing them to the database.

Another spring boot application is developed which is also containerized and

serves as the Webserver, and is responsible for reading the KPI metrics from the database

and displaying information to the user in a graphical format. APIs are designed so that

Hybrid Cloud Workload Monitoring as a Service

 28

users can view workload per type of application (“High load”, “Low load”, “Medium

load”) over time.

Finally, Java agents are run natively on each VM of the cluster which gathers the

information about its resource utilization with SIGAR API and the number and types of

containers running on the VM over time. Thus, KPI metrics are gathered at the PaaS, as

well as, the IaaS layer. The table below shows all the databases and measurements and

corresponding metric types.

Table 2. KPI Metrics Storage

Database Measurement Description

KPIDB-HIGH Stats KPI metrics for all applications tagged as High-Load

KPIDB-MED Stats KPI metrics for all applications tagged as Medium-Load
KPIDB-LOW Stats KPI metrics for all applications tagged as Low-Load
VMKPI VmStats KPI metrics for all VMs
PODCOUNT ContainerCount Number and type of applications

that are running on each VM at each time-stamp

The data written to InfluxDB by the above applications is a time-series data which

is essentially a sequence of data-points sorted over time, measuring the same metric.

This data needs to be processed to gain insights from it. For this purpose, a new set of

Spring-boot applications are employed which generates the mean of CPU consumption

& memory consumption percentages over 1-minute time-windows. An Influx-Client is

set up inside the Analyzer application which provides integration with the InfluxDB API

to perform these analyses. In the diagram below, the process of aggregation by the

analyzers is shown.

Hybrid Cloud Workload Monitoring as a Service

 29

Fig. 9. Analyzer Work Process

Hybrid Cloud Workload Monitoring as a Service

 30

VII. RESULTS & OBSERVATIONS

There were few exceptions observed which had to be remediated for proper

running of the project. The first and foremost observation was when SIGAR libraries

were used inside the container, the VM usage and container usage percentage were

observed to be exactly the same. SIGAR worked well when running in VMs for system

level monitoring since it directly queries the host CGROUP drivers and reports back the

entire VM usage. But, when called from inside the container, SIGAR reported the entire

VM usage since the container CGROUP is a child of the host CGROUP.

Because of this, the Linux top command is customized to determine the process

utilization from inside the container. Top -b -n 3 -d 0.1 -p <pid> calculates KPI metrics

per process in batch mode with three iterations and delay of 100 milliseconds between

screen updates. Reading the usage from orchestration/k8s layer was avoided due to

discrepancy issues as shown in Fig. 20.

The second finding of the experiment showed high CPU usage by the stress-ng

memory stressor tool, as CPU was consumed by threads either performing read/write or

stalled by other threads. Memory activity performed outside CPU cache resulted in

longer execution time than CPU clock cycle, making the kernel scheduler to mark the

threads busy, and as a result, the memory stressor consumed high scheduling time. This

resulted in a resource bottleneck on the 2vCpu VMs. Hence, only one memory stressor

was deployed, due to CPU shortage.

Hybrid Cloud Workload Monitoring as a Service

 31

For the following experimentation, the cluster VMs were run for 7 hours and a

workload was generated to collect KPI metrics. The table below shows the number of

raw data points collected for each of the application types and the VM hosts.

Table 3. KPI Metric Collection

Metric Type # Raw data points measuring KPI metrics

VmStats (IaaS) [CPU & memory utilization %] 18914

KPIDB-LOW [CPU & memory utilization %] 4356

KPIDB-MED [CPU & memory utilization %] 4278

KPIDB-HIGH [CPU & memory utilization %] 5636

A. Identification of POD distribution across VMs: The distribution of PODs and

optimal VM resource utilization is a complex problem. From an orchestration

layer point of view, the k8s load balancer assigns PODs to VMs based on current

resource utilization. However, in many cases, future usage spikes can lead to load

mismatches resulting in eviction of PODs and cluster failures. With VM resource-

scaling, this can be minimized, but in resource strapped clusters, the situation can

quickly become very grim with multiple containers restarting and evicting,

causing working containers to fail as well.

The first result deals with matching the load characteristics of the VM to

that of the applications inside of PODs over time. If one application in a POD is

using the VM resources at 80%, and another POD is scheduled on the same VM

which requires a similar amount of CPU, the failure can cascade. The applications

Hybrid Cloud Workload Monitoring as a Service

 32

within the PODs have random sleep times in between load generations to

randomize the usage spikes. This simulates usage spikes of an actual production

environment. A cloud-admin operator can pre-emptively move PODs from a

heavily loaded VM to an idle VM by profiling applications based on their generic

resource utilization characteristics over-time and closely identifying applications

running on a VM and thereby predicting a future usage spike. Thus, POD eviction

scenarios can be avoided altogether.

The cluster VM with hostname cworker6 is chosen to visualize and

identify POD distribution in it.

Fig. 10. cworker6 [CPU utilization %]

Fig. 11. cworker6 [Number and type of Containers]

As it is observed the VM cworker6 has one instance of “Medium Load”

and one instance of “High Load” application running on it, all the “High Load”

and “Medium Load” applications’ CPU utilization plots are overlaid with that of

cworker6 to identify the ones are running on the VM.

Hybrid Cloud Workload Monitoring as a Service

 33

Fig. 12. producer-high-9sv7k vs cworker6 [CPU utilization %]

Fig. 13. producer-high-j8k2w vs cworker6 [CPU utilization %]

It is observed that PODs producer-high-9sv7k and producer-high-j8k2w

show CPU utilizations that does not match with cworker6, i.e. they show CPU

utilization in time-frames where VM cworker6 is idle. Hence, they can be

eliminated from consideration.

Fig. 14. producer-high-n5wwl vs cworker6 [CPU utilization %]

Fig. 15. producer-med-7dqsj vs cworker6 [CPU utilization %]

Hybrid Cloud Workload Monitoring as a Service

 34

Fig. 16. producer-med-vz6qm vs cworker6 [CPU utilization %]

Similarly, PODs producer-med-7dqsj and producer-med-vz6qm can be

eliminated since they show CPU utilization in time-frames where VM cworker6

is idle.

Fig. 17. producer-med-9k25t vs cworker6 [CPU utilization %]

Hence, the VM cworker6, has POD producer-high-n5wwl and producer-

med-9k25t running on it. This kind of information is extremely useful from the

cloud admin point of view to predict future resource usage patterns and possible

resource bottlenecks. This correlation can be further automated and improved by

employing machine-learning algorithms to enable the cloud-admin to take pre-

emptive actions.

An experimentation was performed using the widely popular open source

Prometheus collector & associated Grafana dashboard alongside this project

Hybrid Cloud Workload Monitoring as a Service

 35

framework tool to perform comparative analysis on the same KPI data.

Prometheus is essentially a TSDB (Time Series Database) and has a custom query

language. It is purposefully built for numeric time series and supports exporters

to collect detailed data from multiple data sources.

In context of the use case to match VM and POD load characteristics,

first and foremost, advantage of this project framework is that it does application

profiling (tagging applications as per their load characteristics) and storing that

information into the InfluxDB as illustrated in Fig 8. Whereas, Prometheus allows

us to get information about number of the pods running on each node, but there is

no built-in application profiling involved.

Prometheus exporters infer POD usage as reported by the kubelet cadvisor

in the k8s orchestration layer. However, in this project framework, the PaaS level

KPI metrics are reported as seen by the application running inside the POD, which

has a distinct advantage in inferring actual application health, rather than overall

POD usage. The following graphs show an overlaid comparison between CPU

utilization reported by the project framework tool to the same reported by

Prometheus.

The POD utilization reported by Prometheus and the application utilization

reported by the project framework vary by a small percentage as seen in the graphs

below, since POD utilization takes all processes into account including k8s infra

services, instead of just the profiled application.

Hybrid Cloud Workload Monitoring as a Service

 36

VM cworker6 with PODs producer-high-n5wwl and producer-med-9k25t

is chosen to perform the overlaid comparison of CPU metrics reported by

Prometheus and the project framework tool.

Fig. 18. producer-med-9k25t [CPU utilization % Prometheus vs Project Framework]

Fig. 19. producer-high-n5wwl [CPU utilization % Prometheus vs Project Framework]

A snapshot of CPU% metric and corresponding timestamp reported by

Prometheus and Project Framework is shown in the table below to identify the

deviation in metric percentage and timestamp reported.

Hybrid Cloud Workload Monitoring as a Service

 37

Table 4. PMT vs Project Framework [Metric & Timestamp]

Project
Framework
CPU% metric &
Timestamp

PMT CPU %
metric &
Timestamp

Δ Time Δ CPU % Metric

30% 09.03.03 25% 09.03.45 +42s +5%
25% 09.03.24 24% 09.03.56 +32s +1%
30% 09.03.36 28% 09.03.57 +21s +2%
25% 09.03.55 24% 09.04.26 +31s +1%
30% 09.04.30 29% 09.04.42 +12s +1%
25% 09.04.50 24% 09.05.10 +30s +1%
30% 09.05.11 29% 09.05.25 +14s +1%
30% 09.05.29 28% 09.06.10 +41s +2%
25% 09.05.47 23% 09.06.22 +35s +2%
45% 09.28.16 39% 09.28.47 +31s +6%
45% 09.28.33 47% 09.29.01 +28s -2%
46% 09.29.05 46% 09.29.15 +10s 0%
35% 09.29.22 38% 09.29.47 +25s -3%
50% 09.29.39 47% 09.29.51 +12s +3%
50% 09.29.54 47% 09.30.12 +18s +2%

Another observation is that for overall VM utilization Prometheus reports

a CPU utilization burst whereas SIGAR (used in the IaaS layer monitoring in this

project) does not report so. It is suspected that, since kubernetes uses cgroupfs

driver for resource management, the cgroup hierarchy have caused Prometheus to

report the burst. Since SIGAR queries the linux kernel directly the utilizations

reported is as seen by the linux kernel itself. If actual application utilization per

VM needs to monitored this CPU burst can be misleading.

Hybrid Cloud Workload Monitoring as a Service

 38

Fig. 20. cworker6 [CPU utilization % Prometheus vs Project Framework]

 The burst usage reported from the Hypervisor perspective is illustrated in the

diagram below. The hypervisor allocates CPU cycles on demand to VMs and reserves

the rest (for instances to be scheduled in future, or probable future CPU cycle demands

of the existing instances). Generally, a hypervisor allocates a specific amount of CPU

cycles to each shared VM, for example a T3.small instance is entitled to 1.0 GHz clock

speed (40%) of the AWS XEN hypervisor with 2.5 GHz clock speed. If the VM

consumes 40%, then as per the hypervisor the VM is utilizing 100% of its allocated CPU

resources. If the VM requires more clock speed e.g. 50% then it is shown as a burst and

the hypervisor reports >100% utilization. This is a source of contention for tools using

cgroupfs to monitor the CPU cycle usage since the hypervisor is stealing resource from

any arbitrary VM in its shared resource pool to provide the resource to the VM asking

for the burst.

Hybrid Cloud Workload Monitoring as a Service

 39

Fig. 21. Representation of CPU Cycle Steal

Other comparison factors were:

1. Deviation in metric and time: Metrics reported by both frameworks show a

deviation of -5% ~ +5% as observed in Table 4. However, since the project

framework tool is embedded while Prometheus collects metrics via endpoint

scraping, there was a 30 seconds delay on average in the collection timestamp

by Prometheus in comparison to embedded collection agent implemented in

this project. This is a significant advantage of push model followed by this

project in comparison to pull model followed by Prometheus.

2. Ease of setup: Prometheus is enterprise grade hence setup is complicated.

ConfigMaps and exporters needs to be setup for data collection. The project

implements a simpler setup (minutes compared to hours) since its geared for a

specific use case.

Hybrid Cloud Workload Monitoring as a Service

 40

3. Monitoring overhead: The monitoring agent in the framework implemented in

the project is deeply coupled with the application code, hence it does not

require additional resources to run, and can be scaled in and out as the system

evolves. Whereas for the Prometheus deployment had to be set up on a separate

node to run it as a service, and it incurred additional resource cost on the

cluster. An experimentation was performed with the cluster was horizontally

scaled from 8 to 20 VMs. For each cluster state, Prometheus and Project

Framework Tool were used as collector for 2 hours, to compare their overhead.

Fig. 22. Average CPU utilization % of Cluster [PMT vs Project Framework]

Hybrid Cloud Workload Monitoring as a Service

 41

B. Preemptive identification of POD evictions in a resource-strapped cluster:

In a resource-strapped cluster, a resource bottleneck can occur easily if the

applications are replicated at a higher factor and the application usage exceeds

physical capacity of the cluster. As a result, multiple pods get evicted and the

k8s replication controller tries to bring them back up. This results in a cascading

eviction scenario and ultimately results in cluster failure. The k8s orchestration

layer itself does not report any problem in this scenario. The tool implemented

in this project reports PODs started and evicted per VM in every 15minutes and

current VM health, to indicate possible cluster failure.

A rule-book is designed in the agents running on the VMs as depicted in

the following table. This helps to anticipate cluster failure and evictions pre-

emptively.

Hybrid Cloud Workload Monitoring as a Service

 42

Table 5. VM Health Rule Book

#High Load Apps #Medium Load Apps #Low Load Apps VM Health

>=2 0 or more 0 or more Red

1 1 1 Red

0 or more >=3 0 or more Red

0 or more 0 or more >=5 Red

1 >=2 0 or more Red

1 0 or more >=2 Red

0 2 >2 & <5 Red

1 0 1 Yellow

1 1 0 Yellow

0 2 <=2 Yellow

0 1 >=3 & <5 Yellow

0 0 >=4 & <5 Yellow

0 1 <3 Green

0 0 <4 Green

1 0 0 Green

For this experimentation after initial cluster setup of each application type

of replication factor three which runs in stable state, a cluster health state and

PODs started per VM snapshot is taken.

Hybrid Cloud Workload Monitoring as a Service

 43

Fig. 23. PODs started per VM after initial set up

Fig. 24. VM Health after initial set up

Table 6. Applications per VM after initial set-up

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8

1 High 1Medium

1 Low

1 High

1 Low

0 1Medium

1 Low

1High 1Medium 0

Hybrid Cloud Workload Monitoring as a Service

 44

Next application type High Load was scaled by three more instances.

Fig. 25. PODs started per VM after first scale

Fig. 26. VM Health after first scale

Table 7. Applications per VM after first scale

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8

2 High 1Medium

1 Low

1 High

1 Low

1 High 1Medium

1 Low

1High 1Medium

1High

0

Hybrid Cloud Workload Monitoring as a Service

 45

Next application type Medium Load was scaled by three more instances.

Fig. 27. PODs started per VM after second scale

Fig. 28. VM Health after second scale

Table 8. Applications per VM after second scale

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8

2 High

1Medium

1Medium

1 Low

1 High

1 Low

1 High

1Medium

1Medium

1 Low

1High

1Medium

1Medium

1High

0

Hybrid Cloud Workload Monitoring as a Service

 46

Next application type High Load was scaled by three more instances.

Fig. 29. PODs started per VM after third scale

Fig. 30. VM Health after third scale

Table 9. Applications per VM after third scale

cworker1 cworker2 cworker3 cworker4 cworker5 cworker6 cworker7 cworker8

3 High

1Medium

1Medium

1 Low

1 High

1 High

1 Low

1 High

1Medium

1Medium

1 Low

1 High

1High

1Medium

1Medium

1High

0

Hybrid Cloud Workload Monitoring as a Service

 47

Fig. 31. Evictions after third scale

It is seen despite of cworker1 in “Red” health state PODs getting scheduled

on it, which resulted in multiple evictions on it. PODs got repeatedly scheduled

and evicted on it resulting in cascading evictions.

Whereas, in absence of such simple API-driven health check, cloud-admin

user has to either perform command-line query on the k8s master to get such

information, or customize PromQL query to monitor kubelet-evictions metrics for

the namespace required.

C. Identification of VM affinity for Applications: An experimentation was

performed where PODs of each application type were deleted repeatedly over 100

iterations, and the VM hosts on which they were brought back up by the k8s

replication controller was tracked. Even though affinity was not set for PODs as

part of initialization, it was observed that k8s load balancing algorithm tends to

schedule specific applications/PODs in specific VMs. There were two

motivations to conduct this experiment:

Hybrid Cloud Workload Monitoring as a Service

 48

1. The first one is to highlight, that if the application failure occurs i.e. the POD

is not evicted due to resource bottleneck, k8s load balancer does not consider it to

be a failure scenario and tends to schedule the PODs on the same VMs over time.

2. The second is to identify, if the same application or similar applications are

failing over time, where are they re-manifesting. The experiment follows the

PODs over multiple failures deployed as part of a replication controller to identify

affinity to any particular VM hosts.

Fig. 32. VM affinity per Application Type

Hybrid Cloud Workload Monitoring as a Service

 49

VIII. CONCLUSION & FUTURE WORK

In this paper, the existing and well-researched cloud monitoring architectures are

surveyed and the use-cases each are targeted for are reported. The essential

characteristics that any cloud monitoring solution should offer are discussed. With the

survey it is inferred that containerized, service-oriented monitoring solutions which are

efficient from a usability point-of-view, and offers “observability” are gaining traction

in recent times. This project builds such a tool which provides containerized monitoring

solution and combines multiple best practices such as embedded agents, scalable and

service-oriented framework.

The framework implemented successfully eliminates resource utilization bursts

as reported by the hypervisor by monitoring at different layers and provides consistent

data for the use-case of actual process load monitoring on the host VMs. The tool also

employs a unique solution to monitor host VM health by tagging applications as per their

load, and monitoring the number and type of applications running on each VM. This

health monitoring indicates possible cluster failure pre-emptively. However, as the

monitoring framework is deeply integrated with application, any additional update in the

monitoring metrics requires rolling upgrade of the application images.

The tool implemented is compared with widely popular Prometheus/Grafana

monitoring stack to derive a comparative performance evaluation, and as expected the

metrics reported by both vary by a small percentage, since the tool monitors application

Hybrid Cloud Workload Monitoring as a Service

 50

health from inside the container while Prometheus collects data about the application

from the orchestration layer.

As future work, the data collected by the monitoring tools can be analyzed by

machine-learning algorithms and trained models can be used to predict the VM health

dynamically. The VM health logic can be incorporated with the Kubernetes load

balancing algorithm or any other orchestration engine algorithms to enhance the POD-

scheduling mechanism. For example, dynamic “taints” can be used to stop scheduling

PODs on high usage VMs. Also, the VM affinity checker can be coupled with the

Kubernetes load balancing algorithm to dynamically shift PODs to different VM host

which is in a stable state, after a certain threshold of affinity for the current host has been

reached. Additionally, developing a user-management system is another notable future

work that can be incorporated as part of the service-oriented architecture, to notify admin

users in case of deteriorating cluster health.

Hybrid Cloud Workload Monitoring as a Service

 51

REFERENCES

[1] NIST Cloud Computing Standards Roadmap, NIST Special Publication 500-291, Version 2,
July 2013, National Institute of Standards and Technology, U. S. Department of Commerce
[Online] Available: https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-
291_Version-2_2013_June18_FINAL.pdf

[2] K. Alhamazani et. al, “An overview of the commercial cloud monitoring tools: Research
Dimensions, Design Issues, and State-of-the-Art”, J. Computing, vol. 97, 2014, DOI:
10.1007/s00607-014-0398-5,[Online]
Available:https://www.researchgate.net/publication/265053448_An_Overview_of_the_Co
mmercial_Cloud_Monitoring_Tools_Research_Dimensions_Design_Issues_and_State-of-the-Art

[3] G. Rodrigues et. al, “Monitoring of cloud computing environments: concepts, solutions, trends,
and future directions” presented at 31st Annual ACM Symp. April,2016 pp. 378-383, DOI:
10.1145/2851613.2851619,[Online]Available: :
https://www.researchgate.net/publication/303773193_Monitoring_of_cloud_computing_envir
onments_concepts_solutions_trends_and_future_directions

[4] Cloud Computing Service Metrics Description, NIST Special Publication 500-307, April 2018,
NIST Cloud Computing Program, National Institute of Standards and Technology, U.S.
Department of Commerce , [Online] Available:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.500-307.pdf

[5] Q. Zhang, L. Cheng, R. Boutaba, “Cloud computing: state-of-the-art and research challenges”, J.
Internet Serv. Appl.,2010, vol.1, pp. 7-18, DOI : 10.1007/s13174-010-0007-6, [Online] Available:
https://www.researchgate.net/publication/225252747_Cloud_Computing_State-of-
the-art_and_Research_Challenges

[6] J. Shao et. al, “A runtime model based monitoring approach for cloud” in 2010 IEEE 3rd Int. Conf.
on Cloud Computing, CLOUD 2010, pp. 313-320, Miami, FL, USA, 2010 DOI:
10.1109/CLOUD.2010.31,[Online]Available:
https://www.researchgate.net/publication/221399872_A_Runtime_Model_Based_Monitoring_Appr
oach_for_Cloud

Hybrid Cloud Workload Monitoring as a Service

 52

[7] H. Huang, L. Wang, “P&P: A combined push-pull model for resource monitoring in cloud
computing environment” in 2010 IEEE 3rd Int. Conf. on Cloud Computing, CLOUD 2010,
pp. 260-267, DOI:10.1109/CLOUD.2010.85, [Online] Available:
https://www.researchgate.net/publication/221399942_PP_A_Combined_Push-
Pull_Model_for_Resource_Monitoring_in_Cloud_Computing_Environment

[8] D. Tovarňák, T. Pitner, “Towards multi-tenant and interoperable monitoring of virtual machines
in cloud”, presented at 14th Int. Symp. on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2012 pp. 436-442, 2012, DOI: 10.1109/synasc.2012.55[Online]
Available: https://ieeexplore.ieee.org/abstract/document/6481063

[9] M.Dhingra, J. Lakshmi, S.Nandy, “Resource usage monitoring in clouds” in 2012 ACM/IEEE
13th Int. Conf. (GRID) , 2012, pp. 184-191. DOI: 10.1109/Grid.2012.10, [Online]
Available:https://www.researchgate.net/publication/261088030_Resource_Usage_Monitoring_
in_Clouds

[10] M. Andreolini, M. Pietri, M. Colajanni, “A scalable architecture for real-time monitoring of
large information systems” in IEEE 2nd Symp. on Network Cloud Computing and Appl.,
NCCA 2012, pp. 143-150, DOI: 10.1109/NCCA.2012.24, [Online] Available:
https://www.researchgate.net/publication/261277642_A_Scalable_Architecture_for_Real-
Time_Monitoring_of_Large_Information_Systems

[11] J. Calero, J. Aguado, “MonPaaS: An adaptive monitoring platform as a service for cloud
computing infrastructures and services” , J. IEEE Trans. on Services Computing, vol. 8, pp 1-1,
DOI:10.1109/TSC.2014.2302810[Online]Available:
https://www.researchgate.net/publication/270791480_MonPaaS_An_Adaptive_Monitoring_Pla
tform_as_a_Service_for_Cloud_Computing_Infrastructures_and_Services

[12] P. Skvortsov et. al “Monitoring in the clouds: comparison of ECO2Clouds and EXCESS
monitoring approaches”, 2016, [Online] Available:
https://www.researchgate.net/publication/301874389_Monitoring_in_the_Clouds_Comparison_o
f_ECO2Clouds_and_EXCESS_Monitoring_Approaches

Hybrid Cloud Workload Monitoring as a Service

 53

[13] K. Fatema et. al “A survey of cloud monitoring tools: taxonomy, capabilities and objectives”, J.
of Parallel and Distributed Computing, 2014, vol. 74, DOI: 10.1016/j.jpdc.2014.06.007,
[Online] Available:
https://www.researchgate.net/publication/263774524_A_survey_of_Cloud_monitoring_tools_Tax
onomy_capabilities_and_objective

[14] J. Simonsson, L. Zhang, B. Morin et. al “Observability and Chaos Engineering on System Calls
for Containerized Applications in Docker”, 2019, KTH Royal Institute of Technology,
Stockholm, Sweden.

[15] Moses et. al, “Shared Resource Monitoring and Throughput Optimization in Cloud Computing
data centers”, in IEEE 25th International Parallel and Distributed Processing Symp.,2011,
pp.1024-1033,DOI:10.1109/IPDPS.2011.98[Online]Available:
https://www.researchgate.net/publication/224257776_Shared_Resource_Monitoring_and_Throu
ghput_Optimization_in_Cloud-Computing_Datacenters

[16] S. Padhy et. al, “Trustworthy and resilient monitoring system for cloud infrastructures”, in
Proceedings of the Workshop on Posters and Demos Track, 2011, pp 3.1-3.2 , DOI:
10.1145/2088960.2088963 [Online] Available:
https://www.researchgate.net/publication/236158667_Trustworthy_and_resilient_monitoring_sy
stem_for_cloud_infrastructures

[17] Veeraraghavan et. al, “Maelstrom: Mitigating Datacenter-level Disasters by Draining Interdependent
Traffic Safely and Efficiently”, in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’18), 2018, Carlsbad, CA, USA, [Online] Available:
https://www.usenix.org/conference/osdi18/presentation/veeraraghavan

[18] D. Yuan, Y. Luo, X. Zhuang et. al, “Simple Testing Can Prevent Most Critical Failures: An

Analysis of Production Failures in Distributed Data-Intensive Systems”, in 11th USENIX
Symposium on Operating Systems Design and Implementation, 2014, Broomfield, CO,
USA, [Online] Available:
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

[19] L. Zhang et. al, “TripleAgent: Monitoring, Perturbation and Failure-Obliviousness for Automated
Resilience Improvement in Java Applications”, in IEEE 30th International Symposium on Software
Reliability Engineering (ISSRE), 2019, pp. 116-127, DOI: 10.1109/ISSRE.2019.00021 [Online]
Available:
https://www.researchgate.net/publication/339174418_TripleAgent_Monitoring_Perturbation_and
_F ailure-Obliviousness_for_Automated_Resilience_Improvement_in_Java_Applications

Hybrid Cloud Workload Monitoring as a Service

 54

[20] N. Magdelaine, T. Ahmed, G. Amato, “Demonstration of an Observability Framework for
Cloud Native Microservices”, in IFIP/IEEE Symposium on Integrated Network and Service
Management(IM),2019,pp.722–724[Online]Available:
https://ieeexplore.ieee.org/document/8717923

[21] M. De Carvalho et. al, “A Cloud Monitoring Framework for Self-Configured Monitoring Slices
Based on Multiple Tools”, in Proceedings of 9th International Conference on Network and
Service Management (CNSM), 2013, pp. 180-184, DOI: 10.1109/CNSM.2013.6727833
[Online] Available:
https://www.researchgate.net/publication/260002372_A_Cloud_Monitoring_Framework_for
_Self-Configured_Monitoring_Slices_Based_on_Multiple_Tools

	Hybrid Cloud Workload Monitoring as a Service
	Recommended Citation

	Microsoft Word - CS298-FINAL copy.docx

