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ABSTRACT 

NewSQL Monitoring System  

By  

Akash Budholia 

 

NewSQL is the new breed of databases that combines the best of RDBMS and NoSQL databases. 

They provide full ACID compliance like RDBMS and are highly scalable and fault-tolerant similar 

to NoSQL databases. Thus, NewSQL databases are ideal candidates for supporting big data and 

applications, particularly financial transaction and fraud detection systems, requiring ACID 

guarantees. Since NewSQL databases can scale to thousands of nodes, it becomes tedious to 

monitor the entire cluster and each node. Hence, we are building a NewSQL monitoring system 

using open-source tools. We will consider VoltDB, a popular open-source NewSQL database, as 

the database to be monitored. Although a monitoring dashboard exists for VoltDB, it only provides 

the bird’s eye view of the cluster and the nodes and focuses on CPU usages and security aspects. 

Therefore, several components of a monitoring system have to be considered and have to be open 

source to be readily available and congruent with the scalability and fault tolerance of VoltDB. 

Databases like Cassandra (NoSQL), YugabyteDB (NewSQL), and InfluxDB (Time Series) will be 

used based on their read/write performances and scalability, fault tolerance to store the monitoring 

data. We will also consider the role of Amazon Kinesis, a popular queueing, messaging, and 

streaming engine, since it provides fault-tolerant streaming and batching data pipelines between 

application and system. This project is implemented using Python and Java. 
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CHAPTER 1 

Introduction 

 

Data has become a vital and essential commodity in the past few decades, so much so that 

most organizations rely on data to gather insights and improve upon their customer experience and 

gain significant market share. Huge volumes of data are generated every day. Companies can use 

such data to identify trends that help them execute their strategies and make better predictions for 

demands and supply. Due to the advent of IoT applications and smart appliances like home 

automation devices, the volume of data generated has increased manifolds. Traditional means of 

storage and retrieval of data have proven inefficient in dealing with this influx of varied data of 

high volume and variety. 

RDBMS has been the de-facto standard of data storage and retrieval for four decades. 

These worked well for applications with single node client-server architecture. However, with the 

advent of big data and microservice architecture, RDBMS could not meet the expectations of a 

low latency response to many concurrent requests [3]. As a result, there felt a need to look beyond 

the RDBMS to cater to the Big Data requirements. NoSQL databases could fulfill all these 

characteristics by providing features like scalability, replication for fault tolerance, and a flexible 

schema design to accommodate several data models like key-value pair (DynamoDB), document 

database (MongoDB), columnar databases (Cassandra), and graph databases (Neo4j).[3] 

However, NoSQL databases prefer availability over consistency of data across a cluster of nodes 

in the event of failure, which becomes unacceptable when dealing with applications like financial 

transactions, fraud, and anomaly detection where strong consistency is a necessity. NoSQL 

databases sacrifice ACID guarantees (Atomicity, Consistency, Isolation, and Durability) in favor 
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of network partition and high availability and offer BASE (Basically Available, Soft State and 

Eventually consistent) properties [3]. Since ACID guarantees are critical for applications like e-

commerce, companies have to add a sharding layer to their RDBMS systems to get the best of both 

worlds. However, sharded SQL databases are difficult to manage and require much expertise and 

manual effort to deploy. Therefore, there was a need to have databases built from the ground-up, 

which would combine the scalability and fault tolerance of NoSQL and provide ACID guarantees 

of RDBMS. NewSQL databases comply with both the above requirements. Most NewSQL 

databases reuse the existing open-source PostgreSQL or the MySQL query layer on top of 

persistent storage like RocksDB (a strongly consistent key-value store). NewSQL databases are 

promising, and the demand for this database is on the rise. Hence, it makes for a fascinating case 

to monitor such databases and evaluate which underlying database would be most efficient in 

supporting the monitored data of the NewSQL databases. 

Since the research done in developing the monitoring system for NewSQL is a niche, we 

compare various database systems for monitored data management of the NewSQL database in 

this project. We have explored several candidate databases for each layer, weigh in their pros and 

cons, and choose the most appropriate databases to store the monitoring data. Organizations 

develop monitoring systems to keep their systems in an optimal state, keep track of resource 

utilization, detect anomalies in the system, and mitigate those issues by eliminating the process of 

manually monitoring every component of the database clusters. The features of a sound monitoring 

system are to provide an accurate representation of the current state of the system and produce low 

latency results as the monitoring data is generated at a rapid velocity. However, these monitoring 

systems are developed to cater to organizational needs and are not be open-sourced. Therefore, we 

aim to develop a NewSQL monitoring system from completely open-source technology. The 
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project’s focus is to ensure that the components used to build the monitoring system offer the best 

performance and function efficiently with minimal manual intervention.  

The project report is organized as follows: Chapter 2 provides an overview of the concepts 

related to the project. Chapter 3 focuses on the literature reviews, techniques, and previous works. 

The design and implementation of the monitoring system and the rationale behind the design 

decisions are explained in chapter 4. A few experiments were performed to study the efficacy of 

databases that store the data from the VoltDB cluster; chapter 5 focuses on the experimental setup, 

the results, and analysis. Finally, chapter 6 focuses on the conclusion and future scope possible 

with the project.  
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CHAPTER 2 

Background 

2.1 NoSQL Database 
 

NoSQL emerged as a reaction to the non-flexibility and inability of the RDBMS database to 

scale in congruence efficiently with the increase in the size and the volume of data. The NoSQL 

databases were built to scale and support unstructured data. Most of the NoSQL solutions focus 

on availability by relaxing consistency requirements: the database is always available, but the 

queries to the different nodes in the cluster might yield different results. This form of data 

inconsistency is called eventual consistency. Several other NoSQL databases do not have a rigid 

schema. Key values stores are extended by replacing values with ‘JSON’ Documents which have 

sub-keys, sub-values, arrays of JSON objects, and hierarchies. [27]. Finally, graph databases 

organize data according to relationships instead of columns or rows to provide graph query 

features. The key feature of the NoSQL database is its ability to scale on inexpensive commodity 

hardware. Replication is the process of copying partition data across multiple nodes in the cluster 

to ensure high availability and fault tolerance. NoSQL databases usually follow two modes of 

replication: 

• Master-Slave Replication: The writes are only directed to the master node and then 

replicated to the slave nodes, while any of the nodes can handle the read requests due to 

strong consistency. [12] 

• Peer-to-peer architecture: Reads and write requests can be directed to any of the nodes 

in the cluster, and all the nodes have the same role. Data inconsistency may occur as these 

databases are ‘eventually’ consistent. Eventually, all replicas will have the latest write. [12] 
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CP (Consistent and Partition Tolerant) systems ensure strong data consistency, 

which means data is consistent across all the nodes, but the system may not be available 

entirely if some nodes in the cluster go down. NewSQL databases fall under the CP 

category. 

AP (Available and Partition Tolerant) systems provide high availability but cannot 

guarantee data consistency across all the nodes. The data is written to one node, and there 

is no wait for the other node to come in agreement. Cassandra and DynamoDB fall under 

this category. 

 

2.2 NewSQL Database 
 

The term NewSQL databases was first coined by ‘451 Group’ Analyst Matt Aslett [26] to 

emphasize a group of databases that share RDBMS functionalities and offer some of the 

functionalities of NoSQL databases. NewSQL provides the best of both worlds: the relational data 

model and ACID transactional consistency of traditional databases and scalability and speed of 

NoSQL databases. While RDBMS and NoSQL databases offer scalability options- they do it at 

the expense of missing out on transactional ACID guarantees and SQL standard interactivity. 

NewSQL databases like NoSQL provide high availability and fault tolerance, are cloud-

compatible, and meet web-based application demands. While NoSQL databases prefer availability, 

a NewSQL database will always choose consistency in case of failure. [27] The NewSQL system 

will return the same answer to all the clients. Unlike NoSQL databases, they aim to maintain 

characteristics of relational databases. For example, the NewSQL query language is similar to 

SQL, and they provide ACID transactions.[5] They provide high performance, scalability, and 
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distribute-ability, which is achieved by leveraging improved algorithms and parallel computing, 

which were unavailable when RDBMS was designed three decades back. [7] 

 

2.3 VoltDB 
 

VoltDB is a fully-ACID compliant RDBMS that optimizes the use of modern computing 

environment. VoltDB performs in-memory computation, which avoids disk usage bottlenecks and 

maximizes the database throughput. It also provides serializable isolation, the strongest form of 

isolation, by eliminating costly and time-consuming processes like locking and latching.  Each 

VoltDB database optimized the execution by partitioning the data and the corresponding stored 

procedures across multiple partitions across the cluster. The architecture of VoltDB makes it 

practical to process large streams of data efficiently and quickly and is mainly used in financial 

and IoT applications [8]. However, VoltDB is not optimal for business intelligence and uses cases 

where processing a large amount of historical data is required from multiple tables.  

 

2.3.1 Partitioning in VoltDB 
 

Each stored procedure is called a transaction and is atomic; either it succeeds or rollbacks 

completely. Since these stored procedures are written in Java, VoltDB can precompile the data 

access logic to distribute the data and its processing to individual partitions on the cluster [8]. Each 

node can handle multiple partitions. In single partitioned procedure execution, the server will 

execute the procedure by itself. 
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Figure 1. Load Partitioning in VoltDB [8] 

 

If a stored procedure executes across multiple partitions, one node will act as a coordinator node, 

hands-off tasks to appropriate partitions, collect the results, and completes the tasks. The 

architecture of multiple partitions parallelly executing requests helps achieve maximum 

throughput. Each transaction runs in its thread and eliminates locking and latching, thus 

minimizing individual latency [4]. In addition, specific small tables can be replicated on all the 

cluster nodes, which helps perform joins between these tables while remaining single partitioned 

transactions. 

2.3.2 Replication 
 

‘K-safety’ is a mechanism that involves duplicating database partitions across multiple 

nodes based on the value of K, so that database can be made fault-tolerant in case one or more 

nodes fail in the cluster. These replica partitions are fully functional members and can handle read 

and write requests similar to a peer-to-peer model. 



 17 

 

Figure 2. K-Safety in VoltDB [8] 

 

If K = 1, it is a compulsion to duplicate all the partitions, and for K=2, it requires two duplicates 

of every partition in every node.  

There is a direct correlation between the K-value and the number of nodes in the cluster and given 

by the following formula: 

Unique partitions = (nodes * partitions/node) / (K + 1) [8] 

 

 

 

2.3.3 Scalability 
 

The design of VoltDB allows it to scale efficiently as per the needs of the applications that 

deploy it. Scaling of the VoltDB increases the throughput by increasing the number of request 

processing queues and the capacity (increasing the number of partitions). Scaling a VoltDB cluster 

does not require any changes to the database schema or the application code. A corresponding 

number of nodes need to be added to make a K-safe unit. E.g., For a K-safety value of 2, a total of 

three nodes must be added. [8] 
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2.4 Cassandra 
 

Cassandra is a peer-to-peer, distributed NoSQL database designed to handle and store a 

massive amount of data on a multitude of commodity servers. Cassandra is inspired by Amazon’s 

Dynamo replication technique and Google’s BigTable data engine model [1][19]. Cassandra also 

offers its CQL (Cassandra Query Language), which has its roots in SQL. Cassandra follows a 

master-less architecture where initially one node acts as a coordinator node, but once the cluster is 

complete, every node can accept read and write requests. 

Rows are organized inside tables where primary key(s) are the first columns followed by other 

columns in the lexicographical order [6]. The clustering key(optional) orders the partitions based 

on the order described by the user during table creation, and similar to RDBMS tables, may be 

dropped or altered at runtime with non-blocking read and writes. Cassandra does not support joins 

or subqueries and instead encourages denormalization through features like collections (maps, set, 

list).  

 

Figure 3. Cassandra Data Model [19] 

A column family is similar to an RDBMS table, but unlike RDBMS, all the rows within the same 

row need not share the same column, making the Cassandra data model flexible and scalable. 



 19 

Writes and read can be directed to any node and the node then recalibrates the request to the 

appropriate node, which has the corresponding data partition by applying a hash function [6]. 

Cassandra has a tunable consistency model where a ‘consistency level’ defines the number of 

replicas that need to be written before acknowledging the client application. Default consistency 

level is ONE, but more stringent consistency levels like QUORUM or ALL may be deployed to 

ensure appropriate data accuracy across a certain number of nodes [19]. Each Keyspace in 

Cassandra can have its replication strategy; there are two strategies to partition data. 

• Network Topology Strategy: Allows replication factor to be declared for each data center 

explicitly, and replicas can be chosen to form different racks on the same data center [19]. 

If the number of racks is greater than the number of replicas, each replica will be chosen 

from a different rack to apply rack-aware behavior. 

• SimpleStrategy: This strategy allows an integer replication factor to be defined at the time 

of keyspace creation and defines how many nodes should have a copy of the data. This 

replication scheme treats all the nodes as identical without any data center and rack 

configurations.  

Cassandra deploys a consistent hashing scheme where data is randomly and evenly distributed 

across all the nodes of a cluster and retains the ease of adding and removing nodes from the cluster 

with minimal recalibration of data.  Cassandra stores data in ‘Memtable’ and appends it to a 

commit log in case of a write operation. Memtable and SSTables, which are immutable, are for 

each table and append-only, but the commit log is shared across tables. A partition is stored across 

multiple SSTable files. [6] 
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2.5 YugabyteDB 
 

YugabyteDB is a distributed, relational NewSQL database capable of handling a massive 

amount of organized data spanned across multiple availability zones. It provides high availability, 

low latency, and no single point of failure. YugabyteDB is a CP (Consistent and Partition Tolerant) 

database and offers very high availability in the CAP theorem spectrum. It also provides multi-

row ACID transactions and offers Serializable and Snapshot Isolations. YugabyteDB reuses the 

SQL language in PostgreSQL under its YSQL and offers relational data modeling features like 

distributed transactions and referential integrity. Its YCQL API supports Cassandra compatible 

applications, with support for distributed transactions and strongly consistent secondary indexes. 

[20] 

 

Figure 4. The architecture of YugabyteDB [21] 
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2.5.1 Architecture Components of YugabyteDB 
 

2.5.1.1 YugabyteDB Query Layer: 

Applications directly interact with the query layer using specific client drivers. Query 

Layer specifically deals with API-related aspects like query compilation and the runtime 

operations like data type representations, executing built-in operations. 

The query layer consists of two essential aspects: 

• YB-TServer 

YB-TServer handles end-user requests in the Yugabyte cluster. Tables are split into 

tablets, and each tablet has tablet-peers based on the replication factor. 

 

Figure 5. YB Tablet Server Service Architecture [21] 

• YB-Master 

YB-Master maintains the system meta-data and records the tables in the system, 

user roles, permissions, each tablet’s location. It performs load balancing and re-replication 

of under-replicated data and is highly available due to the formation of a Raft group. It is 

also responsible for administrative operations like creating, dropping, and altering tables.  
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Figure 6. YB-Master Service Replication [21] 

2.5.1.2 DocDB 
 

DocDB is a distributed document stored inspired by RocksDB in its architecture. It 

provides automatic sharding, load balancing, strong write consistency, extreme resilience to 

failure, zone and rack awareness, and tunable read consistency. DocDB key consists of a key made 

of one or more hashed key components followed by range components and followed by MVCC 

timestamp in reverse order. Values in DocDB can be primitive (int32, float) or non-primitive 

(sorted maps) type. 

 

 

Figure 7. DocDB Data Structure [22] 

 

Every row is a document in DocDB, and the document key is the primary key with column 

values organized as a 16-bit hash of the column values followed by partition(hash) columns 
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followed by clustering(range) columns. The non-primary key columns are subdocuments, and 

the sub-document key is the columnID.  

 

2.5.2 Sharding in YugabyteDB 
 

YugabyteDB supports auto-sharding, is a highly available database, and supports hash and 

range sharding. Each shard is called a tablet, and it is placed on a corresponding tablet server.  

• Hash Sharding 

In YugabyteDB, tables are allocated a hash space in a 2-byte range, accommodating 

up to 64K tablets in a huge dataset or cluster size. In read/write operations, the primary 

keys are converted into internal keys, and the hash value is calculated. E.g., if we want to 

insert a key k, a hash value of the key will be calculated, and the corresponding table will 

be looked up in the corresponding tablet server, and the request will be sent accordingly. 

[21] 

 

Figure 8. Hash Sharding in YugabyteDB [22] 
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• Range Sharding 

Tables with ASC and DESC order defined for the first columns of a primary key and the 

first of the indexed columns cause the data to be stored in the chosen order in the single tablet. 

This tablet either automatically splits once it reaches a specific size or can be split manually.  

A good shard key for range sharding should have high cardinality, low recurring frequency. If 

the shards become too big, then optimal performance can be obtained by splitting the shard 

into multiple shards and rebalancing it across nodes. [21] 

 

Figure 9. Range Sharding in YugabyteDB [22] 

 

2.5.3 Replication in YugabyteDB 
 

YugabyteDB performs synchronous data replication for fault tolerance and maintains data 

consistency using Raft consensus protocol. Replication is achieved via DocDB and every tablet-

peer (which stores the replica of tablet data). The tablet peers are the same as the replication factor, 

and data between the tablet peers is strongly consistent. When a tablet is started, it elects one tablet 

leader using Raft protocol. It issues the user-issued commands into document storage of DocDB 

and replicates among the tablet-peers to maintain strong consistency. 
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2.6 InfluxDB 
 

InfluxDB is an open-source time-series database developed in Go programming language 

by InfluxData and is optimized to handle time-series data. [14] 

 

Figure 10. InfluxDB cluster Architecture [14] 

 

Timestamp is included in every column of the InfluxDB database, where each timestamp 

is associated with a data point. The queries on tags are faster as compared to simple fields since 

tags are indexed. Measurement is another important concept which is equivalent to SQL table and 

explains field content. The retention period defines how long InfluxDB retains the data, with 

default retention being infinite and replication factor 1. 

2.6.1 Sharding in InfluxDB 
 

Sharding is the horizontal partitioning of data in InfluxDB. Data is stored in shard groups 

organized by retention policies and data and timestamps within that time intervals. The default 

duration is one hour for two days, one day for the duration between two days and six months, and 
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seven days for durations beyond six months. Optimal shard duration selection is essential for 

efficient drop operations since data is dropped on every shard basis. Too short shard duration can 

cause data compression issues. For efficient compaction, the storage engine groups field values by 

series key, and then ordering is done by time.  

2.6.2 Components of InfluxDB storage  
 

The WAL (Write Ahead Log) ensures durability and stores the last offset for the storage 

engine to resume operation from the same offset in case of restart. [24] When the storage engine 

receives a write request, it is appended to WAL, and the data is written to disk, followed by an 

update to the in-memory cache. After successful confirmation, the acknowledgment is sent. 

The cache is an in-memory copy of data points currently in the WAL. [24] The cache organizes 

points by the key (measurement, tag set, and unique field), where each field is stored in its time-

ordered range. [24]. The cache is queried at runtime, and the data is merged with data stored in 

TSM. Queries execute on the data copy in the cache during query execution. Delete operations are 

performed on a specific key or a time range. Like LSM (Log Structure Merge Trees), a TSM also 

uses a write-ahead log, read-only index files, and performs compactions to combine index files. 

However, it does not face deletion issues like LSMs. [29]  

InfluxQL is a query language for InfluxDB similar to SQL, which provides DML and DDL 

statements, database management, windowing queries, aggregation function, and authentication 

and authorization features. [29] 
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CHAPTER 3 

Related Work 

 

The performance of NoSQL databases and using them as the underlying storage for big 

data has been subject to many studies. However, NewSQL databases have not been studied much 

since they have not been around for a long time, and/or most of them are proprietary solutions that 

have restricted open-source licenses. So, the purpose of finding related research papers was mainly 

focused on introspecting the research related to systems storing machine or IoT data, which is 

generated at a fixed interval and rapid pace and closely resembles the use case of storing monitored 

data in multiple databases for analysis. Since this data is enormous in volume and incredible 

velocity, the data falls in the big data category, and systems in contention should efficiently handle 

big data.  

In [7], Arjun Pandya et al. evaluates the storage and performance of VoltDB and MongoDB 

on Industrial IoT data and concludes that VoltDB outperforms MongoDB in indexed query 

processing and aggregation performance due to its in-memory processing architecture. It also uses 

Apache Kafka as a streaming and buffer layer, helping in the data ingestion at a particular rate and 

batch size. An analysis was performed on the impact of batching on the two databases, and 

although there is a slight performance drop on VoltDB, it still performs better than MongoDB on 

write statistics. 

In [11] compares sharded MYSQL and Google NewSQL database Spanner’s insertion 

times for 895000 records and read performance for three different select queries and concludes 

that as the queries become more complex and restrictive (involving joins and limit), the 

performance of Spanner deteriorates, but still performs better than a sharded MYSQL database 
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setup. Write performance of Spanner is significantly worse than MYSQL for single node setup, 

but as the number of nodes increases, the MYSQL setup hits a performance bottleneck. In contrast, 

Spanner can scale efficiently with little degradation in performance.  

[10] compares various NoSQL and distributed SQL databases by varying multiple 

consistency levels and replication factors across the cluster size of 1,4,6,8,12, and read and write 

performance were benchmarked using YCSB with varying load distribution. Cassandra 

outperforms MongoDB by 72.5% percent in the write-intensive workload, reiterating Cassandra 

is a write-intensive database. Cassandra performs significantly better with uniform distribution of 

load across all the nodes of the cluster. Stricter consistency levels impact the write throughput of 

Cassandra and VoltDB by almost 10% on an average with a constant replication factor. Read 

performance improves dramatically for Cassandra, VoltDB, with the introduction of replication.   

[9] proposes a meteorological data storage solution using TimeScaleDB and Kafka and 

evaluates the performance of TimeScaleDB in comparison to Redis, MongoDB, Cassandra, and 

RiakTS. For scenario 1: data imported was increased by ten starting at 1000 records; for scenario 

2: a restricted read query was executed on all the databases on the station_ID and duration starting 

from one day, one week, one month, and six months. Scenario 3 included the evaluation of indexed 

queries on the databases. Scenario 4 introspects performance evaluation for increasing batch size 

and fixed interval time on the four databases. In the end, TimescaleDB has the best and the most 

optimal performance in terms of resource utilization out of all the databases, followed by 

Cassandra, RiakTS, and MongoDB. 
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CHAPTER 4 

Design and Implementation 
 

Several key components are involved in developing a monitoring system, and each component 

was studied in great detail and which sufficed our needs were identified and finalized.  The 

components are: 

• The VoltDB cluster to be continuously monitored. 

• Monitoring Agent code which retrieves the relevant monitoring data from the VoltDB 

cluster at varying intervals. 

• Databases in the second layer, which store the data available from the kinesis layer 

• Amazon Kinesis Layer to demonstrate the effect of streaming and batching. 

 

4.1 Architecture  
 

The VoltDB cluster (referred to as database in the first layer) has partitioning and 

replication to represent a practical, real-world usage scenario. We explored several workload 

options such as Twitter API and Yahoo! Stocks to trigger the VoltDB cluster. We chose YCSB 

(Yahoo! Cloud Service Benchmark) since the workloads were defined to represent the real-world 

scenarios of database access and usage [18]. Monitoring Agent script was run on the cluster to 

obtain the monitoring data at every from every instance. There are three databases in which the 

monitoring data will be stored (referred to as database in the second layer). The candidates are 

Cassandra, YugabyteDB, and InfluxDB. The Kinesis layer ensures the data is readily and 

continuously available both as stream and as batches since fetching data directly from the source 
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will cause many database connections via multiple threads and result in the system’s performance 

degradation.  

 

Figure 11. VoltDB Monitoring System Architecture 

 

4.2 Monitoring Agent Code  
 

VoltDB cluster exposes many monitoring parameters like CPU utilization, Queue Statistics 

via a REST API via its 'Statistics' stored procedures. These need to be collected and processed. 

Since many parameters will not be relevant, a Django-based API was created and hosted, which 

performed parameter filtering from the JSON obtained from the VoltDB API. This API was also 

used to write records to the Kinesis buffer for batching and streaming purposes. Every database in 

the second layer follows a different data model, and the data from the API was recalibrated 

according to each database. However, the same data was stored for each database under 

consideration in the second layer for similar comparison. An exhaustive study was performed to 
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identify the relevant monitoring parameters which need to be stored in the database in the second 

layer. The YugabyteDB client uses a ‘prepare-bind-execute’ paradigm where prepared statements 

are used, which can be executed repeatedly, and each time the value present value of the bind 

variable is evaluated and sent to the database. The PreparedStatement is not parsed again, nor is 

the template passed to the server again, which reduces the parsing overhead and improves write 

performance. Several categories of monitoring parameters were identified and categorized as 

follows: (Cluster Overview, Hardware Statistics, Performance Statistics, Database Events, 

Replication Status, Schema/Table Information).  

4.2.1 Cluster Overview 

Field Name/ 

Command 

Stored Procedure Command Description 

full_cluster_size System Information Number of nodes in the cluster 

live_nodes System Information Number of live nodes 

dead_nodes System Information Number of dead nodes 

database_version System Information Current Database version 

partition_count 

 

Partition Total number of data partitions in 

each node 

Table 1. Cluster Overview Parameters 

4.2.2 Hardware Statistics 

Field Name/ Command Stored Procedure Command Description 

percent CPU Percentage of total CPU 

used by VoltDB process 
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RSS (Resident Set Size) MEMORY The total memory allocated 

to the VoltDB process on 

the server 

java_used MEMORY The total memory allocated 

by Java and currently in use 

by VoltDB. 

tuple_data MEMORY Total memory used for 

storing database records 

index_memory MEMORY Total memory used for 

storing database indexes 

string_memory MEMORY Total memory to store 

string, binary and geo-

spatial data 

tuplecount MEMORY Total number of database 

records in memory 

new_gen_gc_count GC The Number of 'young 

generation' garbage 

collection  

old_gen_gc_count 

 

GC The Number of 'old 

generation' garbage 

collection 
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bytes_written IOSTATS Total Number of bytes sent 

from host to client 

bytes_read IOSTATS Total Number of bytes sent 

from the client to host 

current_depth QUEUE Number of tasks waiting in 

queue for each host 

poll_count QUEUE Number of tasks in 

executing state 

avg_wait QUEUE The average length of time 

of tasks waiting in the queue 

Table 2. Hardware Statistics Parameters 

 

4.2.3 Performance Statistics 

Field Name/ Command Stored Procedure Command Description 

P99 LATENCY The 99th percentile latency 

P999 LATENCY The 99.9th percentile latency 

max LATENCY The maximum latency 

during the interval 

tps THROUGHPUT Number of transactions per 

second 

read  THROUGHPUT Number of Read operations 

per second 
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insert  THROUGHPUT Number of Insert operations 

per second 

update THROUGHPUT Number of Update 

operations per second 

delete THROUGHPUT Number of Delete operations 

per second 

avg IDLETIME Avg. time an execution task 

had to wait for a new task 

max IDLETIME Max. time an execution task 

had to wait for a new task 

cache_hits PLANNER Number of queries that hit 

the cache 

cache_misses PLANNER Number of queries that 

missed cache and had to be 

fetched from the disk 

Table 3. Performance Statistics Parameters 

4.2.4 Database Events 

Field Name/ Command Stored Procedure Command Description 

megabyte_per_second 

 

REBALANCE The average amount of data 

moved per second in MBs 

percentage_moved REBALANCE Percentage of a total segment 

already moved 
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startup SYSTEMINFORMATION Time elapsed since the last 

startup 

shutdown SYSTEMINFORMATION Time elapsed since any node 

was shutdown 

nonce SNAPSHOT Unique ID of the snapshot 

table SNAPSHOT Names of the tables written 

in the snapshot file 

duration SNAPSHOT Time taken to complete the 

snapshot 

Table 4. Database Events Parameters 

4.2.5 Replication Stats 

Field Name/ Command Stored Procedure Command Description 

average DRCONSUMER The average rate of 

replication from  

replication_rate_5M DRCONSUMER The average rate of 

replication over the past five 

minutes 

total_bytes  DRPRODUCER Total bytes of queued for 

transmissions from the 

replica 

Table 5. Replication Statistics Parameters 

4.2.6 Schema/Table Data 

Field Name/ Command Stored Procedure Command Description 
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tuple_count Table Number of rows in each 

partition 

tuple_allocated_memory Table The total memory allocated 

to each partition 

string_data_memory Table The total memory allocated 

for storing non-inline 

variable-length data.  

memory_estimate 

 

Index Memory consumed by each 

index entry. 

procedure 

 

Procedure The name of the procedure 

avg_execution_time 

 

Procedure Execution time of each 

procedure 

invocations 

 

Procedure Total number of invocations 

of the procedure 

Table 6. Schema/Table Statistics Parameters 

 

 

4.3 Amazon Kinesis Layer 
 

Amazon Kinesis is a distributed streaming and batching platform that differs from the 

standard queue in providing redundancy and a message bus to reach a throughput of the orders of 

millions of records per second. Kinesis is ideally suited for our streaming and batching needs as 

the data from the VoltDB is generated continuously. Furthermore, since reads and writes to the 

Kinesis cluster can co-occur, it helps to simulate the impact of streaming on the databases in the 
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second layer. Internally, Kinesis consists of a commit log, which is ordered, immutable and fault-

tolerant. 

 

Figure 12. Log Commit in Kinesis Data Stream [16] 

 

Unlike message queue, the same messages can be consumed by multiple consumers, which helps 

in the accurate analysis since the same data is written to all the databases at any instant. Each 

consumer (in our case, the databases in the second layer) consumes the data from each shard 

simultaneously. Furthermore, Kinesis also provides the functionality to replay the messages from 

any given offset. Thus, in case of any abruptions in data consumption in any of the consumers, the 

consumption of messages will resume from the same offset where it was abrupted. 

 

 

Figure 13. Kinesis Data Stream Architecture and Data Flow [13] 
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4.4 Data Modelling for the databases in the second layer 
 

This section will specifically focus on the data modeling aspect of each database in the 

second layer. Since each database has a different data modeling and query language, single 

modeling might not be suitable for all the databases. The specific data model for each database is 

defined such that it optimizes the performance of each database. 

 Since the VoltDB cluster generates monitoring data at intervals of seconds or even less, it 

would create many partitions in each database if such granular data were to be stored. Cassandra 

defines the primary key during table creation and cannot be changed once the table is created. The 

primary key consists of a partition key, based on which the data is partitioned across the cluster, 

and a clustering key used to define the sorting order of the data within the partitions. Hence, 

Cassandra, a bucketing strategy was implemented to reduce the number of partitions needed to be 

accessed while querying the data. Since there are ten tables involved, each storing data for CPU 

statistics, memory statistics, throughput data, latency data, idle time statistics, IO stats, garbage 

collection data, system information, table statistics, and index information, the partition key and 

the clustering key is constant across the tables so that the keys are synchronized. Data at any instant 

is persisted with the same primary key across the keyspace. An ideal strategy is keeping the size 

of each partition under 100MBs of data. A compaction strategy called ‘TimeWindowCompaction’ 

is used in [17][28] with the compaction unit as ‘date’, which helps deal with the overhead of 

compacting large partitions and keeps the CPU usage and I/O under control. We leveraged a form 

of bucketing to break the large partitions into smaller ones. We use the host and date as the partition 

key and timestamp sorted in reverse order as the clustering key, ensuring that the work can be 

spread across the entire cluster rather than only a single node working performing much work. 



 39 

YugabyteDB provides the YCQL (Yugabyte Cloud Query Language), with its roots in 

Cassandra Query Language [27]. Data modeling is also based on the Cassandra data model. Still, 

the underlying storage DocDB is a strongly consistent document store built on top of RocksDB, 

which impacts the performance of YugabyteDB and separates it from Cassandra. Also, the 

transactions are ACID compliant with strong consistency, which has a significant impact on the 

performance of the database. 

InfluxDB is designed to fast incoming time-series data efficiently, so timestamp is the 

mandatory component of the data frame. InfluxDB database stores points, and every point has four 

components: a measurement, a tagset, a fieldset, and a timestamp. [15] The tagset is a dictionary 

of key-value pairs and stores data with a point. The fieldset consists of scalar values. As mentioned 

previously, sharding of data across the cluster of nodes is implicitly handled in InfluxDB based on 

the retention policy selected on the shard group for better compression and data drop. 

The retention policy describes how long the data is stored in InfluxDB; the default is autogen, 

having infinite retention and replication factor 1. The most crucial concept of InfluxDB is a 

measurement that collects data with the standard retention policy, measurement, and tags.   

Consider the following example for the line protocol output of InfluxDB:  

‘temperature,machine=unit42,type=assembly,internal=32,external=100 

1434055562000000035’. [15] 

The measurement is temperature; tag set is machine = unit42, type = assembly.  

The keys, machine, and type are tag keys, and 42 and assembly would be values.  

Fieldset is internal = 32, external = 100. The field keys are internal and external, and field values 

are 32 and 100. 
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CHAPTER 5 

Experiment and Analysis 
 

We performed five experiments that test various aspects of the three databases in the second 

layer. These experiments cover a wide range of performance indicators such as the impact of 

streaming and batching on each database, the impact of various read queries, horizontal scalability 

of databases, the efficiency of indexes of the databases, and the impact of consistency and 

replication on the throughput of the databases.  

5.1 Experiment Setup 
 

A total of 3 clusters of 6 nodes each were set up for Cassandra, YugabyteDB, and InfluxDB 

were set up in AWS (Amazon Web Services) to perform the following experiment. A 3-node 

cluster was set up for VoltDB, which is the cluster to be monitored. Another single node was used 

to run the YCSB (Yahoo! Cloud Serving Benchmark) workload on the databases. This workload 

helped to simulate various real-time database usage scenarios. Amazon Kinesis captures a massive 

amount of data per second, and the data is available within millisecond enabling real-time 

processing; hence it will be used for efficient batching and streaming described in the first 

experiment. Three node clusters were used to perform the first three experiments, while 

experiments 4 and 5 were performed on six node clusters. 

Cluster Service Number of Nodes Instance Type 

VoltDB  Amazon EC2 3 C5.2xlarge 

Cassandra  Amazon EC2 6 C5.2xlarge 

YugaByteDB Amazon EC2 6 C5.2xlarge 
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InfluxDB  Amazon EC2 9 (3 meta and 6 data nodes) C5.2xlarge 

Table 7. Cluster Configurations 

 

5.2 Impact of Streaming and Batching test 

A batch is a collection of data points that are assembled within a time interval. [23] By 

definition, batching data requires all the data needed for the batch to be loaded to some storage 

and then processed. The latency of batch processing can be in minutes to hours [23]. In stream 

processing, data on a rolling window or most recent record is processed. Stream processing allows 

us to process data in real-time as they arrive from the source within a short time from receiving 

the data. [16] 

This experiment was performed to evaluate the impact of batching and streaming on each 

database in the second layer. An API program was developed to create the batch of appropriate 

size records and push them into the candidate databases. Similarly, a program was written to read 

the messages from the Kinesis stream to databases in the second layer in a streaming manner. A 

total of 100,000 transactions with each batch size of 10000 transactions was executed. Similarly, 

for a fair comparison, a stream of 100,000 writes was performed on each database. Here, the 

performance evaluation metric is the execution time; the lower, the better. Each experiment was 

performed three times, and an average is presented.  
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5.2.1 Results 

 

Figure 14. Impact of Streaming and Batching 

 

 

5.2.2 Analysis  

The impact of batching and streaming on the three databases are as follows: 

• Cassandra provides excellent write performance with a stream of data. The performance is 

due to Cassandra's multi-master architecture, where every node can accept read/write 

requests parallelly. There is no bottleneck of master-slave replica data synchronization, 

thus increasing the overall throughput of the cluster. Also, high write performance is due 

to the way Cassandra handles writes in an append mode. 
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Cassandra’s performance degrades as batching is introduced. In general, batching 

is discouraged in Cassandra and is only recommended in cases of atomic transactions. Due 

to multi-master architecture, the batch write request may be accepted by any node in the 

cluster, and subsequently, the node redirects the write request to the appropriate node with 

the appropriate partition. Due to this, the coordinator node has to do a lot more work than 

any other node, which causes a decrease in throughput. Cassandra also warns of any batch 

size more than 5KB, and the performance degrades as each of the transaction insertions in 

our case was 16KB in size.  

• In YugabyteDB, the write requests issued are first handled by the query layer, which is 

translated into an internal key and appropriate tablet (partition). An RPC call is made to 

the YB-Master to identify the YB-TServer holding the key. Since YugabyteDB provides 

serializable isolation and strong ACID guarantees, it creates an overhead: YQL finding the 

specific YB-TServer, acquiring a lock on the Raft leader, and performing the update. The 

Raft followers then acquire an update log from the leader before an acknowledgment is 

sent to the leader. 

Batch operations in YugabyteDB allow the user to send multiple write operations 

in one RPC call. Although the latency of batch transactions might be higher than the single 

operations, the throughput is higher due to fewer round-trips from the application to the 

database. Using the ‘Prepare-bind-execute’ paradigm with client code instead of inlining 

the literals also resulted in eliminating statement reparsing overhead and reducing 

execution time. 
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• InfluxDB employs different compression algorithms for different data types due to the 

granularity of the data with which it deals. While this results in efficient memory and disk 

space utilization and helps drop the data beyond the retention policy, it consumes resources 

allocated for handling incoming requests. Although InfluxDB performs well with our data 

which is very similar to a time-series data stream, there is a little performance degradation 

due to aggressive compression running in the background depending on the datatype 

selected, but the performance is still comparable to YugabyteDB on stream data. 

Batching in InfluxDB collects data points using the InfluxDB line protocol format. 

Batching in InfluxDB has much better performance due to a reduction in the number of 

HTTP requests to the database since multiple batches of points are being submitted to the 

database in a single HTTP request. InfluxDB recommends a batch size of around 5000-

10000 data points for optimal performance. 

Conclusion: Cassandra performs best with streaming data, but the performance of 

InfluxDB and YugabyteDB improves with the introduction of batching. 

 

5.3 Query Performance Test 
 

Four queries were selected to test each database. Each query is a representative use case for a 

monitoring system. We executed each query fifteen times and calculated the average of the 

execution times. We dropped outliers in our computation since they might have been due to 

network interference. The queries were executed on non-indexed columns on a 3-node cluster 

across all the databases with replication factor two (Quorum). Each database houses approximately 

7.5 GB of monitored data, with some variation due to running background compactions. Query 1 
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is without any predicate. Queries 2 and 3 come with more restricted predicates. Query 4 is an 

aggregate query within a time interval. The query functions are: 

Query 1: All the data from all the nodes 

Query 2: All the data for a specific node 

Query 3: All the data for a specific node within a specific time interval 

Query 4: Maximum CPU utilization between a specific time interval 

 

5.3.1 Results 

 

Figure 15. Query 1 Performance 
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Figure 16. Query 2 Performance 

 

Figure 17. Query 3 Performance 
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Figure 18. Query 4 Performance 

 

 

 
 

Figure 19. Overall Read Query Performance 
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5.3.2 Analysis 
 

The analysis of read query performance is as follows: 

• Since the read queries require broadcasting operations that probe the entire cluster, 

Cassandra's performance improves according to the restrictions imposed on the queries 

from query1 to query2 and from query 2 to query 3. This is because the targeted operations 

can perform better when the predicates include the primary key. In query 2, the 

performance is better than query 1 due to the introduction of a predicate on host_id, but 

since the primary key is on host_id and date, many partitions have to be scanned to get the 

results. On the other hand, with query 3, the appropriate time interval is identified along 

with host_id; hence fewer partitions are scanned, and performance improves dramatically. 

Scanning all the partitions requires a substantial amount of time, making the performance 

worse for queries 1 and 4. 

• Since YugabyteDB uses the RAFT consensus protocol, data with the quorum leader is 

strongly consistent. So, read operations require only a single read from the leader without 

probing other replicas on other nodes. As for Cassandra, for strongly consistent reads, a 

quorum is required. Hence, YugabyteDB is a highly read performant database. The internal 

design of DocDB, which is the strongly consistent distributed document store of 

YugabyteDB, allows it to keep min/max and metadata values of the clustered columns 

(timestamp in our case) and store that in SSTable as metadata. Thus, query 3 is highly 

optimized in YugabyteDB as the number of SSTables to scan to find the required data is 

minimized.  

• The time series underlying data format (Time Structured Merge Tree) is columnar as 

opposed to LSM based databases which are row-oriented. Hence, columnar databases are 
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expected to be hit with columnar queries (select column_name from) instead of (select * 

from) in row-oriented databases. Hence, InfluxDB performs worse for most row-oriented 

queries. Query 3 performs better as filtering by time is optimized for time-series databases. 

Since the older data is less critical in time-series databases, the queries dealing with 

snippets of time with recent timestamps will be more efficient. Also, due to the column-

oriented architecture, aggregations are much more efficient to perform within a time 

window.  

Conclusion: Cassandra’s performance improves due to restrictions on the query, 

YugabyteDB performs the best on read operations overall, and InfluxDB performs best on 

windowing aggregation read queries. 

 

5.4 Efficiency of Index Test  
 

Secondary Indexes were created on each database. We increased the size of the databases gradually 

from 2.5GBs to 25GBs to study the efficiency of the indexing mechanism of each database for the 

given database size. Since secondary indexes are not recommended for columns with too high or 

too low cardinality, we created an index on the CPU usage column, of which domain has integer 

values between 0 and 100. Ten iterations of each query were executed, and an average of the values 

was considered, and outliers were ignored since there might be network interference in some 

executions. Queries were executed to fetch all the data when the value of CPU utilization went 

above eighty-five percent since this is a typical use case to detect anomaly in the monitoring 

systems and did not include any primary column in the predicate. 
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5.4.1 Results  
 

 

Figure 20. Efficiency of Index 

 

 

5.4.2 Analysis 
 

The impact of Indexing on the three databases is as follows: 

• In Cassandra, secondary indexes are local, and hence an index is built on each shard. A 

larger number of records have to be scanned in each node as the data size increases, and 

thus, index performance keeps on decreasing. Since the data is partitioned across the nodes 

based on the hash value of the partition key, Cassandra nodes are aware of the positioning 

of the data blocks within the cluster. However, if a query predicate does not come with the 

partition key value, Cassandra performs broadcasting operations by probing all the nodes 

in the cluster to answer the query.  

• In YugabyteDB, every secondary index is an internal table; the index table is internally 

shared and distributed across the nodes, similar to using tables. Whenever data is inserted 



 51 

or updated, YugabyteDB uses distributed transactions to update both the primary and 

secondary index tables making the secondary index scans in Yugabytedb strongly 

consistent and a single targeted operation rather than reads from all the nodes/shards in the 

cluster, and hence YugabyteDB index is linearly scalable. 

• Indexing in InfluxDB is via an in-memory index shared across the shards and provides 

indexed access to measurement, tags, and series. Indexing in a column can be achieved by 

putting it in a tag instead of in a field. There was a significant improvement in read 

performance when the column was put inside a tag instead of a field. 

Conclusion: InfluxDB performs best with indexing due to its in-memory indexing, 

followed by YugabyteDB and then Cassandra 

 

5.5 Horizontal Scalability Test 
 

Horizontal scalability is defined as the ability to scale the system by increasing the number 

of nodes in the cluster instead of vertical scaling, which requires the physical configuration of 

adding hardware components like CPU, Memory, and Disk in case of increased requests.  

1, 3, and 6 node clusters were used to perform this experiment for each of the three 

databases. InfluxDB requires setting up of meta-nodes and data-nodes separately. Meta-nodes 

store the information about the nodes in the cluster and their role, databases, retention policies, 

shard and their groups, and their position in the cluster. Data nodes store the actual tag keys and 

values, measurement, and field keys and values. InfluxDB recommends adding an odd number of 

meta-nodes since it allows the meta-nodes to reach a quorum, and the number of data nodes should 

be divisible by the replication factor.  
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The experiment was performed by saturating each cluster and subsequently increasing the 

number of nodes in the cluster to check the increase in the throughput of the database cluster. 

Cassandra can be horizontally scaled by adding more nodes in the cluster and setting the same 

seed nodes, allowing the rebalancing of the data across each node in the cluster. Replication was 

enabled across each cluster since high availability becomes necessary in a distributed database. In 

this case, a replication factor of Quorum was considered (two for three-node cluster and four for 

six node cluster), wherein two copies of the data will be stored in the three-node database cluster, 

and four replicas will be stored in six node cluster. 

Since there is a limitation on increasing the arrival rate from the Kinesis cluster to the 

databases capped at 4 Mb/s, we implemented multi-threading to demonstrate multiple parallel 

requests on each database. We stress the database resources until a point where each node in the 

cluster reaches a saturation point (we checked for the CPU utilization of each node to reach 85% 

and the average latency to reach a value of seconds (typical values are in milliseconds), which 

indicated that the database had reached saturation in terms of the number of requests it can process 

and increasing the number of requests further does not increase throughput. An average of three 

executions and outliers were ignored as they might have been caused due to network interference. 

 

5.5.1 Results 
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Figure 21. Horizontal Scalability test 

5.5.2 Analysis  
 

Horizontal scalability performance is as follows: 

• In Cassandra, background anti-entropy maintenance is always running. Anti-entropy repair 

compares the data in all the replicas and repairs the inconsistent data in the cluster. The 

anti-entropy mechanism is an expensive operation that causes a lot of CPU utilization along 

with inter-node communication using gossip protocol to share the current state of the 

replicas. Hence, even though the Cassandra scales linearly in adding extra nodes, the issues 

mentioned above are amplified as the cluster size increases and cause a degradation in the 

performance and throughput of the database.  

• As the size of the InfluxDB cluster increases, the number of meta-nodes and the data-nodes 

is proportionally increased. Increasing the number of meta-nodes increases inter-node 

communication exponentially. Each meta-node communicates to every other meta-node, 

and data nodes also communicate with meta-node and data-node. Thus, the horizontal 

scalability of InfluxDB is slightly affected by the inter-node communication overhead 
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between the meta-node and data-node cluster to exchange and rebalance data across the 

nodes.  

• In YugabyteDB, when a node is added, the newly added node becomes a leader, and then 

the YB-Master node initiates rebalancing the follower since it manages the shard meta-data 

and position of each tablet leader. The moves are undertaken so that none of the existing 

nodes bears the burden of populating the new node. Since the Raft leader is strongly 

consistent for each leader, no anti-entropy maintenance is required before reading. 

However, YugabyteDB supports ‘Serializable’ isolation, which creates an overhead due to 

locking mechanism to perform write operations and prevent dirty reads. This effect is 

amplified as the number of parallel write requests on the database increases.  

Conclusion: InfluxDB performs well with a single node, but the performance gains are not 

proportional to the increase in the number of nodes; YugabyteDB and Cassandra almost 

scale linearly, with YugabyteDB outperforming Cassandra with six node cluster. 

 

5.6 Impact of Consistency and Replication 
 

Consistency ensures that every read request to the database receives the most recent writes 

[19]. Cassandra and InfluxDB offer tunable consistency, whereas YugabyteDB offers strong 

consistency via RAFT consensus protocol. Replication is defined as keeping the redundant copies 

of each shard across a group of nodes based on the replication factor defined. Since YugabyteDB 

offers strong consistency, we set the consistency level for Cassandra and InfluxDB to ALL.  

(Strongest Consistency Level). Consistency levels offered by Cassandra and Influx are ONE, 

QUORUM, and ALL. 



 55 

We considered six node clusters for each of the databases, and the replication factor was increased 

from 1 (ONE) to 4 (QUORUM) to 6 (ALL) to demonstrate the write throughput. An average of 

three values was considered for each replication factor for each database. A total of 60,000 insert 

transactions were executed on each database, and an average of two values for each replication 

factor was taken.  

 

5.6.1 Results  

 

Figure 22. Impact of consistency levels and replication factors 

 

5.6.2 Analysis 
 

The impact of Replication factor change on each database is as follows: 

• As the replication factor increases, the write performance of Cassandra and InfluxDB 

decreases more steeply than YugabyteDB. All the nodes having the replica have to be 

written to before an acknowledgment can be sent for a successful write operation. In 

general, Cassandra and InfluxDB are eventually consistent databases that prefer 
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Availability over Consistency in case of a failure and warn against the use of the strongest 

consistency due to performance degradation.  

• The underlying storage DocDB of YugabyteDB synchronously and automatically 

replicates data and maintains data consistency using the raft consensus protocol. Since the 

underlying architecture for YugabyteDB is optimized to perform strong, consistent writes 

to all the nodes, it does not degrade significantly. However, only a minimum of three 

replicas is required for consensus. Hence, there is a slight drop in the performance of 

YugbyteDB beyond three replicas. 

Conclusion: YugabyteDB shows the best performance as the replication factor is increased. 

Cassandra and InfluxDB experience performance degradation as the replication factor is 

increased as both of them are eventually consistent databases. 
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CHAPTER 6 

Conclusion and Future Work 

In this project, we built a monitoring system for VoltDB, a NewSQL database, and 

evaluated the performance of Cassandra, YugabyteDB, and InfluxDB as candidate databases in 

the second layer. It was ensured that each database was modeled to perform efficiently and 

comparisons in each of the tests were fair. Various tests were performed, and the performance of 

each database was evaluated with rationale and plausible explanations. 

Cassandra performs the best in write operations in a streaming manner due to its peer-to-

peer architecture and its focus on availability instead of consistency in the CAP spectrum. 

InfluxDB performs significantly better with batching due to the reduction in the HTTP requests 

reducing overhead. Although all the databases suffer from issues concerning horizontal scalability, 

InfluxDB provides the best performance with a single node, but YugabyteDB scales the best, 

followed by Cassandra and then InfluxDB, due to inter-node communication overhead in InfluxDB 

owing to its complex architecture. We can conclude that YugabyteDB performed best on the read 

operations of non-indexed queries, which can be attributed to the strong consistency of data it 

provides due to the ACID guarantees, making read operations efficient. InfluxDB performs the 

best on indexed queries due to its in-memory shared indexing with the usage of tags. 

The project’s purpose was to evaluate candidate databases for the second layer; hence a 

monitoring UI is not set up. However, monitoring tools like Prometheus and Grafana are available, 

which can be used to monitor the clusters of the databases in the second layer, consume the data 

from the tables in each of the databases, and display it on a UI in a streaming manner. In the future, 

various other experiments can also be performed on these databases depending on the use cases.   
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