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ABSTRACT

Fake Malware Classification with CNN via Image Conversion: A Game Theory
Approach

by Yash Sahasrabuddhe

Improvements in malware detection techniques have grown significantly over

the past decade. These improvements have resulted in better security for systems

from various forms of malware attacks. However, it is also the reason for continuous

evolution of malware which makes it harder for current security mechanisms to

detect them. Hence, there is a need to understand different malwares and study

classification techniques using the ever-evolving field of machine learning. The goal of

this research project is to identify similarities between malware families and to improve

on classification of malwares within different malware families by implementing

Convolutional Neural Networks (CNNs) on their executable files. Moreover, there are

different algorithms through which we can resize images. Classifying these malware

images will help us understand effectiveness of the techniques. As malwares evolve

continuously, we will generate fake malware image samples using Auxiliary Classifier

Generative Adversarial Network (AC-GANs) and jumble the original dataset to try

and break the CNN classifier.
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CHAPTER 1

Introduction

Malwares are software programs designed to perform specific malicious tasks

to harm computer systems as well as users. This can be done by gaining access to

sensitive information or gaining unauthorized control to systems. Malwares can be of

any form such as - viruses, ransomwares or trojan horses [1]. They are usually present

in unsolicited softwares, or even through links which are made attractive in the hope

that a user clicks on it on the web. Once they are inside a system, they replicate and

infect the system itself.

To protect ourselves from such intrusions, malware detection and classification

has become of utmost importance. There are several anti-malware softwares which

help us to detect such attacks and prevent them from happening. There are various

approaches behind the curtains of such software. Most of them are signature-based

solutions where the files are scanned for a particular signature. However, evading these

types of solution is easy for hackers if they use morphed codes or other obfuscation

techniques [2]. One such approach is to detect and classify them using machine

learning techniques. If we have a pre-trained model which can classify malwares, then

classifying a new data point is a task which can be completed very efficiently.

As the detection and classification of malwares into their families is improving

continuously, hackers are also able to come up with new techniques to hide the

maliciousness of malwares more precisely. This has led to a game theory like problem

whereas classification techniques grow stronger, so do the malwares and they become

more difficult to recognize by the detection and classification techniques which were

in place. Hence, understanding the nature of malwares themselves can help with

classification techniques. Machine Learning, therefore, provides us with a unique

solution where the software models can learn the characteristics of malwares themselves
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to predict never seen before malwares which are based on similar set of properties [3].

Initial approaches for classification which used machine learning techniques were

based on Hidden Markov Models (HMMs). For example, in [4] malware samples were

classified as either benign or malign using HMM. One of the major steps in using HMM

is to extract opcode sequences of the samples. HMM then tries to probabilistically

determine the state sequences using which we can classify new samples.

Other techniques like Support Vector Machines (SVMs) were also used as they

grew popular. SVM training is the process of finding a ’n-1’-dimensional plane within

an n-dimensional dataset which could separate the dataset into two classes. The

paper [5] talks about the details of finding this plane using gradient descent approach

to find a solution for the quadratic optimization problem which is set up as part of

this training process.

As we can see, the above techniques need feature extraction so that we can

use them to build a model to classify. CNN, on the other hand, takes data as the

input itself and tries to learn the characteristics of the data by re-computing weights

between neurons. This implicit learning of data features makes it very suitable to

use for classification and detection techniques where there not much information

about the data itself. [6] also comments that the removal of human interference on

feature extraction is one of the factors why CNN is a stronger classifier than the

other techniques. Moreover, CNNs work better on images because of their high

dimensionality.

In this research, we will try to leverage these advantages of CNNs in malware

classification. We will first convert the malware executable files into images so that we

can use CNN. We will then try to understand the relation between different families

using the results of the experiments. Finally, we will try to generate fake malware

samples using a Auxiliary Classifier Generative Adversarial Network (AC-GAN) and
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poison our original dataset to observe the effect on our older data. These fake samples

will then be used as a part of the training process of CNN to build a stronger classifier.

The structure of the report is as follows: In Chapter 2, we will first look at the

background of malware classification using machine learning. We will also provide a

brief overview of previous works which were performed on similar lines. In Chapter 3,

we will look at the details of our dataset, the concepts of the techniques which we

will be using and discuss their implementations. In Chapter 4, we will look at the

results of our experiments and its analysis. Lastly, in Chapter 5, we will conclude our

research and discuss potential future work.
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CHAPTER 2

History & Related Work
2.1 History

Malwares have grown a lot since the turn of 21st century. The paper [?] shows

that the number of intrusions recorded the in the year 2005 grew exponentially from

the past year. Early mechanisms to detect such malwares was a task which needed

heavy computation. One such approach was to detect malware intrusion by assessing

the sequence of system calls made by a program [7]. The paper [8] talks about

classifying malwares using Hamming distances. Another approach is discussed in [9]

where the common subplot of graph is used to classify the data points into their

families.

Early malware classification approaches made use of pattern matching algo-

rithms [10]. As the need of detecting malwares grew, research became broader and

newer terchniques started to evolve, one of them being machine learning. As a result of

the growth of stronger detection techniques, hackers developed more resilient malwares

which made it difficult for the traditional machine learning classification techniques to

classify them. Hackers came up with different techniques to try to hide malwares from

the detection mechanisms. One such technique was to morph a malware into different

forms. In [11], the author used pHMM technique was used to for classification by

removing certain opcodes which were believed to be leading the morphed nature of

malwares.

2.2 Related Work

After the successes seen in detection techniques which used machine learning,

new ways to classify malwares grew with evolution of machine learning. Neural

Networks have shown promising classification results with various malware datasets.

The high dimensionality of images makes image classification an ideal problem for
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CNNs. [12] talks about conversion of malware executables into images so that CNN

can be leveraged to acheive higher accuracies in classification of malwares of various

families.

In [13], the authors created grayscale images using a local mean method. They

used them to classify the malwares using K-means techniques. [14] used Microsoft’s

dataset which is available through Kaggle. The authors implemented ensemble

techniques with boosting. [15] and [16] also discuss about leveraging CNNs for multi-

class classification. In the former, a character-level approach is used in CNN along

with other techniques whereas in the latter, an analysis of classification is performed

on two different datasets.

In [17], the author experimented on the Malimg dataset using CNN and ELM

techniques and achieved high accuracy in the multi-class classfiication. These reviews

and reading helped to understand different approaches taken to classify different

malware datasets. Furthermore, in [18] GANs are implemented in an approach which

is called as MalGAN where the output from GAN is fed to another feedforward

network which makes the final classification if the sample is benign or not. Auxiliary

Classifier GAN was a concept first provided in [19] where every generated sample

includes a label of which the sample belongs to. These papers served as the inspiration

for this research.
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CHAPTER 3

Design and Implementation

In this chapter, we will look at the dataset used for the experiments in detail. Then

we discuss the techniques used in the project, including image generation algorithms.

Finally, we briefly describe the approach for experiments which were performed in

this project. Python was used as the primary language for performing the experiments

in this project due to its powerful library functions and ease of use.

3.1 Data

The dataset used in this project comprises of executable malware files which were

consolidated by an alum. There are a total of 24545 files which belong to 18 families

of malwares. The details of the number of samples from each of those 18 families can

be seen in Table 1. Samples from each malware family are stored in its own directory

with a main root directory providing access to all the families.

3.1.1 Malware Families

Let us look at the malware families individually and discuss them in brief-

alureon is a Trojan virus. These malwares monitor network traffic and steal

sensitive information by scanning for passwords, credit card data [20].

bho is a Browser Helper Object which is a type of malware which presents itself

through advertisements. When a user clicks on an advertisement, these programs

install the BHO trojan which then changes browser settings, looks for sensitive

information and tracks browsing behavior so that similar adwares can display more

attractive ads leading to other malwares [21].

ceeinject is another Trojan virus where the intention of the malware is to hide the

underlying malicious program by obfuscating it. The hidden malware can attack the
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Table 1: Malware Sample Breakdown

Malware Name No of Samples
alureon 1327

bho 1176
ceeinject 892
cycbot 1029

delfinject 1146
fakerean 1063
hotbar 1491
lolyda 915

obfuscator 1436
onlinegames 1293

rbot 1017
renos 1312

startpage 1135
vobfus 964
vundo 1793

winwebsec 3651
zbot 1785

zeroaccess 1119

system in any number of ways. The core is to hide it itself. This is done in such

fashion that it attempts to undetected to the anti-virus software [22].

cycbot is a malware whose characteristics are that it gives a backdoor access to the

infected system. This allows the hackers to install or uninstall programs on the

system, retrieve information from them, update existing programs or even visit web

links. The backdoor access means it goes undetected by the detection systems which

are in place. They can also be used to launch Denial of Service (DoS) attacks [23].

delfinject is an access point malware. These are generally used to gain access to

systems through backdoor mechanisms. Once it is successful, a hacker can install

unwanted software on the system. The initial access occurs when a user visits
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unsolicited web links or other malicious websites [24].

fakerean is installed on a system through careless installation of softwares.

FakeRean malware does not infect a system but rather impersonates anti-virus

softwares with fake logos and interfaces. The program then scans your computer and

displays some files as infected files and asks the user to pay the owner of the software

in order to clean the system. Such malicious programs are categorized as FakeRean

malwares [25].

hotbar is an adware where the malware gets installed on the system and installs its

own malicious components by changing the appearance of other applications. The

malware is then capable of tracking the information flowing through those

applications which leads to encountering more ads throughout the time you are

browsing [26].

lolyda is a trojan malware which is specifically found in gaming. They usually

extract the gaming account information. They may even be responsible for random

files being installed on the system [27].

obfuscator is a malware which as the name suggests, tries to hide underlying

malicious program which can be anything. Such malwares are programmed in such a

way that these help other malwares go undetected from anti-virus softwares [28].

onlinegames is a family of harmful malwares which usually gains access by

installation of softwares especially games through false resources. Once they are in

the system, they can record keyboard behavior, modify, and install additional

malicious programs and steal information [29].
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rbot are backdoor trojans which usually affect through network. It launches its

attack based on weak passwords and they can be the cause of DoS attacks while

retrieving user information as well [30].

renos is similar to FakeRean where a spyware tells the user that the system is

infected and requests for money to clean the system even though there might not be

any other malicious content present in the system [31].

startpage are very unpredictable and usually change browser settings through

unauthorized use. They may also be responsible for other malicious installation of

softwares on the system. [32]

vobfus are worms which are responsible for installing other malwares on a system.

They can be transmitted through flash drives or can even be downloaded through

other media [33].

vundo is another adware where unrelated ads are displayed to the users while

browsing. These tend to be access points to BHO malwares [34].

winwebsec is like ransomware where the winwebsec malware displays that the

system is infected through a malicious software and locks other applications or the

system itself and asks the user to pay to clean the system even though there aren’t

any other infected files. It may also affect other applications and be the cause of DoS

attacks from within the system where it blocks usage of websites [35].

zbot is a trojan virus which attacks systems with the intent to steal sensitive

information about users. They can also be responsible for providing a remote access

of your system to the hacker(s) [36].
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zeroaccess is another rootkit malware which remains hidden and is responsible for

pay-per-click fraud. It attacks by retrieving information from browsers while user

surfs the internet. This is done through advertising their own network and retrieving

information from other middle men and web traffic [37].

3.1.2 Image Conversion

Since the focus of this research project is to leverage the advantages neural

networks, we convert the executable samples into grayscale images to increase their

dimensionality. To do this, we converted each byte of the bytecode sequence of the

executable files into their ASCII value and added this stream of data to a 2D array.

These values represent a grayscale image, and a corresponding image is saved in a

directory. All this can be done using the image.save API from PIL.

After this process was completed, we needed the size of the images of all malwares

to be consistent. We chose 64x64 as an ideal choice since the model will not become

heavy due to a big size but will have enough information so that the model can

learn some features of each family. This choice was bolstered after reading [38] paper

in which the author achieved good results with these dimensions for a lightweight

classifier.

Hence, to convert the images to 64x64 dimensions, we used the below 2 approaches-

1. Using PIL Image Library Filters:

This library provides the APIs to resize an input image to a desired dimension

using different filters like-

HAMMING - Produces sharper pixels based on Hamming interpolation.

Has better performance but the image quality is not the best.

BICUBIC - Performs a cubic interpolation between all contributing pixels

to determine the resulting pixel’s value. Lower performance than Hamming
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filter but the quality is better.

LANCZOS - Determines the resulting pixel’s value based on a high quality

Lanczos filter which is a truncated sinc filter. It produces high quality images

but lags on its performance.

Table 2: Resize Filter Metrics

Filter Quality Performance
HAMMING Good Best
BICUBIC Better Better
LANCZOS Best Best

2. Reading NxN amount of bytes

As it was seen from the results of the paper [39], the use of headers of malware

executables also results in great classification results. Hence, using this as a

benchmark, we will read only a certain number of bytes from the malware file

and construct an image from this data itself. Since we are building 64x64 images

we will read the first 4096 bytes from the malware executable file and create a

grayscale image.

3.2 Technical Concepts

In this section, we will look briefly investigate the concepts of the techniques

which have been used in this project. We will also describe the architecture and the

optimum parameters that were found for setting up the experiments.

3.2.1 Hidden Markov Model

Hidden Markov Model (HMM) is based on the Markov process in which the

Markov chain is basically a set of hidden states. The goal of the algorithm is to

compute likelihood of transitions between the hidden states. This can be done by
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observing the states from the observation sequence which are probabilistically linked

to the hidden states. The Figure 1 depicts a high-level architecture of HMMs.

Figure 1: High Level Illustration of HMM

Table 3 shows a subset of notations that are generally used in HMM. [40].

Table 3: HMM Notations

Sybmbol Meaning
A Hidden State Transition Probabilities
B Observation Probability Matrix
𝜋 Initial State Distribution
O Observation Sequence
N Number of Hidden States
M Unique Observation Symbols

The probability distribution of the hidden states is represented in A matrix whose

dimensions are based on the number of hidden states. The observation sequence is

denoted by the symbol ‘O’. The probability of each data point i.e., an observation, to

occur against a particular hidden state is calcualted in the ‘B’matrix. Therefore, the

dimension of this matrix is a 2-D matrix which is of size N x M.

There are three classic problems which can be solved using HMM - first, to score
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an observation sequence based on a given trained model, second, to uncover the hidden

states and finding their optimal state transition probabilities, and third, to train a

model 𝜆 which fits the sequence of observations.

The training of the model from problem 3 is done based on a hill climb algorithm

known as the Baum-Welch re-estimation algorithm. The A, B and 𝜋 matrices are

randomly initialized, but are always row stochastic. They are then re-estimated each

step using an Expectation Maximization algorithm (EM) until the training converges

to a local maximum.

3.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were first introduced in [41] after back-

propagation techniques for feed-forward neural networks were described from the

book [42] by C.M. Bishop.

The main architecture bases of CNN are shared weights, degree shift and receptive

fields [41]. There are layers of neurons which are fully connected with each other. They

may be of different dimensions where the receiving layer receives a small neighborhood

of inputs which were present in the previous layer. The neurons have a set of inputs

and outputs. A weight is associated with each of those synapses (like a neuron in

brain). A loss or error rate is calculated with each iteration of training. This becomes

a error minimization problem, where we adjust the weights associated with each

input/output between the layers so as to minimize the loss and increase the accuracy.

The re-computation of weights is implemented using a backpropagation approach [41].

The advantages of using CNNs is that it removes the need to extract features

from data and classify using only that set of features. Moreover, extracting features

of high dimensional data like images can be a computationally expensive task. CNN

on the other hand, does not require a set of features specifically. The layers of neural
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networks can extrapolate the information needed to classify data implicitly. Each

neuron has some information which is necessary for the overall result and training of

a CNN model.

For a model to train, there are various types of layers that we can add to the

architecture of a CNN model. We will look into the concepts of some of these layers

in brief. Figure 2 is a high-level depiction of CNN architecture.

Figure 2: Basic CNN Architecture

Let us now look at the different types of layers we can use in a CNN model.

1. Convolution Layer - This layer consists of some number of neurons which have

a tensor input. Tensor input means, the dimensions of the input are determined

by the height, width of the images, number of images and the channels of the

input images. The function of this layer is to convolve the input based on a size

known as kernel size and feed forward the results to the next layer.

2. Max-Pooling Layer - Pooling layers reduce the dimensionality of the input layer

and achieving invariance. Clusters of neurons from input layer for an output of

single neuron using a kernel map of some size. The max pooling layer considers

the maximum value from those clusters as the output as a single neuron [43].
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3. Dropout Layer - A dropout layer is used to regularize the parameters of the

convolutional layers [44]. It randomly sets a percent of inputs to 0. The other

unchanged inputs are scaled so that the overall sum of parameters remains

unchanged.

4. Flatten Layer - This layer is used to convert a multidimensional input into a

single dimensional output of the tensor. This is normally used just before a

dense layer as a single column input to it [45].

5. Dense Layer - The dense layer is a deep layer, i.e., fully connected network

where each neuron present in the network receives an input from the previous

layer. This layer performs matrix multiplications and recomputes the weights of

neurons using backpropagation. An activation function, usually relu, is used to

help the model learn complex patterns by helping to decide if a neuron should

be activated i.e., used as an output or not.

3.2.3 Auxiliary Classifier Generative Adversarial Network

The Auxiliary Classifier Generative Adversarial Networks or AC-GANs are a

development over GANs. The were first introduced in [19] by Augusts Odena,

Christoper Olah and Jonathon Shlens.

GANs are a setup of a generator model and discriminator model which are neural

networks. They are trained in opposition of each other, like a setup of game theory,

where the generator is training to generate better quality of fake data from a noise

input. The discriminator model is a classifier which tries to detect if the generated

fake sample data is real or not. A loss is calculated to determine the gap between

generated fake sample and real data samples. This process goes back and forth until

the discriminator model is not able to distinguish between real and fake data. The

loss is calculated based on the following equation-
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𝐿 = 𝐸[𝑙𝑜𝑔𝑃 (𝑆 = 𝑟𝑒𝑎𝑙)|𝑋𝑟𝑒𝑎𝑙] + 𝐸[𝑙𝑜𝑔𝑃 (𝑆 = 𝑓𝑎𝑘𝑒)|𝑋𝑓𝑎𝑘𝑒] [19] (1)

The discriminator tries to maximize the first term of the above equation whereas

the generator tries to minimize the second term of the above equation. Figure 3 shows

a basic architecture of GANs.

Figure 3: GAN Architecture

AC-GANs is a variant of the above architecture in which the discriminator

produces two outputs. One is whether the generated image is real or fake and to

which class it belongs to. The new architecture is shown in Figure 4 below.

Figure 4: AC-GAN Architecture
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3.3 Approach for Experiments

This section describes the roadmap for experiments which are to be conducted.

As we are using CNN as our main classifier, we need some kind of a benchmark

result to compare the results from CNN. Hence, the first step is to train a basic

HMM model based on their opcodes. We will train winwebsec family as it has the

greatest number of samples available and then test the model against samples from

winwebsec as well as other families. As we have a benchmark, we will then build

CNN model with winwebsec and zbot samples and compute accuracies to validate the

result by comaparing them with HMM results. To do this, we will first convert the

malware executable files into images so that we can provide those as inputs to CNN.

A basic image conversion is performed, and data is reseized using a built-in API. After

we compare the results and tune the model, we can use the same architecture later

experiments as well.

We will now move on to a multi-class classification to classify the 18 families of

malwares on a CNN model and observe its results. We will follow it up with some

further binary classification if necessary, for certain families. Next, we will perform the

same experiment with different datasets generated using the approaches mentioned in

Section 3.1.2.

Now, we will work with our game theory like approach where we will generate

fake samples of malware by setting up an AC-GAN model. For this, we will use the

original converted images dataset, which contains images of variable size, as source for

training as they contain much more information than resized images. After training

the AC-GAN model and generating fake images for all the malware families, we

perform a 36 class (18 real & 18 fake) classification on a subset of data to analyze the

confusion of CNN classifier based on the same architecture as of previous experiments.

This appraoch will lead us to propose our final experiment in which we will create a
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poisoned dataset which will consist of both real and fake samples of each family.

Finally, as this poisoned dataset is created, we will train a CNN model on it

which would complete our game theory in the sense that the inclusion of fake samples

would help us counter the reduction in classification accuracies which we see from the

36-class classification. We will score 3 testing samples based on this trained model -

on real data only, on fake data only and on poisoned test samples which contain both

real and fake data and observe their results.
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CHAPTER 4

Experiments & Results

In this section, we will see the set up for each of the experiments i.e., model

architectures and analyze the results of each of them by observing the confusion

matrices and classification reports generated by the experiments.

4.1 HMM

For the basic classification, we trained an HMM model on winwebsec family

by considering the most used opcodes from the samples. The opcodes define the

dimensions of the ‘B’matrix. The ‘A’matrix is the length of the number of hidden

states we keep for the problem. We performed the experiment with 10000 random

restarts for training. The HMM model uses Baum-Welch re-estimation algorithm and

once the training completes, we scored the samples from other families as well as from

winwebsec. Figure 5 graph shows the results of experiment-

Figure 5: ROC Curve of WinWebSec Classification

As we can see, we score winwebsec samples and samples from different families
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using this model. We get 89% accuracy for this binary classification.

4.2 CNN

We first implement a CNN model based on two families. The architecture which

yielded the best results is shown below in Figure 6. We will use this architecture for

further experiments as well. Table 4 shows the optimum parameters for training a

CNN model.

Figure 6: CNN Architecture

We use all the samples belonging to the winwebsec and zbot samples. The data

is then split into training and testing using the train_test_split library with 70% of

the data for training and the remaining 30% for testing. Figure 7 shows the confusion

matrix of the classification. Table 5 shows the classification report.
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Table 4: CNN Optimum Parameters

Parameter Value
KernelSize 3
PoolSize 2

Activation Function relu
Epochs 50

Optimizer Adam
Loss Function Categorical Crossentropy

Figure 7: Confusion Matrix for 2 Family Classification

Table 5: Classification Report for 2 Families

Class Precision Recall F1-Score Support
0 1.00 1.00 1.00 1124
1 0.99 0.99 0.99 507

accuracy 0.99 1631
macro avg 0.99 0.99 0.99 1631

weighted avg 0.99 0.99 0.99 1631
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As we have acheived a better accuracy to that of the HMM results, it can be said

that CNN can be a better classifier. We will now implement a multi-class classification

for all the datasets.

4.2.1 CNN with Full Image Dataset

We use the dataset created by reading all the bytes of the malwares and creating

images of various sizes. This dataset is then loaded to the CNN model using PIL

library’s ImageDataGenerator API. This resizes the images into the target size of

64x64 for our CNN model. The model is trained for 50 epochs using relu activation

for the dense layers as used in the previous experiment. Figure 8 shows the confusion

matrix.

Table 6 shows the classification report.

As we can see, we achieved an 80% accuracy for an 18-class classification which

seems great. But can we do better? Let’s look at the results in the next sections.

4.2.2 CNN with Hamming Images Dataset

As seen earlier, the resizing of the images from the dataset occurs internally

through ImageDataGenerator. As a different approach, we resized the images to 64x64

size using the ‘Hamming’filter on the whole dataset. Figure 9 shows the confusion

matrix achieved for classifying the images based on this filter.

The Table 7 shows the classification report.

As we can see, the maximum accuracy we achieved using Hamming resize for the

images is 86%. We can see the improvement from the previous result which justifies

the use of resize filters.

4.2.3 CNN with Bicubic Images Dataset

We resize the images to 64x64 size using the ‘Bicubic’filter on the whole image

dataset. Figure 10 shows the confusion matrix achieved for classifying the images
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Figure 8: Confusion Matrix on Full Image Data

based on this filter.

The Table 8 below depicts the classification report.

As we can see, the maximum accuracy we achieved using the Bicubic filter for

resizing the images is 85%. We can say that the Hamming filter provides better results

than Bicubic filters.

4.2.4 CNN with Lanczos Images Dataset

We resize the images to 64x64 size using the ‘Lanczos’filter on the whole image

dataset. Figure 11 shows the confusion matrix achieved for classifying the images

23



Table 6: Classification Report Full Dataset

Class Precision Recall F1-Score Support
0 0.72 0.67 0.69 418
1 0.93 0.94 0.93 343
2 0.75 0.91 0.83 220
3 0.87 0.89 0.88 308
4 0.53 0.52 0.52 360
5 0.70 0.65 0.67 343
6 0.98 0.96 0.97 436
7 0.96 0.99 0.98 274
8 0.31 0.38 0.34 364
9 0.81 0.91 0.86 368
10 0.55 0.39 0.45 440
11 0.77 0.83 0.80 330
12 0.80 0.77 0.78 387
13 0.93 0.94 0.93 288
14 0.68 0.73 0.70 493
15 0.99 0.96 0.98 1150
16 0.95 0.97 0.96 510
17 0.94 0.88 0.91 336

accuracy 0.80 7368
macro avg 0.79 0.79 0.79 7368

weighted avg 0.80 0.80 0.80 7368

based on this filter.

The Table 9 below depicts the classification report.

As we can see, the maximum accuracy we achieved using the Lanczos filter for

resizing the images is 86%.

4.2.5 CNN with Images from NxN bytes Dataset

We create the new dataset by reading the first 4096 bytes of the malware

executables and using these bytes to create images of size 64x64. We classify these

‘header images now using the CNN model. Figure 12 shows the confusion matrix of

the observed results.

24



Figure 9: Confusion Matrix on Full Image Data Using Hamming Filter

The Table 10 shows its classification report.

We achieved a 92% accuracy for this dataset. This means that the header

information from the malware executables was enough information to classify them

into each of their classes. This means that in other resizing filters, the information was

getting blurred due to which their accuracy is lower than what we see here. It might

also be interpreted that the whole malware file’s data might make the classification

more complex.
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Table 7: Classification Report: Resized with Hamming

Class Precision Recall F1-Score Support
0 0.74 0.77 0.75 381
1 0.95 1.00 0.97 314
2 0.77 0.91 0.83 220
3 0.91 0.98 0.94 278
4 0.62 0.58 0.60 352
5 0.91 0.81 0.86 375
6 0.99 0.98 0.98 480
7 0.99 0.97 0.98 275
8 0.58 0.47 0.52 512
9 0.85 0.92 0.88 347
10 0.67 0.63 0.65 324
11 0.88 0.85 0.86 402
12 0.87 0.92 0.90 336
13 0.97 0.98 0.97 293
14 0.72 0.81 0.77 500
15 0.99 0.99 0.99 1142
16 0.97 0.97 0.97 526
17 0.96 0.97 0.96 311

accuracy 0.86 7368
macro avg 0.85 0.86 0.86 7368

weighted avg 0.86 0.86 0.86 7368

4.3 AC-GAN: The Game Theory Approach

We set up an AC-GAN using PyTorch, leveraging GPUs for faster execution.

Figure 13 & Figure 14 illustrate the architectures of generator and discriminator

models respectively. As mentioned in Section 3.3, we use the full image dataset as

the input for the AC-GAN. Moreover, this sets up the game theory like approach

when we try to induce a negative effect on the previous results by introducing the fake

samples to the classifier. Once we see this negative effect on the accuracies, we will

then try to improve on it by considering these generated fake samples in the training

process as a part of the real dataset, thus creating a "poisoned dataset". This will
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Figure 10: Confusion Matrix on Full Image Data Using Bicubic Filter

lead to an improvement on the classification from previous results.

Table 11 describes the optimum parameters which were used to train the model.

The Figure 15 shows the variation in generator and discriminator loss over the

epochs while training AC-GAN.

4.3.1 CNN on Consolidated Dataset

We generate 500 samples from a generator model which produces a reasonable

discriminator accuracy (around 50%). In the experiment, generators from the range

of batch numbers 7000 to 13000 were producing results which were seen as a fit for
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Table 8: Classification Report: Resized with Bicubic Filter

Class Precision Recall F1-Score Support
0 0.77 0.68 0.72 425
1 0.96 0.99 0.98 353
2 0.71 0.93 0.81 216
3 0.92 0.97 0.95 297
4 0.63 0.63 0.63 359
5 0.88 0.76 0.81 395
6 0.97 0.99 0.98 447
7 1.00 0.98 0.99 263
8 0.37 0.57 0.45 278
9 0.84 0.91 0.88 353
10 0.82 0.48 0.61 541
11 0.85 0.92 0.89 366
12 0.82 0.89 0.85 335
13 0.96 0.99 0.97 265
14 0.75 0.73 0.74 561
15 0.99 0.99 0.99 1060
16 0.97 0.96 0.97 523
17 0.95 0.95 0.95 331

accuracy 0.85 7368
macro avg 0.84 0.85 0.84 7368

weighted avg 0.86 0.85 0.85 7368

generation. We generate the samples using the generator model of batch 11600.

After the generation, we will build a consolidated dataset containing 36 classes

of data, 18 fake and 18 real, and see observe how the results are different from the

results in Section 4.2.1. The Figure 16 below shows the confusion matrix for the 36

classes and the Table 12 describes its classification report.

As we can see, the CNN model is not able to classify the samples as precisely as it

was able to before. This is due to the inclusion of these fake samples which has made

it harder for the CNN to classify the samples into each of their respective families.
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Figure 11: Confusion Matrix on Full Image Data Using Lanczos Filter

4.3.2 CNN on Poisoned Dataset

As discussed from Section 3.3, we have trained a CNN model on the poisoned

dataset based on the same optimum architecture. The training data was based on a

50:50 split of real and fake samples. We chose 400 real samples from each family and

400 fake samples of each family for training the model. We then scored 100 samples of

real and fake and 200 samples of poisoned data using the trained model. We observe

these results for the three classifications-

1. Scoring Real Samples - Figure 17 shows the confusion matrix for classifying
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Table 9: Classification Report: Resized with Lanczos Filter

Class Precision Recall F1-Score Support
0 0.80 0.70 0.75 474
1 0.97 0.97 0.97 349
2 0.78 0.87 0.82 234
3 0.93 0.95 0.94 301
4 0.59 0.69 0.64 287
5 0.84 0.82 0.83 341
6 0.97 0.99 0.98 421
7 0.99 0.99 0.99 286
8 0.47 0.50 0.48 399
9 0.87 0.90 0.88 381
10 0.76 0.56 0.65 393
11 0.88 0.84 0.86 398
12 0.86 0.91 0.88 330
13 0.95 0.96 0.96 275
14 0.76 0.79 0.77 501
15 0.99 0.99 0.99 1139
16 0.95 0.97 0.96 496
17 0.97 0.96 0.96 363

accuracy 0.86 7368
macro avg 0.85 0.85 0.85 7368

weighted avg 0.86 0.86 0.86 7368

100 real samples against the trained model. Its classification report is constructed

in Table 13.

The real samples are classified with an accuracy of 62%. This accuracy is great

when we compare these results with the results from Section 4.3.1. We can

see at some individual results which have performed a lot better. For example,

alureon classification has significantly improved from 33% to 80%.

2. Scoring Fake Samples - Figure 18 shows the confusion matrix for classifying

100 fake samples against the trained model. Its classification report is constructed

in Table 14.
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Figure 12: Confusion Matrix on Header Images Dataset

Figure 13: Generator Architecture

This is an interesting result as the fake samples are also getting better classified

into their own family. Although, this is because of inclusion similar fake samples
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Table 10: Classification Report: Header Images Dataset

Class Precision Recall F1-Score Support
0 0.85 0.82 0.84 410
1 0.99 1.00 0.99 350
2 0.89 0.91 0.90 248
3 0.96 0.96 0.96 326
4 0.89 0.89 0.89 335
5 0.84 0.89 0.86 326
6 1.00 1.00 1.00 436
7 0.99 0.99 0.99 268
8 0.66 0.70 0.68 423
9 0.93 0.95 0.94 384
10 0.86 0.77 0.81 343
11 0.91 0.94 0.93 352
12 0.92 0.97 0.95 322
13 0.98 0.97 0.97 290
14 0.84 0.82 0.83 576
15 0.99 0.98 0.99 1072
16 0.96 0.97 0.96 557
17 0.99 0.97 0.98 346

accuracy 0.92 7364
macro avg 0.91 0.92 0.91 7364

weighted avg 0.92 0.92 0.92 7364

Table 11: AC-GAN Optimum Parameters

Parameter Value
Batch Size 64

Learning Rate 0.0002
Epochs 100
Beta1 0.5
Beta2 0.999

Optimizer Adam
Loss Function BinaryCrossEntropy

Activation Function LeakyReLU
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Figure 14: Discriminator Architecture

Figure 15: Generator & Discriminator Loss

in training. The 77% accuracy is a strong classification when compared with

previous results.

3. Scoring Poisoned Samples - Figure 19 shows the confusion matrix for clas-

sifying 200 poisoned samples consisting of 100 fake and 100 real samples of

each family against the trained model. Its classification report is constructed in
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Figure 16: Confusion Matrix on Consolidated Dataset

Table 15.

The poisoned test samples show a 77% accuracy which is great considering the

disparities between the real and fake data existing in the same data.
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Figure 17: Confusion Matrix: Real Samples Classification
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Table 12: Classification Report: Consolidated Dataset

Class Precision Recall F1-Score Support
0 0.48 0.54 0.51 114
1 0.71 0.73 0.72 143
2 0.95 0.96 0.95 153
3 0.69 0.76 0.73 144
4 0.75 0.90 0.81 115
5 0.58 0.58 0.58 142
6 0.82 0.78 0.80 174
7 0.73 0.85 0.79 128
8 0.39 0.44 0.41 131
9 0.80 0.85 0.82 124
10 0.47 0.59 0.52 133
11 0.76 0.74 0.75 165
12 0.93 0.99 0.96 150
13 0.93 0.95 0.94 149
14 0.99 0.93 0.96 153
15 0.86 0.93 0.89 131
16 0.22 0.18 0.20 201
17 0.88 0.87 0.87 152
18 0.72 0.82 0.77 126
19 0.88 0.67 0.76 212
20 0.39 0.27 0.32 224
21 0.63 0.68 0.65 145
22 0.61 0.73 0.66 102
23 0.66 0.79 0.72 117
24 0.64 0.50 0.56 199
25 0.92 0.82 0.87 148
26 0.92 0.91 0.92 160
27 0.88 0.82 0.85 169
28 0.45 0.61 0.52 115
29 0.74 0.84 0.79 128
30 0.86 0.88 0.87 151
31 0.89 0.85 0.87 179
32 0.90 0.94 0.92 147
33 0.96 0.83 0.89 170
34 0.78 0.72 0.75 168
35 0.84 0.82 0.83 138

accuracy 0.74 5400
macro avg 0.74 0.75 0.74 5400

weighted avg 0.74 0.74 0.74 5400
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Table 13: Classification Report:Real Sample

Class Precision Recall F1-Score Support
0 0.80 0.36 0.50 11
1 1.00 1.00 1.00 3
2 1.00 0.67 0.80 6
3 0.83 0.71 0.77 7
4 0.60 0.50 0.55 6
5 0.25 0.33 0.29 3
6 1.00 0.75 0.86 4
7 1.00 1.00 1.00 7
8 0.18 0.29 0.22 7
9 0.20 0.50 0.29 2
10 0.17 0.10 0.12 10
11 1.00 0.75 0.86 4
12 0.50 0.67 0.57 6
13 0.75 0.75 0.75 4
14 0.40 1.00 0.57 4
15 1.00 1.00 1.00 2
16 0.86 0.86 0.86 7
17 0.83 0.83 0.83 6

accuracy 0.62 99
macro avg 0.69 0.67 0.66 99

weighted avg 0.68 0.62 0.62 99
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Figure 18: Confusion Matrix: Fake Samples Classification
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Table 14: Classification Report: Fake Samples

Class Precision Recall F1-Score Support
0 0.80 0.67 0.73 6
1 0.75 0.50 0.60 6
2 0.67 0.50 0.57 4
3 0.60 1.00 0.75 3
4 1.00 0.62 0.77 8
5 0.50 0.60 0.55 5
6 0.75 1.00 0.86 6
7 1.00 1.00 1.00 8
8 0.50 0.60 0.55 5
9 0.60 0.75 0.67 4
10 0.71 0.83 0.77 6
11 0.50 0.67 0.57 3
12 0.67 0.80 0.73 5
13 0.80 0.80 0.80 5
14 0.86 0.86 0.86 7
15 1.00 0.86 0.92 7
16 1.00 1.00 1.00 6
17 1.00 0.60 0.75 5

accuracy 0.77 99
macro avg 0.76 0.76 0.75 99

weighted avg 0.80 0.77 0.77 99
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Figure 19: Confusion Matrix: Poisoned Samples Classification
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Table 15: Classification Report: Poisoned Samples Classification

Class Precision Recall F1-Score Support
0 0.33 0.50 0.40 6
1 0.88 0.64 0.74 11
2 0.79 0.85 0.81 13
3 0.64 0.70 0.67 10
4 0.50 0.60 0.55 10
5 0.62 0.62 0.62 13
6 1.00 1.00 1.00 12
7 0.92 0.92 0.92 13
8 0.36 0.50 0.42 8
9 0.67 0.89 0.76 9
10 0.73 0.57 0.64 14
11 1.00 0.79 0.88 19
12 0.83 0.83 0.83 6
13 0.85 0.85 0.85 13
14 0.75 0.86 0.80 7
15 0.91 0.83 0.87 12
16 1.00 0.91 0.95 11
17 1.00 0.83 0.91 12

accuracy 0.77 199
macro avg 0.76 0.76 0.76 199

weighted avg 0.80 0.77 0.78 199
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CHAPTER 5

Conclusion & Future Work
5.1 Conclusion

In this research, we were able to convert malware executable files into images

and analyzed resizing techniques and their impact on classification of data. We also

created an image from the headers of the malware files by reading the start bytes and

found that they give optimum results. To try to break this classifier, we generated

fake samples using AC-GAN and found that the CNN model’s classification accuracy

deteriorated with the inclusion of fake samples. By retraining the model with a

poisoned dataset, we obtain better classification results than before.

5.2 Future Work

Fake malwares can be generated using other techniques like HMM as well. It

could be worth exploring to create images from the fake executable byte codes. Other

techniques like data obfuscation can also be performed to generate similar samples

of data from a particular family. It can be interesting to see what can happen if we

introduce fake samples generated from multiple techniques in the same dataset.

The classification techniques used in this research project were limited to CNN

to maintain the consistency in results we obtain so that it is easier to analyze the

effects of introduction of fake samples and other image generation techniques. Other

techniques like Multi-Layer Perceptron (MLPs) and ResNets have also shown great

classification results on other datasets.

GANs are themselves a broad area of research. Other GAN models like DC-GAN

(Deep Convolutional GANs), Progressive GANs and Cycle GANs can be used to gener-

ate the fake images. The results of AC-GAN were based on BinaryCrossEntropy Loss.

There are other loss functions like SSIM (Structural Similarity Index Measurement)

which can also be explored in training AC-GAN models.
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APPENDIX

Additional Results
A.1 Binary Classification Results

As malware belonging to obfuscator, vundo and alureon families had a low

accuracy among the multi-class classification results, it implies that the similarity

between these malware is more. Hence, to bolster their classification, a binary

classication between them is performed. The subsequent sub-sections illustrate the

findings of these experiments.

A.1.1 Obfuscator & Rbot

Figure A.20: Confusion Matrix: Obfuscator & Rbot

Table A.16: Classification Report: Obfuscator & Rbot

Class Precision Recall F1-Score Support
0 0.91 0.92 0.91 431
1 0.89 0.87 0.88 305

accuracy 0.90 736
macro avg 0.90 0.89 0.90 736

weighted avg 0.90 0.90 0.90 736
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A.1.2 Obfuscator & Vundo

Figure A.21: Confusion Matrix: Obfuscator & Vundo

Table A.17: Classification Report: Obfuscator & Vundo

Class Precision Recall F1-Score Support
0 0.91 0.88 0.90 451
1 0.90 0.93 0.91 518

accuracy 0.91 969
macro avg 0.91 0.90 0.90 969

weighted avg 0.91 0.91 0.90 969

A.1.3 Alureon & Vundo

Table A.18: Classification Report: Alureon & Vundo

Class Precision Recall F1-Score Support
0 0.95 0.94 0.94 389
1 0.96 0.97 0.96 547

accuracy 0.95 936
macro avg 0.95 0.95 0.95 936

weighted avg 0.95 0.95 0.95 936
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Figure A.22: Confusion Matrix: Alureon & Vundo

A.2 Loss Graphs

This section consists of the loss graphs of each experiment.

Figure A.23: CNN: Winwebsec & Zbot Loss
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Figure A.24: CNN: Full Image Dataset Loss

Figure A.25: CNN: Hamming Interpolation Loss

Figure A.26: CNN: Bicubic Interpolation Loss
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Figure A.27: CNN: Lanczos Interpolation Loss

Figure A.28: CNN: Header Image Data Loss

Figure A.29: CNN: Consolidated Dataset Loss
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Figure A.30: CNN: Poisoned Dataset Loss

Figure A.31: CNN: Obfuscator & Rbot Loss

Figure A.32: CNN: Obfuscator & Vundo Loss
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Figure A.33: CNN: Alureon & Vundo Loss
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