
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2021

Machine Learning to Detect Malware Evolution Machine Learning to Detect Malware Evolution

Lolitha Sresta Tupadha
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Tupadha, Lolitha Sresta, "Machine Learning to Detect Malware Evolution" (2021). Master's Projects. 1006.
DOI: https://doi.org/10.31979/etd.4vv2-panr
https://scholarworks.sjsu.edu/etd_projects/1006

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1006?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1006&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Machine Learning to Detect Malware Evolution

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Lolitha Sresta Tupadha

May 2021

© 2021

Lolitha Sresta Tupadha

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Machine Learning to Detect Malware Evolution

by

Lolitha Sresta Tupadha

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Mark Stamp Department of Computer Science

Dr. Mike Wu Department of Computer Science

Fabio Di Troia Department of Computer Science

ABSTRACT

Machine Learning to Detect Malware Evolution

by Lolitha Sresta Tupadha

Malware evolves over time and anti-virus must adapt to such evolution. Hence, it

is critical to detect those points in time where malware has evolved so that appro-

priate countermeasures can be undertaken. In this research, we perform a variety of

experiments to determine when malware evolution is likely to have occurred. All of

the evolution detection techniques that we consider are based on machine learning and

can be fully automated—in particular, no reverse engineering or other labor-intensive

manual analysis is required. Specifically, we consider analysis based on hidden Markov

models and various word embedding techniques, among other machine learning based

approaches.

ACKNOWLEDGMENTS

I would like to thank, my project adviser, Dr. Mark Stamp, for his guidance and

patience throughout the course of this project. Without his persistent help, the goal

of this project would not have been realized. I also would like to express my gratitude

to my committee members, Dr. Mike Wu and Mr. Fabio Di Troia, for their assistance

and help with the project. Finally, I want to thank my family for their continuous

efforts to motivate, support and encourage me.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Malware and its Evolution . 3

2.1 Worms . 4

2.1.1 Internet Worms . 4

2.1.2 Email Worms . 4

2.1.3 Instant–Messaging Worms 4

2.1.4 File–sharing Worms . 4

2.2 Virus . 5

2.2.1 Encrypted Virus . 5

2.2.2 Polymorphic Virus . 5

2.2.3 Metamorphic Virus . 5

2.3 Trojan . 6

2.4 Trapdoor . 6

2.5 History of Malware . 6

2.5.1 Creeper . 6

2.5.2 Brain Virus . 7

2.5.3 Morris Worm . 7

2.5.4 Code Red . 7

2.5.5 SQL Slammer . 8

2.5.6 WannaCry . 8

vi

vii

3 Related Work . 11

4 Dataset and Classification Techniques 14

4.1 Dataset . 14

4.2 Malware Families . 14

4.3 Feature Extraction . 17

4.4 Classification Techniques . 17

4.4.1 Hidden Markov Model . 17

4.4.2 Word2Vec . 22

4.4.3 Logistic Regression . 23

5 Experiments, Results and Analysis 25

5.1 Logistic Regression . 25

5.2 Hidden Markov Model . 26

5.2.1 HMM Approach 1 . 26

5.2.2 HMM Approach 2 . 28

5.3 HMM2Vec . 30

5.4 Word2Vec . 31

5.5 Analysis of Results . 33

6 Conclusion And Future Work . 41

6.1 Future Work . 42

LIST OF REFERENCES . 43

APPENDIX

Appendix . 47

LIST OF TABLES

1 Number of samples used in experiments 15

2 HMM notation . 19

viii

LIST OF FIGURES

1 Malware Growth [1] . 3

2 Hidden Markov Model [2] . 18

3 Word2Vec model architecture . 22

4 Types of Word2Vec model . 23

5 Graph of sigmoid function . 24

6 Results from malware families on using Logistic Regression 26

7 Results from malware families on using HMM approach 1 28

8 Results from malware families using HMM approach 2 30

9 Results from malware families using HMM2Vec 31

10 Results from zbot family with different vector sizes 32

11 Results from malware families on using Word2Vec 33

12 Results from Rbot family given by Word2Vec technique 34

13 Comparison of results from bho family 36

A.14 Results from malware families on using HMM Approach 2 47

A.15 Results from malware families on using Word2Vec showing number
of samples . 48

A.16 Results from malware families on using HMM2Vec 48

A.17 Results from malware families on using Word2Vec 49

ix

CHAPTER 1

Introduction

Malware is software that is designed to cause harm by, for example, gaining

access to private computer systems, stealing sensitive information, infecting files on

a system, or spreading its infection. This is a software whose intent is malicious, or

whose effect is malicious [3]. Since the creation of the ARPANET in 1969, we have

witnessed exponential growth in the number of users of the internet. The widespread

use of computer systems along with continuous internet connectivity of the “always

on” paradigm makes modern computer systems prime targets for malware attacks.

Malware comes in many forms, including viruses, worms, backdoors, trojans,

adware, spyware etc. Malware is a continuously evolving threat to information

security. In the field of malware detection, a signature typically consists of a string

of bits that is present in a malware executable. Today, signature-based detection is

the most popular method of malware detection used by anti-virus (AV) software [3].

But malware has become increasingly difficult to detect with standard approaches,

such as signature scanning [4]. Virus writers have developed advanced metamorphic

generators and obfuscation techniques that enable malware to easily evade signature

detection. In [5], the authors prove that carefully constructed metamorphic malware

can successfully evade signature detection.

Koobface is a recent example of an advanced malware. This malware was designed

to target the users of social media. This infection is spread in the form of spam that

is sent through social networking websites. Once a system is infected, it gathers user’s

sensitive information like their credentials. On an infected system, it blocks the user

from accessing any anti-virus or security websites [6]

Malware writers modify their code to deal with advances in detection, as well as

to add new features to the existing malware [7]. Hence malware can be perceived as

1

evolving overtime. To date, most research into malware evolution has relied on reverse

engineering techniques [8], which can be extremely labor intensive. Here, our goal is to

detect malware evolution automatically, using machine learning techniques. We want

to find points in time where it is likely that significant evolution has occurred within

a given malware family. It is important to detect such evolution, as these points are

precisely where modifications to existing detection strategies are urgently needed.

We consider several machine learning techniques to identify potential malware

evolution. Our experiments are conducted using a significant number of malware

families, each of which contains a large number of samples collected over an extended

period of time. We extract the opcode sequences from each malware sample and

these sequences are used as features for our experiments. We then group the available

samples based on time periods and we train machine learning models on each of

these time windows. We compare the models to determine likely evolutionary points—

substantial differences in models across a time boundary indicate significant changes

in the samples on either side of the boundary. Specifically, we consider experiments

using hidden Markov models (HMM) as well as word embedding techniques, including

Word2Vec and HMM2Vec. We also consider logistic regression.

The remainder of this paper is organized as follows. Chapter 2 provides background

on malware and malware evolution. In Chapter 3, we provide an overview of relevant

previous work in the area of malware evolution. Chapter 4 contains an introduction to

the dataset used in this project and we introduce the machine learning techniques that

we have employed. Chapter 5 contains our the experimental results, while Chapter 6

gives out conclusion and a discussion of future work.

2

CHAPTER 2

Malware and its Evolution

As discussed in Chapter 1, malware is a software whose intent is malicious, or

whose effect is malicious [3]. The motivation behind writing a malware could range

from throwing a harmless prank to performing some serious technical and financial

loss to an organization. The very early malware, known as Morris worm was written

by a graduate student as a prank [9]. According to [10] there are more than one billion

malware programs out there with 560,000 new malware pieces discovered every day.

In 2020, the number of detected malware variants rose by 62% with trojans accounting

for 58% of the entire malware. Figure 1 shows a graph showcasing the growth in

the malware attacks. The 𝑥-axis shows the year and 𝑦-axis represents the number of

attacks causing financial losses of more than $1 Million dollars for that year. We can

see that malware attacks are increasing despite many advanced malware detection

techniques.

Figure 1: Malware Growth [1]

This chapter gives a brief introduction to different kinds of malware. Malware can

be subdivided into many sub–categories that include worms, virus, trojan, trapdoor

etc. In this section we will look in to the details of different kinds of malware.

3

2.1 Worms

A computer worm is a kind of virus but its only difference from virus is that it

spreads by itself without need of external tools [11]. That means worms replicate

themselves using the network rapidly and can cause the entire network to collapse.

Some of the infamous worms in history are Code Red, Blaster, Stuxnet and Santy.

2.1.1 Internet Worms

Internet worms target some widely used or famous websites with security vulner-

abilities. They initially infect the site and then replicate themselves on the computers

being used by spreading through the internet or the Local Area Network (LAN)

2.1.2 Email Worms

Email worms are kind of worms that are sent via compromised email attachments.

These worms are sent as either attachments or some external link through email. Once

the recipient of email, either downloads the attachment or clicks on the link, the worm

infects the system and the same infected file will automatically be sent to addresses

from their contact list [9].

2.1.3 Instant–Messaging Worms

These are the same as Email worms but will be spread through popular messaging

apps like messenger, whatsapp etc. It tricks the user with short messages like “You

have got to see this!” or “So funny” and tempts him into clicking any external link.

Once the link is clicked, it infects the system and will be forwarded to all the contacts

of the user.

2.1.4 File–sharing Worms

Although file–sharing is being restricted by organizations and many users, it is

still prevailing. These kinds of worms transmit between the system as some shared

files and when the user installs it or downloads it the worm starts to infect the system.

4

2.2 Virus

This is the most popular form of malware that is used interchangeably with

malware most of the time. A computer virus is similar to a worm but it needs outside

assistance to transmit from one system to another. They can live anywhere in the

system ranging from the boot sector, applications, macros, library routines, compilers

and even in the virus detection softwares. They can enter the system through a variety

of sources like the internet, file–transfer and external storage like floppy disks etc.

They use techniques like encryption, polymorphism and metamorphism in order to

evade detection.

2.2.1 Encrypted Virus

Most of the antivirus softwares tries to detect the malware by searching for an

already known signature. A simple way to evade signature detection is to encrypt the

signature with different keys only known to this particular malware. This is not a

foolproof technique to evade signature detection as it is still possible to search for the

encrypted key.

2.2.2 Polymorphic Virus

Polymorphic viruses are complicated viruses that can change their structures

and create a new version of themselves while retaining basic jobs they have to do.

Since the structure of the file is changed it can easily evade signature detection. They

rely on mutation engines to alter their decryption routines every time they infect

the machine. These mutation engines use billions of decryption routines making it

impossible for any conventional systems to flag them as malicious [12].

2.2.3 Metamorphic Virus

From a bird view both metamorphic and polymorphic viruses change their

structures to create newer versions of themselves. Polymorphic virus achieve this by

5

encrypting itself with variable encryption keys so that each copy or each signature

appears different whereas metamorphic virus rewrites its code to make it appear

different each time [9].

2.3 Trojan

A trojan horse or trojan is a malicious software that appears to be an innocent

file but has some sort of malicious payload. The difference between trojan and virus

is that the virus is self–replicating whereas trojan is not. Some examples of trojans

are Crack2000, BetBus [12]

2.4 Trapdoor

Trapdoor/Backdoor allows unauthorized access to the system [9]. This sits in

the system and compromises security checks of the system allowing malicious users to

enter into the system.

2.5 History of Malware

To this point, we have discussed different kinds of malware. In this section we

consider famous malware attacks. These attacks give us some awareness about the

intensity of the malware and the necessity to analyze and detect them effectively.

2.5.1 Creeper

Creeper was a worm that was discovered in the early 1970’s. This worm transmit-

ted through modems and showed the message to the user that read “I’m a Creeper.

Catch me if you can”. Following this attack, another malware called rabbit was

discovered in 1974. This malware replicated itself so fast that the system crashed.

The author in [9] mentions that several malware attacks that happened in the 1970’s

were unintentional and occurred as part of some software bugs. These attacks were

not so harmful and thereby did not awake the people regarding the necessity for

cybersecurity.

6

2.5.2 Brain Virus

Brain virus is declared as the first official virus. It occurred in 1986. Even though

it was not very harmful, it became a prototype for later viruses. Brain virus used

to mutate itself so that it was very difficult to remove it from the system. It was

placed in the boot sector of the system and shielded the access to the disk in order to

evade its detection. Computer security professionals consider this virus as a warning

showcasing the potential of malware. But at that time it was ignored since it did not

cause any potential damage to the system.

2.5.3 Morris Worm

The first major malware attack that shook the computer society was when Morris

worm hit the internet in 1988. It is surprising to know that Morris worm was created

by a single graduate student who claimed that this worm is a result of testing gone

bad. The Morris worm spread over the internet attacking the systems. This is a very

smart and sophisticated piece of software that remains undetected after infecting the

system.

The attack of Morris worm was declared as the internet crisis. Computer Emer-

gency Response Team (CERT) was created after this attack [9]. This evidently brought

down the entire internet and made the software community realize the potential and

damage possible through the malware attacks and emphasized on necessity for malware

analysis.

2.5.4 Code Red

The next major malware attack was in 2001 when Code Red infected more than

300,000 machines in just 14 hours. This worm targeted machines worldwide whereas

43% of infected machines were located in the United States, 11% in Korea and rest

in China and Taiwan. At the peak, Code Red infected 2000 machines every minute.

7

Code Red gained access to the system by exploiting buffer overflow in Microsoft

IIS server. Code Red performed Distributed Denial of Service (DDoS) attack on

www.whitehouse.gov. after gaining access to the system. The speed with which it

attacked many systems was very new to the internet community [9].

2.5.5 SQL Slammer

The internet community in 2003 witnessed the fastest malware attack when SQL

Slammer infected more than 75,000 machines in less than 10 minutes. SQL slammer

doubles its spread every 8 seconds during its peak [9]. Once a machine is affected, it

searches for new susceptible hosts by randomly generating IP addresses. SQL Slammer

was just 376 bytes of code which resided in Microsoft SQL software and tried to

connect to every server over UDP port 1434. Microsoft released a patch to this bug

which acted as a cure to this worm.

2.5.6 WannaCry

This is an advanced malware that attacked over 200,000 computers around 150

countries in May 2017. This virus targeted organizations using the Windows operating

system. It encrypts all the data in the system and demands the user to pay ransom

money to gain access back to the system. Once the payment is done, it reveals the

key to decrypt the data [13].

Looking at a few famous malware attacks in the past we can analyze malware

evolution. There is definitely a shift in malware trends and also motivation of

the attackers. Most attacks in the recent times are targeting a specific user or an

organization by reverse engineering the software. Also, malware is available as a

service, meaning the expensive tools required to develop malware are available for a

cheaper price.

Since signature detection is the popular method of malware detection, attackers

8

invest plenty of time in coming up with solutions to evade signature detection. One of

the first moves made by hackers in order to evade signature detection is to encrypt

the file. If the malware uses a different or changing key every time to encrypt itself, it

will never have a single signature. But the information security community found a fix

for this problem. The encrypted malware is supposed to be decrypted and it should

contain a few lines of code in order to perform decryption. In most cases decryption

code is just a few lines making it more difficult to obtain a signature. But signature

scanning can still be applied to detect this kind of malware.

As a next step malware authors came up with polymorphic and metamorphic

viruses in order to evade signature detection. Polymorphic virus can be detected using

emulation whereas we still do not have a concrete solution to detect metamorphic

virus. Metamorphic virus changes the entire code structure of itself before infecting

the system making it impossible to be detected by signature detection.

We have seen malware has gone through a lot of evolution ever since its first

discovery in the 1970’s as a harmless worm to flash worm which can take down entire

internet in less than a minute. Consequently we need to come up with new techniques

that can detect any advanced malware, and machine learning is a promising line of

research [4].

Comparing with the work done in the fields of malware classification and detection

using various machine learning techniques, it can be evidently seen that very little

work has been done in the field of malware evolution. A vast amount of phenomenal

research has been seen in the field of malware classification and its detection. Although

the research is vast and extremely informative, it is equally important that malware

evolution is also studied and researched, with respect to its detection techniques using

machine learning. It might be very easily possible that the intent of the malware

family might change, and with its continuous evolution, it is also possible that the

9

techniques required for detection will require evolution. Hence to protect and prevent

unnecessary malware attacks, focus should be equally given to malware evolution.

10

CHAPTER 3

Related Work

We can find a lot of research work in the area of machine learning for malware

detection but comparatively very few articles can be found in the area of malware

evolution analysis. Malware evolutionary analysis based on code injection is considered

in [14]. This works deals with shellcode extracted from malware samples. The

researchers used clustering techniques in order to analyze shellcode and determine

relationships between the samples. This work has been successful in determining

the similarities between samples showing that a significant amount of code has been

shared between samples. A drawback with this paper is, the authors only considered

analysis with shellcode. Not much of feature engineering has been employed. Though

this work provided results on samples that are similar, it did not provide considerable

results on analyzing the evolution of malware.

Malware evolution research has been performed by the researchers in [15]. The

good thing about this experiment is that it considers a huge dataset that spans over

two decades. The authors use techniques based on graph pruning. This paper claims

that specific properties of various families are inherited from other families over a

period of time. However, it is not clear if those specific properties are inherited from

other families or developed independently. Because of this problem, this work requires

a lot of manual investigation. But in our research we are going to use machine learning

techniques that minimize the manual intervention.

The research present in [16] is focused on detecting malware variants, which can

be perceived as the malware evolution problem. The authors here used semi-supervised

learning techniques on the malware samples that are proven to evade machine learning

based detection. In contrast, in this paper we use unsupervised learning techniques

and our work shows significant evolutionary points in time.

11

The authors of [17] extract variety of features from the Android malware samples

and then determine the trends using standard software quality metrics. These results

are then compared to the trends generated by the Android goodware. This work

shows that the trends in the Android malware and goodware are similar and changes

in malware has followed same path as goodware. This work has not provided many

insights regarding the evolution problem we are interested in.

Our work in this paper is a continuation of the work presented in [18], where

static PE file features of malware samples are used as the basis for malware evolution

detection. They employed support vector machine (SVM) technique to train the

samples of a particular family over a period of time. Linear SVM was considered

here. Then the weights of the resulting models are compared using a 𝜒2 technique.

Huge difference in model weights is given by a spike in the graph which refers to the

evolutionary point in time.

The work presented in [19] is focussed on malware taxonomy. This work gives

reasonable insights into malware evolution in terms of genealogical trajectories. This

research is based on features extracted from malware encyclopedia entries (as developed

by antivirus software vendors, such as TrendMicro). The authors use SVMs and

language processing techniques on the extracted features to generate the desired

results.

Malware researchers have always considered wide variety of features for malware

analysis, that can be broadly classified into two types of features, static and dynamic.

Static features are those that can be collected without executing the code where as

dynamic features requires emulation. In general, static features are easy to collect,

while dynamic features are very robust as given by the authors of [20]

The authors of [21] use multiple static features to perform malware classification

among the families. The static features that are considered here are n-grams, entropy

12

and image representations. Apart from these, hex-dump based features are also used

along with the features extracted from disassembled files, such as opcodes, API calls

and sectional information from portable executable (PE) files. This works presents us

with good insights on wide variety of static features that can be considered.

There is also similar work given in [22] which is derivative of work presented

in [18]. In this paper the authors use opcode sequences from malware samples to

analyze the malware evolution problem. Similar to the work given in [18], data is

divided into time–windows and support vector machine (SVM) technique is used to

observe evolutionary points in the malware samples. They later use HMMs to confirm

the evolution points in the malware. Our work present in this paper is an extension

to the above work. We perform experiments with statistical techniques like HMM,

word embedding techniques like Word2Vec, HMM2Vec to analyze malware evolution

problems. We determine that we can observe significant evolution in the malware

family using our experiments.

13

CHAPTER 4

Dataset and Classification Techniques

In this chapter, we are going to discuss about the malware families and the dataset

used in the research. Also we will also be discussing the feature extraction process

and the machine learning techniques that were used to conduct our experiments. All

these put together contributes to the basis of our evolutionary analysis.

4.1 Dataset

We acquired a dataset which contains Windows portable executable files belonging

to 15 different malware families. We obtained two families (winwebsec and zbot) from

the Malicia dataset [23] while the rest of the families are extracted from a larger dataset

using VirusShare [24]. Each malware family contains a good number of samples spread

over a time period. A malware family is supposed to have very similar characteristics

probably because of a shared code base. Number of samples present in each family is

given in Table 1.

The main motivation behind selecting the given set of malware families is that

we have a large number of samples in each of these families spread over an extended

period of time. This would help us in better understanding the evolution of malware

over a considerable period of time. We have organized the malware samples in each

family based on their creation date. Few samples with unclear creation date or altered

compilation date are discarded in the initial feature analysis phase. We have considered

samples that have a creation date in the time window mentioned in Table 1.

4.2 Malware Families

In this section, we discuss details of the malware families used in our experiments.

We made sure that the malware families we use encompass wide variety of types,

including virus, trojan, backdoor, worms etc. We also have malware families that uses

encryption and obfuscation techniques to evade signature detection.

14

Table 1: Number of samples used in experiments

Family Samples Years
Adload 791 2009–2011

Bho 1116 2007–2011
Bifrose 577 2009–2011

CeeInject 742 2009–2012
DelfInject 401 2009–2012
Dorkbot 222 2005–2012
Hupigon 449 2009–2011
Ircbot 59 2009–2012

Obfuscator 670 2004–2017
Rbot 127 2001–2012

Vbinject 2331 2009–2018
Vobfus 700 2009–2011

Winwebsec 1511 2008–2012
Zbot 835 2009–2012

Zegost 506 2008–2011
Total 11037

Bifrose is a backdoor trojan. Trojan means it appears as an innocent looking file

and tricks the user into installing it. And since it is also a backdoor, once it is

installed, it gives malicious users unauthorized access into the system. A hacker

can then enter the system and perform malicious operations [25].

CeeInject performs any malicious operations on the user system while remaining

undetected. CeeInject uses obfuscation techniques to evade signature detec-

tion [26].

DelfInject is a worm that resides on some popular websites and is downloaded into

the user’s machine on visiting the website. This malware is downloaded as some

executable file and is executed whenever the system is restarted [27].

Dorkbot is a worm that notices the user’s activities and steals the credentials of

15

the user. It performs denial of service (DoS) attack and is spread via messaging

applications [28].

Hotbar is an adware virus that resides on websites and is downloaded onto the

user system when a user visits this malicious site. This is more annoying than

harmful. It displays advertisements whenever the user browses the internet [29].

Hupigon is also a backdoor trojan similar to bifrose. That means it enters the

system as a naive file and then compromises the security of the system [30].

Obfuscator evades signature detection using obfuscation techniques. Once it stays

undetected, it can perform any activity it wants to [31].

Rbot is also a backdoor trojan that allows attackers into the system through the

IRC channel. This is one of very advanced malware and is used mostly to launch

denial of service (DoS) attacks [32].

VbInject uses encryption techniques to evade the signature detection. Its primary

purpose is to disguise other malware that can be hidden inside of it [22]. Its

payload can vary from harmless to very intense [33].

Vobfus is a trapdoor that lets other malware into the system. It exploits the

vulnerabilities of the Windows operating system’s autorun feature to spread

in the network. This malware makes some serious changes to the system

configuration that cannot be easily recovered [34].

Winwebsec is a trojan that tricks users into paying money by portraying itself as

an anti–virus software. For the user, it gives deceptive messages saying that the

device has been infected and motivates him to pay to remove the non–existing

software in the system [35].

16

Zbot is also a trojan that was first discovered in 2010. It steals valuable information

from the affected system and uses it for its own benefit. It can target information

like system data, online sensitive data, and banking information. It can be easily

modified to acquire other kinds of data. The Trojan is generally spread through

the spam. Zbot was originally discovered in January 2010 [36].

Zegost is another backdoor trojan that gives access to malicious users into the

compromised system [37].

4.3 Feature Extraction

We obtained the PE files of the families discussed above. Opcodes are known

to be machine level language instructions which specify a particular operation that

has to be performed [38]. For our experiments, we have extracted mnemonic opcodes

from these PE files. Since opcodes encapsulate the overall structure of the program

we can use opcode sequences in our experiments. We have also segregated the samples

from each family according to its creation date. These samples will be input to our

machine learning techniques.

4.4 Classification Techniques

In this section we will be discussing the techniques that we have used in this

project. We used different kinds of machine learning techniques varying from statistical

models, word embedding techniques to neural networks. This section presents a brief

introduction to all the techniques we used in this research.

4.4.1 Hidden Markov Model

This section here presents the hidden Markov model (HMM). We conducted

several experiments using HMM technique. Before discussing the details of our

experiments, let us take a deep dive into the HMM technique.

HMMs are based on discrete probability. HMM includes a Markov process which

17

is a statistical model comprising states and known probabilities of state transitions [2].

The states and state transitions of HMM are not directly observable by the user

where as the states of the Markov model are directly visible to the user. HMMs are

built based on observation symbols where every unique observation symbol in the

observation sequence is treated as a state. HMM as a state machine is shown in

Figure 2.

Figure 2: Hidden Markov Model [2]

Figure 2 gives generic view of HMM. The observations are always denoted by

{0, 1, . . . , 𝑀 − 1}. Here, the states 𝑋𝑖 are determined by row stochastic matrix 𝐴 of

dimensions 𝑁 ×𝑁 . The states determined by 𝑋 are original states but are not directly

observable. On the contrary observations 𝒪 can be observed. Hidden states and

observations are related. The probabilities with which they are related is given by row

stochastic matrix 𝐵. Here 𝑁 is the number of hidden states, 𝑀 is distinct observation

symbols and 𝑇 is length of observation sequence. Initial state distribution is given

by row stochastic matrix 𝜋. Now, we can define the HMM model as 𝜆 = (𝐴, 𝐵, 𝜋).

Table 2 summarizes the HMM notations

There are three fundamental problems that can be solved using HMMs. Here,

we give introduction to three problems and we determine solutions to solve these

problems.

Problem 1: Given a model 𝜆 = (𝐴, 𝐵, 𝜋) and an observation sequence 𝒪, determine

18

Table 2: HMM notation

Notation Explanation
𝑇 Length of the observation sequence
𝑁 Number of states in the model
𝑀 Number of observation symbols
𝑄 Distinct states of the Markov process, 𝑞0, 𝑞1, . . . , 𝑞𝑁−1
𝑉 Possible observations, assumed to be 0, 1, . . . , 𝑀 − 1
𝐴 State transition probabilities
𝐵 Observation probability matrix
𝜋 Initial state distribution
𝒪 Observation sequence, 𝒪0, 𝒪1, . . . , 𝒪𝑇 −1

𝑃 (𝒪 | 𝜆). That is, we want to compute a score for the observed sequence 𝒪 with

respect to the given model 𝜆

Problem 2: Given a model 𝜆 = (𝐴, 𝐵, 𝜋) and an observation sequence 𝒪, determine

an optimal state sequence for the Markov model. That is, the most likely hidden

state sequence can be uncovered.

Problem 3: Given an observation sequence 𝒪 and the parameter 𝑁 , determine a

model 𝜆 = (𝐴, 𝐵, 𝜋) that maximizes probability of 𝒪. This is training a model

to best fit the observed data.

In our project, we have extensively used solutions for problem 1 and problem 3.

We train an HMM to best fit the given observation which in our case is a set of opcodes.

This gives us a model as determined in problem 3. The resulting HMM models are

used to score malware samples of the same family against the model. This can be

achieved by using solution for problem 1. More details about the implementation will

be given in chapter 5. But the three problems of the HMM are solved by the following

three algorithms.

• Forward algorithm

19

• Backward algorithm

• Baum–Welch re-estimation algorithm

The forward algorithm is used for calculating the probability of an observation

sequence, given a model. This is achieved by calculating 𝛼𝑡(𝑖). 𝛼𝑡(𝑖) is the probability

of being in state 𝑞𝑖 at time 𝑡 given an observation sequence 𝒪. For 𝑡 = 0, 1, . . . , 𝑇 − 1

and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛼𝑡(𝑖) = 𝑃 (𝒪0, 𝒪1, . . . , 𝒪𝑡, 𝑥𝑡 = 𝑞𝑖 | 𝜆)

We have seen that the probability of partial observation sequence up to time 𝑡 is

given by 𝛼𝑡(𝑖). Using the basic ideology mentioned above, forward algorithm computes

𝑃 (𝒪 | 𝜆). For 𝑖 = 0, 1, . . . , 𝑁 − 1, compute 𝛼0(𝑖) as

𝛼0(𝑖) = 𝜋𝑖𝑏𝑖 (𝒪0)

For 𝑡 = 1, 2, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute 𝛼𝑡(𝑖) as

𝛼𝑡(𝑖) =
⎛⎝𝑁−1∑︁

𝑗=0
𝛼𝑡−1(𝑗)𝑎𝑗𝑖

⎞⎠ 𝑏𝑖 (𝒪𝑡)

From the above formula, we can derive 𝑃 (𝒪 | 𝜆) as

𝑃 (𝒪 | 𝜆) =
𝑁−1∑︁
𝑖=0

𝛼𝑇 −1(𝑖)

The solution to HMM problem 2 is given by backward algorithm. This algorithm

is contrast to forward algorithm. It starts from end and works its way to the start.

For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, we define

𝛽𝑡(𝑖) = 𝑃 (𝒪𝑡+1, 𝒪𝑡+2, . . . , 𝒪𝑇 −1 | 𝑋𝑡 = 𝑞𝑖, 𝜆)

Now, we compute 𝛽𝑡(𝑖) recursively as

𝛽𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝑎𝑖𝑗𝑏𝑗 (𝒪𝑡+1) 𝛽𝑡+1(𝑗)

20

Once we solved forward and backward algorithms, we use these parameters to

solve problem 3. We define 𝛾𝑡(𝑖) as the most likely state sequence for given time 𝑡.

For 𝑡 = 0, 1, . . . , 𝑇 − 2 and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛾𝑡(𝑖) = 𝑃 (𝑋𝑡 = 𝑞𝑖 | 𝒪, 𝜆)

Since 𝛾𝑡(𝑖) measures the relevant probability up to time 𝑡 and 𝛽𝑡(𝑖) measures the

relevant probability after time 𝑡, we can write 𝛾𝑡(𝑖) as

𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑃 (𝒪 | 𝜆)

We now have all the required parameters, to present the Baum–Welch re-

estimation algorithm. This algorithm is presented in [2].

1. Initialize 𝜆 = (𝐴, 𝐵, 𝜋) with some random values.

2. Compute 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗). 𝛾𝑡(𝑖, 𝑗) can be given as

𝛾𝑡(𝑖, 𝑗) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗 (𝒪𝑡+1) 𝛽𝑡+1(𝑗)
𝑃 (𝒪 | 𝜆)

Relationship between 𝛾𝑡(𝑖, 𝑗) and 𝛾𝑡(𝑖) is given as

𝛾𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗)

3. Re-estimate the model parameters as

𝜋𝑖 = 𝛾0(𝑖)

For 𝑖 = 0, 1, . . . , 𝑁 − 2 and 𝑗 = 0, 1, . . . , 𝑁 − 1 compute

𝑎𝑖𝑗 =
𝑇 −2∑︁
𝑡=0

𝛾𝑡(𝑖, 𝑗)
⧸︃

𝑇 −2∑︁
𝑡=0

𝛾𝑡(𝑖)

For 𝑗 = 0, 1, . . . , 𝑁 − 1 and 𝑘 = 0, 1, . . . , 𝑀 − 1 compute

𝑏𝑗(𝑘) =
∑︁

𝑡∈{0,1,...,𝑇 −1}
𝛾𝑡(𝑗)

⧸︃
𝑇 −1∑︁
𝑡=0

𝛾𝑡(𝑗)

4. If 𝑃 (𝒪 | 𝜆) increases, goto step 2.

21

4.4.2 Word2Vec

Word2Vec is a word embedding technique that is used more significantly in

language processing. This model uses a shallow feed forward neural network that

learns word association from a larger corpus. The input to word2vec model is a text

corpus whereas output is a set of vectors each vector representing words in the corpus.

This idea behind word2vec is that words also occur as part of sequential data where

there exists transitional probabilities between words. Word2Vec can group similar

word vectors in vector space, making words of similar meaning appear closer together.

The vector representations of the words are used to analyze word associations with

another word or use as feature vectors to other techniques [39]. We initially convert

our words to one–hot vector representation and that is given as input to our word2vec

network. Word2vec contains only one hidden layer, which is a fully–connected dense

layer. Figure 3 gives the architecture of word2vec model.

Figure 3: Word2Vec model architecture

The word2vec model can be implemented using two distinct approaches called

continuous bag–of–words (CBOW) model and the skip–gram model. The architecture

of these models is shown in the below Figure 4. The way the continuous bag–of–words

model works is that it tries to predict the target word by reading the surrounding

22

words or the context words. The CBOW model tries to take as input “i want some

orange” and adjusts the network to output “juice”.

Skip–gram model tries to predict the context words given the target word. We

need to define whether to use skip–gram or the CBOW model based on the context

of the problem. Basically skip–gram works well with smaller dataset and also excels

at representing rare words. On the other hand CBOW model works well with large

datasets and is very good at representing frequent words. For our problem we obtain

better results with the CBOW model as we have a large dataset and also we are only

using the most frequent opcodes from the dataset.

Figure 4: Types of Word2Vec model

4.4.3 Logistic Regression

Unlike the other techniques we have seen till now, logistic regression is used widely

for classification problems. Logistic regression uses the sigmoid function (also knows

as the logistic function) and hence the name. Sigmoid function is given as

𝑆(𝑥) = 1
1 + 𝑒−𝑥

Logistic regression is modification on linear regression for better performance. It models

the probability that observation takes one of the two binary values. Linear regression

23

makes unbounded predictions whereas logistic regression converts the probability in

to clear 0 or 1 by using the sigmoid function. Plot of sigmoid function is given in the

Figure 4.

Figure 5: Graph of sigmoid function

We can see from the above graph that our logistic regression model output the

values only between 0 and 1.

24

CHAPTER 5

Experiments, Results and Analysis

In this chapter, we discuss the experimental procedures, results and analysis of the

experiments performed by training various pipelines of machine learning techniques

on the malware dataset. This chapter has four sections, each discussing the results of

experiments that have been conducted using different techniques.

5.1 Logistic Regression

This experiment is inspired from using SVM technique for malware analysis. The

authors in [22] use linear SVM to analyze malware evolution problem. Similar to SVM,

logistic regression is used extensively for classification problems. In this experiment,

we train logistic regression model using time-windows approach. We divide our data

into overlapping time windows of one year time period with a slide length of one

month. All the samples from most recent one year time window are considered as +1

class whereas samples from the current month are considered as -1 class. We train our

logistic regression model in this approach. Once we have a model we fetch the weights

from the model and we calculate the Euclidian distances between vectors generated

from all the models. We plot those distances on a graph to analyze the evolution.

Figure 6 shows results of logistic regression on three families.

Results given by this experiment in Figure 6 shows that we do not find a significant

spike in the families and the graph keeps fluctuating. Even though our logistic

regression model achieved high accuracy in classification of samples, the weights of

the hidden layer did not determine much about changes in the malware samples. This

could be because with more number of weights we tend to get more noise and can make

little sense out of the data. So, we could not deduce any valuable information from

the results given by logistic regression. Hence we experimented with other techniques.

25

(a) Winwebsec (b) Zegost

Figure 6: Results from malware families on using Logistic Regression

5.2 Hidden Markov Model

We conducted two experiments using HMM technique. Both the approaches give

us some insightful results into malware evolution problem. In both the approaches

we extensively use solutions for HMM problem 1 and HMM problem 3. That is both

the approaches have two phases, training phase and scoring phase. That is we train

models to fit a given observation sequence and then we score samples on given models.

Now, let us discuss these approaches in some detail.

5.2.1 HMM Approach 1

We know that HMM models are very good at deducing the structure of the data.

We start our experiments by processing each malware family to find out the top thirty

most frequent opcodes.

For each unique time period in our dataset, we trained an HMM model. Suppose

we have malware samples that are created in May 2012, June 2012 and July 2012,

we will train three different HMM models for these three time frames. We generate

an observation sequence by treating opcodes as numbers. We consider the top thirty

opcodes and every other opcode comes under “other” category. Now, will solve the

HMM Problem 3, given in Chapter 4. In other terms, we are generating a model that

26

best fits the given data.

In our experiments, we have considered data from oldest time period as our test

data. We have not trained any model for this time period, this is solely used for

testing purpose. Suppose, we have data from May 2011, May 2012 and May 2013 we

considered malware samples from May 2011 only for test purpose. We extract the

observation sequence from test directories by only considering the top thirty opcodes

(since the opcodes are analyzed for the entire family) and every other opcode comes

under “other” category. We generate a single observation sequence by appending

opcodes from all the samples. Now that we have some test data and HMM models

from the same family, we execute solution from HMM Problem 1. That is we score the

test data from the same family on each of the models. The idea behind this is, since

each model is trained on the data from that particular time period, if the scores given

by two models on an observation sequence is similar, we assume that the models are

similar there by not much of change occurred between these models. If scores given

by two models are drastically different, that means a significant change has occurred

in that time period.

The length of observation sequence in training an HMM model ranges from

Length of observation sequence ranges from 619226–1000000. We determined the 𝑁

parameter to be two. The number of distinct observation symbols or 𝑀 is thirty.

We will discuss the results of these approaches on the malware families given below.

Figure 7 shows results from this approach.

We have experimented with more number of opcodes as well but our results were

similar. We can observe a significant spike in the graphs which confirms that evolution

of malware has taken place during that time period. For HMM, it is important to

make sure that our model converges. So, we experimented with random restarts as

well. But our results were similar which tells us that the model is converging. We can

27

(a) Winwebsec (b) Ceeinject (c) Zegost

Figure 7: Results from malware families on using HMM approach 1

thus confirm that this approach can be used to understand significant evolution in the

malware families. We will analyze more about the results in the later parts of this

chapter.

5.2.2 HMM Approach 2

Now, we will consider another experiment we performed using HMM. We start

the experiment by processing the top thirty opcodes in each malware family just like

the previous experiment. Our data is segregated according to its creation date grouped

by each month. So we have malware samples for each month. We split the data from

each time period in to training and testing samples. We used 75% of samples for

training and 25% of samples for testing. Now we train an HMM model for data from

each month. We determined the number of states to be two. The length of observation

sequence and the distinct opcodes were similar to the previous experiment.

Suppose we have data from May 2015, June 2015, July 2015 etc. We use training

samples to generate an HMM model of each of these time periods. So we will have

three HMM models. Now let us consider two HMM models of adjacent time periods

𝑡1 and 𝑡2 as 𝜆𝑡1 and 𝜆𝑡2. We score test samples from 𝑡1 with both the models 𝜆𝑡1

and 𝜆𝑡2, giving us two vectors of same length. If we have, 𝑚 test samples our vector

will be of length 𝑚. Since each sample might be of different length, we normalize

28

each score by dividing it with the length of the observation sequence generating log

likelihood per opcode (LLPO). We generate LLPO, in order to directly compare the

scores irrespective of the length of observation sequences.

Once we generate two vectors by scoring the samples with the models 𝜆𝑡1 and

𝜆𝑡2, we compute Euclidean distance between the vectors. Let us say this is 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒1.

We do the same for the test samples for time period 𝑡2. We score the samples from

time 𝑡2 with the models 𝜆𝑡1 and 𝜆𝑡2, generate vectors and compute Euclidean distance

between the vectors as 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2. Now we average the two distances and store it

as the final distance. We do the same process for all the samples from all the time

periods and compute the distances.

Once we have distances, we plot the graph to look for evolution. Small distance

suggests minimal change, whereas larger distances indicate potential evolution points.

The idea behind this approach is if the distance between two feature vectors generated

by scoring same samples on two different models is high, it implies that the samples

are scored differently indicating how different the models are. Hence larger distances

indicate potential evolution points in the graph.

Figure 8 gives results from malware families on using the above mentioned

approach. This experiment has been very successful in determining the exact points

in the time where evolution occurred.

Results generated by both the HMM approaches give us some significant results

in analyzing the malware evolution. In approach 1, we followed a simple approach by

generating the models and compared the scores to look for the evolution. In approach

2, we took some strict measures to eradicate considering minor changes in the models.

This is done by calculating score vector distances from samples of two time periods

and averaging the distances to generate final distance. Hence both the approaches

give successful results in analyzing the malware evolution.

29

(a) Vbinject (b) Vobfus

(c) Winwebsec (d) Zegost

Figure 8: Results from malware families using HMM approach 2

5.3 HMM2Vec

In this section we will discuss our HMM2Vec technique and its results on the

dataset. We start our experiment by processing the entire malware family to identify

the most frequent thirty opcodes. Going forward we only consider these opcodes and

every other opcode comes under one category.

We divide the dataset into an overlapping time–window of one year with a slide

length of one month. We train HMM models on each window with two states. Length

of observation sequence ranges from 619226–1000000. The observation probability

matrix or the 𝐵 matrix of the resulting model will contain two rows each of length

thirty (since we have thirty distinct opcodes). We use vectors from this matrix as our

feature vectors. We consider the two rows from the model as two vectors. We convert

it into one vector by appending the feature vector of the first state followed by the

second state. We obtain the second vector by appending the feature vector of the

second state followed by the first state. In HMMs there is a chance that the states

30

of the observation matrix might be interchanged. In order to eliminate this problem,

we make two vectors from each model. We then compare the distance between the

vectors. We compute Euclidean distance in this case and the minimum distance

between two vectors is taken as the final distance between the two models. We then

plot the distances on the graph to analyze the similarities between the data.

(a) Bho (b) Ceeinject (c) Winwebsec

Figure 9: Results from malware families using HMM2Vec

Analyzing the results from Figure 9 tells us that HMM2Vec is successful in

identifying significant evolution in most families. We observe significant spikes or

evolutionary points for families like Ceeinject, Winwebsec, Bho, Dorkbot and Delfinject.

Thus this experiment confirms to us that HMM2Vec is efficient in analyzing potential

evolutionary points in the malware family.

5.4 Word2Vec

We have seen in the previous research given in [22] that the authors used vectors

generated from Word2Vec technique as input to other machine learning techniques

like support vector machines (SVM). In this experiment we use vectors generated from

Word2Vec technique for direct comparison. Word2Vec is extensively used to generate

word embeddings. These word embeddings are word vectors in space, where vectors

of similar words are closer in vector space.

We employ Word2Vec experiment in the sliding window approach. We divide the

dataset into an overlapping time window of one year with slide length of one month.

31

Here we use CBOW instead of the skip–gram model. We chose CBOW over skip–gram

because CBOW performs well with large datasets and it is efficient in representing

frequently occurring words.

In this approach, we have considered top thirty most frequent opcodes for a family

and every other opcode is treated under one category. Since we cannot feed opcodes

directly to the Word2Vec model as input, we generate one–hot vectors and these are

given as input to the model. This vector will have thirty components (since distinct

opcodes we consider are thirty) with 1 in the position corresponding to particular

opcode and 0s in all other positions.

Window size implies the number of context words. We have experimented

with different window sizes but window size of 5 works well in our case. We also

experimented with different vector sizes. Vector size represents number of hidden

layers in our Word2Vec model. There was not much of difference with different vector

sizes. Hence we conducted all the experiments with vector of size 2. Figure 10 gives

experiments on Zbot family with different vector sizes.

(a) Zbot vector size 2 (b) Zbot vector size 3 (c) Zbot vector size 5

Figure 10: Results from zbot family with different vector sizes

Once our word embeddings are generated from our Word2Vec model, we append

word embeddings of each opcode together to generate a feature vector. Once we have

vectors generated, we compute an average weight vector and distance between these

vectors is calculated as our scores. If the distance between two vectors is close the

32

models are similar else the models are very different from each other showing potential

evolution.

We plot the scores on a graph to analyze the evolution in the malware family.

Results from Word2Vec technique are given in Figure 11

(a) Vobfus (b) Winwebsec (c) Zegost

Figure 11: Results from malware families on using Word2Vec

Results from Word2Vec approach shows potential evolutionary points in almost

all the malware families. We can see significant evolution in the families Vobfus,

Winwebsec and Zegost. Word2Vec showed significant evolutionary points in other

families as well. Conclusively, Word2Vec proved to be a strong technique to detect

malware evolution.

5.5 Analysis of Results

In this section we will analyze the results given by different techniques, compare

and contrast it with the results given by the previous work. First we will discuss

the results given by each technique, compare the similarities of results given by each

technique then discuss the similarities with previous work.

We want to identify if the evolution point is determined by the number of samples

used in the training process. Figure 12 shows the evolution points given by Word2Vec

experiment and also the number of samples used in each time window. The results

clearly show that our techniques are able to detect the evolution points despite the

number of samples used.

33

Figure 12: Results from Rbot family given by Word2Vec technique

We started our experiments using HMM technique. In this case we scored samples

on HMM models and compared the generated score vectors. Results given by HMM

clearly shows us that the scores are distinct from each other. This clearly implies

that two models are significantly different from each other because if the models had

been same, the scores would have been the same or with very less difference. This

distinction in the scores proves that the malware family has evolved over time because

without an evolution the models should be similar generating similar scores. Hence, it

is evident that HMMs are successful in detecting malware evolution.

In our next experiment using HMM2Vec technique, we obtain successful results

by employing the 𝐵 matrix of HMM model as feature vector for comparison. If the

distance between vectors generated by 𝐵 matrix of two models is less, this implies

that two models are similar. In contrast if the distance between vectors is large,

this implies that the models are significantly different from each other showing an

evolution occurred in the malware family because without an evolution, models on

two samples should be similar by generating similar vectors. Hence the results given

by this approach shows actual evolution not any random fluctuation.

Our approach used in Word2Vec is also similar to the HMM2Vec approach.

This experiment proves the strength of word embedding models. Results given by

this technique shows successful evolution in almost all the malware families. Since

34

Word2Vec calculates word transition probabilities, if two vectors generated by two

models are closer to each other, this shows that models are similar. If the vectors are

distant from each other, this shows that models are drastically different proving that

malware evolution occurred in the family.

We achieved significant results using all our approaches. HMM2Vec and Word2Vec

models gives us the time windows where evolution has taken place. Analyzing the

results given by Word2Vec and HMM2Vec techniques on Winwebsec family shows us

that malware evolution took place during the time period November 2010–June 2011.

Now experimenting with HMM approach on Winwebsec family shows us the exact

point of evolution as June 2011. We are able to identify the potential time windows of

evolution as well as exact point in time where evolution occurred for all the families

using our experiments.

We can compare some of our work to the work given in [22] as same dataset is

used by the authors in this paper. The authors in [22] used SVM technique to detect

the malware evolution. They used vectors generated by Word2Vec approach as input

to SVM model. Once a 𝜒2 graph is generated, they confirm the evolution by training

HMM on either sides of the spike. Comparing our results with the results given in [22],

we are successful in detecting malware evolution for the families for which the previous

research could not detect. And for several other families our results match the results

given in [22]. Previous researchers could not detect malware evolution for families like

Delfinject, Dorkbot and Zbot whereas we could detect malware evolution for all the

families using our approach. Also, the previous work could only show that evolution

occurred in a particular time window of one year whereas we could determine the

exact time when malware evolution occurred. Hence the research given in this paper

gives better insights in to malware detection problem. In the below section, we will

discuss the results on each of the malware families and compare the results given by

35

our experiments on each family to the results given by the previous research.

Adload: For this family, both HMM2Vec and Word2Vec did not give any significant

spike in the graph showing a strong evolution. But the graph keeps changing

showing that malware samples differed over a period of time. On the contrary

results given by HMM approach shows significant spikes for this family.

Bho: The results generated by Word2Vec on this family shows that malware evolution

occurred during September 2009–December 2010. Whereas our experiment

conducted by HMM approach tells us that malware evolution happened during

October 2010. We compare this with results given by authors in [22]. Figure 13

shows comparison of results between Word2Vec approach given in this paper and

SVM approach given in [22]. Both the graphs, shows the evolution at the same

time window. Overall graph might not look the same because, we are comparing

Euclidian distances between the vectors where as research given in [22] compares

𝜒2 distances between the SVM models.

(a) Word2Vec results (b) SVM results in [22]

Figure 13: Comparison of results from bho family

Bifrose: The results generated by HMM2Vec did not give much information regarding

the malware evolution. We could only understand that malware samples had

36

changes over time but the change was not so strong that we found a spike in the

graph. Where as graph generated by the Word2Vec approach gives us a better

understanding of changes in the malware family. We could see that a significant

evolution occurred during November 2009–March 2011. Results given by the

HMM approach narrows down the evolution point to March 2011. A similar

graph is given by authors in [22] showing evolution during November 2010–May

2011.

Ceeinject: For Ceeinject malware family, we get good results from all the ex-

periments we performed. Results given by HMM2Vec and Word2Vec shows

significant evolution during August 2010–July 2011 and we identify the exact

month of evolution as November 2010 using HMM approach. Results given

by [22] shows similar evolution during September 2010–May 2011.

Delfinject: We obtained good results for this family using the HMM approach.

This shows a significant evolution occurred during January 2011. We did not

observe significant spikes on the graph from Word2Vec or HMM2vec technique.

In retrospect work given in [22] could not find any significant results on this

family where as we could analyze the evolution using HMM technique.

Dorkbot: We achieved good results on this family from all our experiments. A

significant spike is observed in the graphs plotted by all the three techniques

revealing that malware evolution happened during 2011. We tried to compare

the results with previous work given in [22]. Techniques mentioned in [22] could

not find proper evolution in this family.

Hupigon: The results received from Word2Vec technique shows that significant

malware evolution in this family happened during July 2010–April 2011. Results

37

by HMM approach points out that evolution occurred during February 2011.

Results given by the SVM approach in [22] identifies that malware evolution

happened during June 2010–January 2011.

Ircbot: The results generated by the Word2Vec technique identifies that malware

evolution occurred during 2011. There is no significant spike observed but the

graph shows that the malware evolved over a period of time.

Obfuscator: We could not derive significant information from this family. Graph

plotted on this family using has many spikes which did not give us much

information regarding the malware evolution.

Rbot: Graph generated by the Word2Vec technique shows significant evolution in

the malware family. We did not observe significant results on this family from

any previous researches.

Vbinject: We could not observe a significant spike in this malware family through

our experiments. Results given by the experiments on this family shows so many

fluctuations in the graph showing no significant evolution.

Vobfus: The results generated by our experiments shows that a significant evolution

in this family takes place during December 2009–January 2011. The results

given in [22] shows a significant evolution during November 2010–May 2011.

Winwebsec: We observed significant evolution in this malware family using our

Word2Vec experiment. We observed a significant spike in the family showing

that malware evolved during December 2010–July 2011. On the other hand

previous research given in [22] could not find any significant evolution for this

family.

38

Zbot: Experiments conducted on this family shows significant changes in the family.

We can see a spike showing significant evolution in this family happened between

April 2011–November 2011.

Zegost: Experimental results given by Word2Vec technique shows significant spikes

in the graph. This graph shows significant evolution taking place between August

2010–September 2011 and another significant evolution during July 2010–July

2011.

Results given by all the experiments shows significant information. Our experi-

ments shows significant evolution in almost all the malware families. By comparing

the results given by HMM, HMM2Vec and Word2Vec techniques we can see that there

are clear similarities in the results given by these three approaches on many families.

Since we observed similar evolution points given by all the experiments, there is a

confirmation that malware family evolved during that particular time period. Also,

not just finding out a time–window in which malware evolution happened, we are able

to find out the exact point in time where malware family significantly changed. Even

though HMM approach give us exact points in time, where evolution occurs, there are

few tradeoffs we need to consider. HMMs are computationally intensive. Execution of

Word2Vec experiments on winwebsec family takes around two minutes of time whereas

HMM execution takes around forty minutes. Hence, given our requirements and the

time constraints, we can choose any of the experiments to detect malware evolution.

Evolutionary points generated for few families by previous research given in [22]

matches with our experiments. On the other hand, our techniques gave successful and

better results on many families which earlier research could not detect.

We have conducted experiments with several techniques. We used neural networks,

statistical techniques and word embedding techniques. Although results generated

39

by logistic regression did not give great insights into malware evolution analysis, we

received valuable results from all the other techniques. We have seen results generated

by our experiments on all the families and in most cases we obtained significant results

showing point in time, when malware evolution occurred. HMM, HMM2Vec and

Word2Vec techniques proved to be very efficient in detecting the malware evolution

and they provided valuable results.

40

CHAPTER 6

Conclusion And Future Work

In previous research, authors used secondary tests in order to confirm the evo-

lutionary changes in the malware families. Any significant changes in the malware

family was given by the 𝜒2 graph which was called as malware evolution. In this

research, we have confirmed malware evolution by training models for overlapping

time window and we scored each model with the samples from the same family or

calculated euclidian distances from each other. The scores obtained were quite distant

from each other showing us that potential change has occurred in these families. Thus

this technique is successful in identifying malware evolution.

In all our experiments we used opcodes extracted from the PE files. We processed

each family to identify the top thirty most frequent opcodes and we used these in all

our experiments, with all other opcodes grouped into one “other” category.

In the first set of our experiments, we segregated our data into overlapping

time-windows of one year with a slide length of one month. We then trained an HMM

on each time window. Once our models are ready, we scored each model with the

samples from the same families. If the scores generated by the models are similar no

significant change has occurred but if the scores differ significantly that shows that

potential change in the malware family has occurred. This technique is successful in

identifying the potential evolution points in the families.

We then use word embedding techniques Word2Vec and HMM2Vec to identify

the malware evolution. We train the models for an overlapping time-windows and

the vectors generate are used for comparison. We compute the distance between

the vectors and we plot the distance to analyze the evolution in the malware family.

We achieved successful results from both the techniques and results from both the

techniques confirm the similar evolutionary points for each families.

41

We carried out next set of experiments with logistic regression. We trained a

logistic regression model on over-lapping time windows. Data from previous one year

time period is considered in to +1 class whereas samples from current month are

considered in to -1 class. Once the models are generated we compare the feature

weights of the models. We compare the distance from each other to analyze evolution.

This experiment did not give any useful results in understanding malware evolution.

In this research, we we derived successful results from Word2Vec, HMM2Vec and

HMM techniques. This clearly shows us that word embedding techniques are very

powerful in detecting malware evolution. We were also able to determine significant

results for many families for which previous researches did not produce any valid

information. Thus our research proves the strength of word embedding techniques in

malware evolution problem.

6.1 Future Work

In this paper, we conducted our experiments using mnemonic opcodes from the

malware samples. In the future, we can consider experiments with other features from

the malware samples. This might give us an understanding of different features of

malware samples.

Malware obfuscation techniques like dead code insertion affect the static features

of a malware file but it would not have much effect on evolution tracking that is based

on dynamic features. Thus, using dynamic features might help in gathering more

insights about malware evolution in a family.

Another area to consider would be using deep learning techniques to analyze

malware samples in a family to detect changes in them. Even though such techniques

are difficult to implement and are complex, but it would be very interesting to observe

the results obtained from using deep learning methods.

42

LIST OF REFERENCES

[1] A. Gostev, O. Zaitsev, S. Golovanov, and V. Kamluk, “Kaspersky security bulletin.
malware evolution 2010,” Kaspersky Lab (April 2009), vol. 5, 2011.

[2] M. Stamp, “A revealing introduction to hidden markov models,” https://www.cs.
sjsu.edu/~stamp/RUA/HMM.pdf, 2018.

[3] J. Aycock, Computer viruses and malware. Springer Science & Business Media,
2006, vol. 22.

[4] M. Stamp, Introduction to machine learning with applications in information
security. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2018.

[5] J.-M. Borello and L. Mé, “Code obfuscation techniques for metamorphic viruses,”
Journal in Computer Virology, vol. 4, no. 3, pp. 211–220, 2008.

[6] N. VILLENEUVE, R. Deibert, and R. Rohozinski, “Koobface,” 2010.

[7] M. Barat, D.-B. Prelipcean, and D. Gavriluț, “A study on common malware
families evolution in 2012,” Journal of Computer Virology and Hacking Techniques,
vol. 9, no. 4, pp. 171–178, 2013.

[8] A. Gupta, P. Kuppili, A. Akella, and P. Barford, “An empirical study of malware
evolution,” in 2009 First International Communication Systems and Networks
and Workshops. IEEE, 2009, pp. 1–10.

[9] M. Stamp, Information security: principles and practice. John Wiley & Sons,
2011.

[10] F. Mercaldo, A. Di Sorbo, C. A. Visaggio, A. Cimitile, and F. Martinelli, “An
exploratory study on the evolution of android malware quality,” Journal of
Software: Evolution and Process, vol. 30, no. 11, pp. n/a–n/a, 2018.

[11] Symantec, “What is difference between viruses, worms and trojans,” http://www.
symantec.com/business/support/index?page=content&id=TECH98539, 2009.

[12] C. Annachhatre, T. Austin, and M. Stamp, “Hidden markov models for malware
classification,” Journal of Computer Virology and Hacking Techniques, vol. 11,
no. 2, pp. 59–73, 2015.

[13] S. Mohurle and M. Patil, “A brief study of wannacry threat: Ransomware attack
2017,” International Journal of Advanced Research in Computer Science, vol. 8,
no. 5, pp. 1938–1940, 2017.

43

https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
http://www.symantec.com/business/support/index?page=content&id=TECH98539
http://www.symantec.com/business/support/index?page=content&id=TECH98539

[14] J. Ma, J. Dunagan, H. J. Wang, S. Savage, and G. M. Voelker, “Finding diversity
in remote code injection exploits,” in Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, 2006, pp. 53–64.

[15] A. Gupta, P. Kuppili, A. Akella, and P. Barford, “An empirical study of malware
evolution,” in 2009 First International Communication Systems and Networks
and Workshops. IEEE, 2009, pp. 1–10.

[16] J. Ouellette, A. Pfeffer, and A. Lakhotia, “Countering malware evolution using
cloud-based learning,” in 2013 8th International Conference on Malicious and
Unwanted Software:" The Americas"(MALWARE). IEEE, 2013, pp. 85–94.

[17] F. Mercaldo, A. Di Sorbo, C. A. Visaggio, A. Cimitile, and F. Martinelli, “An
exploratory study on the evolution of android malware quality,” Journal of
Software: Evolution and Process, vol. 30, no. 11, p. e1978, 2018.

[18] M. Wadkar, F. Di Troia, and M. Stamp, “Detecting malware evolution using
support vector machines,” Expert Systems with Applications, vol. 143, 2020.

[19] Z. Chen, M. Roussopoulos, Z. Liang, Y. Zhang, Z. Chen, and A. Delis, “Malware
characteristics and threats on the internet ecosystem,” The Journal of Systems &
Software, vol. 85, no. 7, pp. 1650–1672, 2012.

[20] A. Damodaran, F. Troia, C. Visaggio, T. Austin, and M. Stamp, “A comparison of
static, dynamic, and hybrid analysis for malware detection,” Journal of Computer
Virology and Hacking Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[21] S. Rezaei, A. Afraz, F. Rezaei, and M. R. Shamani, “Malware detection using
opcodes statistical features,” in 2016 8th international symposium on telecommu-
nications (IST). IEEE, 2016, pp. 151–155.

[22] S. Paul and M. Stamp, “Word embedding techniques for malware evolution
detection,” in Malware Analysis Using Artificial Intelligence and Deep Learning.
Springer, 2021, pp. 321–343.

[23] A. Nappa, M. Z. Rafique, and J. Caballero, “The malicia dataset: identifica-
tion and analysis of drive-by download operations,” International Journal of
Information Security, vol. 14, no. 1, pp. 15–33, 2015.

[24] S. Kim, “PE header analysis for malware detection,” Master’s thesis, San Jose
State University, Department of Computer Science, 2018.

[25] “Win32 bifrose detected with windows defender antivirus,” https://www.
trendmicro.com/vinfo/us/threat-encyclopedia/malware/bifrose, 2012.

44

https://www.trendmicro.com/vinfo/ us/threat-encyclopedia/malware/bifrose
https://www.trendmicro.com/vinfo/ us/threat-encyclopedia/malware/bifrose

[26] “Virtool: Win32 ceeinject detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=VirTool%3AWin32%2FCeeInject, 2007.

[27] “Virtool: Win32 delfinject detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=VirTool:Win32/DelfInject&ThreatID=-2147369465, 2007.

[28] “Worm: Win32 dorkbot detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=Worm%3AWin32/Dorkbot, 2011.

[29] “Adware: Win32 hotbar detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=Adware%3AWin32%2FHotbar, 2006.

[30] “Backdoor: Win32 hupigon detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=Backdoor%3AWin32%2FHupigon, 2006.

[31] “Win32 obfuscator detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=Win32%2FObfuscator, 2011.

[32] “Win32 rbot detected with windows defender antivirus,” https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=Win32%2FRbot, 2005.

[33] “Virtool: Win32 vbinject detected with windows defender antivirus,”
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=VirTool:Win32/VBInject&ThreatID=-2147367171, 2010.

[34] “Win32 vobfus detected with windows defender antivirus,” https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
name=win32%2Fvobfus, 2010.

[35] “Win32 winwebsec detected with windows defender antivirus,” https:
//www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=
Win32%2fWinwebsec, 2010.

[36] “Win32 zbot detected with windows defender antivirus,” http://www.symantec.
com/securityresponse/writeup.jsp?docid=2010-011016-3514-99, 2011.

[37] “Win32 zegost detected with windows defender antivirus,” https://www.symantec.
com/security-center/writeup/2011-060215-2826-99, 2011.

45

https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=VirTool%3AWin32%2FCeeInject
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/ malware-encyclopedia-description?Name=VirTool:Win32/ DelfInject&ThreatID=-2147369465
https://www.microsoft.com/en-us/wdsi/threats/ malware-encyclopedia-description?Name=VirTool:Win32/ DelfInject&ThreatID=-2147369465
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Worm%3AWin32/Dorkbot
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Worm%3AWin32/Dorkbot
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Adware%3AWin32%2FHotbar
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Adware%3AWin32%2FHotbar
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Backdoor%3AWin32%2FHupigon
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Backdoor%3AWin32%2FHupigon
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Win32%2FObfuscator
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Win32%2FObfuscator
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Win32%2FRbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Win32%2FRbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=Win32%2FRbot
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=VirTool:Win32/VBInject&ThreatID= -2147367171
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?Name=VirTool:Win32/VBInject&ThreatID= -2147367171
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?name=win32%2Fvobfus
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?name=win32%2Fvobfus
https://www .microsoft.com/en-us/wdsi/threats/malware-encyclopedia -description?name=win32%2Fvobfus
https:// www.microsoft.com/security/portal/threat/encyclopedia/ entry.aspx?Name=Win32%2fWinwebsec
https:// www.microsoft.com/security/portal/threat/encyclopedia/ entry.aspx?Name=Win32%2fWinwebsec
https:// www.microsoft.com/security/portal/threat/encyclopedia/ entry.aspx?Name=Win32%2fWinwebsec
http://www.symantec.com/ security response/writeup.jsp?docid=2010-011016-3514 -99
http://www.symantec.com/ security response/writeup.jsp?docid=2010-011016-3514 -99
https://www.symantec .com/security-center/writeup/2011-060215-2826-99
https://www.symantec .com/security-center/writeup/2011-060215-2826-99

[38] S. Rezaei, F. Rezaei, A. Afraz, and M. R. Shamani, “Malware detection using
opcodes statistical features,” in 2016 8th International Symposium on Telecom-
munications (IST). IEEE, 2016, pp. 151–155.

[39] J. Gilyadev, “Word2vec explained,” https://israelg99.github.io/2017-03-23-
Word2Vec-Explained/, 2017.

46

https://israelg99.github.io/2017-03-23-Word2Vec-Explained/
https://israelg99.github.io/2017-03-23-Word2Vec-Explained/

APPENDIX

Appendix

(a) Bho (b) Bifrose (c) Ceeinject

(d) Delfinject (e) Dorkbot (f) Hupigon

(g) Obfuscator (h) Vbinject (i) Vobfus

(j) Winwebsec (k) Zegost

Figure A.14: Results from malware families on using HMM Approach 2

47

(a) Ceeinject (b) Zbot

Figure A.15: Results from malware families on using Word2Vec showing number of
samples

(a) Adload (b) Bho (c) Bifrose

(d) Ceeinject (e) Delfinject (f) Dorkbot

(g) Winwebsec (h) Zegost

Figure A.16: Results from malware families on using HMM2Vec

48

(a) Adload (b) Bho (c) Biforse

(d) Ceeinject (e) Delfinject (f) Dorkbot

(g) Hupigon (h) Ircbot (i) Obfuscator

(j) Rbot (k) Vbinject (l) Vobfus

(m) Winwebsec (n) Zbot (o) Zegost

Figure A.17: Results from malware families on using Word2Vec

49

	Machine Learning to Detect Malware Evolution
	Recommended Citation

	Introduction
	Malware and its Evolution
	Worms
	Internet Worms
	Email Worms
	Instant–Messaging Worms
	File–sharing Worms

	Virus
	Encrypted Virus
	Polymorphic Virus
	Metamorphic Virus

	Trojan
	Trapdoor
	History of Malware
	Creeper
	Brain Virus
	Morris Worm
	Code Red
	SQL Slammer
	WannaCry

	Related Work
	Dataset and Classification Techniques
	Dataset
	Malware Families
	Feature Extraction
	Classification Techniques
	Hidden Markov Model
	Word2Vec
	Logistic Regression

	Experiments, Results and Analysis
	Logistic Regression
	Hidden Markov Model
	HMM Approach 1
	HMM Approach 2

	HMM2Vec
	Word2Vec
	Analysis of Results

	Conclusion And Future Work
	Future Work

	LIST OF REFERENCES
	Appendix

