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Abstract: Mining is known to be one of the most hazardous occupations in the world. Many serious
accidents have occurred worldwide over the years in mining. Although there have been efforts to
create a safer work environment for miners, the number of accidents occurring at the mining sites
is still significant. Machine learning techniques and predictive analytics are becoming one of the
leading resources to create safer work environments in the manufacturing and construction industries.
These techniques are leveraged to generate actionable insights to improve decision-making. A large
amount of mining safety-related data are available, and machine learning algorithms can be used
to analyze the data. The use of machine learning techniques can significantly benefit the mining
industry. Decision tree, random forest, and artificial neural networks were implemented to analyze
the outcomes of mining accidents. These machine learning models were also used to predict days
away from work. An accidents dataset provided by the Mine Safety and Health Administration was
used to train the models. The models were trained separately on tabular data and narratives. The use
of a synthetic data augmentation technique using word embedding was also investigated to tackle
the data imbalance problem. Performance of all the models was compared with the performance
of the traditional logistic regression model. The results show that models trained on narratives
performed better than the models trained on structured/tabular data in predicting the outcome of
the accident. The higher predictive power of the models trained on narratives led to the conclusion
that the narratives have additional information relevant to the outcome of injury compared to the
tabular entries. The models trained on tabular data had a lower mean squared error compared to the
models trained on narratives while predicting the days away from work. The results highlight the
importance of predictors, like shift start time, accident time, and mining experience in predicting the
days away from work. It was found that the F1 score of all the underrepresented classes except one
improved after the use of the data augmentation technique. This approach gave greater insight into
the factors influencing the outcome of the accident and days away from work.

Keywords: machine learning; word embedding; neural networks

1. Introduction

Occupational injuries are a significant problem in the mining industry [1]. The Mine Safety and
Health Administration (MSHA) reported that there were a total of 16,394 non-fatal lost time injuries in
the US from 2015 to 2018 [2]. A total of 104 fatalities were reported in the US from 2015–2018 [2]. It is
essential to analyze past mining injuries data to identify the factors leading to accidents and utilize
them as predictors for future injuries [3].

Several researchers in mining safety and health have examined lost time from work in studies
related to occupational safety. Among underground coal and metal/non-metal miners, both age
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and time away from work after an injury were observed to be directly proportional [4]. Onder
used logistic regression to classify the accidents into two classes (greater than and less than three
lost workdays). Maintenance personnel and workers were found to have the highest probability
of exposure to accidents with greater than three lost workdays [5]. Handling materials is the most
common type of injury resulting in lost-time injuries [6,7]. Coleman and colleagues discussed using lost
workdays as a measure to compare the performance of safety programs in the absence of denominator
(number of workers exposed) data [8]. Nouwrouzi and colleagues analyzed the top 56 annual and
lifetime cited articles related to mining injuries [9]. Seventy-three per cent of the articles described
certain factors as predictors of lost-time injuries. Every injury event has some causal factors associated
with it. Injury outcomes can be predicted when the causes are known [10].

Statistical and machine learning techniques have been commonly used to analyze the importance
of contributing factors toward an accident in the domain of occupation safety [10–14]. Classification
trees, support vector machines, and neural networks are the most widely used machine learning
models in this domain.

Matias and colleagues analyzed floor-level falls in the mining, construction, and services sectors
using several machine learning techniques [11]. Bayesian networks, classification trees, support vector
machines, and extreme learning machines were used in their approach. Bayesian networks were found
to be the best all-round technique. Rivas and colleagues modelled incidents and accidents in two
companies in the mining and construction sectors [15]. They also reported a similar result where
Bayesian networks and classification trees outperformed logistic regression. The dataset comprised of
survey results and information obtained from interviews. A similar superior performance of machine
learning techniques was also reported in a study done by Tixier and colleagues on construction injury
data [12]. Random forest and Stochastic Gradient Tree Boosting were used to predict three safety
outcomes, namely, injury type, energy type, and body part.

Many studies in occupational safety domain use structured data to analyze the accidents [13,16].
Use of textual reports to predict the safety outcomes has been minimal. Marucci-Wellman and
colleagues used Naive Bayes, Single word, and Bi-gram models, support vector machine, and logistic
regression for classifying the event leading to injury using injury narratives of a workers compensation
dataset [16]. Sarkar and colleagues used topic modelling on the injury text data to extract topics
or classes [10]. A topic or class is a cluster of similar words. Davoudi Kakhki and colleagues used
cluster modeling to identify high-risk groups of occupational incidents with severe injuries [17].
Previous studies on occupational safety outcomes have shown the superior performance of machine
learning techniques, such as classification trees, support vector machines, and artificial neural networks
(ANNs) [18,19].

The potential benefits of machine learning algorithms can not only be recognized by their
capability to handle multi-dimensional and large amounts of data, but also from (i) their ability
to generate actionable insights to improve decision-making, and (ii) their capacity to improve over
time with exposure to more data [10,12]. Due to the advantages of machine learning techniques, they
have been successfully used in many fields, such as e-commerce, healthcare, and banking [20–22].
Studies on occupational safety studies have also used machine learning techniques to analyze and
generate actionable insights [12,15,18,23]. Similarly, the use of machine learning techniques can
significantly benefit the mining industry. Large amounts of safety-related data related to mining is
available, and humans cannot review all the data. The machine learning techniques can be leveraged
to analyze safety data and provide actionable insights. However, the use of machine learning methods
in the mining industry has been minimal [23,24]. Use of text narratives in the predictive analysis is
infrequent [16]. Similarly, not many studies use days away from work as an outcome while analyzing
mining injuries using machine learning techniques. Modelling the outcome of the injury and days away
from work is vital to identify the factors leading to these outcomes. Days away from work (DAFW)
is also an indicator of the severity of the injury. The purpose of this study is to identify the potential
of text narratives to predict the outcome of the injury and days away from work. We used logistic
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regression, decision trees, random forests, and ANNs to find answers to the following questions:
(1) Do text narratives have enough information to predict the outcome of the injury compared to
the tabular data, and (2) can text narratives be used to predict days away from work? Decision
trees, random forest, and ANN were selected based on the superior performance of these models
in the studies related to occupational safety [10,12,13,15,16]. The performance of these models were
compared to the performance of logistic regression.

2. Materials and Methods

2.1. Data

The MSHA accident injuries dataset was used in this study. The dataset is publicly available and
was obtained from the United States Department of Labor website. The dataset contains information
about the accidents reported by mine operators and contractors in the US between 2000 and 2018 [2].

2.2. Logistic Regression

Logistic regression has been widely used to model the odds of an outcome in the analysis of
categorical data. It was first developed by Dr. Cox in 1960 [25]. Logistic regression is used when the
target variable (dependent) is categorical. Linear regression is not suitable for classification problems as
the output of the linear regression model is continuous and not bounded. On the contrary, the output
of the logistic regression model is always limited to values between 0 and 1. The logistic regression
equation can be written as shown in Equation (1),

logit(p) = ln(
p

1− p
) = β0 + β1x1, (1)

where the left-hand side (LHS) of the equation is the natural logarithm of the odds ratio, and right-hand
side (RHS) is a linear function of the independent variables. The equation can be rewritten to find the
estimated probability, as shown in Equation (2).

p =
1

1 + e−(β0+β1x1)
(2)

Logistic regression can handle any number of numerical or categorical dependent variables,
as shown in Equation (3).

p =
1

1 + e−(β0+β1x1+β2x2+...+βnxn)
(3)

The regression coefficients for logistic regression are calculated using maximum likelihood
estimation (MLE) [26]. Logistic regression is easy to train and interpret. However, logistic regression is
useful when working with a linearly separable target class [27]. Logistic regression has been widely
used in studies related to occupational safety [5,14–16].

2.3. Decision Tree

A decision tree is a flowchart-like structure, where each leaf node represents a class label,
each non-leaf node (internal node) represents a test on a dependent variable (attribute), and each
branch represents an outcome of the test [28]. Decision trees can be converted to classification rules by
tracing the path from the root node to each leaf node. The decision for a tuple X, with an unknown class
label, is made by testing the attribute values of the tuple against the decision tree. Domain knowledge
and parameter setting are not required to construct decision trees [28]. These properties make decision
trees a popular choice for exploratory knowledge discovery. ID3 (Iterative Dichotomiser), C4.5, and
Classification and Regression Trees (CART) are some of the famous algorithms used to construct
decision trees. Attribute selection is an essential part of constructing the decision tree. At every
level of the tree, the attributes that best partition the tuples into distinct classes are chosen [29].
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Some techniques, such as tree pruning, are used to improve classification accuracy on test data or
unseen data [30]. Decision trees are very fast and easy to interpret. However, decision trees tend to
overfit on training data, and often a single tree is not enough to produce good results [31]. Due to easy
interpretability, decision trees are used quite often in injury analysis studies [11,15].

2.4. Random Forest

Random forest is an ensemble model where each of the classifiers in the ensemble is a decision
tree classifier [28]. Ensemble learning is the method of combining several models to make the final
prediction [32]. It helps in reducing variance, bias, and improving performance [33]. Bagging is used to
reduce the variance, and boosting is used to reduce bias. Random forest uses bagging as the ensemble
method and decision trees as individual models. Random subsets of the dataset are created, and by
using the subsets, decision trees are created. Each decision tree is built by selecting random attributes
at each node to determine the split. All the decision trees participate in a majority vote, and the most
popular vote is chosen as the target class or label. Random forest reduces overfitting as it averages over
the independent trees [28]. They are more robust to errors and outliers [28]. They can also be used as a
feature selection tool. Since the random forest is a collection of decision trees, they are computationally
expensive and are difficult to interpret [31]. Random forests were used in several studies related to
injury analysis [34,35].

2.5. Artificial Neural Network

Like the random forest, an ANN is also used for classification and regression purposes. The ANN
model is inspired by the functioning of the human brain. It is a network of artificial neurons arranged
in three kinds of layers—an input layer, one or more hidden layers, and an output layer [28,36].
The neurons in the network are also referred to as units. Units in each layer are connected to all the
units in the adjacent layers. The number of features or attributes of the tuple dictates the number of
units in the input layer. Similarly, the number of units in the output layer depends on the number
of class labels. During the training process, information is fed into the network via the input units,
which passes through the units in hidden layers and arrives at the output units. Each unit computes
the weighted average of its input, and the sum is passed through a non-linear function [37]. The unit
fires when the sum is higher than a specific threshold value, and it triggers the units it is connected to
in the next layer. An element of feedback is involved in the learning process. The output produced by
the network is compared with the actual output it was supposed to produce, and the difference is used
to modify the weights associated with the connections between the units. This learning algorithm
is known as back propagation [38,39]. ANNs can detect complex nonlinear relationships between
explanatory and outcome variables. However, they are computationally expensive, and it is hard to
interpret the trained model [28,40]. According to previous studies, ANN was successfully used in
construction injury prediction [10].

2.6. Measures

2.6.1. Explanatory Variables

A total of 50 characteristics of the injury were present in the dataset. Columns related
to dates and codes, such as mine ID, controller ID, operator ID, contractor ID, subunit code,
calendar year, calendar quarter, fiscal year, fiscal quarter, degree injury code, fips state code, ug
location code, ug mining method code, mining equipment code, equipment manufacturer code,
equipment model number, classification code, accident type code, occupation code, activity code,
injury source code, nature of injury code, injured body part code, schedule charge, and closed
document number were removed. Columns like mining equipment, the underground mining
method, and underground mining location were removed, as more than half of the entries had
a value of “no value found”. Fifteen variables remained after removing all the unrelated columns
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to this study. Categorical variables in this dataset included subunit, classification, accident type,
occupation, activity, injury source, nature of the injury, injured body part, and narrative. The nature
of the injury identifies the injury with regard to the principal physical characteristics, and has 38
categories. For example, burn, cut, sprain, and hearing loss are some of the categories. Occupation
has 198 categories (e.g., welder, rock driller, and sandfiller). The injured body part variable has 47
categories. The upper extremities, back, and forearm are examples of some specific injured body parts.
Activity refers to the specific activity that the victim was performing at the time of the accident. There
are 98 categories of this variable. For example, some of the activities are grinding, handling supplies,
and machine maintenance. Accident type identifies the event which directly resulted in the reported
injury/accident. Forty-three kinds of accident types are present in this dataset. Some of the accident
types are struck by flying object, fall to the walkway, and fall down the stairs. The sub-unit variable has
five categories, each referring to the location within a mine where the accident/injury/illness occurred.
For example, the specific subunits are underground, the surface at underground, strip/quarry/open
pit, auger, and culm bank/refuse pile. Classification refers to the circumstances which contributed
most directly to the resulting accident. Some of the values for classification are entrapment, stepping,
or kneeling on object, and striking or bumping. The classification variable has 28 categories. Injury
source is the object, substance, exposure, or bodily motion that directly produced or inflicted the injury.
Injury source has 127 categories. Some examples of injury sources are ladders, steel rail, and caving
rock. The variable of coal/metal industry was initially a categorical variable, but it was changed
to a numerical variable by substituting the value “C” representing coal to 0 and “M” representing
metal industry to 1. Accident time and shift start time are the two time-related variables included
in this dataset. Numerical variables included are total experience (total mining experience), mine
experience (experience at a specific mine), and job experience (experience in the job title). The narrative
column is restricted to a specific character limit, because of which the narratives are not very long.
Some examples of narratives are: (i) “Employee was lifting dewatering press cloths when he heard a
’pop’ in his left elbow area”; and (ii) “Plant Foreman was doing his routine shift walk around; on his
way down through the rear stairs from the control room to the clinker storage silos, one of the stair
treads broke loose, causing the employee to lose his balance; his right leg went through the opening
and he fell frontward, hitting his right knee on the next tread”. Employee suffered a muscle sprain and
mild knee contusion.

2.6.2. Outcome Variables

Degree of injury and days lost are the two outcome variables used in this study. Different values
in the degree of injury column were accident only, fatality, permanent total or permanent partial
disability, days away from work only, days away from work and restricted activity, days restricted
activity only, no days away from work, no restrictions, occupational illness not degree 1–6, injuries
due to natural causes, injuries involving non-employees, and all other cases (incl. first aid). All the
rows with values as “Injuries involving non-employees” were removed since the study concentrated
on the injuries incurred by the employees. Categories of the degree of injury variable are shown in Table 1.

Table 1. Number of records in each target class before and after synthetic augmentation.

Target Class Count before Augmentation Count after Augmentation

Class1: All Other Cases (Including 1st Aid) 676 7564
Class2: Days Away From Work Only 31,653 31,653
Class3: Days Restricted Activity Only 16,633 16,633
Class4: Days Away From Work & Restricted Activity 10,025 10,025
Class5: Fatality 336 3842
Class6: Injuries due to Natural Causes 444 2785
Class7: No Days Away From Work, No Restricted Activity 27,627 27,627
Class8: Occupational Illness not DEG 1–6 1346 9676
Class9: Permanent Total or Permanent Partial Disability 895 12,796
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2.7. Data Pre-Processing

Data preprocessing is the most critical step in the machine learning pipeline. Preprocessing,
if done well, could boost the model performance [41]. All the rows containing empty columns were
removed. All the stop words (i.e., commonly used words, such as “a” or “the”) were removed from
the injury narratives. Stemming was performed on all the words in the narratives. Stemming is the
process of reducing a word to its root form, that is, reducing words such as “laughing” or “laughed”
to “laugh”. Most of the variables in the fixed field entries were categorical (a variable that can take
on a limited number of values), and some of them had high cardinality. Categorical variables with
high cardinality are often challenging as an input for machine learning models, such as ANNs [42].
While there are many techniques to deal with such variables, the following technique was used to
encode the categorical variables.

2.7.1. Categorical Encoding Using Target Statistics

One-hot encoding is one of the most common encoding techniques. In one-hot encoding,
new binary columns are created, which indicate the presence of each possible value from the original
data. Figure 1 shows the one-hot encoding of a categorical variable, color, which has three categories.
While one-hot encoding is the most popular encoding technique, it has certain limitations [43]. One hot
encoding generates many binary variables when the cardinality of the categorical variable is high,
that is, when the categorical variable contains many distinct values. This type of encoding leads
to an increase in the number of features. For high cardinality categorical features, encoding using
target variable statistics can be used [43]. Let Y be a multi-valued categorical target variable, where Y
∈ Y1, Y2. . . Ym. For each possible value Yj of the target variable, a derived variable Xj is created in
substitution of the original high cardinality categorical independent variable X. Each derived variable

Xj will represent an estimate of P(
(Y = Yj)

(X = Xi)
) using the formula shown in Equation (4),

Si = λ(ni)
niY
ni

+ (1− λ(ni)) ∗
nY

nTR
, (4)

where nTR is the total number of records, niY is the number of records belonging to class Y for a
particular value in the column, and nY is the number of records belonging to class Y. Since the sum of
the probabilities is 1, creating k derived variables is redundant. Thus, we introduce only k − 1 derived
variables and drop any one of the Xj. Generally, a function with one or more parameters is chosen as
λ(n). The parameters of λ(n) can be adjusted depending on the data. We chose λ(n) as a parameter
function shown in Equation (5),

λ(n) =
n

n + m
, (5)

where m is a constant. Figure 2 shows an example of encoding the variable color using target statistics
where the target variable is fruit.

Figure 1. An example of one-hot encoding.
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Figure 2. An example of encoding based on target statistics.

2.7.2. Word Embedding

Word embeddings are used for vector representation of words in natural language processing
(NLP) [44]. When words are treated as atomic units, the notion of similarity cannot be expressed,
whereas when words are represented as vectors, cosine distance can be calculated between two words
to check the similarity between them. In NLP tasks, the performance of learning algorithms is boosted
when words are represented in a vector space [45]. Word2vec is a word embedding technique used to
learn high-quality vector representations of words [44,46].

Word2vec trains a neural network with one hidden layer with words against the neighboring
words within a large corpus of text. There are two kinds of learning models for Word2vec, and both
do the same thing but in different ways. One learning model is called the continuous bag of words
(CBOW), and the other is called the skip gram model [44]. CBOW uses context to predict the target
word, whereas the skip gram model uses the target word to predict context.

2.8. Representation of Narratives

We trained the Word2vec model with the narratives in the MSHA dataset. All the narratives
were divided into tokens (words), as shown in Figure 3. Then, using the trained Word2vec model,
each word was represented as a vector of length 300. The vector representation of each word was
multiplied with the term frequency and inverse document frequency (TF-IDF) score, as shown in
Figure 4. Term frequency is the ratio of the frequency of the term in the narrative and the total number
of terms in the narrative. Inverse document frequency is the logarithm of the number of the narratives
in the corpus divided by the number of narratives where the specific term appears. The TD-IDF score
is the product of term frequency and inverse document frequency. Then, vector representations of the
words in the narrative were added and averaged. The resulting vector is the vector representation of
the narrative with 300 components. Figure 4 shows the process of converting narratives to vectors.

2.9. Data Augmentation

Imbalance in the target classes can often lead to poor performance of the predictive models [12].
The dataset used in this study is highly imbalanced. We used synthetic data augmentation to tackle
the data imbalance problem. We also used word embeddings to generate fake narratives [47]. First, we
created nine different Word2vec models, one for each target class. Then, we randomly chose six words
that will be replaced in each narrative in the training set. We replaced each of the six words with the
top three closest words. The top three closest words were determined using the trained Word2vec
models for the respective classes. This way, we could generate 18 narratives from one narrative. We
did not replace words in the narrative if they were shorter than six words.
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Figure 3. Converting each word to a vector of length 300.

Figure 4. Vector representation of narratives.

2.10. Performance Metrics

Various evaluation metrics are available to understand the performance of the models.
Figure 5 shows a simple confusion matrix. A confusion matrix is a technique to evaluate the
performance of a classification algorithm. Each row in the confusion matrix represents an actual
class, and each column represents a predicted class. Performance metrics used for classification and
regression tasks in this study are discussed in this section.

Figure 5. A simple confusion matrix.

2.10.1. Accuracy

Accuracy is the ratio of the number of correct predictions and the total number of predictions.
The formula for accuracy is shown in Equation (6).

accuracy =
true positive

total number o f samples
(6)

2.10.2. F1 Score

Accuracy is not a good measure when the target variable classes in the dataset are imbalanced [48].
A model which predicts the target class as the majority class for every input can achieve a high
accuracy score. We used the F1 score as a performance measure in this study. The F1 score is the
harmonic mean of precision and recall. Precision is the proportion of positive identifications that are
actually correct, and recall is the percentage of the total number of positive instances that are correctly
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classified. Both precision and recall are essential for this study, so we used the F1 score as a metric that
combines precision and recall. The formula for precision and recall are given in Equations (7) and (8).
We calculated the F1 score for each target class, and their average was weighted by support (number
of samples).

precision =
true positive

true positive + f alse positive
(7)

recall =
true positive

true positive + f alse negative
(8)

Formula for calculating F1 score is given in Equation (9).

F1score = 2 ∗ precision ∗ recall
precision + recall

(9)

2.11. Mean Squared Error (MSE)

For regression models, MSE is widely used as a performance metric. It represents the average
of the squares of the differences between predicted values and observed values. MSE was calculated
as shown in Equation (10).

MSE =
1
n

n

∑
j=1

(yact − ypred))
2 (10)

2.12. Root Mean Square Error (RMSE)

RMSE is the square root of MSE. RMSE was calculated as shown in Equation (11).

RMSE =

√√√√ 1
n

n

∑
j=1

(yact − ypred))
2 (11)

In the Equation (11), yact represents the actual value and ypred represents the predicted value.

2.13. Predicting Outcome of the Injury

Two kinds of data were used in this experiment—fixed field entries, and narratives. The target
variable was the degree of injury. After removing all the target classes with entries less than 1% of the
dataset, three classes remained. The dataset consisting of 110,996 entries was split into training (70%)
and testing (30%) sets. Stratified random sampling was used to split the dataset [49].

2.13.1. Fixed Field Entries

Logistic regression, decision tree, random forest, and ANN were used. For decision tree,
the Gini index was used as the attribute selection measure. For random forest, the number of
decision trees in the forest was chosen as 30, Gini index was used as the attribute selection measure.
The parameters used for ANN were as follows: two hidden layers, rectified linear units as the activation
function for hidden layers, softmax as the activation function for output layer, a learning rate of 0.001,
and drop out rate of 0.3. In the initial model we combined accident time and shift start time into one
variable by computing the difference in hours between accident time and shift start time. Combining
accident time and shift start time reduced the overall accuracy of the models. In the final model we
used both accident time and shift start time.

2.13.2. Narratives

The input to the models was the vector representation of the injury narratives, which was
computed as shown in Section 2.8. The parameters for the decision tree and random forest were the
same as those used for fixed field entries. ANN was trained on unbalanced (nine target classes) and
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augmented datasets. Table 1 shows the number of narratives added to each imbalanced class in a
training set using synthetic augmentation. The test dataset remained the same for ANN when trained
on the unbalanced and augmented dataset. The parameters used for ANN were the same as used in
fixed field entries, except for the number of neurons in the input layer.

2.14. Predicting Days Away from Work

Two kinds of data were used in this experiment—fixed field entries, and injury narratives.
The target variable was the number of days lost due to the injury. The dataset consisting of
79,457 records was split into training (70%) and testing (30%) using stratified random sampling.
All the records with no days lost were removed.

2.14.1. Fixed Field Entries

The target variable was days away from work. Random forest and ANN were used. For random
forest, the number of decision trees in the forest was chosen as 30. Mean Squared Error (MSE) was
used as the function to measure the quality of a split. The parameters used for ANN were as follows:
two hidden layers, rectified linear units as the activation function for hidden layers, the learning rate
of 0.001, and drop out rate of 0.3. Softplus activation function was used as the activation function
for the output layer to prevent the model from predicting negative values. MSE was used as the
performance metric. In the initial model we combined accident time and shift start time into one
variable by computing the difference in hours between accident time and shift start time. This reduced
the overall accuracy of the models. In the final model we used both accident time and shift start time.

2.14.2. Narratives

The input to the models was the vector representation of the narratives, which is computed,
as shown in Section 2.8. All the parameters for random forest and ANN were similar to the parameters
used in the fixed fields entries section of predicting days away from work, except the number of
neurons in the input layer for ANN. Keras and Sklearn (machine learning libraries in python) were
used to build all the models.

3. Results

In this section, we show and compare the performance of all the models in predicting injury
outcome and days away from work. The results are in two parts. In the first part, we show and
compare the performance of logistic regression, decision tree, random forest, and ANN (with fixed
field and injury narratives as input) in predicting the injury outcome. In the second part, we show and
compare the performance of logistic regression, decision tree, random forest, and ANN (with fixed
field and injury narratives as input) in predicting days away from work.

3.1. Injury Outcome

Logistic regression, decision tree, random forest, and ANN were used to predict the injury
outcome. We used two kinds of inputs—fixed field entries, and injury narratives. Table 2 shows the
overall accuracy and F1 score of the models with fixed field entries as input. All the models had decent
performance, except the decision tree. ANN had the best overall accuracy of 78%. Logistic regression
and random forest had an accuracy of 67% and 66%, respectively. ANN was also the best model in
terms of F1 score. ANN had an F1 score of 0.67. Logistic regression and random forest had an F1
score of 0.64 and 0.65, respectively. Logistic regression had an F1 score comparable to random forest.
Overall, ANN performed better than all other models. Decision tree had the least accuracy (58%) and
F1 score (0.58).

Table 3 shows the F1 score and overall accuracy of random forest and ANN trained on imbalanced
injury narratives. Random forest had the highest F1 score (0.94) and accuracy (94%) among both
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the models. Figure 6 shows the confusion matrix of random forest trained on the injury narratives.
Figure 7 shows the F1 score of ANN on unbalanced and balanced (using synthetic augmentation)
datasets. The F1 score of the underrepresented classes 1, 5, 8, and 9 improved after augmentation.
The F1 score for the underrepresented class 6 decreased after augmentation. Data augmentation was
not performed for classes 2, 3, 4, and 7. The F1 score for classes 2, 3, and 7 decreased. Class 4 did not
have any impact on the F1 score. The overall F1 score of ANN on the unbalanced dataset was 0.60.
After augmentation, the F1 score decreased to 0.58.

Figure 6. Confusion matrix for random forest trained on injury narratives.

Figure 7. F1 score of artificial neural networks on unbalanced and augmented narratives.

Table 2. Accuracy and F1 score for all the models (fixed field entries).

Model F1 Score Accuracy

Logistic regression 0.64 67%
Decision Tree 0.58 58%

Random Forest 0.66 66%
Artificial Neural Network 0.67 78%

Table 3. Accuracy and F1 score for all the models (imbalanced narratives).

Model F1 Score Accuracy

Random Forest 0.93 93%
Artificial Neural Network 0.60 92%
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3.2. Days Away from Work

Random forest and ANN were used to predict DAFW. RMSE was used as the metric to compare
the performance. Similar to injury outcome prediction, we used two kinds of inputs—fixed field
entries, and injury narratives. The standard deviation of DAFW variable in the dataset was 75.02.
Table 4 shows the MSE and RMSE for all the models with fixed field entries as input. ANN had the
best performance compared to others. RMSE for ANN was 0.62. Random forest had a RMSE value of
3.82. Table 4 also shows the RMSE for ANN with injury narratives as input. Overall, ANN with fixed
fields entries as input performed better than all other models.

Table 4. MSE and RMSE for all the models.

Model Input MSE RMSE

Random forest Fixed Field Entries 14.65 3.82
Injury Narratives 1502.61 38.76

Artificial neural network Fixed Field Entries 0.38 0.62
Injury Narratives 5944.74 77.10

3.3. Feature Importance

Due to the unstructured nature of text narratives, it was not possible to identify the most helpful
features to predict the target class. Thus, we used the ANN trained on fixed fields to analyze the
feature importance. ANN is trained each time by removing one independent variable (feature) from the
dataset. We computed the difference between the overall F1 score of the ANN trained on the complete
dataset and the ANN trained on the dataset with one missing feature. This difference represents the
feature importance. Table 5 lists the features in descending order of feature importance.

Table 5. Dependent variables and their description in descending order of their importance.

Feature Description

Nature of Injury Identifies the injury in terms of its principal physical characteristics.

Injured body part Identifies the body part affected by an injury.

Occupation Occupation of the accident victim’s regular job title.

Coal or Metal Identifies if the accident occurred at a Coal or Metal/Non-Metal mine.

Job Experience Experience in the job title of the person affected calculated in the
decimal year.

Hours Time difference between accident time and shift begin time in hours.

Injury Source Identifies the object, substances, exposure or bodily motion which directly
produced or inflicted the injury.

Classification Identifies the circumstances which contributed most directly to the
resulting accident.

Activity Specific activity the accident victim was performing at the time of
the incident.

Accident type Identifies the event which directly resulted in the injury/accident.

Sub-unit The Sub-unit of the mining site where the accident occurred.

Mine experience Total experience at a specific mine of the person affected calculated in
decimal years.

Total experience Total mining experience of the person affected calculated in
decimal years.
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4. Discussion

This study used supervised machine learning techniques, such as logistic regression, decision tree,
random forest, and ANN to predict injury outcome and days away from work in mining operations.
Fixed field entries (structured data) and injury narratives (unstructured data) were used to train
the models. The experiments done in this study show that random forest trained on the vector
representation of injury narratives performed better than all other models. The high accuracy and an
F1 score of random forest even when there exists a class imbalance shows the effectiveness of ensemble
learning methods. The most plausible conclusion for the superior performance of random forest on
narratives is the information present in the narrative, which is not present in the fixed field entries.
One example would be the narrative, “Employee was grinding off metal that had been cut on flop gate.
A piece of metal must have got under employee’s safety shield and safety glasses, causing an abrasion
to eye. Employee did not notice discomfort until employee got home”. The model trained on fixed
field entries classified this incident as “Days restricted activity only”. The tabular data does not have
any mention of safety glasses or safety shield that the employee was wearing. However, the model
trained on narratives has information about the safety equipment. This could be one of the reasons
why the model trained on narratives classified this incident correctly, which is “No days away from
work, No restricted activity”. ANN performed relatively better than other models when the input was
fixed field entries. However, underrepresented classes were removed from the dataset when fixed field
entries were used. This study forms a foundation for the future research in utilizing text narratives in
the predictive analysis of injury outcomes.

The mining industry exceeds many industries in terms of workplace injuries and fatalities [50–52].
It is, therefore, essential to study the characteristics of the mining injuries in order to find the factors
leading to an injury. Once the factors associated with the injuries are identified, safety programs can
be designed to address those issues. This study used ANN trained on fixed field entries to find the
feature importance. According to Table 5, the nature of the injury is the most influential feature in
the dataset. The nature of the injury was also found to be a significant variable in the prediction of
injury severity level in the agribusiness industry [13]. Since our focus was on injuries causing lost days
of work, we analyzed the nature of injury variables for the injuries resulting in DAFW. The highest
number of nature of injuries resulting in DAFW were sprain, disc rupture, fracture, cut, laceration,
and bruise. The second most influential variable was an injured body part. The injuries to the back,
spine, Scord, and tailbone were among the highest to result in DAFW. Occupation was also one of
the essential features. An injury to the workers having the following occupations: Maintenance man,
Mechanic, Repair/Serviceman, Boilermaker, Fueler, Tire tech, and Field Service tech had the highest
probability to result in DAFW class. Maintenance personnel and workers were also found to have
the highest risk of occupational injuries among opencast coal mine workers [5]. Job experience was
among the top five important variables which were important in predicting the outcome of the injury.
It is interesting to note that job experience had much higher feature importance compared to mine
experience and total experience when predicting the outcome of the injury. Margolis analyzed how
age and experience were related to days away from work in underground coal mining injuries. It
was found that the total mining experience has an influence on the severity of the injury [4]. Mine
experience and job experience were found to have no effect on the severity of the injury. However,
it needs to be noted that the dependent variable was the number of days away from work, whereas
in our study, the dependent variable was the outcome of the injury.

Given the high predictive power of the model, the above variables are significant in predicting the
outcome of the injury. The nature of the injury is the most important predictor, and sprain, disc rupture,
and fracture result in the most days away from work. Safety programs can be designed specifically to
reduce accidents of this nature. These safety programs should also concentrate on other influential
variables found in this study, such as injured body parts and occupation. Since job experience was
found to be more important in predicting the outcome of the injury than mine experience and job
experience, emphasis should be given to job-related safety.
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Although the model with the best performance cannot be used to analyze feature importance,
it can certainly help to answer questions such as, “if this kind of injury were to happen, what would it
result in?”, and, “What if a different body part was injured rather than the body part mentioned in the
narrative?” Answers to such questions would help safety managers to plan for accidents that could
occur in the future.

The data augmentation using word embedding increased the F1 score of ANN for unbalanced
classes, except for one class. Although the overall F1 score of the model decreased from 0.60 to
0.58, the decrease in the performance was not very significant. One of the reasons for the decrease
in the overall accuracy could be the way the words to be replaced were chosen. Since they were
chosen randomly, the target class of the fake narrative could have changed from the target class of the
original narrative. Having longer narratives would have helped in generating more accurate synthetic
narratives generation.

Models trained on fixed field entries performed better than the models trained on narratives
when predicting the DAFW. ANN trained on fixed field entries had the least MSE. It is interesting to
note that the only information missing from the narratives that is present in the fixed field entries is
the shift start time, accident time, and the experience of the miner. The presence of the above variables
in the fixed field entries could have helped the model in predicting the DAFW better. Accurately
predicting DAFW could help the supervisors managing the workforce to plan for replacements when
an injury occurs. DAFW is also an indicator of the severity of the injury. These models are not a
replacement to an expert in safety; instead, they are tools to help safety experts to act proactively to
reduce workplace injuries.

5. Conclusions

We explored a new research problem of predicting the outcome of the injury and the number of
days away from work in the mining industry using machine learning models. Target-based statistics
were used to encode categorical variables. This technique helped to tackle the problem of high
cardinality categorical variables. Random forest trained on injury narratives performed better than all
the models. The high predictive power of the model trained on narratives suggests that the narratives
contain additional important information compared to the fixed field entries. The synthetic data
augmentation with word embedding was used to tackle the data imbalance problem. This technique
improved the F1 score of ANN for the underrepresented classes. However, the overall accuracy and
F1 score of the model decreased after augmentation. There is a lot of unstructured data available
compared to the structured data, and the results of this study show that using unstructured data, such
as text narratives, could be useful in understanding the injuries better. This study shows that there is a
potential for using NLP and text analytics in this field.

Regarding the application of predictive modeling in occupational injury analysis, this study not
only confirms the findings from previous work on the effectiveness of data mining techniques in
analyzing occupational incidents in the mining industry [53], but also adds new methods for dealing
with limited data, and yet extracting useful practical information for improving safety of mining
operations. However, there are some limitations in this work. There are no weather-related features
in the data, and it makes it hard to analyze if the severity of days-away-from-work classes could
be impacted by weather conditions. In addition, the data lacks information about demographics of
the injured workers, and thus, does not explore the role of age and experience of the worker on the
days-away-from-work severity classes. Furthermore, some studies have analyzed and compared the
risk of occupational incidents in mining based on workers’ genders [54]. Therefore, another limitation
to this study is a lack of probabilistic risk analysis based on the injured worker’s gender. Future
direction of this research includes exploring new data collection methods to improve the quality and
features of mining occupational incidents and further building models for estimating probability of
each days-away-from-work class based on the features of the incident. Deep learning techniques,
such as convolutional neural networks (CNNs) and recurrent neural networks, have shown promising
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results in text classification [55,56]. Future studies can expand on this study by using such deep
learning models. Generative adversarial networks (GANs) have been used in recent works for text
generation [57]. The use of GANs to tackle data imbalance problems in the domain of occupational
safety could be explored.
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RMSE Root mean squared error
CBOW Continuous bag of words
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