
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2021

Hidden Markov Model-based Clustering for Malware Hidden Markov Model-based Clustering for Malware

Classification Classification

Shamli Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Singh, Shamli, "Hidden Markov Model-based Clustering for Malware Classification" (2021). Master's
Projects. 1008.
DOI: https://doi.org/10.31979/etd.8pte-6mqn
https://scholarworks.sjsu.edu/etd_projects/1008

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1008?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1008&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Hidden Markov Model-based Clustering for Malware Classification

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shamli Singh

May 2021

© 2021

Shamli Singh

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Hidden Markov Model-based Clustering for Malware Classification

by

Shamli Singh

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Mark Stamp Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

Dr. Fabio Di Troia Department of Computer Science

ABSTRACT

Hidden Markov Model-based Clustering for Malware Classification

by Shamli Singh

Automated techniques to classify malware samples into their respective families

are critical in cybersecurity. Previously research applied 𝑘-means clustering to scores

generated by hidden Markov models (HMM) as a means of dealing with the malware

classification problem. In this research, we follow a somewhat similar approach, but

instead of using HMMs to generate scores, we directly cluster the HMMs themselves.

We obtain good results on a challenging malware dataset.

ACKNOWLEDGMENTS

I want to express my gratitude to my project advisor, Dr. Mark Stamp, for

his guidance, support, and encouragement throughout my graduate studies. He has

always been patient in listening to the tiniest issues and roadblocks that came up

while working on the project.

I would also like to thank my committee member Dr. William Andreopoulos for

his time and guidance.

I am further thankful to my committee member, Prof. Fabio Di Troia, for his

valuable inputs and my senior, Sunhera Paul, to help with the dataset.

Finally, I would like to thank my parents and friends for their unwavering support

and guidance throughout my Master’s degree program.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Malware . 3

2.1.1 Virus . 3

2.1.2 Trojan Horse . 4

2.1.3 Backdoor . 4

2.1.4 Spyware and Adware . 4

2.2 Malware Detection Techniques . 4

2.2.1 Signature Based Detection 5

2.2.2 Anomaly Based Detection 5

2.2.3 Machine Learning Based Detection 5

2.2.4 Hidden Markov Model Based Detection 6

2.3 Hidden Markov Models . 6

2.3.1 Notation . 6

2.3.2 The Three Problems . 7

2.3.3 The Solutions . 8

2.4 Clustering . 10

2.4.1 𝐾-means Clustering Algorithm 10

2.4.2 𝐾-medoids Clustering Algorithm 11

2.4.3 Cluster Quality . 11

vi

vii

3 Related Work . 13

3.1 Classification using Structure and Behavior of Malware 13

3.1.1 Structure Control Flow . 13

3.1.2 Behavioral Malware Classification 13

3.2 Malware Classification using Machine Learning techniques 14

3.2.1 Support Vector Machines (SVM) 14

3.2.2 Naïve Bayes . 14

3.2.3 Random Forest . 15

3.2.4 Nearest Neighbor using VILO 15

3.2.5 𝐾-means Clustering with HMM 15

4 Experiments and Results . 16

4.1 Dataset . 16

4.2 Setup . 16

4.3 Training HMMs . 17

4.4 Clustering Algorithms . 17

4.4.1 The Naïve 𝐾-means Method 17

4.4.2 The 𝐾-medoids Method with Matrix Euclidean Distance . 19

4.4.3 Cluster Entropy . 20

4.5 Discussion on Results . 21

4.5.1 𝐾-means . 21

4.5.2 𝐾-medoids . 24

5 Conclusion and Future Work . 28

LIST OF REFERENCES . 30

viii

APPENDIX

A Graphs for Naïve 𝐾-means Method . 33

B Graphs for 𝐾-medoids Method with Matrix Euclidean Distance 51

C Naïve 𝐾-means Method for HMMs with M = 50 57

D Kernel 𝐾-means Method for HMMs with M = 50 67

CHAPTER 1

Introduction

Malware, or malicious software, is a prominent antagonist in the digital era. We

rely heavily on software for various aspects of civilization, from national security to

trading, science research, or just entertainment. Analogously, malware plays a leading

role in computer crime and information warfare, including malicious access of resources,

stealing sensitive data, or simply spreading corrupt files through various computers.

In recent years, smartphones are taking over desktop and laptop computers as the

preferred device for consumers. Their popularity and constant internet connectivity

mean an increase in the number of devices susceptible to malware attacks. According

to [1], malware is spread rapidly, and it continuously evolves to escape malware

detection tools. Usually, malware detection tools depend on malware signatures.

However, this can be slow, and new malware variants cannot be detected.

Malware can appear in various forms, including viruses, spyware, and worms [2, 3].

Malware is a critically important research topic in cybersecurity. Many malware

detection techniques are available, and we elaborate on some of these in Chapter 2.

Malware attacks come with a lot of costs, both visible and hidden. The visible

costs include the time and money required to deal with malware detection and clean up

infected systems. It also includes the loss of productivity in the affected organization.

The damage to the organization’s reputation represents the hidden costs, as observed

in [2].

There is still a lack of robust strategies to detect or classify malware. Malware

classification is an essential aspect of protecting computer systems. If we can determine

the family that a new malware belongs to, we can save time finding the correct strategy

to nullify it by using known techniques. On the other hand, if detected malware does

not fit the existing types, then we need to find new approaches.

1

In this paper, we focus on automated malware classification using hidden Markov

models (HMMs) and clustering techniques. Specifically, we train HMMs on malware

opcodes representing various families and then perform clustering on these models to

classify them into their respective families. This work can be viewed as an extension

of the previous research in [4].

The remainder of this paper is organized as follows: Chapter 2 includes relevant

background information on malware detection strategies, and also discusses HMM

and clustering in detail. Chapter 3 gives an overview of related previous work on

malware classification. Chapter 4 covers the implementation of clustering algorithms

used for malware classification in this research, as well as our experiments and results.

Finally, Chapter 5 concludes with suggested future work.

2

CHAPTER 2

Background
2.1 Malware

Our computer infrastructure is at constant war with various forms of threats like

bugs, spam, denial of service (DoS) attacks, and malware [2]. As discussed in Chapter

1, malware dominates all security threats. The purpose of writing malware can be

simply a prank or as threatening as organized crimes or warfare or espionage. Figure

1 shows the rapid increase in the volume of malware attacks for the past decade.

Figure 1: Total Malware Infection Growth Rate [5]

Malware covers a broad spectrum of threats like viruses, worms, and spyware. We

give a brief overview of some of them before moving to malware detection techniques.

2.1.1 Virus

A virus is the most commonly heard type of malware. True to its name, this

malware replicates itself by infecting executable programs. The infected programs

further propagate the virus during their execution. It can also live in the computer

memory and propagates through external devices or software, or emails. Like a

biological virus, it may also exhibit metamorphism – it can change its form while

infecting more programs [3]. Malware writers explicitly use this feature to evade

malware detection tools.

3

2.1.2 Trojan Horse

Like the historic plot by Greek invaders to capture Troy, a Trojan Horse is a

program devised to look harmless by performing a benign task and secretly perform

a malicious task. Password and form grabbers fall under this category, as described

by [2]. According to [6], they can also control a user’s system or disable the firewall.

They are also capable of downloading other malware to the system. Zeus or Zbot is a

famous trojan family, and it was widely used for crimes like bank frauds and money

laundering in the last two decades [7].

2.1.3 Backdoor

A backdoor, also known as a trapdoor, is built to circumvent a standard security

check [2]. Programmers may create backdoors for legitimate reasons when their code

is in the development phase. Still, cybercriminals exploit this vulnerability for tasks

like deleting files, accessing sensitive data, installing additional malware, and opening

communication ports for remote access of the system [8].

2.1.4 Spyware and Adware

Spyware is a program that installs itself on a computer system along with some

benign software and spy on user activities, including internet usage history, keystrokes,

forms, and also read files covertly and install additional malware [9]. Adware is

slightly different from spyware. Adware looks like a regular program but instead

pops up errors or updates and then asks the user to pay money to continue working.

Winwebsec is a famous family of adware [10].

2.2 Malware Detection Techniques

Malware writers constantly improve their malware by making it undetectable

for signature-based antivirus tools. Similarly, security software companies continue

their research on ways to improve their malware detection techniques. The following

4

sections describe the strategies used in building these techniques.

2.2.1 Signature Based Detection

Signature-based detection is the prevalent technique deployed by many antivirus

software due to its accuracy, speed, and simplicity [3]. The software scans each

executable for malware signature or pattern, which is generally a string of bits and

kept in the antivirus database. Despite being popular, the downside to this approach is

that antivirus software can detect only known malware based on its updated database.

Malicious users generally evade these tools by obfuscating the malware code.

2.2.2 Anomaly Based Detection

Anomaly detection is designed to find unusual and potentially malicious activity.

It is a heuristic approach to training the system with normal behavior [11]. The

system can then flag anything outside the expected behavior. While this technique

can help detect previously unknown malware, it is not yet proven robust enough as a

standalone technique and involves false positives [3].

2.2.3 Machine Learning Based Detection

Anomaly-based detection above can be categorized as a machine learning technique

and a behavioral technique. But pure machine learning techniques are also adopted

for malware detection and classification. Researchers in [12] tested this approach by

computing behavior scores in a sandbox and using them to generate sparse vector

models. They used these models with various machine learning techniques like Support

Vector Machine (SVM), naïve Bayes, decision trees, random forest, and multilayer

perceptron (MLP). Another research suggested using AutoEncoder, a deep learning

technique for malware detection [13].

5

2.2.4 Hidden Markov Model Based Detection

Hidden Markov models (HMMs) are used for statistical pattern analysis, broadly

in speech recognition, biological sequence analysis, and malware detection [14]. The

general approach tests the malware dataset against trained HMMs and computes

scores for each file in the dataset. The malware and benign scores will not overlap for

a range of values known as a threshold [15]. This threshold is then used to distinguish

benign files from malignant files.

2.3 Hidden Markov Models

A statistical model with states and known probabilities of the state transitions is

called a Markov model [15]. The states are visible to an observer in such a model. On

the contrary, a hidden Markov model has states that are not directly observable [14].

HMM acts as a state machine, where each state is associated with a probability

distribution for observing a state of observation symbols. We can train an HMM

using the observation sequences that represent some data.

2.3.1 Notation

As given in [15], we use the notation given in Table 1 to define an HMM.

Table 1: HMM Notation

𝑇 = length of observation sequence
𝑁 = number of states in the model
𝑀 = number of distinct observation symbols
𝑄 = distinct states in the model
𝑉 = set of possible observations
𝐴 = state transition probability matrix
𝐵 = observation probability matrix
𝜋 = initial state distribution
𝒪 = observation sequence

An HMM is defined by the 𝐴, 𝐵 and 𝜋 matrices, and is denoted as 𝜆 = (𝐴, 𝐵, 𝜋).

Figure 2 shows a generic HMM representation.

6

Figure 2: A Hidden Markov Model [16]

2.3.2 The Three Problems

Three fundamental problems can be solved using an HMM. They are described

below.

2.3.2.1 Problem 1

Given a model 𝜆 = (𝐴, 𝐵, 𝜋) and an observation sequence 𝒪, we need to find

𝑃 (𝒪 | 𝜆). This means we want to compute a score for an observed sequence 𝒪 with

respect to a model 𝜆 [15].

2.3.2.2 Problem 2

Given a model 𝜆 = (𝐴, 𝐵, 𝜋) and an observation sequence 𝒪, we want to reveal

the hidden part of the model [15].

2.3.2.3 Problem 3

Given an observation sequence 𝒪 and the number of states 𝑁 , we need to

determine the model 𝜆 = (𝐴, 𝐵, 𝜋) that maximizes the probability of 𝒪. This also

implies we train a model to fit the observed data, using a hill-climb approach [15].

In this project, we are using the algorithm for Problem 3. We are using an

observation sequence 𝒪 with some number of states 𝑁 and generating the models

𝜆 = (𝐴, 𝐵, 𝜋) for each malware opcode sequence file.

7

2.3.3 The Solutions

The problems are solved using the following algorithms:

2.3.3.1 The Forward Algorithm

Also known as the 𝛼 pass, the forward algorithm is used to determine 𝑃 (𝒪 | 𝜆),

as in problem 1. It is given as follows. For 𝑡 = 0, 1, ..., 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1,

define
𝛼𝑡(𝑖) = 𝑃 (𝒪0, 𝒪1, . . . , 𝒪𝑡, 𝑋𝑡 = 𝑞𝑡|𝜆)

where 𝛼𝑡(𝑖) is the probability of partial observation sequence up to time 𝑡.

Thus, 𝑃 (𝒪 | 𝜆) can be computed as follows.

1. Let 𝛼𝑡(𝑖) = 𝜋𝑡𝑏𝑖(𝒪0), for 𝑖 = 0, 1, . . . , 𝑁 − 1

2. For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute

𝛼𝑡(𝑖) =
⎛⎝𝑁−1∑︁

𝑗=1
𝛼𝑡−1(𝑗)𝑎𝑖𝑗

⎞⎠ 𝑏𝑖(𝒪𝑡)

2.3.3.2 The Backward Algorithm

Also known as the 𝛽 pass, the backward algorithm is used to find a most likely

optimal state sequence, like in problem 2. It is given as follows: For 𝑡 = 0, 1, . . . , 𝑇 − 1

and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛽𝑡(𝑖) = 𝑃 (𝒪𝑡+1, 𝒪𝑡+2, . . . , 𝒪𝑇 −1, 𝑋𝑡 = 𝑞𝑡|𝜆)

Thus, 𝛽𝑡(𝑖) can be computed as follows.

1. Let 𝛽𝑡(𝑖) = 1, for 𝑖 = 0, 1, . . . , 𝑁 − 1

2. For 𝑡 = 𝑇 − 2, 𝑇 − 3, . . . , 0 and 𝑖 = 0, 1, . . . , 𝑁 − 1, compute

𝛽𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

8

For 𝑡 = 0, 1, . . . , 𝑇 − 2 and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛾𝑡(𝑖) = 𝑃 (𝑥𝑡 = 𝑞𝑖|𝒪, 𝜆)

The relevant probability up to time 𝑡 is given by

𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝛽𝑡(𝑖)
𝑃 (𝒪 | 𝜆)

2.3.3.3 The Baum-Welch Re-estimation Algorithm

The Baum-Welch algorithm helps to re-estimate the 𝐴, 𝐵 and 𝜋 matrices itera-

tively [15]. This helps efficiently fit a model to observations, according to problem 3.

The parameters 𝑁 and 𝑀 remain constant throughout the process, whereas the 𝐴, 𝐵

and 𝜋 matrices can change with the row-stochastic condition in place. The process is

as follows.

1. Initialize 𝜆 = (𝐴, 𝐵, 𝜋) with random values. Generally these are set as 𝜋 = 1/𝑁 ,

𝐴𝑖𝑗 = 1/𝑁 and 𝐵𝑖𝑗 = 1/𝑀 .

2. Compute 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗) where 𝛾𝑡(𝑖, 𝑗) is a di-gamma. It is defined

as
𝛾𝑡(𝑖) = 𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

𝑃 (𝒪 | 𝜆)

where
𝛾𝑡(𝑖) =

𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗)

3. Re-estimate model parameters For 𝑖 = 0, 1, . . . , 𝑁 − 1, let

𝜋𝑖 = 𝛾0(𝑖)

For 𝑖 = 0, 1, . . . , 𝑁 − 1 and 𝑗 = 0, 1, . . . , 𝑁 − 1, compute

𝑎𝑖𝑗 =

𝑇 −2∑︁
𝑡=0

𝛾𝑡(𝑖, 𝑗)

𝑇 −2∑︁
𝑡=0

𝛾𝑡(𝑖)

9

For 𝑗 = 0, 1, . . . , 𝑁 − 1 and 𝑘 = 0, 1, . . . , 𝑀 − 1, compute

𝑏𝑖𝑗 =

∑︁
𝑡∈{0,1...,𝑇 −1}

𝒪𝑡=𝑘

𝛾𝑡(𝑗)

𝑇 −2∑︁
𝑡=0

𝛾𝑡(𝑗)

4. If 𝑃 (𝒪 | 𝜆) increases, go back to step 3.

2.4 Clustering

Clustering is the process of categorizing objects into subsets based on some form

of similarity index [17]. It is an unsupervised machine learning approach. Following

are the most popular approaches to clustering objects.

• Hierarchical Clustering: The data is broken into a hierarchy of clusters.

Each object is a separate cluster at the start. Then the algorithm computes

a dendrogram by merging smaller clusters into larger ones (agglomerative ap-

proach) or dividing larger clusters into smaller ones (divisive approach) [18, 19].

The number of clusters is not predetermined, and the process only requires the

similarity measure as an input.

• Partitional Clustering: Partitional clustering starts by first generating par-

titions using randomness or some policy and then evaluate them based on a

criterion [17]. Each object is placed in one of 𝑘 mutually exclusive divisions.

Then the partition boundaries and centroids of the partitions change according

to some algorithm [18]. 𝐾-means is one of the most popular partitional cluster-

ing algorithms, where the number of partitions 𝑘 is predetermined. While this

method is faster than hierarchical clustering, the output depends heavily on the

choice of the number 𝑘.

2.4.1 𝐾-means Clustering Algorithm

𝐾-means is the most straightforward unsupervised learning algorithm used to

solve classification problems using clustering [16]. It classifies data into a predetermined

10

number of clusters, called 𝑘. Cluster centroids are defined for each cluster, and each

data point (or object) is associated with the centroid nearest to it [17]. The centroids

may or may not be from within the dataset. Euclidean distance method is used. In the

next step, the centroids are calculated again to account for the data points assigned

to them. These steps keep repeating until there is no change to the centroid [17].

The Euclidean distance between two points 𝑥 = (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) and 𝑦 =

(𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛) is given by

𝑑(𝑥, 𝑦) =
√︁

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2

2.4.2 𝐾-medoids Clustering Algorithm

𝐾−medoids is a relatively popular method of clustering that searches for 𝑘 objects

called medoids. The medoids are considered representatives of the dataset as they

are chosen from within the dataset. Like 𝑘-means, this algorithm minimizes the

average dissimilarity of all data objects with the centroids, also known as medoids [20].

We can tune the algorithm to work with different types of similarity metrics like

Euclidean distance, Minkowski distance, or cosine similarity, making it robust to noise

and outliers. We can also feed just the set of dissimilarities instead of actual data

objects to this algorithm. One way to do this is a distance correlation matrix, which

is discussed in detail in 4. The algorithm itself is based on the Partitioning Around

Medoids (PAM) program, as developed by the authors in [20].

2.4.3 Cluster Quality

An ideal cluster has minimal intra-cluster distance and maximum inter-cluster

distance [16]. Following two methods are the standards used for internal and external

validation of any clustering algorithm.

11

2.4.3.1 Elbow Method

The elbow method is a simple but not robust method of estimating the optimal

number of 𝑘. The technique involves running the algorithm multiple times with

an increasing number of clusters and plotting the clustering score (also known as

distortion) against the number of clusters. The distortion is typically is the error

sum of squares (SSE) [21]. As the number of clusters 𝑘 increases, the SSE decreases.

Sometimes we may not have clearly clustered data, so the elbow may not be sharp

and clear.

2.4.3.2 Silhouette Analysis

The silhouette value is a measure of similarity of a data point to its own cluster

compared to other clusters [21]. It ranges from -1 to 1, and a higher value indicates

ideal clustering.

Silhouette value 𝑠(𝑖) for each point 𝑖 is given as:

𝑠(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)
max

(︁
𝑎(𝑖), 𝑏(𝑖)

)︁
Here 𝑎(𝑖) is the measure of similarity of point 𝑖 to its own cluster, also called

cohesion. Similarly, 𝑏(𝑖) is the dissimilarity of point 𝑖 from points in other clusters,

also called as separation.

For each point 𝑖 in the cluster 𝐶𝑖,

𝑎(𝑖) = 1
|𝐶𝑖| − 1

∑︁
𝑗𝜖𝐶𝑖,𝑖 ̸=𝑗

𝑑(𝑖, 𝑗)

and
𝑏(𝑖) = min

𝑘 ̸=𝑖

1
|𝐶𝑘|

∑︁
𝑗𝜖𝐶𝑘

𝑑(𝑖, 𝑗)

where 𝑑(𝑖, 𝑗) is the Euclidean distance between points 𝑖 and 𝑗.

12

CHAPTER 3

Related Work

There has been much research in the domain of malware detection and classifi-

cation already. This chapter will discuss some of the previous attempts at malware

classification, and we can broadly categorize them as machine learning-based and

characteristics-based.

3.1 Classification using Structure and Behavior of Malware

The earliest malware detection strategies have relied on the visible characteristics

of malware, like their structure or behavior. These characteristics are usually dependent

on how well the malware code is written and whether code obfuscation has been used.

The strategies are further discussed in detail below.

3.1.1 Structure Control Flow

A control flow graph is the representation of the execution path a program might

take. The research demonstrated in [22] successfully classified malware by using

approximate matching of control flow graphs. They first analyze the entropy of

malware binary to check if it has undergone code packing transformation. If packed,

application-level emulation reveals hidden code on unpacking. String analysis then

builds signatures for the control flow graphs. These signatures are compared with

the existing malware database using string edit distances. A similarity between flow

graphs is obtained and categorized accordingly based on a threshold value. The

research has also worked successfully on variants of known malware.

3.1.2 Behavioral Malware Classification

To build more potent malware, malicious users sometimes make variants of

existing malware using code obfuscation, thus confusing antivirus tools that depend on

malware signatures. Even though malware variants of the same family have different

signatures, they have common characteristic behavioral patterns due to their shared

13

heritage and function, as suspected by the authors of [23]. They built an automatic

classification system trained on observed similarities in behavioral features extracted

from malware variants in a family and then used decision trees to classify the malware.

3.2 Malware Classification using Machine Learning techniques

There have been various advances in the machine learning field, and malware

detection and classification have not been held back in these advances. In [16], the

author has demonstrated several applications of different machine learning techniques

to real-world problems like malware detection and classification.

3.2.1 Support Vector Machines (SVM)

Support Vector Machines [16] are supervised machine learning models used for

classification that can analyze and recognize patterns. SVMs use kernel function

to map training data into a high-dimensional space and makes the problem linearly

separable. After training, the model can classify new data into one of the categories.

The research combines each malware scoring technique with SVM: HMMs, simple

substitution distance (SSD), and opcode graph similarity (OGS) [24]. SVM was

applied on scores obtained from each of these methods. They found the results to be

more robust than using the individual techniques.

3.2.2 Naïve Bayes

Naïve Bayes classifier is a probabilistic method that has been used for a long

time in various information retrieval and text classification systems [25]. The classifier

stores the prior probability of each class of malware, 𝑃 (𝐶𝑖), and the conditional

probability of each attribute value given a class, 𝑃 (𝑣𝑖|𝐶𝑖) [16]. These probabilities

are determined by training the classifier on the dataset. Then Bayes rule is used to

compute the posterior probability of each class given an unknown instance and return

its predicted class of malware.

14

3.2.3 Random Forest

A random forest is a machine learning method used for classification and regression.

It is an ensemble of decision trees, where each tree determines the class label of an

unlabeled instance [11]. Each tree is divided at each node, taking into account random

features. In the end, the model selects the most chosen class amongst all trees. More

number of trees can mean better accuracy, but random forest also tends to overfit on

data [16].

3.2.4 Nearest Neighbor using VILO

In [26], researchers talk about VILO, a rapid-learning nearest neighbor algorithm

for familial malware classification problem. VILO is a three-fold technique. First,

𝑁 -perm is a robust version of 𝑛-gram of size 𝑛 over malware opcodes. TF-IDF or

term frequency and inverse document frequency is the vectorization method used to

weigh malware features. TF-IDF makes the technique efficient for variants of known

malware. Finally, the nearest neighbor algorithm is used on these feature vectors and

feature weights to classify malware according to their families.

3.2.5 𝐾-means Clustering with HMM

One proposed approach of malware classification is using clustering algorithms,

which is the basis of research in [4]. The authors have coupled 𝑘-means clustering with

HMM. First, the malware dataset was divided into 5 parts, out of which 4 parts were

used to train HMMs, and then the fifth part scored against these models. The score

is calculated as the log likelihood per opcode (LLPO) in a malware. They repeated

the entire process for 7 different malware compilers so that each malware sample had

seven scores, forming a tuple. These tuples were then used as the dataset for 𝑘-means

clustering with experiments ranging from 𝑘 = 2 to 𝑘 = 15.

15

CHAPTER 4

Experiments and Results
4.1 Dataset

The list of malware families used in the experiments can be found in Table 2.

Opcodes were previously extracted from the malware families and used as input for

the experiments in this project. There are total 5,997 such files which are unequally

distributed amongst the malware families.

Table 2: Malware Distribution in the dataset

Family Samples
adload 56
bho 135
bifrose 305
buzus 6
ceeinject 665
delfinject 278
dorkbot 145
hotbar 8
hupigon 169
ircbot 34
obfuscator 272
rbot 34
vbinject 1342
vobfus 655
winwebsec 1160
zbot 322
zegost 411
Total 5997

4.2 Setup

In this project, we had opcodes data from previously disassembled malware files.

All other experiments are performed on a single host machine. Following are the

specifications of the host machine:

• Model: Lenovo Yoga 730

16

• Processor: Intel Core i7-8550U CPU @ 1.8 Ghz, 2.0 Ghz

• RAM: 16.0 GB

• Operating System: Windows 10 Home 64-bit

4.3 Training HMMs

As the whole project is based on finding distance between the HMMs, the training

phase involves building HMMs on separate files in the dataset. For the experiments,

we used all of the files mentioned above for training HMMs. The HMMs were trained

on the opcode sequences in each of these files. The opcodes are treated as observation

symbols for the HMM. We set the length of the observation sequence 𝑇 = 10, 000

throughout the experiments. Each HMM is trained for up to 50 iterations, and

the model is generated. We repeat this process for a varying number of states 𝑁 ,

from 2 to 4. All the models, denoted as 𝜆 = (𝐴, 𝐵, 𝜋) [15], are stored as individual

comma-separated values (CSV) files for future use.

4.4 Clustering Algorithms

Instead of training HMMs on some of the dataset and scoring test data on these

HMMs, we directly compare the HMMs and use the comparison for clustering them

into respective families.

4.4.1 The Naïve 𝐾-means Method

We create a single CSV file with each malware opcode file denoted as a row,

followed by the 𝐴 and 𝐵 matrices. To achieve this, we convert the 𝑛 × 𝑛 𝐴 matrix to

a 1 × 𝑛2 vector and 𝑛 × 𝑚 𝐵 matrix to a 1 × 𝑛𝑚 vector and then store them to the

CSV. Then we use these 𝑛2 + 𝑛𝑚 columns as the features in the 𝑘-means clustering

algorithm. Since 𝑘-means depends on Euclidean distances between data points, we

intrinsically compute distances between the models. Here we do not account for when

the states would have flipped in the HMMs.

17

The following example can demonstrate this. Consider the HMMs for two malware

files given by 𝜆1 = (𝐴1, 𝐵1, 𝜋1) and 𝜆2 = (𝐴2, 𝐵2, 𝜋2). Let 𝑁 = 2 and 𝑀 = 30. Thus

we can give the matrices as follows:

𝐴1 =
[︃
𝑎111 𝑎112
𝑎121 𝑎122

]︃
(1)

and
𝐴2 =

[︃
𝑎211 𝑎212
𝑎221 𝑎222

]︃
(2)

Similarly,
𝐵1 =

[︃
𝑏111 𝑏112 · · · 𝑏1130
𝑏121 𝑏122 · · · 𝑏1230

]︃
(3)

and
𝐵2 =

[︃
𝑏211 𝑏212 · · · 𝑏2130
𝑏221 𝑏222 · · · 𝑏2230

]︃
(4)

Table 3: Malware Samples in CSV for Naïve 𝐾-means Method

malware family 𝑎11 · · · 𝑎22 𝑏11 · · · 𝑏130 𝑏21 · · · 𝑏230
file1 adload 𝑎111 · · · 𝑎122 𝑏111 · · · 𝑏1130 𝑏121 · · · 𝑏1230
file2 adload 𝑎211 · · · 𝑎222 𝑏211 · · · 𝑏2130 𝑏221 · · · 𝑏2230

Then the CSV file is given as the Table 3. The column 𝑎11 corresponds to the

element in first row and first column of any matrix 𝐴. Similarly, 𝑎22 denotes element

in second row and second column of the matrix 𝐴. Consequently, 𝑏11 and 𝑏130 are

elements of any matrix 𝐵 in first row, and first and thirteeth column respectively;

𝑏21 and 𝑏230 are elements in that 𝐵 matrix in the second row, and first and thirteeth

column respectively. We did this for all HMMs that were obtained from the malware

opcodes. All the columns of 𝐵 matrix in this CSV are given as feature vector input

for the naïve 𝑘-means clustering algorithm with Euclidean distance metric as given in

Chapter 2. The process was repeated for values of 𝑁 from 2 to 4, and for all values of

𝑘 from 2 to 15. We began by finding the optimal 𝑘 using the elbow method discussed

in Chapter 2 and did not expect to get a sharp elbow as our 𝑘-means is naïve. Figure

3 shows the graph obtained for our elbow method.

18

Figure 3: Elbow graph for the Naïve 𝑘-means

4.4.2 The 𝐾-medoids Method with Matrix Euclidean Distance

In another experiment, we compare the HMMs directly without converting the

𝐵 matrices to CSV features, again using Euclidean distance as given in Chapter 2.

However, we have used 𝑘-medoids clustering algorithm, which is a slight variation of

the 𝑘-means algorithm, as discussed in Chapter 2. This method takes into account

the flipping of states when computing HMMs.

Consider the two malware samples, 𝜆1 = (𝐴1, 𝐵1, 𝜋1) and 𝜆2 = (𝐴2, 𝐵2, 𝜋2), from

above. Again, 𝑁 = 2 and 𝑀 = 30, and we do not consider this method for values of

𝑁 other than 2. This time, consider the 𝐵 matrix row-wise. We can then give the

vector
𝑏1 = (𝑏11, 𝑏12)

where 𝑏11 is first row of 𝐵1 and 𝑏12 is the second row and 𝑏1 is a vector of length 2𝑀 .

Similarly,
𝑏2 = (𝑏21, 𝑏22)

is a vector where 𝑏21 is first row of 𝐵2 and 𝑏22 is the second row. We then computed

19

distance between these 2 HMMs as 𝑑(𝑏1, 𝑏2). Another vector

𝑏3 = (𝑏22, 𝑏21)

accounts for the flipped states of HMM. We give the distance between them as

𝑑(𝑏1, 𝑏3). The minimum of these distances is considered as the distance between the

two models.

The next step is to compute a distance correlation matrix to use in 𝑘-medoids

clustering algorithm. For this example, consider two more malware samples in the

system, with HMMs as 𝜆3 = (𝐴3, 𝐵3, 𝜋3) and 𝜆4 = (𝐴4, 𝐵4, 𝜋4). The 𝐵 matrices can

be given as follows:
𝐵3 =

[︃
𝑏311 𝑏312 · · · 𝑏3130
𝑏321 𝑏322 · · · 𝑏3230

]︃
(5)

and
𝐵4 =

[︃
𝑏411 𝑏412 · · · 𝑏4130
𝑏421 𝑏422 · · · 𝑏4230

]︃
(6)

Table 4: Distance Correlation Matrix computed for 𝐾-medoids Method

B 𝐵1 𝐵2 𝐵3 𝐵4
𝐵1 0 𝑑(𝐵1, 𝐵2) 𝑑(𝐵1, 𝐵3) 𝑑(𝐵1, 𝐵4)
𝐵2 𝑑(𝐵2, 𝐵1) 0 𝑑(𝐵2, 𝐵3) 𝑑(𝐵2, 𝐵4)
𝐵3 𝑑(𝐵3, 𝐵1) 𝑑(𝐵3, 𝐵2) 0 𝑑(𝐵3, 𝐵4)
𝐵4 𝑑(𝐵4, 𝐵1) 𝑑(𝐵4, 𝐵2) 𝑑(𝐵4, 𝐵3) 0

Then the distance correlation matrix can be given as Table 4. Each distance is

given by following the method above, considering flipping of the states of HMM. This

distance correlation matrix can be given as input data to the 𝑘-medoids clustering

algorithm, which is discussed in Chapter 2. The experiment was repeated for all

values of 𝑘 from 2 to 15. 𝐾 different medoids are chosen randomly from the samples

in the dataset for each of these 𝑘 clusters.

4.4.3 Cluster Entropy

To check how good our clusters are, we calculated the entropies of each cluster

in each of the experiments. Entropy is a general measure of the randomness of a

20

cluster [16]. Lower entropy within a cluster and higher entropy between clusters are

indicative of good clustering.

Consider 𝑋1, 𝑋2, . . . , 𝑋𝑛 as data points in a dataset, and let 𝐶1, 𝐶2, . . . , 𝐶𝐾 be

the clusters. Let 𝑀𝑗 be the number of elements in cluster 𝐶𝑗. Then we can define

𝑀𝑖𝑗 as the number of elements of type 𝑖 in cluster 𝐶𝑗, with 𝑖 = 1, 2, . . . , 𝑙 where 𝑙

is the number of different families or types of data in the dataset. We can give the

probability of data of type 𝑖 in cluster 𝑗 as 𝑝𝑖𝑗 = 𝑀𝑖𝑗/𝑀𝑗. Hence the entropy of the

cluster 𝐶𝑗 is given as
𝐸𝑗 = −

𝑙∑︁
𝑖=1

𝑝𝑖𝑗 log(𝑝𝑖𝑗)

Then the weighted intra-cluster entropy is given as

𝐸 = 1
𝑛

𝐾∑︁
𝑖=1

𝑀𝑗𝐸𝑗

4.5 Discussion on Results

We obtained results as graphs for both the experiments mentioned above and

have discussed them in detail in the following sections.

4.5.1 𝐾-means

As we know from Table 2, the families Vbinject, Winwebsec [10], Vobfus, Ceeinject

and Zegost are most dominant in the clustering. This is best visible in Figure 4, which

depicts clustering with 𝑘 = 8 for 4 hidden states of HMM.

Clearly, cluster 3 contains all the samples from the Vobfus family. Winwebsec

family is dominant in cluster 0, but also constitutes clusters 2 and 7. Even though

Vbinject family has most samples, they fail to be categorized in a single cluster. Most

of Ceeinject family is found in cluster 2, with traces in clusters 5 and 7. Similarly,

Zegost family is distributed between clusters 0, 2, 5 and 7.

The other families in the dataset are Zbot, Adload, Bho, Bifrose, Buzus, Delfinject,

Dorkbot, Hotbar, Hupigon, Ircbot, Obfuscator and Rbot. Their contribution to the

21

Figure 4: Stacked column chart for 8 clusters and 4 HMM hidden states with 𝑘-means

Figure 5: Stacked column chart for 17 families and 4 HMM hidden states with 𝑘-means

dataset is insignificant and is indicated accordingly in Figure 4.

From Figure 4, we also obtained the graph in Figure 5. Clearly, Winwebsec

family has most malware samples from Cluster 0 and Vobfus family has malware

samples from Cluster 3. Ceeinject family derives most malware samples from Cluster

2. Vbinject, despite being the dominant family, has malware samples divided roughly

22

equally divided in all clusters.

Table 5: Clustering Entropy for 𝑘-means Method with all 𝑘’s and 𝑁 = 2
Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 E
𝑘 = 2 2.292 1.665 - - - - - - - - - - - - - 1.841
𝑘 = 3 2.255 1.532 0.947 - - - - - - - - - - - - 1.558
𝑘 = 4 0.846 1.525 1.909 2.212 - - - - - - - - - - - 1.760
𝑘 = 5 0.810 2.196 2.113 1.159 1.905 - - - - - - - - - - 1.724
𝑘 = 6 2.136 1.544 1.939 1.139 2.189 0.683 - - - - - - - - - 1.711
𝑘 = 7 1.564 1.545 1.155 2.210 1.809 0.646 1.805 - - - - - - - - 1.626
𝑘 = 8 1.813 2.197 0.664 1.657 1.612 1.147 2.080 1.440 - - - - - - - 1.555
𝑘 = 9 1.913 2.204 1.614 1.913 0.641 1.152 1.581 1.864 1.390 - - - - - - 1.524
𝑘 = 10 1.166 1.953 1.686 1.516 0.639 1.328 2.142 2.291 1.327 1.716 - - - - - 1.667
𝑘 = 11 1.166 2.000 1.584 2.143 1.343 1.254 1.685 1.511 1.705 0.352 2.279 - - - - 1.322
𝑘 = 12 2.267 1.309 2.294 1.497 1.386 1.671 1.101 1.717 1.509 2.072 1.964 0.606 - - - 1.585
𝑘 = 13 2.243 2.082 1.681 1.343 1.969 1.530 1.529 1.082 0.376 1.084 1.425 2.221 1.692 - - 1.731
𝑘 = 14 1.601 1.471 2.291 1.481 1.125 2.293 0.393 0.302 1.710 1.452 1.167 1.975 1.701 0.893 - 1.450
𝑘 = 15 1.767 2.218 0.362 2.138 2.338 1.432 2.183 1.863 1.552 1.674 1.050 1.567 0.910 1.344 0.433 1.514

Table 6: Clustering Entropy for 𝑘-means Method with all 𝑘’s and 𝑁 = 3
Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 E
𝑘 = 2 1.609 2.306 - - - - - - - - - - - - - 2.110
𝑘 = 3 0.818 1.430 2.288 - - - - - - - - - - - - 1.482
𝑘 = 4 2.233 0.737 1.980 1.500 - - - - - - - - - - - 1.782
𝑘 = 5 1.721 1.941 1.128 0.677 2.288 - - - - - - - - - - 1.376
𝑘 = 6 0.682 2.263 1.355 1.562 1.237 1.895 - - - - - - - - - 1.273
𝑘 = 7 0.647 1.880 2.426 1.279 1.262 2.216 1.287 - - - - - - - - 1.384
𝑘 = 8 2.021 2.236 1.233 1.775 0.850 1.614 1.357 0.876 - - - - - - - 1.531
𝑘 = 9 0.978 2.005 1.800 0.605 2.147 1.318 2.323 2.382 1.389 - - - - - - 1.748
𝑘 = 10 2.348 2.350 0.846 1.918 1.242 0.757 1.163 0.993 1.690 2.312 - - - - - 1.717
𝑘 = 11 1.825 2.145 2.324 0.744 1.168 1.292 1.027 1.895 2.356 0.762 1.669 - - - - 1.422
𝑘 = 12 2.007 2.333 1.240 0.763 2.305 1.363 1.095 2.315 2.010 0.992 1.143 1.057 - - - 1.591
𝑘 = 13 1.383 2.286 1.287 1.631 1.027 2.007 0.966 2.000 1.110 2.328 0.751 0.806 2.330 - - 1.609
𝑘 = 14 0.810 2.322 1.559 1.024 1.195 1.770 2.350 1.274 1.912 1.133 2.122 1.011 0.946 2.249 - 1.397
𝑘 = 15 1.982 1.235 0.941 2.285 2.332 1.292 1.029 1.135 1.399 1.232 2.313 1.998 0.319 2.118 1.137 1.414

Table 7: Clustering Entropy for 𝑘-means Method with all 𝑘’s and 𝑁 = 4
Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 E
𝑘 = 2 2.297 1.607 - - - - - - - - - - - - - 1.801
𝑘 = 3 0.786 2.281 1.363 - - - - - - - - - - - - 1.792
𝑘 = 4 1.926 1.223 0.682 2.297 - - - - - - - - - - - 1.201
𝑘 = 5 1.256 1.920 1.214 2.299 0.662 - - - - - - - - - - 1.308
𝑘 = 6 1.269 2.130 2.273 1.272 0.632 1.808 - - - - - - - - - 1.388
𝑘 = 7 2.182 1.262 2.093 0.622 1.220 1.799 2.255 - - - - - - - - 1.526
𝑘 = 8 1.501 1.286 2.058 0.633 1.212 2.302 1.112 2.321 - - - - - - - 1.779
𝑘 = 9 2.232 0.702 2.276 1.318 1.768 1.211 2.049 1.175 0.967 - - - - - - 1.495
𝑘 = 10 0.627 2.333 1.158 1.490 2.344 2.302 2.050 1.140 1.215 1.947 - - - - - 1.579
𝑘 = 11 1.147 2.306 2.143 0.735 1.719 0.882 2.088 1.176 1.262 1.245 2.260 - - - - 1.447
𝑘 = 12 2.318 1.686 1.171 2.267 1.229 2.263 0.833 1.232 2.062 1.086 2.051 0.691 - - - 1.573
𝑘 = 13 0.864 1.098 2.014 1.915 0.732 2.304 1.143 2.286 1.218 1.419 1.174 2.327 2.339 - - 1.579
𝑘 = 14 1.205 2.294 0.431 1.442 2.309 1.995 1.127 1.614 2.272 1.235 1.085 0.937 1.796 1.911 - 1.604
𝑘 = 15 2.299 2.264 1.848 1.155 2.269 0.646 0.826 1.254 1.066 2.041 1.651 2.012 1.222 1.074 1.013 1.507

We also computed the entropies for all the clusters, for all values of 𝑘 from 2 to

15, and all values of 𝑁 from 2 to 4. Table 5 contains the entropies for 𝑁 = 2 while

23

Table 6 for 𝑁 = 3. In Table 7, which shows the entropies for 𝑁 = 4, Cluster 3 has an

entropy of 0.633 for 𝑘 = 8, and from Figure 4 we know Cluster 3 shows the most clear

cluster of samples from Vobfus family. Whereas, Cluster 7 has the highest entropy,

meaning it is the most impure cluster. This is evident in Figure 4. All the entropies

in Tables 5, 6 and 7 can be verified as corresponding to the graphs in Appendix A.

The best result for each experiment from 𝑘 = 2 to 𝑘 = 15 is written in bold, while the

best result for each cluster is placed in a box.

𝐾-means clustering algorithm has a major drawback of choosing the number of

clusters 𝑘 before using the algorithm. We have performed experiments for 𝑘 = 2 to

𝑘 = 15 for HMM hidden states 𝑁 from 2 to 4 and discussed the best case at 𝑘 = 8.

All other results can be found in Appendix A and Appendix C.

4.5.2 𝐾-medoids

As we also experimented with 𝑘-medoids algorithm, we also discuss the results

for it here. Figure 6 depicts clustering for 𝑘 = 8 and 2 hidden states of HMM.

Figure 6: Stacked column chart for 8 clusters and 2 HMM hidden states with 𝑘-
medoids

24

Figure 7: Stacked column chart for 17 families and 2 HMM hidden states with 𝑘-
medoids

The results are much more divided in this experiment. No single cluster contains

all the files from one family. Vobfus family is divided into Cluster 2 and 4. Vbinject

family is also divided into all clusters except 2 and 4. Winwebsec family is present in

all clusters, but is dominant in Cluster 7. Ceeinject family is dominant in Cluster 5

but is also spread into other clusters.

We can confirm these deductions by obtaining the graph in Figure 7. As pointed

out earlier, Winwebsec family is derived from Cluster 7, while Vofbus family has most

samples from Cluster 2.

We again computed the entropies for all the clusters, for all values of 𝑘 from 2

to 15. These are given in Table 8 below. Cluster 2 has an entropy of 0.664 and in

Figure 6 cluster 2 shows the most clear cluster of samples from Vobfus family. Cluster

1 has the highest entropy indicating the most impure cluster. We can verify all the

entropies in Table 8 as corresponding to the graphs in Appendix B. The best result

25

Table 8: Clustering Entropy for 𝑘-medoids Method with all 𝑘’s and 𝑁 = 2
Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 E
𝑘 = 2 1.860 2.315 - - - - - - - - - - - - - 2.187
𝑘 = 3 1.709 2.223 1.438 - - - - - - - - - - - - 1.959
𝑘 = 4 2.195 0.749 2.217 1.367 - - - - - - - - - - - 1.889
𝑘 = 5 1.898 1.611 2.203 1.061 0.753 - - - - - - - - - - 1.915
𝑘 = 6 2.290 0.516 1.543 1.971 1.331 1.503 - - - - - - - - - 1.800
𝑘 = 7 1.996 1.862 1.202 1.540 2.239 1.639 0.502 - - - - - - - - 1.852
𝑘 = 8 2.210 2.253 0.441 1.431 1.162 2.002 1.055 1.846 - - - - - - - 1.760
𝑘 = 9 1.889 1.186 1.431 1.541 2.257 1.039 1.055 1.852 1.995 - - - - - - 1.794
𝑘 = 10 2.195 1.832 0.888 0.282 1.508 1.057 1.431 1.929 1.104 2.239 - - - - - 1.732
𝑘 = 11 2.347 1.518 0.282 1.346 1.960 1.896 2.205 0.888 1.036 1.925 1.085 - - - - 1.732
𝑘 = 12 1.879 1.060 1.954 1.494 1.764 2.265 1.489 1.508 0.474 0.888 1.104 1.813 - - - 1.696
𝑘 = 13 2.090 2.343 1.426 1.109 1.928 0.986 0.888 1.607 0.373 1.528 1.892 1.887 0.259 - - 1.651
𝑘 = 14 2.422 1.064 1.636 0.109 1.813 0.685 0.517 0.282 1.897 1.550 1.912 1.494 1.104 1.483 - 1.629
𝑘 = 15 2.322 1.801 1.413 1.585 0.847 1.876 1.060 1.031 1.752 0.164 0.995 0.109 1.783 0.663 2.193 1.663

for each experiment from 𝑘 = 2 to 𝑘 = 15 is written in bold, while the best result for

each cluster is placed in a box.

𝐾-medoids faces the issue of choosing number of clusters 𝑘, similar to 𝑘-means.

We have performed experiments for 𝑘 = 2 to 𝑘 = 15 for HMM hidden states 𝑁 = 2

and discussed the best case at 𝑘 = 8. All other results can be found in Appendix B.

Figure 8: Comparison of Weighted Entropies as a function of 𝑘

We also compared the results of all our experiments by comparing the weighted

intra-cluster entropies for all values of 𝑘 from 2 to 15, and displayed the result as a

graph given the Figure 8. It shows different trends for each experiment. All the naïve

𝑘-means experiments have fluctuating weighted entropies as the number of clusters

change. 𝐾-means with 𝑁 = 2 has a dip in the weighted entropy for 𝑘 = 11, while for

26

𝑁 = 3 the dip is observed at 𝑘 = 6. For 𝑁 = 4, the weighted entropy is lowest at

𝑘 = 4. However, we do not find spikes in the 𝑘-medoids method, although there is a

downward trend in the entropy with increasing number of clusters.

27

CHAPTER 5

Conclusion and Future Work

In this project, we proposed and evaluated clustering algorithms for classifying

about 5997 malware opcode samples. Instead of scoring the samples using hidden

Markov models, we only computed the models on every malware sample. We then

used the 𝐵 matrices of each model as the difference between models and used it

to calculate distances. We used these 𝐵 matrices in two experiments. The first

experiment converted the 𝐵 matrices to a dataframe and directly used with a 𝑘-

means clustering algorithm. The second experiment used custom distance calculation

between 𝐵 matrices of models and used it with a 𝑘-medoids clustering algorithm. We

performed experiments for varying numbers of clusters from 𝑘 = 2 to 𝑘 = 15. We

then plotted stacked column charts for all the cases. The case 𝑘 = 8 looks to be the

best in both these experiments. The distinction between families was clearly visible in

the clusters in this case. The results showed that HMMs are effective in classifying

malware automatically.

We calculated the distance for the clustering algorithms using the Euclidean

distance formula in this project. Other methods like Minkowski distance or cosine

distance can be explored in future work. Another idea for future work would be to

compute the distance between HMMs using the technique given in [14].

We used two types of centroid selection for clustering. We have computed the

cluster centroids by calculating the mean of the respective clusters for experiments

with the 𝑘-means method. For the 𝑘-medoids method, the centroids were randomly

selected from within the data. Spherical 𝑘-means clustering, expectation-maximization

(EM) clustering, and Density-based Spatial Clustering of Applications with Noise

(DBSCAN) can also be explored as clustering options in the future.

Some of the malware samples are very different than others. We can filter these

28

out from the dataset for much accurate clustering in the future. Also, in the future,

we can train the HMMs only for the dominant malware families in the dataset to see

how the clusters are affected.

29

LIST OF REFERENCES

[1] A. Vasudevan, ‘‘MalTRAK: Tracking and eliminating unknown malware,’’ in
2008 Annual Computer Security Applications Conference (ACSAC), 2008, pp.
311--321.

[2] J. Aycock, Computer viruses and malware. Springer Science & Business Media,
September 2006, vol. 22.

[3] M. Stamp, Information Security: Principles and Practice. Wiley, 2011.

[4] C. Annachhatre, T. H. Austin, and M. Stamp, ‘‘Hidden Markov
models for malware classification,’’ Journal of Computer Virology and
Hacking Techniques, vol. 11, no. 2, pp. 59--73, 2015. [Online]. Available:
https://doi-org.libaccess.sjlibrary.org/10.1007/s11416-014-0215-x

[5] ‘‘2021 cyber security statistics,’’ 2021. [Online]. Available: https://purplesec.us/
resources/cyber-security-statistics/

[6] ‘‘Win32/zbot,’’ 2017. [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FZbot

[7] ‘‘Zeus (malware),’’ 2010. [Online]. Available: https://en.wikipedia.org/wiki/
Zeus_(malware)

[8] ‘‘Backdoor computing attacks,’’ 2021. [Online]. Available: https://www.
malwarebytes.com/backdoor/

[9] ‘‘What is spyware? and how to remove it,’’ 2019. [Online]. Available: https://us.
norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html

[10] ‘‘Win32/winwebsec,’’ 2017. [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Win32%
2fWinwebsec

[11] H. El Merabet and A. Hajraoui, ‘‘A survey of malware detection techniques
based on machine learning,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1, pp.
366--373, 2019.

[12] I. Firdausi, A. Erwin, A. S. Nugroho, et al., ‘‘Analysis of machine learning
techniques used in behavior-based malware detection,’’ in 2010 Second Int.
Conf. on Advances in Computing, Control, and Telecommunication Technologies.
IEEE, 2010, pp. 201--203.

30

https://doi-org.libaccess.sjlibrary.org/10.1007/s11416-014-0215-x
https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FZbot
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2FZbot
https://en.wikipedia.org/wiki/Zeus_(malware)
https://en.wikipedia.org/wiki/Zeus_(malware)
https://www.malwarebytes.com/backdoor/
https://www.malwarebytes.com/backdoor/
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html
https://us.norton.com/internetsecurity-how-to-catch-spyware-before-it-snags-you.html
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fWinwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32%2fWinwebsec

[13] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, ‘‘DL4MD: A deep learning
framework for intelligent malware detection,’’ in Proceedings of the International
Conference on Data Science (ICDATA), 2016, p. 61.

[14] L. R. Rabiner, ‘‘A tutorial on hidden Markov models and selected applications in
speech recognition,’’ Proceedings of the IEEE, vol. 77, no. 2, pp. 257--286, 1989.

[15] M. Stamp, ‘‘A revealing introduction to hidden Markov models,’’ pp. 26--56, 2004.
[Online]. Available: http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

[16] M. Stamp, Introduction to Machine Learning with Applications in Information
Security. CRC Press, 2017.

[17] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc., 1988.

[18] J. LZP, ‘‘What is the difference between hierarchical and partitional clustering?’’
2019. [Online]. Available: https://lzpdatascience.medium.com/what-is-the-
difference-between-hierarchical-and-partitional-clustering-edc0d488c7c4

[19] A. Moore, ‘‘K -means and Hierarchical Clustering,’’ 2001. [Online]. Available:
http://www.cs.cmu.edu/afs/cs/user/awm/web/tutorials/kmeans11.pdf

[20] P. J. Rousseeuw and L. Kaufman, ‘‘Clustering by means of medoids,’’ https:
//wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-
clusteringbymedoids-l1norm-1987.pdf, 1987.

[21] K. Mahendru, ‘‘How to Determine the Optimal k for k-means?’’ 2019. [Online].
Available: https://medium.com/analytics-vidhya/how-to-determine-the-optimal-
k-for-k-means-708505d204eb

[22] S. Cesare and Y. Xiang, ‘‘Classification of malware using structured control flow,’’
in Proceedings of the Eighth Australasian Symposium on Parallel and Distributed
Computing-Volume 107, 2010, pp. 61--70.

[23] R. Canzanese, M. Kam, and S. Mancoridis, ‘‘Toward an automatic, online behav-
ioral malware classification system,’’ in 2013 IEEE 7th International Conference
on Self-Adaptive and Self-Organizing Systems. IEEE, 2013, pp. 111--120.

[24] T. Singh, F. Di Troia, V. A. Corrado, T. H. Austin, and M. Stamp, ‘‘Support
Vector Machines and malware detection,’’ Journal of Computer Virology and
Hacking Techniques, vol. 12, no. 4, pp. 203--212, 2016.

[25] P. Thompson, ‘‘Looking back: On relevance, probabilistic indexing and infor-
mation retrieval,’’ Information processing & management, vol. 44, no. 2, pp.
963--970, 2008.

31

http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf
https://lzpdatascience.medium.com/what-is-the-difference-between-hierarchical-and-partitional-clustering-edc0d488c7c4
https://lzpdatascience.medium.com/what-is-the-difference-between-hierarchical-and-partitional-clustering-edc0d488c7c4
http://www.cs.cmu.edu/afs/cs/user/awm/web/tutorials/kmeans11.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb
https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb

[26] A. Lakhotia, A. Walenstein, C. Miles, and A. Singh, ‘‘VILO: a rapid learning
nearest-neighbor classifier for malware triage,’’ Journal of Computer Virology
and Hacking Techniques, vol. 9, no. 3, pp. 109--123, 2013.

32

APPENDIX A

Graphs for Naïve 𝐾-means Method

Figure A.9: Stacked column chart for 2 clusters and 2 hidden states in HMM

Figure A.10: Stacked column chart for 2 clusters and 3 hidden states in HMM

33

Figure A.11: Stacked column chart for 2 clusters and 4 hidden states in HMM

Figure A.12: Stacked column chart for 3 clusters and 2 hidden states in HMM

34

Figure A.13: Stacked column chart for 3 clusters and 3 hidden states in HMM

Figure A.14: Stacked column chart for 3 clusters and 4 hidden states in HMM

35

Figure A.15: Stacked column chart for 4 clusters and 2 hidden states in HMM

Figure A.16: Stacked column chart for 4 clusters and 3 hidden states in HMM

36

Figure A.17: Stacked column chart for 4 clusters and 4 hidden states in HMM

Figure A.18: Stacked column chart for 5 clusters and 2 hidden states in HMM

37

Figure A.19: Stacked column chart for 5 clusters and 3 hidden states in HMM

Figure A.20: Stacked column chart for 5 clusters and 4 hidden states in HMM

38

Figure A.21: Stacked column chart for 6 clusters and 2 hidden states in HMM

Figure A.22: Stacked column chart for 6 clusters and 3 hidden states in HMM

39

Figure A.23: Stacked column chart for 6 clusters and 4 hidden states in HMM

Figure A.24: Stacked column chart for 7 clusters and 2 hidden states in HMM

40

Figure A.25: Stacked column chart for 7 clusters and 3 hidden states in HMM

Figure A.26: Stacked column chart for 7 clusters and 4 hidden states in HMM

41

Figure A.27: Stacked column chart for 8 clusters and 2 hidden states in HMM

Figure A.28: Stacked column chart for 8 clusters and 3 hidden states in HMM

42

Figure A.29: Stacked column chart for 8 clusters and 4 hidden states in HMM

Figure A.30: Stacked column chart for 9 clusters and 2 hidden states in HMM

Figure A.31: Stacked column chart for 9 clusters and 3 hidden states in HMM

43

Figure A.32: Stacked column chart for 9 clusters and 4 hidden states in HMM

Figure A.33: Stacked column chart for 10 clusters and 2 hidden states in HMM

Figure A.34: Stacked column chart for 10 clusters and 3 hidden states in HMM

44

Figure A.35: Stacked column chart for 10 clusters and 4 hidden states in HMM

Figure A.36: Stacked column chart for 11 clusters and 2 hidden states in HMM

Figure A.37: Stacked column chart for 11 clusters and 3 hidden states in HMM

45

Figure A.38: Stacked column chart for 11 clusters and 4 hidden states in HMM

Figure A.39: Stacked column chart for 12 clusters and 2 hidden states in HMM

Figure A.40: Stacked column chart for 12 clusters and 3 hidden states in HMM

46

Figure A.41: Stacked column chart for 12 clusters and 4 hidden states in HMM

Figure A.42: Stacked column chart for 13 clusters and 2 hidden states in HMM

Figure A.43: Stacked column chart for 13 clusters and 3 hidden states in HMM

47

Figure A.44: Stacked column chart for 13 clusters and 4 hidden states in HMM

Figure A.45: Stacked column chart for 14 clusters and 2 hidden states in HMM

Figure A.46: Stacked column chart for 14 clusters and 3 hidden states in HMM

48

Figure A.47: Stacked column chart for 14 clusters and 4 hidden states in HMM

Figure A.48: Stacked column chart for 15 clusters and 2 hidden states in HMM

Figure A.49: Stacked column chart for 15 clusters and 3 hidden states in HMM

49

Figure A.50: Stacked column chart for 15 clusters and 4 hidden states in HMM

50

APPENDIX B

Graphs for 𝐾-medoids Method with Matrix Euclidean Distance

Figure B.51: Stacked column chart for 2 clusters and 2 hidden states in HMM

Figure B.52: Stacked column chart for 3 clusters and 2 hidden states in HMM

51

Figure B.53: Stacked column chart for 4 clusters and 2 hidden states in HMM

Figure B.54: Stacked column chart for 5 clusters and 2 hidden states in HMM

52

Figure B.55: Stacked column chart for 6 clusters and 2 hidden states in HMM

Figure B.56: Stacked column chart for 7 clusters and 2 hidden states in HMM

53

Figure B.57: Stacked column chart for 8 clusters and 2 hidden states in HMM

Figure B.58: Stacked column chart for 9 clusters and 2 hidden states in HMM

54

Figure B.59: Stacked column chart for 10 clusters and 2 hidden states in HMM

Figure B.60: Stacked column chart for 11 clusters and 2 hidden states in HMM

Figure B.61: Stacked column chart for 12 clusters and 2 hidden states in HMM

55

Figure B.62: Stacked column chart for 13 clusters and 2 hidden states in HMM

Figure B.63: Stacked column chart for 14 clusters and 2 hidden states in HMM

Figure B.64: Stacked column chart for 15 clusters and 2 hidden states in HMM

56

APPENDIX C

Naïve 𝐾-means Method for HMMs with M = 50

The naïve 𝑘-means clustering experiments were repeated for newly trained HMMs

with 2 hidden states i.e. 𝑁 = 2 and the number of observation symbols 𝑀 was

changed to 50 to include top 50 opcodes over the entire dataset. 92.09 percent of

opcodes are represented in these HMMs. The resulting graphs and entropies of the

clustering experiments are given below.

Figure C.65: Stacked column chart for 2 clusters and 2 hidden states in HMM

These experiments have been compared with kernel 𝑘-means in Appendix D.

57

Figure C.66: Stacked column chart for 3 clusters and 2 hidden states in HMM

Figure C.67: Stacked column chart for 4 clusters and 2 hidden states in HMM

58

Figure C.68: Stacked column chart for 5 clusters and 2 hidden states in HMM

Figure C.69: Stacked column chart for 6 clusters and 2 hidden states in HMM

59

Figure C.70: Stacked column chart for 7 clusters and 2 hidden states in HMM

Figure C.71: Stacked column chart for 8 clusters and 2 hidden states in HMM

Figure C.72: Stacked column chart for 9 clusters and 2 hidden states in HMM

60

Figure C.73: Stacked column chart for 10 clusters and 2 hidden states in HMM

Figure C.74: Stacked column chart for 11 clusters and 2 hidden states in HMM

Figure C.75: Stacked column chart for 12 clusters and 2 hidden states in HMM

61

Figure C.76: Stacked column chart for 13 clusters and 2 hidden states in HMM

Figure C.77: Stacked column chart for 14 clusters and 2 hidden states in HMM

Figure C.78: Stacked column chart for 15 clusters and 2 hidden states in HMM

Figure C.79: Stacked column chart for 16 clusters and 2 hidden states in HMM

62

Figure C.80: Stacked column chart for 17 clusters and 2 hidden states in HMM

Figure C.81: Stacked column chart for 18 clusters and 2 hidden states in HMM

Figure C.82: Stacked column chart for 19 clusters and 2 hidden states in HMM

Figure C.83: Stacked column chart for 20 clusters and 2 hidden states in HMM

63

Figure C.84: Stacked column chart for 21 clusters and 2 hidden states in HMM

Figure C.85: Stacked column chart for 22 clusters and 2 hidden states in HMM

Figure C.86: Stacked column chart for 23 clusters and 2 hidden states in HMM

Figure C.87: Stacked column chart for 24 clusters and 2 hidden states in HMM

64

Figure C.88: Stacked column chart for 25 clusters and 2 hidden states in HMM

65

Table C.9: Clustering Entropy for Euclidean Distance 𝑘-means Method for all 𝑘’s
with 𝑁 = 2 and 𝑀 = 50

C
lu

st
er

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
E

𝑘
=

2
2.

24
7

1.
60

7
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

2.
02

9
𝑘

=
3

1.
71

7
2.

22
6

1.
59

6
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2.

01
4

𝑘
=

4
1.

55
3

1.
89

5
1.

69
5

2.
31

2
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
92

3
𝑘

=
5

1.
89

7
2.

30
9

1.
48

7
1.

69
1

1.
76

5
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

92
0

𝑘
=

6
1.

72
3

2.
24

4
1.

69
9

1.
97

1
2.

20
9

1.
48

8
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
92

9
𝑘

=
7

1.
90

9
1.

91
9

2.
25

4
1.

38
0

1.
63

1
2.

21
6

1.
62

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

89
6

𝑘
=

8
1.

92
7

1.
62

4
1.

61
9

2.
12

2
1.

90
2

2.
11

3
1.

37
5

2.
30

4
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
88

9
𝑘

=
9

2.
08

5
1.

61
9

2.
29

7
0.

35
7

1.
38

7
2.

12
7

1.
87

6
1.

93
7

1.
70

7
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

88
3

𝑘
=

10
1.

94
1

1.
90

9
2.

09
7

1.
58

2
1.

57
5

2.
17

4
1.

39
4

2.
17

6
1.

47
8

1.
95

1
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
88

5
𝑘

=
11

2.
03

9
1.

84
1

1.
64

1
1.

92
1

1.
37

7
1.

88
8

1.
93

4
2.

10
8

2.
30

4
0.

51
0

1.
59

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

87
9

𝑘
=

12
0.

48
5

2.
19

1.
84

4
2.

15
9

1.
83

1.
39

1
1.

94
4

1.
99

9
1.

45
5

1.
66

8
2.

18
9

1.
44

5
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
86

1
𝑘

=
13

0.
36

3
1.

95
7

1.
50

6
2.

13
7

2.
10

8
1.

95
5

2.
12

6
0.

50
2

1.
66

0
1.

47
8

2.
01

0
1.

76
7

1.
20

8
-

-
-

-
-

-
-

-
-

-
-

-
1.

84
6

𝑘
=

14
1.

25
3

1.
89

8
2.

03
5

1.
80

0
1.

94
3

2.
26

4
1.

65
4

0.
50

2
1.

93
7

0.
53

5
1.

59
3

1.
28

5
2.

18
9

1.
47

8
-

-
-

-
-

-
-

-
-

-
-

1.
83

4
𝑘

=
15

1.
40

9
1.

92
5

1.
92

2
1.

66
2

0.
36

3
2.

13
4

2.
18

6
1.

25
1

1.
29

3
0.

48
5

2.
23

0
1.

92
7

1.
90

3
1.

71
3

1.
71

5
-

-
-

-
-

-
-

-
-

-
1.

78
2

𝑘
=

16
1.

44
5

2.
10

8
1.

70
8

1.
67

4
1.

93
8

1.
91

2
2.

13
7

1.
97

8
2.

15
2

0.
34

2
1.

83
8

1.
31

4
0.

48
5

0.
48

3
1.

44
5

1.
25

1
-

-
-

-
-

-
-

-
-

1.
80

7
𝑘

=
17

1.
32

4
1.

93
9

1.
67

2
2.

00
1

2.
20

7
2.

03
9

1.
84

6
1.

47
8

1.
67

5
1.

93
7

1.
24

4
1.

75
2

0.
36

3
0.

47
7

2.
11

8
1.

54
1

1.
90

8
-

-
-

-
-

-
-

-
1.

81
0

𝑘
=

18
1.

90
0

1.
91

3
1.

89
7

2.
14

7
2.

19
1

1.
93

6
1.

71
0

1.
31

6
1.

66
9

2.
17

5
1.

81
1

1.
92

5
1.

24
7

1.
54

1
1.

66
9

0.
50

2
0.

30
2

1.
40

9
-

-
-

-
-

-
-

1.
79

3
𝑘

=
19

0.
39

2
1.

92
4

2.
17

0
1.

30
0

1.
59

7
1.

36
6

2.
19

8
1.

68
2

0.
49

8
1.

70
2

1.
69

3
2.

19
8

1.
24

1
1.

94
8

2.
15

4
1.

47
8

1.
54

1
1.

92
1

1.
88

5
-

-
-

-
-

-
1.

79
6

𝑘
=

20
0.

50
2

1.
93

0
1.

92
6

1.
36

0
1.

67
2

2.
18

7
1.

75
5

2.
01

2
1.

57
8

1.
83

8
0.

37
8

1.
71

3
1.

30
9

2.
20

0
1.

47
8

1.
23

7
1.

36
3

1.
78

3
2.

14
9

1.
92

7
-

-
-

-
-

1.
77

0
𝑘

=
21

1.
72

5
1.

72
4

0.
48

2
1.

29
5

1.
90

9
2.

12
6

1.
68

1
1.

95
6

2.
17

5
1.

65
5

1.
22

0
1.

63
4

1.
54

1
1.

67
1

0.
36

3
1.

52
9

1.
94

1
1.

82
9

1.
33

0
1.

38
6

2.
32

0
-

-
-

-
1.

76
2

𝑘
=

22
2.

18
5

1.
37

2
1.

91
2

1.
69

8
1.

70
3

1.
33

0
1.

70
2

1.
91

9
0.

48
7

2.
10

3
2.

22
4

1.
74

6
1.

50
7

1.
91

5
1.

52
9

0.
36

3
0.

64
0

1.
54

1
1.

27
5

1.
26

5
1.

95
0

2.
04

3
-

-
-

1.
76

3
𝑘

=
23

1.
73

6
1.

92
7

1.
28

5
2.

23
0

2.
21

1
1.

35
5

0.
64

3
2.

01
7

1.
24

9
1.

74
5

1.
91

9
0.

38
3

2.
25

8
1.

90
2

1.
37

2
1.

71
6

1.
33

0
1.

54
1

1.
70

3
1.

52
9

0.
48

7
1.

60
3

1.
87

9
-

-
1.

75
5

𝑘
=

24
1.

87
1

1.
27

3
1.

50
2

1.
70

1
1.

68
6

1.
71

0
1.

96
1

2.
18

8
1.

68
2

1.
52

9
2.

18
9

1.
90

4
1.

95
2

0.
48

2
1.

40
0

2.
12

4
0.

30
3

1.
54

1
1.

07
3

0.
99

2
2.

08
0

0.
48

3
1.

22
0

1.
76

5
-

1.
73

9
𝑘

=
25

1.
40

4
1.

96
0

1.
96

3
1.

67
6

2.
07

2
2.

12
4

0.
36

0
1.

91
3

0.
48

2
1.

71
4

1.
81

4
1.

85
5

1.
30

6
2.

25
0

1.
23

3
2.

28
7

1.
70

2
1.

66
4

1.
44

5
0.

71
9

0.
93

5
1.

46
5

2.
04

3
1.

25
3

1.
54

1
1.

73
7

66

APPENDIX D

Kernel 𝐾-means Method for HMMs with M = 50

The kernel 𝑘-means clustering experiments were repeated for newly trained

HMMs with 2 hidden states i.e. 𝑁 = 2 and the number of observation symbols

𝑀 was changed to 50 to include top 50 opcodes over the entire dataset. Kernel

𝑘-means method involved bootstrapping the matrix Euclidean distance function with

the original 𝑘-means clustering algorithm. The resulting graphs and entropies of the

clustering experiments are given below.

We also compared the results of all our experiments with 50-opcode HMMs,

from both Appendix C and Appendix D by comparing the weighted intra-cluster

entropies for all values of 𝑘 from 2 to 25, and displayed the result as a graph given

the Figure D.113. It shows decreasing trends for both the experiments, with increase

in the number of clusters 𝑘.

Figure D.89: Stacked column chart for 2 clusters and 2 hidden states in HMM

67

Figure D.90: Stacked column chart for 3 clusters and 2 hidden states in HMM

Figure D.91: Stacked column chart for 4 clusters and 2 hidden states in HMM

68

Figure D.92: Stacked column chart for 5 clusters and 2 hidden states in HMM

Figure D.93: Stacked column chart for 6 clusters and 2 hidden states in HMM

69

Figure D.94: Stacked column chart for 7 clusters and 2 hidden states in HMM

Figure D.95: Stacked column chart for 8 clusters and 2 hidden states in HMM

Figure D.96: Stacked column chart for 9 clusters and 2 hidden states in HMM

70

Figure D.97: Stacked column chart for 10 clusters and 2 hidden states in HMM

Figure D.98: Stacked column chart for 11 clusters and 2 hidden states in HMM

Figure D.99: Stacked column chart for 12 clusters and 2 hidden states in HMM

71

Figure D.100: Stacked column chart for 13 clusters and 2 hidden states in HMM

Figure D.101: Stacked column chart for 14 clusters and 2 hidden states in HMM

Figure D.102: Stacked column chart for 15 clusters and 2 hidden states in HMM

72

Figure D.103: Stacked column chart for 16 clusters and 2 hidden states in HMM

Figure D.104: Stacked column chart for 17 clusters and 2 hidden states in HMM

Figure D.105: Stacked column chart for 18 clusters and 2 hidden states in HMM

Figure D.106: Stacked column chart for 19 clusters and 2 hidden states in HMM

73

Figure D.107: Stacked column chart for 20 clusters and 2 hidden states in HMM

Figure D.108: Stacked column chart for 21 clusters and 2 hidden states in HMM

Figure D.109: Stacked column chart for 22 clusters and 2 hidden states in HMM

Figure D.110: Stacked column chart for 23 clusters and 2 hidden states in HMM

74

Figure D.111: Stacked column chart for 24 clusters and 2 hidden states in HMM

Figure D.112: Stacked column chart for 25 clusters and 2 hidden states in HMM

Figure D.113: Comparison of Weighted Entropies as a function of 𝑘

75

Table D.10: Clustering Entropy for Euclidean Distance 𝑘-means Method for all 𝑘’s
with 𝑁 = 2 and 𝑀 = 50

C
lu

st
er

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
E

𝑘
=

2
1.

62
8

2.
28

5
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

2.
08

2
𝑘

=
3

1.
68

4
2.

25
0

1.
81

6
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2.

07
0

𝑘
=

4
1.

95
7

2.
31

0
1.

54
4

2.
18

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
99

7
𝑘

=
5

2.
28

6
1.

51
7

1.
98

0
1.

73
2

1.
79

2
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

97
8

𝑘
=

6
1.

74
3

2.
15

6
1.

45
6

1.
77

3
1.

97
6

2.
29

2
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
95

9
𝑘

=
7

1.
77

2
2.

42
0

1.
68

7
1.

95
4

1.
35

9
2.

10
5

2.
09

8
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

94
1

𝑘
=

8
2.

40
5

1.
73

9
2.

11
8

1.
35

9
1.

69
0

2.
45

3
1.

92
9

1.
51

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
87

8
𝑘

=
9

2.
40

1
2.

32
0

1.
15

8
1.

35
9

1.
74

9
2.

12
7

2.
10

8
1.

69
0

1.
92

9
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

84
3

𝑘
=

10
2.

40
4

1.
59

4
1.

93
0

2.
41

9
1.

74
2

2.
00

1
1.

43
2

2.
28

4
1.

25
5

1.
17

3
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
85

5
𝑘

=
11

1.
81

1
1.

87
2

1.
98

2
2.

34
2

1.
51

9
1.

76
4

2.
10

2
1.

28
1

2.
03

3
2.

17
4

1.
58

0
-

-
-

-
-

-
-

-
-

-
-

-
-

-
1.

89
2

𝑘
=

12
2.

38
6

1.
92

1
1.

99
0

1.
98

5
2.

02
4

1.
40

4
1.

56
2

1.
85

5
1.

58
3

2.
37

1
1.

40
0

0.
44

9
-

-
-

-
-

-
-

-
-

-
-

-
-

1.
83

8
𝑘

=
13

1.
69

2
2.

37
8

1.
29

0
1.

83
3

1.
27

6
2.

02
8

0.
51

5
2.

46
5

1.
97

6
1.

41
4

1.
86

4
1.

97
3

0.
44

9
-

-
-

-
-

-
-

-
-

-
-

-
1.

83
8

𝑘
=

14
2.

16
4

2.
31

9
1.

96
6

1.
68

0
0.

45
1

1.
24

3
1.

14
3

1.
81

7
1.

75
1

2.
11

1
1.

26
5

0.
52

8
2.

23
6

1.
84

6
-

-
-

-
-

-
-

-
-

-
-

1.
80

0
𝑘

=
15

1.
08

5
1.

06
5

0.
44

9
2.

11
5

1.
70

9
1.

88
5

2.
01

8
1.

86
6

1.
70

8
1.

31
6

2.
09

6
1.

18
8

2.
38

7
2.

32
7

1.
30

4
-

-
-

-
-

-
-

-
-

-
1.

81
4

𝑘
=

16
2.

04
2

0.
54

9
2.

02
7

0.
51

5
2.

00
4

2.
26

5
1.

85
4

1.
00

4
2.

01
7

1.
89

1
1.

64
7

1.
26

0
1.

56
9

1.
22

6
2.

28
7

2.
11

8
-

-
-

-
-

-
-

-
-

1.
80

6
𝑘

=
17

1.
60

0
1.

66
2

2.
28

3
0.

44
5

1.
30

2
2.

09
8

1.
83

2
2.

23
7

1.
44

3
1.

97
6

0.
51

5
1.

36
4

1.
99

0
1.

85
5

1.
84

4
1.

00
3

1.
97

2
-

-
-

-
-

-
-

-
1.

78
6

𝑘
=

18
2.

29
2

1.
19

1
1.

97
6

0.
45

9
2.

30
1

2.
00

5
1.

81
7

1.
52

9
1.

30
5

1.
45

9
1.

81
4

2.
09

8
1.

36
4

1.
67

5
1.

85
5

1.
00

3
0.

51
5

1.
86

7
-

-
-

-
-

-
-

1.
78

1
𝑘

=
19

1.
72

9
1.

86
2

1.
34

5
1.

90
7

0.
52

8
1.

20
5

1.
91

3
1.

86
3

2.
24

5
2.

02
7

2.
10

0
1.

54
0

1.
68

1
0.

42
9

2.
26

1
1.

24
4

1.
97

8
2.

23
4

1.
43

6
-

-
-

-
-

-
1.

78
3

𝑘
=

20
2.

05
5

0.
96

1
1.

30
5

1.
84

0
2.

09
6

1.
96

1
1.

51
5

1.
45

4
0.

51
5

1.
19

1
1.

97
8

1.
36

4
2.

00
7

1.
67

5
2.

14
5

0.
45

5
2.

17
2

2.
22

7
2.

28
5

1.
86

3
-

-
-

-
-

1.
76

8
𝑘

=
21

1.
92

5
1.

20
5

0.
44

2
2.

02
7

1.
68

2
2.

10
1

1.
01

6
1.

45
2

1.
92

1
0.

52
8

1.
56

0
1.

71
5

1.
97

3
1.

85
5

2.
19

5
1.

24
4

1.
68

1
1.

36
4

2.
25

3
2.

25
0

0.
48

3
-

-
-

-
1.

74
3

𝑘
=

22
1.

59
9

0.
52

8
1.

92
1

0.
97

9
1.

97
3

1.
20

5
1.

68
1

1.
90

6
1.

68
2

1.
01

2
2.

25
0

1.
40

0
1.

71
5

1.
24

4
2.

02
7

0.
44

9
1.

85
5

2.
10

1
2.

19
5

1.
56

0
2.

25
3

0.
48

3
-

-
-

1.
74

2
𝑘

=
23

1.
55

5
1.

61
3

2.
23

8
1.

98
3

1.
36

4
1.

62
3

1.
86

3
0.

99
0

0.
50

0
1.

87
3

1.
19

9
1.

25
5

0.
49

4
1.

40
3

1.
30

3
1.

99
2

2.
23

6
2.

21
5

1.
85

0
2.

11
1

1.
92

1
0.

48
3

1.
67

6
-

-
1.

72
0

𝑘
=

24
2.

18
8

1.
91

3
1.

76
5

1.
62

3
1.

98
3

2.
02

5
1.

40
8

1.
78

3
1.

25
7

2.
22

5
0.

90
9

1.
86

3
1.

29
7

0.
50

0
2.

20
5

1.
20

7
1.

40
0

1.
38

7
0.

49
3

2.
07

2
1.

73
2

0.
44

9
1.

52
3

1.
01

2
-

1.
68

6
𝑘

=
25

1.
16

8
0.

49
3

2.
01

1
1.

40
8

2.
21

2
1.

25
7

1.
76

4
1.

91
3

1.
20

7
1.

01
2

2.
09

4
1.

83
1

1.
68

0
0.

46
9

2.
31

2
1.

38
7

1.
62

3
1.

26
7

2.
03

6
2.

13
0

1.
91

7
1.

24
0

1.
52

3
1.

82
5

0.
50

0
1.

70
3

76

	Hidden Markov Model-based Clustering for Malware Classification
	Recommended Citation

	Introduction
	Background
	Malware
	Virus
	Trojan Horse
	Backdoor
	Spyware and Adware

	Malware Detection Techniques
	Signature Based Detection
	Anomaly Based Detection
	Machine Learning Based Detection
	Hidden Markov Model Based Detection

	Hidden Markov Models
	Notation
	The Three Problems
	The Solutions

	Clustering
	K-means Clustering Algorithm
	K-medoids Clustering Algorithm
	Cluster Quality

	Related Work
	Classification using Structure and Behavior of Malware
	Structure Control Flow
	Behavioral Malware Classification

	Malware Classification using Machine Learning techniques
	Support Vector Machines (SVM)
	Naïve Bayes
	Random Forest
	Nearest Neighbor using VILO
	K-means Clustering with HMM

	Experiments and Results
	Dataset
	Setup
	Training HMMs
	Clustering Algorithms
	The Naïve K-means Method
	The K-medoids Method with Matrix Euclidean Distance
	Cluster Entropy

	Discussion on Results
	K-means
	K-medoids

	Conclusion and Future Work
	LIST OF REFERENCES
	Graphs for Naïve K-means Method
	Graphs for K-medoids Method with Matrix Euclidean Distance
	Naïve K-means Method for HMMs with M = 50
	Kernel K-means Method for HMMs with M = 50

