
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2021

Data Augmentation with Malware as Images Data Augmentation with Malware as Images

Aditi Walia
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Walia, Aditi, "Data Augmentation with Malware as Images" (2021). Master's Projects. 1009.
DOI: https://doi.org/10.31979/etd.v8ty-mhxt
https://scholarworks.sjsu.edu/etd_projects/1009

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1009?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1009&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Data Augmentation with Malware as Images

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Aditi Walia

May 2021

© 2021

Aditi Walia

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Data Augmentation with Malware as Images

by

Aditi Walia

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2021

Dr. Mark Stamp Department of Computer Science

Dr. Nada Attar Department of Computer Science

Dr. Fabio Di Troia Department of Computer Science

ABSTRACT

Data Augmentation with Malware as Images

by Aditi Walia

Machine learning and deep learning techniques for malware detection and classifi-

cation play an important role in the mitigation of cybersecurity threats. However,

such techniques are often limited by a lack of data. Previous research has shown

promising classification results by treating malware executables as images. In this

research, we consider data augmentation using noise addition, geometric transforma-

tions, and Auxiliary Classifier Generative Adversarial Networks (AC-GAN) for data

augmentation of malware images. We train convolution neural networks (CNN) to

verify that our generated images accurately model the original malware samples.

ACKNOWLEDGMENTS

I am immensely thankful to Dr. Mark Stamp for his constant guidance, and

support throughout this research. His knowledge has played a huge role in the shaping

of this project. The Friday zoom meetings and Monday updates have played a huge

role in making sure the work was on track, and that all the queries were addressed.

I am thankful to Dr. Nada Attar and Dr. Fabio Di Troia for being a part of

the committee for this research. I’m grateful for their time, feedback, and support. I

would also like to thank all my professors and faculty members at SJSU for sharing

their knowledge and for helping me in this journey.

Finally, I want to thank my family and friends for all their love and support.

Without them I wouldn’t have made it this far.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Related Work . 3

2.2 Techniques . 6

2.2.1 Data Augmentation . 6

2.2.2 Convolutional Neural Network 6

2.2.3 Auxiliary Classifier Generative Adversarial Network 8

3 Implementation . 10

3.1 Dataset . 10

3.1.1 Sample Images . 12

3.2 Programming details . 12

3.3 CNN Hyper parameters . 13

4 Results . 15

4.1 Exe to grayscale image experiments 15

4.1.1 Resizing using python-resize-image 16

4.1.2 Fixed size images using fixed number of bytes 17

4.2 Augmentation . 19

4.2.1 Augmentation using Skimage 19

4.2.2 Augmentation using Poisson Noise 20

4.2.3 Augmentation using Laplacian Noise 24

vi

vii

4.3 ACGAN . 25

5 Conclusion and Future Work . 31

LIST OF REFERENCES . 32

APPENDIX

Appendix . 36

LIST OF TABLES

1 Malware families in dataset . 11

2 Software details . 14

3 CNN model parameters . 14

4 Experiment results Skimage Augmentation keeping samples count
14,000 . 20

5 Experiment results Skimage Augmentation keeping real samples
count 14,000 . 22

6 Experiment results Skimage Augmentation keeping real samples
count 2000 . 22

7 Experiment results Poisson Noise keeping samples count 14,000 . 24

8 Experiment results Poisson Augmentation keeping real samples
14,000 count . 24

9 Experiment results Poisson Augmentation keeping real samples
count 2000 . 25

10 Experiment results Laplacian Noise keeping samples count 14,000 27

11 Experiment results Laplace Augmentation keeping real samples
count 14,000 . 27

12 Experiment results Laplace Augmentation keeping real samples
count 2000 . 28

13 Experiment results AC-GAN keeping samples count 14,000 . . . 28

14 Experiment results AC-GAN keeping real samples count 14,000 . 30

15 Experiment results AC-GAN keeping real samples count 2000 . . 30

viii

LIST OF FIGURES

1 CNN architecture [1] . 7

2 GAN, C-GAN, AC-GAN architecture comparison [2] 9

3 Sample images alureon . 13

4 Sample images fakerean . 13

5 CNN model accuracy original grayscale dataset 17

6 CNN model loss original grayscale dataset 17

7 CNN confusion matrix original grayscale dataset 18

8 CNN confusion matrix 40 classes Skimage augmentation 21

9 CNN confusion matrix 40 classes Poisson Noise augmentation . . 23

10 CNN confusion matrix 40 classes Laplace augmentation 26

11 CNN confusion matrix 40 classes AC-GAN augmentation 29

A.12 CNN model accuracy 700 samples per family for training 36

A.13 CNN model loss 700 samples per family for training 36

A.14 CNN model confusion matrix 700 samples per family for training 37

A.15 CNN model accuracy dataset 32×32 created using 1024 bytes . . 38

A.16 CNN model loss Dataset 32×32 created using 1024 bytes 38

A.17 CNN confusion matrix Dataset 32×32 created using 1024 bytes . 39

A.18 CNN model accuracy dataset 64×64 created using 4096 bytes . . 40

A.19 CNN model loss dataset 64×64 created using 4096 bytes 40

A.20 CNN confusion matrix dataset 64×64 created using 4096 bytes . 41

ix

x

A.21 CNN model accuracy dataset 64×64 created using
python-resize-image . 42

A.22 CNN model loss dataset 64×64 created using python-resize-image 42

A.23 CNN confusion matrix dataset 64×64 created using
python-resize-image . 43

A.24 CNN model confusion matrix Skimage augmented dataset with 0
real images and 14,000 fake images 44

A.25 CNN model confusion matrix Skimage augmented dataset with
7000 real images and 7000 fake images 45

A.26 CNN model confusion matrix Poisson augmented dataset with 0
real images and 14,000 fake images 46

A.27 CNN model confusion matrix Poisson augmented dataset with 7000
real images and 7000 fake images 47

A.28 CNN model confusion matrix Laplace augmented dataset with 0
real images and 14,000 fake images 48

A.29 CNN model confusion matrix Laplace augmented dataset with 7000
real images and 7000 fake images 49

A.30 CNN model confusion matrix AC-GAN augmented dataset with 0
real images and 14,000 fake images 50

A.31 CNN model confusion matrix AC-GAN augmented dataset with
7000 real images and 7000 fake images 51

CHAPTER 1

Introduction

Malware is malicious software, that is, software that is designed to cause damage

to systems. There are different types of malware, including viruses, trojans, and

worms [3]. The famous WannaCry [4] malware targeted Microsoft Windows machines

and encrypted important data. To obtain the decryption key, a ransom had to be

paid in the form of Bitcoin. Attacks like this make it clear that malware classification

and identification is imperative for cybersecurity.

Malware classification helps us understand how a particular malware affects

systems and also what steps can be taken to protect against it. Classification techniques

are often limited by a lack of data needed to train and test models, which can result in

weaknesses, such as overfitting [5]. There are many data augmentation techniques that

have proven successful in generating data that closely matches the original dataset.

Previous research in the malware domain has focused on a wide variety of features,

including opcode sequences, byte 𝑛-grams, system calls, and so on. Recently, image-

based malware analysis has been shown to be highly effective. Therefore, in this paper,

we consider data augmentation for malware images. We experiment with Geometric

Transformations using Skimage and also work with deep learning technique for data

augmentation called Auxiliary Classifier Generative Adversarial Network (AC-GAN).

We experiment with multiple malware image datasets containing significant

numbers of images over a large number of families. To determine the effectiveness

of our augmentation techniques, we apply Convolutional Neural Networks (CNN) to

distinguish between our (fake) generated samples and the original (real) samples in

the same family. We experiment with a variety of hyperparameters and find that

CNNs cannot accurately distinguish the real and fake samples, which provides strong

evidence that our data augmentation is generating highly realistic samples.

1

The remainder of this paper is organized as follows. In Chapter 2, we present

various background topics, including previous research, techniques and dataset used

in this research. Chapter 4 contains our experiments and results. The final Chapter 5

provides our conclusions and includes a discussion of possible directions for future

work.

2

CHAPTER 2

Background

In this section, we discuss previous work done in the area of malware classification,

especially in terms of images. We also go over previous works in the field of data

augmentation and highlight how having more data to train our models is immensely

useful. Next, we give a brief summary of the dataset and also go over different

techniques used in this research including - Data Augmentation, AC-GANs, and

classification techniques like CNNs.

2.1 Related Work

There are different types of malware families like Winwebsec, Rbot, etc. Often

malware from a family have distinct characteristics specific to that family. Ekta

Gandotra et al. [5] in their paper highlight that knowing which family a malware is

from plays a vital role in mitigating potential attacks if countermeasures for the family

that the malware belongs to are already known. Here, we discuss some previous work

related to malware classification.

Ekta Gandotra et al. [5] in their paper highlight that there are three main ways

of classifying malware which includes static analysis, dynamic analysis, and using

machine learning and deep learning.

In static analysis, malware is analyzed without running it. Some common

techniques used under static analysis are based on extracting features like opcode

frequency distribution, string signatures, and byte sequences. Islam et al. [6] in their

paper work with malware classification using string and function feature selection.

Shultz et al. [7] in their research work with byte sequences as features. The problem

with this type of analysis is that malware executables’ code can be easily obfuscated.

In dynamic analysis, malware is analyzed while it is running in a controlled

sandbox environment by making use of different monitoring tools like Procmon and

3

Wireshark. Some previous research work with call graphs where the vertices represent

functions, and edges correspond to the calls made to the functions. Another approach

was proposed by Tobiyama et al. [8] in their paper which involves running malwares

in a controlled environment and analyzing the generated log files. Malware developers

have however been very successful in making malwares behave differently in controlled

sandbox environments thereby making such techniques ineffective.

When it comes to machine learning and deep learning, techniques like Support

Vector Machines, Random Forest, CNN have been used for malware classification.

With the rise in the number of malware attacks, researchers find it easier to use

machine learning and deep learning techniques as opposed to manual analysis of

malware.

Santos et al. [9] used TF-IDF (Term Frequency Inverse Document Frequency)

to create feature vectors from binary files but this involved disassembly for opcode

extraction. Kolter et al. [10] in their paper used Naive Bayes, SVMs with boosting

which they found was the best in malware classification. They made use of n-grams

of byte codes to create feature vectors. This technique works well but multiple

combinations of n-grams are difficult to evaluate. Coming to deep learning methods,

Saxe et al. [11, 12] in their paper provided a technique for static malware analysis

using feedforward deep neural networks. The problem with these approaches is that

feature extraction is tedious.

Conti et al. [13] in their paper first proposed a taxanomy for binary fragments

and their visualization. For malwares the images are representative of four major

sections. The code is contained in the .text section and .data consists of initialized

and uninitialized code. The .rsrc consists of resources used by the executable.

Nataraj et al. [14] classified malware by converting executable binary files into

gray-scale bitmap images. They then applied an abstract representation technique

4

to compute texture features to classify malware.We build on the idea of converting

malware binary files to grayscale images and then work on data augmentation tech-

niques, and classification on our dataset using CNN which is widely used for image

based classification.

For data augmentation with images, there are a lot of popular approaches which

fall under three major categories as stated in [12]. These include basic image manipu-

lations like geometric transformations and noise addition, deep learning approaches

like GANs, and meta learning approaches like AutoAugment.

Odena et al. first came up with a variant of GAN called AC-GAN by making

use of conditional image generation. AC-GAN works well with high resolution images

for training. Like standard GANs, AC-GANs have a discriminator and a generator

model. The discriminator however in case of AC-GANs predicts whether the image

is real or fake as well as which class it belongs to in contrast to GAN discriminator

which just predicts real or fake. We make use of AC-GANs to generate fake malware

images to augment our dataset.

For data augmentation, Catak et al. [15] in their work built on the idea that

malware developers try and evade malware from being flagged by classification

techniques by incorporating noise in the binary files. They worked with 3 channel

images and introduced noise in their dataset to make it resilient to introduction of

noise in the executables. The classification results after introducing Poisson, Laplace

and Gaussian noise looked very promising.

In this paper, we work with noise related augmentation using Poisson and Laplace

noise, Geometric Transformations using SkImage and Deep Learning techniques like

AC-GAN. We evaluate the datasets generated using these techniques by setting CNN

classification on our original un-augmented dataset as baseline.

5

2.2 Techniques

In this section we go over the techniques and terminologies used in this research.

We first go over the idea behind data augmentation. Then we briefly discuss data

augmentation techniques followed by CNN, and AC-GAN.

2.2.1 Data Augmentation

Deep learning models perform better with more data however it is not always

feasible to have enough data to train. Due to limited training data, models are often

prone to overfitting. Data Augmentation is a technique that can be used to create

more data to increase the training dataset and hence deal with overfitting.

Multiple types of data can be augmented like text, audio, images. etc. For

this paper, we first experiment with Poisson and Laplace noise using Python library

imagug and then work Geometric transformations - using Skimage

Poisson noise [16], also called as photon noise or shot noise is caused due to the

quantitative nature of light which cannot be divided into fractional parts. the signal

magnitude is directly related to poisson noise magnitude. Laplacian noise [17] is created

by adding noise from a laplace distribution. Like Poisson noise, it is also statistical

in nature. Imgaug Python library consists of multiple APIs for augmenting images

including arithmetic augmentors AdditiveLaplaceNoise and AdditivePoissonNoise.

Skimage, also known as scikit-image is library which comes with sub-packages

like transform, color which can be used for creating more images from existing dataset.

We also use deep learning technique AC-GAN for our augmentation experiments.

2.2.2 Convolutional Neural Network

CNN is a popular deep learning algorithm when it comes to images. It is used

to identify local structure by assigning importance to aspects in the input image.

Traditional neural networks have fully connected layers but with huge images, the

6

complexity of the models increase. In CNN, we have different layers which are not

fully connected so it performs more efficiently due reduced number of weights and

parameters.

The input image can be of different types like RGB, Grayscale, etc. ConvNet

reduces images in size which makes it easier to process them while preserving the

important aspects of the image.

A CNN layer is primarily composed of Convolution Layer and a Pooling Layer.

The architecture of a vanilla CNN is as describe in Figure 1 .

Convolution Layer also called as Kernel or Filter performs convolution function

using a matrix by going over the input image matrix depending on the stride length.

The convolution function is used to extract features such as edges and colors.

Figure 1: CNN architecture [1]

The Pooling Layer is similar to Convolution Layer but it doesn’t perform learning

and solely focuses on reducing the size of data. There are two types of pooling layers-

Max Pooling and Average Pooling. Max pooling substitutes the pixels covered by the

filter with max among the pixel values. It is helps in reducing the noise in images.

The Average pooling substitutes the pixels covered by the filter with average of the

7

pixel values and is used to smooth the images. The output from the convolution layers

is then flattened and fed to the neural network for classification purpose.

2.2.3 Auxiliary Classifier Generative Adversarial Network

The fundamental behind the working of GANs can be best described by the

analogy of generating more complex random numbers by making some simpler random

numbers go through functional transformations. To find this function, a direct or

indirect training method can be used. In direct training, the difference between true

and generated values is backpropagated. In indirect training, the true and generated

values are fed to a downstream task which optimizes itself and the generator task in a

game like way to achieve generation close to the true values.

GANs make use of indirect training. The downstream task is called a discriminator

task. The discriminator tries to distinguish the real and fake images and the generator

tries to fool the discriminator by generating images as close as possible to the real

samples. The discriminator minimizes the classification error and the generator

maximizes it it.

AC-GAN was developed by researchers from Google. AC-GANs are widely used

to train and generate multi-class family images without any manual intervention.

They are know to provide high quality images as compared to other models.

The underlying architecture is similar to GAN and consists of a generator and

a discriminator. It was build on the idea of a Conditional GAN (C-GAN) wherein

the class label is also provided as an input to the generator which makes the image

generation conditional on the input label. The difference between C-GAN and AC-

GAN is that the discriminator is not provided the class label. The discriminators

distinguishes whether an image is real or fake, and also to predict what class it belongs

to. The difference in architectures is depicted in Figure 2

8

Figure 2: GAN, C-GAN, AC-GAN architecture comparison [2]

9

CHAPTER 3

Implementation

In this chapter, we give an overview of the dataset used for this research. We

also discuss the software and hardware specifications used to run the experiments

explained in Chapter 4

3.1 Dataset

The dataset was acquired from Dang and Stamp [18]. It consists of 26412 samples

from 20 families as listed in Table 1. Samples for Winwebsec, Zbot, and Zeroaccess

families are from the Malicia dataset. The other families’ samples are obtained

from dataset [19]. We briefly go over each of the malware families in the following

paragraphs.

Adload disables proxy settings on windows by downloading an exe file which is

stored remotely [20].

Agent downloads unwanted software from remote server [21].

Alureon makes confidential data like usernames, passwords, and credit card infor-

mation available to hackers and is also capable of corrupting driver files [22].

BHO enables hackers to perform malicious actions on the infected system [23].

CeeInject is obfuscated and can perform any actions. The obfuscation makes it hard

to detect [24].

Cycbot provides hackers control of a system by connecting it to a server and exe-

cuting commands received through it. It also lets attackers perform backdoor

functions [25].

DelfInject steals sensitive information like usernames and passwords [26] .

10

Table 1: Malware families in dataset

Family Type Samples
Adload Trojan Downloader 1050
Agent Trojan 842
Alureon Trojan 1328
BHO Trojan 1176
CeeInject VirTool 894
Cycbot Backdoor 1029
DelfInject VirTool 1146
FakeRean Rogue 1063
Hotbar Adware 1491
Lolyda.BF Password Stealer 915
Obfuscator VirTool 1445
OnLineGames Password Stealer 1293
Rbot Backdoor 1017
Renos Trojan Downloader 1312
Startpage Trojan 1136
Vobfus Worm 926
Vundo Trojan Downloader 1793
Winwebsec Rogue 3651
Zbot Password Stealer 1786
Zeroaccess Trojan Horse 1119
Total 26412

FakeRean fake scans the system and raises false vulnerabilities. It then prompts to

pay to get the system cleaned [27].

Hotbar displays ads on browsers. It can be installed along side different softwares

and through unauthentic websites [28].

Lolyda.BF monitors user’s network activity to steal user names and passwords and

sends them to remote servers [29].

Obfuscator can perform any actions and the obfuscation makes it hard to detect [30].

OnLineGames tries to get login information of online games by injecting dynamic

link library files into processes and capturing keystroke events [31].

11

Rbot like Cycbot provides hackers backdoor access to system [32].

Renos downloads spyware detecting software like SpyDawn and raises false warnings

of the system being infected by spyware and prompts system users to pay money

to fix the issues [33].

Startpage usually change browser’s homepage but can also perform other malicious

actions [34].

Vobfus downloads malware on the system and is usually spread through USB

drives [35].

Vundo uses pop-up ads and can download malware to systems [36].

Winwebsec like Fakerean raises false vulnerability alerts and asks for money to

clean up the system [37].

Zbot steals personal information and can provide hackers access to systems. It is

spread through spam emails [38].

Zeroaccess downloads malware on host machines [39] .

3.1.1 Sample Images

Figures 3 4 shows grayscale images belonging to Alureon and Fakerean. These

images highlight similarities between images of the same family and differences between

images of different families.

3.2 Programming details

The experiments for this research were run on Google Colab Pro and on a

MacBook Pro 2019 system using Jupyter Notebook. The software details are specified

in Table 2 .

12

Figure 3: Sample images alureon

Figure 4: Sample images fakerean

3.3 CNN Hyper parameters

For running our CNN models, we experiment with different hyper parameters.

The best results are obtained with relu activation function, adam optimizer with

learning rate 0.001 and 50 epochs. Table 3 lists all the tested values and and also

which selection of parameters resulted in best accuracy for malware classification.

13

Table 2: Software details

Software Version
OS macOS Mojave

Python Python 3.7.4
Jupyter Notebook 6.0.1

Anaconda Navigator 1.9.12
Google Colab Pro
Tensorflow 2.4.1

PIL 7.1.2

Table 3: CNN model parameters

Parameter Value
Classes 18

Batch Size 32 64 128
Test Size 30%

Kernel Size 3×3, 5×5
Pool size 2×2

Activation function sigmoid, tanh, relu
Optimizer adam
Epochs 50, 100

14

CHAPTER 4

Results

In this section we go over the results of our experiments. We first present results

for experiments conducted to create images from the executable malware files. These

experiments involve experimenting with image size by resizing the original image and

also by creating specific sized images using specific number of bytes from executables

in the dataset.

Next we experiment with multi-class classification using CNN on the original

dataset, and also on a dataset comprising of 700 files from each of the families for

training and 100 files each for testing to create baseline for our next set of experiments

for data augmentation. We chose 700 as number of images for training purpose per

class because Agent has 842 files in our exe dataset. We reserved 100 number of

images per class for testing.

For the experiments related to data augmentation, we first try some basic

geometric transformations using Skimage. We then experiment with Python imgaug

library and introduce Laplacian and Poisson noise in our dataset. We create datasets

with 700 fake malware images for each of the families. We experiment with including

different percentages of the fake images in our training dataset and then validate by

testing against the real dataset comprising of 100 images from each of the families.

Next we experiment with AC-GAN. We follow a similar approach as the previous

augmentations. Using our saved generator model, and we create 700 fake malware

images dataset. We use this to experiment with inclusion of different percentages of

fake data in our dataset to see how our CNN classification accuracy is affected.

4.1 Exe to grayscale image experiments

Our dataset consists of executables from different malware families. The binaries

are stored under folders representing each of the families. For converting the binaries

15

to images, we first walk through the directory and then for each of the files, we read

the file byte by byte and store it in a byte array. Depending on the size of the byte

array, the height and width of the image is determined. For all the experiments, we

work with square images so the height and width are the same for all images in the

dataset.

We use Image module from PIL in Python to create image from byte array. We

create the grayscale image dataset using these images. Next, we run CNN on our

dataset. The train accuracy is 89% and the test accuracy is 78% . Figure 5 shows

the model accuracy and Figure 6 shows the model loss for CNN run on the original

grayscale dataset. Figure 7 shows a plot of the confusion matrix. Obfuscator, Agent

and Rbot are the most misclassified families in this experiment. 35%, 45% and 46%

samples are classified correctly for these families.

For a baseline for our augmentation techniques, we then create a real images

dataset for training using 700 images from each of the families. We use 100 images

each to create a real images dataset for testing purpose. The train accuracy is 87%

and the test accuracy is 76%. Figure A.12 shows the model accuracy and Figure A.13

shows the model loss for CNN run on dataset comprising of 700 samples per family

for training. Figure A.14 shows a plot of the confusion matrix. The most misclassifed

families are again Obfuscator, Rbot, and Agent with only 24%, 44% and 55% samples

getting classified correctly.The drop in the accuracy can be attributed to using less

number of samples compared to the previous experiment. Next we experiment with

different image re-sizing techniques.

4.1.1 Resizing using python-resize-image

We use Python library python-resize-image to resize images. Internally the

library uses Lanczos resampling [40] to resize the image. We create 64×64 sized image

16

Figure 5: CNN model accuracy original grayscale dataset

Figure 6: CNN model loss original grayscale dataset

datasets. With 64×64 dataset the test accuracy is 83% and the train accuracy is

82%. Figure A.21 shows the model accuracy and Figure A.22 shows the model loss.

Figure A.23 shows a plot of the confusion matrix. Compared to the original grayscale

dataset, more percentage of samples are classified correctly.

4.1.2 Fixed size images using fixed number of bytes

Next, we experiment with creating 32×32 and 64×64 sized image datasets using

the initial 1024 and 4096 bytes from the executable files. The test accuracy with

32×32 is 91% and the train accuracy is 90%. Figure A.15 shows the model accuracy

and Figure A.16 shows the model loss. Figure A.17 shows a plot of the confusion

17

Figure 7: CNN confusion matrix original grayscale dataset

matrix. The jump in accuracy could be indicative of some pattern in the initial 1024

bytes which is enough to classify the malware.

With 64×64 dataset test accuracy is 90% and the train accuracy is 95%. Fig-

ure A.18 shows the model accuracy and Figure A.19 shows the model loss. Figure A.20

shows a plot of the confusion matrix.

18

Even though the accuracy improved a lot in both these cases, we lost the visual

patterns which were very evident in the original dataset. We tried to generate AC-

GAN images using these datasets but the generated images looked like noise. Since our

next set of augmentation experiments rely on spatial orientation of features, we chose

to skip using this technique to resize. We finally ended up using Pytorch transforms

to resize our original dataset to 64×64 internally when using AC-GANs.

4.2 Augmentation

For all the augmentation experiments, we set a baseline of creating 700 fakes

per family which results in 14,000 fake samples divided over 20 families. We use the

dataset created using 700 real images per family which results in 14,000 real samples

over 20 families. For testing purpose, we use 100 images from each of the families

which are not part of the real 14,000 image dataset. This provides us 2000 images

for testing divided over 20 families. We train by including permutations of different

percentages of samples from real, and fake datasets. This is explained in more detail

in the next subsections.

4.2.1 Augmentation using Skimage

For the first set of experiments, we create fake images by using Skimage library.

We perform a random operation on the input image out of three specified operations-

Random rotation, random , horizontal flip. We create 700 fake images each for all

the families.

First we create a combined dataset with families like adload, adload fake, winweb-

sec real, winwebsec fake, etc. We run CNN on this dataset to see how distinguishable

our generated images are. The confusion matrix is as listed in Figure 8. We note that

some samples of Hotbar and Startpage are misclassified as the fake Hotbar and fake

Obfuscator class.

19

For the next experiment, for training our CNN. we use different permutations

from real and fake datasets, and observe the results. For example if we use 10% images

from the fake dataset, we pick 10% from each of the malware families for testing

along with 90% from each of the malware families in the real dataset. Tables 4, 5, 6

describe all the the combinations tested for and the percentage of fake samples in the

training dataset along with the precision, recall and F1-scores. From the results, we

can conclude that the fakes are close to real images. We see best improvement in

F1-score when the dataset has less number of samples. The confusion matrices for

7000 real and 7000 fake samples, and 0 real and 14,000 fake samples is provided in

Figure A.25 and Figure A.24 .

Table 4: Experiment results Skimage Augmentation keeping samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.76 0.76 0.76
1400 12,600 0.77 0.76 0.76
2800 11,200 0.76 0.75 0.75
4200 9800 0.76 0.75 0.75
5600 8400 0.74 0.73 0.73
7000 7000 0.75 0.73 0.74
8400 5600 0.74 0.71 0.72
9800 4200 0.72 0.71 0.71
11,200 2800 0.71 0.70 0.70
12,600 1400 0.73 0.71 0.72
14,000 0 0.70 0.68 0.69

4.2.2 Augmentation using Poisson Noise

Next, we add Poisson noise using imgaug library on the input image. We use

lambda parameter value for poisson distribution as 5.0. The recommended values are

between 0.0 to 10.0.

First we create a combined dataset with families like adload, adload fake, winweb-

sec real, winwebsec fake, etc. We run CNN on this dataset to see how distinguishable

20

Figure 8: CNN confusion matrix 40 classes Skimage augmentation

our generated images are. The confusion matrix is as listed in Figure 9. We get the

most indistinguishable images using Poisson noise as is evident from the confusion

matrix.

21

Table 5: Experiment results Skimage Augmentation keeping real samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.78 0.77 0.77
1400 14,000 0.77 0.76 0.76
2800 14,000 0.76 0.76 0.76
4200 14,000 0.78 0.77 0.77
5600 14,000 0.78 0.76 0.77
7000 14,000 0.77 0.75 0.76
8400 14,000 0.77 0.76 0.76
9800 14,000 0.77 0.76 0.76
11,200 14,000 0.78 0.76 0.77
12,600 14,000 0.79 0.77 0.78
14,000 14,000 0.79 0.77 0.78

Table 6: Experiment results Skimage Augmentation keeping real samples count 2000

Fake samples count Real samples count Precision Recall F1-score
0 2000 0.59 0.58 0.58
200 2000 0.57 0.58 0.57
400 2000 0.63 0.61 0.62
600 2000 0.60 0.58 0.59
800 2000 0.62 0.61 0.61
1000 2000 0.63 0.60 0.61
1200 2000 0.65 0.62 0.63
1400 2000 0.61 0.60 0.60
1600 2000 0.64 0.62 0.63
1800 2000 0.62 0.60 0.61
2000 2000 0.66 0.64 0.65

We create 700 fake images each for all the families. For training our CNN, we

use different permutations and observe the results. Tables 7, 8, 9 describe all the the

combinations tested for the percentage of fake samples in the dataset. This experiment

also creates fakes which are very close to the real samples.The confusion matrices for

7000 real and 7000 fake samples, and 0 real and 14,000 fake samples is provided in

Figure A.27 and Figure A.26 .

22

Figure 9: CNN confusion matrix 40 classes Poisson Noise augmentation

23

Table 7: Experiment results Poisson Noise keeping samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.76 0.75 0.75
1400 12,600 0.77 0.76 0.76
2800 11,200 0.76 0.76 0.76
4200 9800 0.77 0.75 0.76
5600 8400 0.74 0.74 0.74
7000 7000 0.75 0.74 0.74
8400 5600 0.72 0.72 0.72
9800 4200 0.75 0.75 0.75
11,200 2800 0.77 0.75 0.76
11,200 1400 0.76 0.76 0.76
14,000 0 0.79 0.77 0.78

Table 8: Experiment results Poisson Augmentation keeping real samples 14,000 count

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.78 0.76 0.77
1400 14,000 0.78 0.76 0.77
2800 14,000 0.77 0.77 0.77
4200 14,000 0.75 0.75 0.75
5600 14,000 0.76 0.74 0.75
7000 14,000 0.77 0.76 0.75
8400 14,000 0.76 0.75 0.75
9800 14,000 0.77 0.76 0.76
11,200 14,000 0.76 0.75 0.76
12,600 14,000 0.77 0.76 0.76
14,000 14,000 0.78 0.77 0.77

4.2.3 Augmentation using Laplacian Noise

Similarly, we apply Laplacian noise using imgaug library on the input image. We

use scale=0.1*255 for the noise. We create 700 fake images each for all the families.

First we create a combined dataset with families like adload, adload fake, winweb-

sec real, winwebsec fake, etc. We run CNN on this dataset to see how distinguishable

our generated images are. The confusion matrix is as listed in Figure 10 . We note that

the images are distinguishable and compared to Poisson noise results, this technique

24

Table 9: Experiment results Poisson Augmentation keeping real samples count 2000

Fake samples count Real samples count Precision Recall F1-score
0 2000 0.62 0.60 0.61
200 2000 0.66 0.62 0.64
400 2000 0.63 0.61 0.62
600 2000 0.65 0.61 0.63
800 2000 0.61 0.61 0.61
1000 2000 0.64 0.62 0.63
1200 2000 0.63 0.62 0.62
1400 2000 0.62 0.60 0.61
1600 2000 0.64 0.64 0.64
1800 2000 0.64 0.63 0.63
2000 2000 0.64 0.63 0.63

didn’t perform well.

For training our CNN, we use different permutations and observe the results.

Tables 10, 11, 12 describe all the the combinations tested for the percentage of fake

samples in the dataset. This experiment also creates fakes which are very close to

the real samples. We again see an increase in F1-score when the inital dataset has

lesser number of training samples and is then augmented.The confusion matrices for

7000 real and 7000 fake samples, and 0 real and 14,000 fake samples is provided in

Figure A.29 and Figure A.28 .

4.3 ACGAN

Next, we train AC-GAN generator and discriminator, and then generate 700

fake samples for each of the family. First we create a combined dataset with families

like adload, adload fake, winwebsec real, winwebsec fake, etc. We run CNN on this

dataset to see how distinguishable our generated images are. The confusion matrix is

as listed in Figure 11.

For the next experiment, for training our CNN, we use different permutations

and observe the results. Tables 13, 14, 15 describe all the the combinations tested for

25

Figure 10: CNN confusion matrix 40 classes Laplace augmentation

the percentage of fake samples in the dataset. The introduction of these fake samples

actually skews the classifier. The more the number of fakes are added, the lower the

classification accuracy is. The confusion matrices for 7000 real and 7000 fake samples,

26

Table 10: Experiment results Laplacian Noise keeping samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.77 0.76 0.76
1400 12,600 0.76 0.76 0.76
2800 11,200 0.76 0.75 0.75
4200 9800 0.75 0.74 0.74
5600 8400 0.75 0.74 0.74
7000 7000 0.75 0.74 0.74
8400 5600 0.73 0.73 0.73
9800 4200 0.76 0.75 0.65
11,200 2800 0.74 0.73 0.73
12,600 1400 0.77 0.75 0.76
14,000 0 0.77 0.76 0.76

Table 11: Experiment results Laplace Augmentation keeping real samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.76 0.75 0.75
1400 14,000 0.76 0.76 0.76
2800 14,000 0.78 0.76 0.77
4200 14,000 0.75 0.75 0.75
5600 14,000 0.77 0.76 0.76
7000 14,000 0.75 0.75 0.75
8400 14,000 0.77 0.75 0.76
9800 14,000 0.77 0.76 0.76
11,200 14,000 0.76 0.75 0.75
12,600 14,000 0.77 0.77 0.77
14,000 14,000 0.76 0.75 0.75

and 0 real and 14,000 fake samples is provided in Figure A.31 and Figure A.30 .

27

Table 12: Experiment results Laplace Augmentation keeping real samples count 2000

Fake samples count Real samples count Precision Recall F1-score
0 2000 0.59 0.58 0.58
200 2000 0.63 0.61 0.62
400 2000 0.62 0.60 0.61
600 2000 0.62 0.60 0.61
800 2000 0.64 0.61 0.61
1000 2000 0.63 0.63 0.63
1200 2000 0.63 0.61 0.62
1400 2000 0.63 0.62 0.62
1600 2000 0.62 0.61 0.61
1800 2000 0.64 0.64 0.64
2000 2000 0.65 0.63 0.64

Table 13: Experiment results AC-GAN keeping samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.77 0.76 0.76
1400 12,600 0.76 0.75 0.75
2800 11,200 0.71 0.70 0.70
4200 9800 0.75 0.73 0.74
5600 8400 0.70 0.70 0.70
7000 7000 0.70 0.68 0.69
8400 5600 0.66 0.64 0.65
9800 4200 0.63 0.60 0.61
11,200 2800 0.58 0.57 0.57
12,600 1400 0.52 0.47 0.49
14,000 0 0.24 0.07 0.11

28

Figure 11: CNN confusion matrix 40 classes AC-GAN augmentation

29

Table 14: Experiment results AC-GAN keeping real samples count 14,000

Fake samples count Real samples count Precision Recall F1-score
0 14,000 0.77 0.76 0.76
1400 14,000 0.76 0.75 0.75
2800 14,000 0.76 0.76 0.76
4200 14,000 0.75 0.74 0.74
5600 14,000 0.75 0.74 0.74
7000 14,000 0.77 0.75 0.76
8400 14,000 0.73 0.73 0.73
9800 14,000 0.73 0.72 0.72
11,200 14,000 0.75 0.73 0.74
12,600 14,000 0.74 0.73 0.73
14,000 14,000 0.73 0.72 0.72

Table 15: Experiment results AC-GAN keeping real samples count 2000

Fake samples count Real samples count Precision Recall F1-score
0 2000 0.60 0.58 0.59
200 2000 0.58 0.57 0.57
400 2000 0.59 0.58 0.58
600 2000 0.56 0.55 0.55
800 2000 0.61 0.59 0.60
1000 2000 0.61 0.57 0.59
1200 2000 0.58 0.56 0.57
1400 2000 0.58 0.56 0.57
1600 2000 0.58 0.56 0.57
1800 2000 0.57 0.55 0.56
2000 2000 0.57 0.55 0.56

30

CHAPTER 5

Conclusion and Future Work

Malware classification is imperative for mitigation when it comes to malware

related attacks. The classification models are however often limited by the lack of

data. Previous research had worked on malware as images for classification and also

on data augmentation. The best classification accuracy through our vanilla CNN

model was 91% with 64×64 images however we lost spatial features by picking up

just the initial 4096 bytes. With the non-augmented dataset using original grayscale

images, the best accuracy was 78%

We explored techniques like Noise addition, Random flip and also deep learning

technique AC-GAN. We were able to generate images closes to the real ones using

Poisson Noise. WIth AC-GAN we were able to create fakes which skew up CNN

classification when added to the dataset. This can be used by malware hackers to

poison datasets. We propose to make the classifier strong by including such fakes in

our dataset. With the other techniques, we achieved precision and recall of around

70% irrespective the number of fake in the training dataset because of the similarity

in the fakes.

In terms of future work, we can experiment with conversion of executable files

to three channel images. We can also work on stabilizing our AC-GAN model to

generate images close to fakes and also experiment with 128×128 sized images. We

can also experiment with augmentation techniques like AutoAugment and explore

other noise additions to enhance our classifiers.

31

LIST OF REFERENCES

[1] V. H. Phung, E. J. Rhee, et al., ‘‘A high-accuracy model average ensemble of
convolutional neural networks for classification of cloud image patches on small
datasets,’’ Applied Sciences, vol. 9, no. 21, p. 4500, 2019.

[2] A. Mino and G. Spanakis, ‘‘Logan: Generating logos with a generative adversarial
neural network conditioned on color,’’ in 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). IEEE, 2018, pp. 965--970.

[3] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, ‘‘Learning and clas-
sification of malware behavior,’’ in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2008, pp.
108--125.

[4] ‘‘Wannacry ransomware attack,’’ Apr 2021. [Online]. Available: https:
//en.wikipedia.org/wiki/WannaCry_ransomware_attack

[5] E. Gandotra, D. Bansal, and S. Sofat, ‘‘Malware analysis and classification: A
survey,’’ Journal of Information Security, vol. 05, pp. 56--64, 01 2014.

[6] R. Islam, R. Tian, L. Batten, and S. Versteeg, ‘‘Classification of malware based
on string and function feature selection,’’ in 2010 Second Cybercrime and Trust-
worthy Computing Workshop. IEEE, 2010, pp. 9--17.

[7] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, ‘‘Data mining methods for
detection of new malicious executables,’’ in Proceedings 2001 IEEE Symposium
on Security and Privacy. S&P 2001. IEEE, 2000, pp. 38--49.

[8] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘‘Malware
detection with deep neural network using process behavior,’’ in 2016 IEEE
40th annual computer software and applications conference (COMPSAC), vol. 2.
IEEE, 2016, pp. 577--582.

[9] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, ‘‘Opcode sequences as
representation of executables for data-mining-based unknown malware detection,’’
Information Sciences, vol. 231, pp. 64--82, 2013.

[10] J. Z. Kolter and M. A. Maloof, ‘‘Learning to detect malicious executables in the
wild,’’ in Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2004, pp. 470--478.

32

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

[11] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection using two
dimensional binary program features,’’ in 2015 10th International Conference on
Malicious and Unwanted Software (MALWARE). IEEE, 2015, pp. 11--20.

[12] C. Shorten and T. M. Khoshgoftaar, ‘‘A survey on image data augmentation for
deep learning,’’ Journal of Big Data, vol. 6, no. 1, p. 60, 2019.

[13] G. Conti, S. Bratus, A. Shubina, A. Lichtenberg, R. Ragsdale, R. Perez-Alemany,
B. Sangster, and M. Supan, ‘‘A visual study of primitive binary fragment types,’’
White Paper, Black Hat USA, 2010.

[14] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware images:
visualization and automatic classification,’’ in Proceedings of the 8th international
symposium on visualization for cyber security, 2011, pp. 1--7.

[15] F. O. Catak, J. Ahmed, K. Sahinbas, and Z. H. Khand, ‘‘Data augmentation
based malware detection using convolutional neural networks,’’ PeerJ Computer
Science, vol. 7, p. e346, 2021.

[16] ‘‘Poisson.’’ [Online]. Available: https://en.wikipedia.org/wiki/Shot_noise

[17] ‘‘Laplacian.’’ [Online]. Available: https://en.wikipedia.org/wiki/Additive_noise_
mechanisms

[18] D. Dang, F. Di Troia, and M. Stamp, ‘‘Malware classification using long short-
term memory models,’’ arXiv preprint arXiv:2103.02746, 2021.

[19] P. Prajapati and M. Stamp, ‘‘An empirical analysis of image-based learning
techniques for malware classification,’’ in Malware Analysis Using Artificial
Intelligence and Deep Learning. Springer, 2020, pp. 411--435.

[20] ‘‘Trojandownloader:win32/adload.’’ [Online]. Available: https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=TrojanDownloader%3AWin32%2FAdload

[21] ‘‘Trojandownloader:win32/agent.’’ [Online]. Available: https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=TrojanDownloader:Win32/Agent&ThreatID=14992

[22] ‘‘Win32/alureon.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/Alureon

[23] ‘‘Trojan:win32/bho.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/
BHO&threatId=-2147364778

33

https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/Additive_noise_mechanisms
https://en.wikipedia.org/wiki/Additive_noise_mechanisms
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3AWin32%2FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3AWin32%2FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader%3AWin32%2FAdload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Agent&ThreatID=14992
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Alureon
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778

[24] ‘‘Virtool:win32/ceeinject.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%
3AWin32%2FCeeInject

[25] ‘‘Win32/cycbot.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/Cycbot&threatId=

[26] ‘‘Pws:win32/delfinject.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/
DelfInject&threatId=-2147241365

[27] ‘‘Win32/fakerean.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/FakeRean

[28] ‘‘Adware:win32/hotbar.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Adware:
Win32/Hotbar&threatId=6204

[29] ‘‘Pws:win32/lolyda.bf.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%
2FLolyda.BF

[30] ‘‘Win32/obfuscator.’’ [Online]. Available: https://www.microsoft.com/en-us/
wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&
threatId=

[31] ‘‘Pws:win32/onlinegames.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%
2FOnLineGames

[32] ‘‘Win32/rbot.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=

[33] ‘‘Trojandownloader:win32/renos,.’’ [Online]. Available: https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=TrojanDownloader:Win32/Renos&threatId=16054

[34] ‘‘Trojan:win32/startpage.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/
Startpage&threatId=15435

[35] ‘‘Win32/vobfus.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=

[36] ‘‘Win32/vundo.’’ [Online]. Available: https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=

34

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Cycbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Cycbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=- 2147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=- 2147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/DelfInject&threatId=- 2147241365
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/FakeRean
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId= 6204
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId= 6204
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Adware:Win32/Hotbar&threatId= 6204
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FLolyda.BF
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Obfuscator&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Rbot&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId= 15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId= 15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/Startpage&threatId= 15435
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vobfus&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Vundo&threatId=

[37] ‘‘Win32/winwebsec.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec

[38] ‘‘Pws:win32/zbot.’’ [Online]. Available: https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&
threatId=-2147368817

[39] ‘‘Trojan.zeroaccess.’’ [Online]. Available: https://www.symantec.com/security-
center/writeup/2011-071314-0410-99

[40] ‘‘Lanczos.’’ [Online]. Available: https://en.wikipedia.org/wiki/Lanczos_
resampling#:~:text=Lanczos%20resampling%20is%20typically%20used,or%
20rotate%20a%20digital%20image.

35

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Win32/Winwebsec
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS:Win32/Zbot&threatId=-2147368817
https://www.symantec.com/security-center/writeup/2011- 071314-0410-99
https://www.symantec.com/security-center/writeup/2011- 071314-0410-99
https://en.wikipedia.org/wiki/Lanczos_resampling#:~:text=Lanczos%20resampling%20is%20typically%20used,or%20rotate%20a%20digital%20image.
https://en.wikipedia.org/wiki/Lanczos_resampling#:~:text=Lanczos%20resampling%20is%20typically%20used,or%20rotate%20a%20digital%20image.
https://en.wikipedia.org/wiki/Lanczos_resampling#:~:text=Lanczos%20resampling%20is%20typically%20used,or%20rotate%20a%20digital%20image.

APPENDIX

Appendix

Figure A.12: CNN model accuracy 700 samples per family for training

Figure A.13: CNN model loss 700 samples per family for training

36

Figure A.14: CNN model confusion matrix 700 samples per family for training

37

Figure A.15: CNN model accuracy dataset 32×32 created using 1024 bytes

Figure A.16: CNN model loss Dataset 32×32 created using 1024 bytes

38

Figure A.17: CNN confusion matrix Dataset 32×32 created using 1024 bytes

39

Figure A.18: CNN model accuracy dataset 64×64 created using 4096 bytes

Figure A.19: CNN model loss dataset 64×64 created using 4096 bytes

40

Figure A.20: CNN confusion matrix dataset 64×64 created using 4096 bytes

41

Figure A.21: CNN model accuracy dataset 64×64 created using python-resize-image

Figure A.22: CNN model loss dataset 64×64 created using python-resize-image

42

Figure A.23: CNN confusion matrix dataset 64×64 created using python-resize-image

43

Figure A.24: CNN model confusion matrix Skimage augmented dataset with 0 real
images and 14,000 fake images

44

Figure A.25: CNN model confusion matrix Skimage augmented dataset with 7000 real
images and 7000 fake images

45

Figure A.26: CNN model confusion matrix Poisson augmented dataset with 0 real
images and 14,000 fake images

46

Figure A.27: CNN model confusion matrix Poisson augmented dataset with 7000 real
images and 7000 fake images

47

Figure A.28: CNN model confusion matrix Laplace augmented dataset with 0 real
images and 14,000 fake images

48

Figure A.29: CNN model confusion matrix Laplace augmented dataset with 7000 real
images and 7000 fake images

49

Figure A.30: CNN model confusion matrix AC-GAN augmented dataset with 0 real
images and 14,000 fake images

50

Figure A.31: CNN model confusion matrix AC-GAN augmented dataset with 7000
real images and 7000 fake images

51

	Data Augmentation with Malware as Images
	Recommended Citation

	Introduction
	Background
	Related Work
	Techniques
	Data Augmentation
	Convolutional Neural Network
	Auxiliary Classifier Generative Adversarial Network

	Implementation
	Dataset
	Sample Images

	Programming details
	CNN Hyper parameters

	Results
	Exe to grayscale image experiments
	Resizing using python-resize-image
	Fixed size images using fixed number of bytes

	Augmentation
	Augmentation using Skimage
	Augmentation using Poisson Noise
	Augmentation using Laplacian Noise

	ACGAN

	Conclusion and Future Work
	LIST OF REFERENCES
	Appendix

