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ABSTRACT

Fake News Analysis and Graph Classification on a COVID-19 Twitter Dataset

by Kriti Gupta

Earlier researches have showed that the spread of fake news through social media

can have a huge impact to society and also to individuals in an extremely negative

way. In this work we aim to study the spread of fake news compared to real news

in a social network. We do that by performing classical social network analysis to

discover various characteristics, and formulate the problem as a binary classification,

where we have graphs modeling the spread of fake and real news. For our experiments

we rely on how news are propagated through a popular social media services such as

Twitter during the pandemic caused by the COVID-19 virus. In the past, several

other approaches classify news as fake or real by deploying various graph embedding

techniques and deep learning techniques.

In this project we focus on developing a dataset that contains tweets specific to

COVID-19 by performing initially text mining on the content of the tweet. Further,

we create graphs of the fake and real news along with their retweets and followers

and work on the graphs. We perform social network analysis and compare their

characteristics. We study the propagation of fake and real news among users using

community detection algorithms on the graphs. Finally, we create a model by deploying

the Weisfeiler Lehman graph kernel for graph classification on our labeled dataset.

The model is able to predict whether a new article is real or fake based on how the

corresponding graph of the retweets and followers are connected.

Keywords - Graph kernels, community detection, COVID-19, Weis-

feiler Lehman kernel, graph classification, fake news
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CHAPTER 1

Introduction
1.1 Problem Definition

A piece of information is called fake news, if it is fabricated without the use of

verifiable facts and resources, and is presented as (true) news. Fake news is difficult to

detect and it can cause a lot of harm, like anxiety, mental stress, change in thoughts

and opinions of someone regarding a topic. Most of the time, the creation of fake

news is deliberately done to disorient people or groups of people. However, most of

the dissemination of fake news is done unconsciously. Figure 1 give examples of how

fake news is being shared on Twitter and then even re-tweeted and commented, which

further makes it look like real news.

A study performed in 2020 on 1000 participants on fake news [7], shows that

people tend to share news easily without discerning whether it is true or false. However,

if the same participants know which news is fake it is more likely that they share (true)

news instead of fake ones. This indicates that it is highly desirable to detect fake

news in order to ensure the spread of credible information only. BigTech industries

such as Twitter and Facebook have integrated fake news detecting artificial intelligent

(AI) technology on their social media platforms, so that, whenever someone shares

some news that seems to be fake the AI flags it as ’unverifiable’ [8]. By flagging the

false content, it is observed that people disregard the news they are seeing and do not

get intoxicated by the fake news spreaders. Figure 2 shows Twitter flagging a user’s

content because they mentioned a coronavirus related tweet.

1.2 Motivations of this Research

My motivation for this research work was derived by the damage caused by

fake news in my surroundings. In the news I saw that accidental poisonings among

the people increased after President Trump commented that drinking or injecting

1



Figure 1: Examples of Fake News During the Covid-19 Pandemic.

disinfectants could cure from Covid 19 [1]. We can see from figure 3 how the cases

doubled in the month of March and April in the year 2020 as compared to the year

2019. Further, this research is performed to ensure that:

• People should know the real facts and figures before sharing the information.
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Figure 2: Twitter Flagging Covid-19 Tweets.

• It helps to improve one’s credibility, by sharing true information.

• Misleading information can lead to hurting someone.

• A misinformed person or public can make wrong life altering decisions.

Figure 3: Deaths Caused by Disinfectant Poisoning [1]
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The following research proves how devastating the impact of the spread of fake

news has been on society during the COVID-19 outbreak. Ahmed et al. [9] analyzed

the spread of the 5G conspiracy theory among the influenced users of Twitter during

COVID-19 utilizing the Clauset-Newman-Moore algorithm in the United Kingdom

(UK). In the 5G conspiracy theory, the social media users pointed out that 5G is the

cause of the COVID-19 disease and that it is accelerating it’s spread. This rumor soon

turned into a concerning issue as the number of shared posts of images and videos

increased on various social media platforms. Because of the spread of this fake news,

people in UK started torching 5G towers. The communication towers of Nightingale

hospital in Birmingham, UK was also set to fire during the spread of this conspiracy

theory and it became difficult for the hospital staff to treat the patient’s fighting the

COVID-19 disease. The torching of the towers caused a lot of public health damage

to the citizens of UK.

Previous researchers have analyzed the fake news on social media platforms, such

as Twitter, by cross-verifying them with fact checking websites [10]. However, it is a

tiresome task to cross-verify each and every tweet and may have erroneous results

at times. Recently, some studies incorporated the spread of fake news using network

analysis in order to detect fake news. As an example the study [11] investigates the

various patterns of information propagation on Twitter, by exploring machine learning

techniques, like the Weisfeiler-Lehman graph kernel for graph similarity, for determin-

ing the rumor veracity. Our proposed research is based on their observations [11] on

the COVID-19 fake news.

In this research, we aim to develop several true/false information graphs from a

twitter data set on fake information during the COVID-19 period. First, we will model

our problem with information graphs. As the Weisfeiler-Lehman graph kernel method

suggests we would be able to discern between false and true news by computing the

4



similarity between two graphs as the product of cosine-vectors of both their graph

embeddings. Finally, in our research we would compare our proposed methodology

with the existing research done for fake new analysis during COVID-19 [12].

More specifically for the model, each true/false information graph would be

an Ego graph with nodes representing Twitter user Ids and edges representing the

re-tweeted data. This modeling is an inspiration from [13]. There, they developed

“cascades” of true/false information found on Twitter. Each cascade is defined as

“a rumor-spreading pattern” which displays a continuous retweet chain having the

same, single origin. On a similar note, researchers in [11] also deployed these cascade

structures in their research work to determine rumor veracity.

For the classification, we will train a Weisfeiler-Lehman graph kernel algorithm

on the constructed true/false information graphs. This will help us in observing the

magnitude of similarity and differences between any two given graphs. Further, we

would incorporate this supervised learning process into the contents of the tweets.

For testing our approach, we would generate multiple graphs for random fake

news tweets and compare it’s similarity with true and false news graphs. With this we

will form a prediction accuracy for a news being retweeted on Twitter. Our research

will help people in sharing only credible news on social media platforms. Thus, people

will be able to make the right decisions for themselves and for their families and cause

less stress and anxiety within a community during events such as the COVID-19

pandemic.

5



CHAPTER 2

Related Work

Since the dawn of December 2019, the novel coronavirus disease, also known

as, COVID-19 started spreading rapidly and by the end of the year 2020, it affected

nearly 74 million people world-wide [14]. In their research work, Garcia-Gasulla et

al. [15] have quantitatively analyzed the impacts of COVID-19 on society’s mobility,

health, social and economic behavior. This data was used by them to inform the public

and private sectors to make the effective and appropriate decisions. Their research

includes sentiment distribution among the people on Twitter using the BERT [16]

deep learning model and the STANZA tool [17] based on the factors of fear, anger,

sadness, anticipation, joy, trust, disgust and surprise during COVID-19 outbreak. It

has been found that as the news of the COVID-19 pandemic spread to people there

was an increase in their fear, anger, sadness and anticipation.

2.1 Text Mining

Text mining is also known as data mining [18, 19]. It is referred to as the process

of extracting useful data from a content. In the past, text mining has a variety of

applications in research, government and business needs [20, 21]. Security applications

utilize text mining for monitoring and analyzing the online content present on blogs,

news. Text mining plays a tremendous role in sentiment analysis by detecting the

emotions of people hidden in plain text written by them.

2.1.1 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is a text mining generative probabilistic model

described for the collections of the discrete data, presented by Blei et al. [2]. The

motivation behind the LDA model is that to represent a document as arbitrary blend

of latent topics. And each of these topics are denoted by a distribution on the words

present in the topic.
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They also presented an illustration of LDA topic modelling on real data consisting

of 16000 documents from a section of TREC AP corpus. With the help of LDA topic

modelling they were able to find four significantly large topics – ‘Arts’, ‘Budgets’,

‘Children’ and ‘Education’ in the corpus. These bags of words have an approximate

distribution that tend to achieve a peak over ‘k’ possible topic values. Figure 4 is an

example from this corpus. The different color of the words presents the four different

categories that have been classified into by the LDA topic modelling algorithm.

Figure 4: Example of LDA Topic Modelling [2]

Not only this, many researchers have utilized the LDA topic modeling approach

in their research. One such work is that of Wu et al. [22], They have performed text

mining on topic evolution by developing an LDA-based model. Their model is based

on clarity algorithm that finds the hidden topic in a given text and then identifies

the topic mutation over time. The clarity algorithm identifies the differences and

similarities between topics, further which is used to determine the intensity trends of

topics over a period of time.

2.2 Social Network Analysis

The process with which social structures are analyzed with the use of network

and graph theory is called social network analysis [23]. It is characterized as a network

7



structure consisting of nodes and edges. Nodes can represent individual person, or

an object within a network, while edges represent the interactions and relationships

within these nodes. Social Network Analysis has been used to solve problems such as

fake news analysis, sentiment analysis and similar problems. Community detection is

a very important property in SNA and is explained the next section.

2.2.1 Community Detection

In social network analysis, community detection can be used to perform machine

learning algorithms on given collection of graphs to detect groups which have identical

properties. By analyzing the communities one can perceive the various reasons for

which any two communities look alike. Research in [24] is a survey on community

detection algorithms. They collected real world networks in a large scale from the

benchmark dataset of Zachary’s karate club. On this dataset they applied community

detection algorithms such as leading eigen vector, edge betweenness, fast greedy, label

propagation, multi-level, optimal modularity, spinglass, walktrap and infomap. Each

algorithm worked differently in term of scalability, directed networks and overlapping

communities.

2.3 Machine Learning

Machine learning problems usually revolve around a feature space which has

objects represented as vectors, and the task is to train the machine to be able to

distinguish the vectors between the vectors that belong to a positive subset and the

vectors that belong to a negative subset [25]. It is quite difficult to select a local

structure that would contribute to the feature space. Selecting the wrong local feature

in a machine learning problem could result in combinatorial explosion, thus leading

to NP-hard problem. In the following section, we aim to discuss the machine learning

problem of graph classification using kernels [26, 27].

8



2.3.1 Graph Classification

The problem of graph classification has various applications in many domains. In

order to find solution for this problem, the graph statistics or graph features needs to

be calculated that would further help in discriminating between the graphs of different

classes. One of the most important approach towards graph classification is the kernel

approach like the support vector machines (SVMs).

Kernel methods [28, 29] involve the mapping of the graphs in the feature space

and during the machine learning, the inner products of the vectors are considered. A

‘kernel’ is defined as the function which gives this inner product. The kernel method

proves to be very efficient even in high dimensional spaces. In general, to define a

kernel between any two random graphs, random walk on the vertex of the product

graph consisting of those two graphs is used [30].

One such graph kernel is the Weisfeiler-Lehman (WL) Kernel. The WL kernel

tests the isomorphism between two given graphs. One of the most important and

unique property of the WL kernel is that is includes the node attribute, which can

be referred to as node tags. A cascade of these node tags help in iterating the graph

without involving any extra information such as the node identities. Rosenfeld et al.

[11] performed the WL kernel approach on a dataset of 126,000 cascades containing 4.5

million tweets prepared by Vosoughi et al. [13]. They have presented in their research

work is that of misinformation detection. With the help of graph kernels they extracted

the topological information from the Twitter cascades. Then training is performed

on the predictive models which do not have information on user identities, language

and time, thus proving that that the diffusion patterns are highly informative on the

truthfulness of an information. Their research proves that with the right aggregation

the collective sharing pattern of the population could reveal that the information that

exists among them is true or false.

9



A similar observation has been made by Neumann et al. [31]. In their research,

authors introduce the propagation-kernels which is a graph-kernal framework. The

propagation kernels are used to monitor how information spreads in a given set of

graphs.

10



CHAPTER 3

Methodology

This research takes into consideration the creation of collection of graphs

from Twitter tweets. Given this dataset of collection of graphs 𝐺, where 𝐺 =

𝐺1, 𝐺2, 𝐺3, ..., 𝐺N, and each 𝐺i defined as, 𝐺i = (𝑉 i, 𝐸i), has vertices 𝑉 i and edges 𝐸i.

This graph classification problem focuses on categorizing unlabeled graphs into two

categories: fake news and real news. Figure 5 shows two graphs which are identical

to each other, the problem is to identify the differences between them to be able to

categorize them into two different categories. First, we will provide an input dataset

to train our model. Then, when we provide an unlabeled graph as input, our model

should be able to predict the correct category to which the graph should belong to.

Figure 5: Graph Classification Problem: Which one is real? Graph A or Graph B

3.1 Innovative and challenging aspects

1. Re-hydrating the COVID-19 Twitter IDs and dividing them into two classes for

fake and true news analysis

2. Developing an algorithm to generate graph embeddings and modeling them as

Twitter IDs being the nodes and the content of the Tweet as the edge

11



3. Following a supervised learning process to incorporate in the Weisfeiler-Lehman

graph kernels approach the contents of the tweets.

3.2 Phases in the implementation plan

1. Pre-processing of the data

2. Divide the pre-processed data into two classes: true/fake

3. Create graph from the given information

4. Methodology involving techniques for supervised-learning

5. Comparison with the existing approaches

The implementation plan is given by figure 6:

Figure 6: Implementation Plan.

The explanation of each phase in the implementation plan is as follows:

12



• Phase 1: Pre-processing of the dataset -

In this phase, we aim to collect a dataset that would consist of Covid-19 tweets.

For pre-processing we would neeed to filter out the tweets which are specific to

Covid-19 only.

• Phase 2: Dividing the dataset -

In this second phase, in order to differentiate between the properties of fake

news from that of real news, we will need to study the fake news and real news

separately. Thus, we will divide the dataset into fake and real news by deploying

a fact checking website.

• Phase 3: Creation of Graphs -

Finally, once we have a dataset of fake and real news we would develop an

algorithm that would be able to generate graphs for the fake and real news

tweets involving the users and the data they share among themselves.

• Phase 4: Methodology involving supervised learning -

In this stop we deploy a graph classification technique which would best suite

for this type of problem by employing a classifier.

• Phase 5: Comparison with existing approaches -

In order to compare our approach with the existing approach we would show

the classification accuracy achieved in phase 4.

3.3 Dataset

We collect our dataset of fake and real news and the tweets associated with that

news. We perform a filter on the content of the news to verify that it is related to

Covid-19. Then we gather the re-tweeters and followers of this processed dataset in

order to create a collection of graphs.

We collected the tweet Ids from the FakeNewsNet dataset [32, 33, 34] in March

13



2021 and then re-hydrated them to extract information regarding to their user Ids,

re-tweeter Ids as well as the follower Ids of those tweeters. The real-world twitter

dataset we collected after performing the data processing step has nearly 1000 nodes

in fake news graph and 1000 nodes in real news graph. The properties of the fake

news graphs are given in table 1.

Table 1: Overview of Fake News Graphs

Network Properties Values

nodes 863

edges 866

directed? False

weighted? False

isolated nodes 1

self-loops 1

density 0.002326

min degree 0

max degree 29

avg degree 2.005794

degree assortativity -0.449338

number of connected components 9

size of largest component 274 (31.75)%

Similarly, we collected the overview for the real news graph data and is given by

table 2.

3.3.1 FakeNewsNet

The FakeNewsNet repository contains data that is extracted from PolitiFact and

GossipCop fact checking websites. Further, each of these fact checking website have

two set of news i.e., fake news and real news. Each of the fake and real news contains

a json file for news-content which contains URL, text, images, keywords and several

14



Table 2: Overview of Real News Graphs

Network Properties Values

nodes 1370

edges 1685

directed? False

weighted? False

isolated nodes 1

self-loops 0

density 0.001797

min degree 0

max degree 105

avg degree 2.459854

degree assortativity 0.393437

number of connected components 6

size of largest component 1283 (93.65)%

other factors associated with that news. From the text we can detect whether the

news belongs to Covid-19 or not. Also, there is a list of tweets which have been made

in response to content of each these news articles. From the tweet we extracted the

tweet ID and user ID. Using the tweepy API and Python in Google Colab Notebook

we were able to find the re-tweeters and followers of those tweet and re-tweets. This

gives us a graph which could be used to detect the influencers using social network

analysis. The architecture of the FakeNewsNet dataset is presented in figure 7.

Once the tweets are dehydrated from the tweets folder they have information

related to the user ids, number of retweets, URls associated with it, images present

in it if any, number of people who replied to the tweet and so on. The structure in

which all this information is present is shown by the figure 8.
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Figure 7: FakeNewsNet Architecture.

3.3.2 Data Pre-processing

After collecting the data from FakeNewsNet repository we performed a data pre-

processing step. In this step we we ran our code through all the news-content.json files

present in the Gossipcop and Politifact folders and collected only the news relevant to

Covid-19. With this we filtered out the Twitter data that is specific for this research

only. We further created a bag of words from all the news content collected and

present them in the form of a word cloud as shown in figure 9.

As we can see in the word cloud of our collected dataset, the most frequently

words mentioned are vaccine, covid-19 vaccine, year, news, pfizer, coronavirus vaccine,

immune response, excess death. This shows the amount of anxiety, fear and stress

that persists in the population for Covid-19 during this pandemic.
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Figure 8: Tweet Description

3.4 Creation of the Graphs

After analyzing the tweet structure, we found that a tweet consists of several

meaningful information such as the tweet ID, user ID of the user who tweeted the

tweet as well as other factors such as URL of the images related to it, the text content,

retweets associated with it. We created the graph using Breadth First Search (BFS)

traversal. We visited to the tweets of each news content and then extracted the users

who retweeted that tweet, thus, creating an edge between the user who tweeted and

the user who retweeted. Further we fetched the followers of the re-tweeter to take

into consideration all the people to whom this tweet for shared with. Figure 7 depicts

the graph that was formed from the tweets, re-tweets and the followers.

The dataset we created consists of three comma separated text files,
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Figure 9: Word Cloud

COVID_A.txt, COVID_graph_indicator.txt and COVID_graph_labels.txt. This

structure is followed from the benchmark dataset of [35].

• COVID_A.txt: The COVID_A.txt file is the adjacency matrix for all the

graphs. It has edges separated by commas in the form (𝑛𝑜𝑑𝑒_𝑖𝑑, 𝑛𝑜𝑑𝑒_𝑖𝑑).

• COVID_graph_indicator.txt: File COVID_graph_indicator.txt is a col-

umn vector which indicates the graph number for the node in the 𝑖𝑡ℎ column.

• COVID_graph_labels.txt: The file, COVID_graph_labels.txt points to

the label of the graph 𝑖 in the 𝑖𝑡ℎ column.

From algorithm 1 we can construct a twitter graph with nodes representing the

user Ids and edges representing the connections between them. This algorithm is

illustrated in the following steps.
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Figure 10: Tweet Graph.

Step 1: A Twitter user with 𝑢𝑠𝑒𝑟 𝐼𝑑 : 1 tweets a message with 𝑡𝑤𝑒𝑒𝑡 𝐼𝑑 : 123 among

his/her Twitter network. We cash the 𝑢𝑠𝑒𝑟 𝐼𝑑 : 1 and 𝑡𝑤𝑒𝑒𝑡 𝐼𝑑 : 123 for

collection of useful information from the data.

Step 2: With the 𝑡𝑤𝑒𝑒𝑡 𝐼𝑑 : 123 we find the list of 𝑟𝑒− 𝑡𝑤𝑒𝑒𝑡 𝐼𝑑𝑠 that have been made

for this tweet.

Step 3: Then we start iterating through this list of 𝑟𝑒− 𝑡𝑤𝑒𝑒𝑡 𝐼𝑑𝑠 and start retrieving
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Algorithm 1 Twitter Graph Creation
1: procedure CreateGraph(𝑟𝑜𝑜𝑡𝑇𝑤𝑒𝑒𝑡𝐼𝑑, 𝑟𝑜𝑜𝑡𝑈𝑠𝑒𝑟𝐼𝑑)
2: Initialize 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑇𝑤𝑒𝑒𝑡𝑠 as empty array
3: Initialize 𝑔𝑟𝑎𝑝ℎ𝐸𝑑𝑔𝑒𝑠
4: Append 𝑟𝑜𝑜𝑡𝑇𝑤𝑒𝑒𝑡𝐼𝑑, 𝑟𝑜𝑜𝑡𝑈𝑠𝑒𝑟𝐼𝑑 in 𝑄𝑢𝑒𝑢𝑒
5: while length of 𝑄𝑢𝑒𝑢𝑒 ̸= 0 do
6: collect 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝑠𝐼𝑑𝑠 for 𝑟𝑜𝑜𝑡𝑇𝑤𝑒𝑒𝑡𝐼𝑑
7: for 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝐼𝑑 in 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝑠𝐼𝑑𝑠 do
8: add 𝑟𝑜𝑜𝑡𝑈𝑠𝑒𝑟𝐼𝑑, 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝐼𝑑 to 𝑔𝑟𝑎𝑝ℎ𝐸𝑑𝑔𝑒𝑠

9: if 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝑠𝐼𝑑𝑠 = 𝑁𝑜𝑛𝑒 then
10: collect 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 of 𝑟𝑜𝑜𝑡𝑈𝑠𝑒𝑟𝐼𝑑
11: for 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 in 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟𝑠 do
12: add 𝑟𝑜𝑜𝑡𝑈𝑠𝑒𝑟𝐼𝑑, 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 to 𝑔𝑟𝑎𝑝ℎ𝐸𝑑𝑔𝑒𝑠

13: Append 𝑟𝑒𝑇𝑤𝑒𝑒𝑡𝑒𝑟𝑠𝐼𝑑 to 𝑄𝑢𝑒𝑢𝑒
14: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑇𝑤𝑒𝑒𝑡𝑠← 𝑟𝑜𝑜𝑡𝑇𝑤𝑒𝑒𝑡𝐼𝑑

there respective 𝑟𝑒− 𝑡𝑤𝑒𝑒𝑡𝑒𝑟 𝐼𝑑𝑠 who re-tweeted this tweet.

Step 4: Once we have the list of 𝑢𝑠𝑒𝑟𝐼𝑑𝑠 who tweeted the tweet and 𝑟𝑒− 𝑡𝑤𝑒𝑒𝑡𝑒𝑟 𝐼𝑑𝑠

who re-tweeted the tweet we can store an edge between them considering as

source and target respectively.

Step 5: After all the 𝑟𝑒− 𝑡𝑤𝑒𝑒𝑡𝑒𝑟 𝐼𝑑𝑠 are collected from the tweet, we collect the list of

𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝐼𝑑𝑠 of the followers who are following those re-tweeters. This gives

us a better picture of all the users involved in viewing the original tweet with

𝑡𝑤𝑒𝑒𝑡 𝐼𝑑 : 123 made by the user with 𝑢𝑠𝑒𝑟 𝐼𝑑 : 1.

3.4.1 Time Complexity Analysis

Considering 𝐸 number of edges and 𝑉 number of vertices or nodes in a single

Tweet graph, the time complexity of algorithm 1 would be 𝑂(𝑉 + 𝐸). This is similar

to the time complexity of breadth first search algorithm in the worst case scenario

since every edge and every node is being visited in the graph. In a real time situation

there are other factors as well that affects the computation of this algorithm. One

such factor is the Twitter rate limit of re-hydrating tweets and collecting information
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such as re-tweeters and followers from a tweet Id. For a standard developer account

Twitter allows only 15 requests per rate limit window, and then it allows 15 requests

per window per access token. Due to this reason it can take up to two hours to

develop only 20 graphs of 20 different tweets even after applying caching. However,

this time can be skipped by gaining access to the Twitter premium account.

3.5 Weisfeiler-Lehman Kernel Approach

One of the most important techniques used for solving the graph classification

problem is by using graph kernels. Graph kernels reduce the dimensionality by

combining the neighbors of a node and renaming the labels of set of these nodes at

each step.

3.5.1 Computation

The WL kernel approach computes the isomorphism test between two graphs.

The way it reduces the dimentionality at each step is explained by the figure 11. For

computing the WL kernel method we process simultaneously all the given N graphs

and then perform the following steps.

Algorithm 2 Weisfeiler-Lehman Kernel Algorithm
Step 1: For all the N graphs compute the multiset label li.
Step 2: Collect the immediate neighboring nodes and then concatenate their labels
into a single string.
Step 3: Perform the label compression by mapping the neighboring strings into
one label.
Step 4: In the final step, relabeling is done for all the nodes in the graph.

Given two labeled graphs G and G’, in the 1st iteration step 1 will determining

the multiset- label and step 2 will perform sorting. Further step 3 would would

perform the label compression followed by relabeling in step 4. Figure 11 visualizes

the steps occurring at each iteration of the Weisfeiler Lehman graph kernel method.
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Figure 11: Steps Involved in the Computation of Weisfeiler-Lehman Kernel [3]

3.5.2 Time Complexity Analysis

The Weisfeiler-Lehman (WL) graph kernel is a supervised learning approach for

the graph classification problem. In order to perform classification, a matrix is sent to

a kernel-based machine learning algorithm as input. Further, an isomorphism WL test

is performed between two graphs, so as to categorize them into different categories. If

𝑛 represents the number of iterations then 𝑂(𝑛) operations are required for labeling.

Therefore, the time complexity analysis for this WL isomorphism test is 𝑂(𝑛𝑡), where,
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𝑛 represents the iterations and 𝑡 represents the time taken to compress each label in

the iterations.
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CHAPTER 4

Experimental Evaluation

In order to distinguish between the fake news graph from the real news graph,

we look into some properties. The definitions of these properties are as follows:

1. Density -

This parameter measures the number of connections that exists between nodes

in comparison to the number of connections that could be possible between

nodes.

2. Min degree -

In a graph, the min degree is the measure of the number of nodes with the least

number of edges connected to a node.

3. Max degree -

In a graph, the max degree is the measure of the number of nodes with the

greatest number of edges connected to a node.

4. Avg degree -

In a graph, the avg degree is the measure of the number of the nodes as compared

to the number of edges present in it.

5. Degree assortativity -

This metric measures the the extent to which nodes associate among themselves

in a graph. Therefore, it depicts how much nodes of high degree are associated

with other nodes of high degree and respectively for the lower nodes as well.

6. Degree distribution -

In a network of nodes, the degree distribution is a metric which determines the

24



probability distribution of the degrees of these nodes over the whole network of

nodes.

7. Page ranking -

This is an algorithm which can measure the importance of each of the nodes

within a given graph.

8. Size of the largest component -

This is a critical metric in terms of analyzing the propagation of news in a

network. This measures the extent to which a news has been spread. It can

help to distinguish whether real news or fake news has more tendency to spread

to a larger group of people.

From table 1 and table 2, we analyze that the density for fake news is slightly

higher than the real news graph. Also, we see that the size of the largest component

for real news (approximately 90%) is three times larger than the largest component

for fake news (approximately 30%). This means that fake news tends to propagate

among a small group of people, whereas, true news tend to propagate among a larger

community. The degree assortativity for fake news is negative, while the degree

assortativity for real news is positive. This further, proves our point that in real news

propagation the nodes with high degrees (respectively low degrees) tends to connect

with the nodes of high degrees (respectively low degrees) whereas, in fake news the

nodes with high degrees (respectively low degrees) tends to connect with nodes of

low degrees (respectively high degrees). Above all a fake news differs from real news

in the sense that it keeps on circulating among a small community while real news

vastly reaches out to a larger community.

Figure 12 gives the statistics for community detection for fake news graph com-

munity detection and the figure 13 gives the statistics for real news graph community
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detection. From the graphs we analyze that the communities present in real news is

almost double the number of communities present in fake news, even though both the

graphs have almost same number of nodes.

Figure 12: Fake Community Detection Analysis

Figure 13: Real Community Detection Analysis

Next, we look into the degree distribution for each network. Figure 14 shows the

degree distribution for fake news graph. And on a similar note, figure 15 shows the

degree distribution for real news graph. We observe a steep decline in the number of

nodes in the case of fake news network. Whereas, we observe a gradual decline in the

number of nodes in the case of real news network. This means that in fake news has

either an abundance of extreme in-degree node or an abundance of extreme out-degree

node. However, this is not the case with real news graphs. In real news the nodes are
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spread uniformly between the nodes having the maximum in-degree and the nodes

having the maximum out-degree.

Figure 14: Degree Distribution for Fake News

Figure 15: Degree Distribution for Real News

Further we observe the page ranking statistics for fake news graph of the ten

most central nodes in figure 16. Similarly, in figure 17 we observe the page ranking

statistics for real news graph of the ten most central nodes. The difference between
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the values of page ranking of fake and real news is that each node in fake news graph

is ranked ten times higher than each node of real news graph.

Figure 16: Page Ranking for Fake News

Figure 17: Page Ranking for Real News

Figure 18 shows the visualization of the propagation of fake news through Twitter

tweets among the individuals and the society. Also, figure 19 shows a visualization of

the propagation of real news through Twitter tweets among the individuals and the

society. From the graph visualizations we observe that fake news graphs are more
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concentrated, indicating small and local communities. However, the real news graphs

have larger communities and the news spread more far and wide in these communities.

Figure 18: Graph Visualization for Fake News Propagation

4.1 Graph classification results

As a baseline for our research we make use of the graph kernel approach for graph

classification. Although there exists several other graph kernel approaches such as,

Shortest-path, random walk, weighted decomposition, optimal assignment, however,

we choose to perform the Weisfeiler-Lehman graph kernel approach because of it has

the property of performing isomorphism test in between any two given graphs. This

isomorphism test will distinguish the fake news graph from the real news graph and

help in calculating a prediction accuracy for our research.

4.1.1 Classifiers

We can perform classification with classifiers such as Support Vector Machine

(SVM), K-Nearest Neighbors (K-NN), AdaBoost, random forest, Multilayer Perceptron
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Figure 19: Graph Visualization for Real News Propagation

(MLP), Gaussian Naive Bayes, Decision Tree (DTree) and Logistic Regression (LR).

These classifiers are defines as follows:

1. Support Vector Machine (SVM) Classifier -

It is a supervised learning model, and it performs very efficiently on both linear

and non-linear classification by employing the kernel trick. It separates the

input graphs into different classes by dividing them with a hyperplane as shown

in figure 20.

2. K-Nearest Neighbor (KNN) Classifier -

This classifier classifies an object based on the its frequency among given k

samples during training. The category assigned to an object is based on the

category of the majority of objects it is surrounded with. In figure 21 the green

object would be classified as red if k = 3 because among the 3 closest objects

red is in majority. If the value of k would be 5 then blue is in majority and the
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Figure 20: SVM Trained From Samples of Two Classes [4]

green object would be classified as blue.

Figure 21: Example of KNN Classification [5]

3. Decision Tree (DTree) Classifier -

A decision tree has a flowchart-like structure. It comprises of three types of

nodes, the decision node, the chance node and the end node. A decision tree

learns certain decision rules to form an outcome which is then represented by
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the leaf nodes. The classification rules in the decision tree are represented by

the paths from the root to the leaf of the decision tree.

4. AdaBoost Classifier -

This classifier tries to boost the performance of several weak classifiers such as

Decision Tree classifier by combining them. By the boosting a weak classifier it

leverages the performance of the model.

5. Random Forest Classifier -

This classifier is trained by combining several decision trees together as shown in

figure 22. In this algorithm the performance of the model enhances by bagging

together many decision trees. The majority of the votes of the decision trees

defines the final category of the graph.

Figure 22: Random Forest Classification [6]

6. Multilayer Perceptron (MLP) Classifier -
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It is a feedforward neural network classifier. It has a linear activation function

which maps the input to each neuron’s output. It has an input layer, one or

more hidden layers and an output layer.

7. Gaussian Naive Bayes Classifier -

This model works best for continuous values and when features have a normal

distribution. It preordains that each feature is independent of each other. This

model can be trained very easily as it can perform classification by training on

a small amount of data.

8. Logistic Regression (LR) Classifier -

This classifier is based on the logistic sigmoid function to transform the output

into a probability value. This probability value can further be mapped into

different classes.

Next, we define the steps involved in computing the WL subtree kernel with the

help of using each of these classifiers.

4.1.2 Steps for performing WL subtree kernel approach

The steps involved in performing machine learning on the given collection of

graphs with WL kernel approach are as follows:

1. Initializing the WL subtree kernel framework -

This is a framework given by the Grakel library to implement the WL kernel

more efficiently and effectively. In this step we initialize the WL framework in

addition to the vertex histogram kernel.

2. Fetching dataset -

In this step, we retrieve the data from the text files of nodes, edges and graphs

that we created earlier in section 3.4. We create two matrices 𝐺 which is a 2
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dimensional matrix and 𝑦 which is a 1 dimensional matrix using the numpy

library in python. 𝐺 contains the data for edges and graph indicators, while, y

contains the data for graph classification and labels.

3. Splitting the dataset into training and testing -

Splitting the data into training and testing is the most crucial step of classification.

We utilize the scikit-learn library in python to split the data into training and

testing with the train_test_split function.

4. Initializing cross validation -

In this step, we initialize a k-fold cross validation for the model on 20% of

the test dataset. It takes 𝑘 observations from the complete data to test on it

iteratively.

5. Employ a Classifier -

Here we perform the classification by employing each of the classifiers mentioned

in section 4.1.1. First we train the classifier on the given training dataset.

Secondly, predictions are made on the test dataset.

6. Calculating classification accuracy -

Finally, in this step we compute a mean classification accuracy for the different

𝑘 values ranging from 2 to 10.

After implementing the above steps, we obtain an a mean classification accuracy

and table 3 gives a brief idea of how these classifiers performed on the given data set

by showing their mean classification accuracies. The classifiers random forest, linear

regression, MLP and Gaussian Naive Bayes were over-fitting for the given dataset so a

mean classification accuracy could not be achieved for these classifiers. However, the
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classifiers Ada Boost, K-NN, decision tree and SVM gave a competitive classification

accuracy for 𝑘-fold cross validation and values of 2, 3, 4 and 9.

Table 3: Graph Classification Accuracy

Classifier k = 2 k = 3 k = 4 k = 9

Ada Boost over-fitting over-fitting 93.75 over-fitting

K-NN 60.72 61.67 45.83 77.79

Decision Tree 91.67 over-fitting 93.75 over-fitting

SVM 46.43 45 37.5 38.89

From the graph classification accuracies we observe that Ada Boost was mostly

over-fitting, however, for 4-fold cross validation it gave 93.75% as mean classification

accuracy. Decision tree on the other hand performed very similarly to Ada Boost,

but it was less over-fitting as compared to Ada Boost. It also achieved the highest

mean classification accuracy of 93.75% during 4 fold cross validation. K-NN and SVM

outperformed Ada Boost and Decision tree in terms of over-fitting and between K-NN

and SVM, we observe that K-NN outperforms SVM. The highest mean classification

accuracy that SVM achieved is 46.43%, whereas, the highest mean classification

accuracy that K-NN achieved is 77.79%. So, after analyzing the results, we concur

that K-NN outperforms all the other classifiers by gaining the mean classification

accuracy of nearly 78%.

35



CHAPTER 5

Conclusions and Future Work

To conclude, in this research we collected and created a new dataset. Starting

from the FakeNews repository [33, 34, 32], from Twitter, we filter the COVID-19

related topics, and modeled them with graphs. In our approach we try to answer

the important question of how real news propagate over how fake news propagate

and what are their differences and similarities. Fake news pose a problem since they

can alter the public’s opinion during crisis such as the Covid-19 pandemic. In order

to get more insight on how fake news is spread compared to real news we perform

social network analysis and reformulate the problem as a graph classification problem.

The created dataset is modelled as follows: news (fake or real) are graphs, users are

nodes, and edges are the flow of information between retweeters or followers. Some of

the analysis includes characteristics of the graphs of each category (fake and real),

and applying community detection to detect similarities and differences between the

real news and fake news, and finding the influencers (user of original tweet) in each

community. Further we performed graph classification on these graphs, that have

a label fake or real, with the Weisfeiler Lehman kernel approach to get an average

classification accuracy of 93.75% over the different cross fold validations.

In the future, more work can be done on collecting useful data from other social

media platforms such as Facebook, Instagram and TikTok, and a comparison can be

made how real versus fake news is being spread through these different social media

sites. It will help to get better understanding of which which social media platform

an individual or the society itself gets influenced by the spread of any kind of piece of

information.
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