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Transcriptional Profiling of Neurological Development of Drosophila Following Bisphenol A Exposure

ABSTRACT 

The ubiquitous environmental chemical bisphenol A (BPA) is an emerging risk factor for 
neurodevelopmental disorders (NDDs). BPA is an endocrine-disrupting chemical (EDC) that is 
thought to interfere with neuron development by changing neuronal gene expression. Impacting 
neurodevelopment in this manner can cause lasting changes in behavior and potentially lead to 
the development of NDDs. Delineating the molecular processes that incur changes in gene 
expression following BPA exposure will advance our understanding of how BPA impacts 
neurodevelopmental pathways and affects the pathophysiology of NDDs. An RNA-Sequencing 
(RNA-Seq) analysis pipeline was created for transcriptional profiling of neurological 
development in wild-type Drosophila melanogaster following BPA exposure. The analysis 
pipeline identified differentially expressed genes and the affected molecular pathways. The 
results indicated changes gene expression in neurodevelopmentally-related pathways in the wild-
type background. 

Index terms - Bisphenol A (BPA), neurodevelopmental disorders (NDDs), endocrine-disrupting 

chemical (EDC), transcriptional profiling, RNA-Sequencing (RNA-Seq)  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1. Introduction 

1.1 Biological Background 

 The prevalent environmental chemical bisphenol A (BPA)—used in the synthesis of 

plastics and found in a vast number of common consumer products—can interfere with 

neurodevelopmental pathways and negatively affect the formation of neurons [1], [2]. The 

lipophilic structure of BPA allows it to easily cross the placental barrier to potentially harm a 

developing fetus [1]; in fact, maternal BPA has been detected in the placenta [3]. BPA can act as 

an estrogen mimic and is categorized as an endocrine disrupting chemical (EDC), although it 

likely interrupts signaling pathways beyond estrogenic and androgenic pathways to impact brain 

development. A variety of adverse neurodevelopmental consequences of prenatal exposure to 

BPA have been documented. For instance, in experiments performed by Arambula et al. 2016, 

prenatal BPA exposure in developing rats was shown to disrupt gene expression in the 

hypothalamus, even at low doses [1]. By influencing gene expression in the developing 

hypothalamus, the region of the brain that regulates innate social behavior, BPA exposure 

impacts transcription-level changes that can result in behavioral changes [1]. A study conducted 

by Tiwari et al. 2014 found that prenatal BPA exposure in rats down-regulated genes involved 

with myelination of axons in the hippocampus, resulting in decreased hippocampal myelination 

and impaired cognitive function [4]. Other studies conducted in the field have indicated BPA can 

impact a battery of neurodevelopmentally-relevant cellular phenotypes, including neural stem 

cell speciation, proliferation, and axon guidance [5], [6]. Due to its environmental prevalence 

and increasing evidence indicating its ability to disrupt development, there is rightful concern 

regarding BPA exposure and its suspected contribution to neurotoxicity.  

 1
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 The emergent data indicating the developmental neurotoxicity of BPA has led to alarm 

surrounding BPA as an environmental risk factor for neurodevelopmental disorders (NDDs). 

Many NDDs, including autism spectrum disorders (ASD), have both environmental and genetic 

etiologies [7]. The “gene by environment hypothesis” posits that environmental factors often 

work in concert with genetic risk factors to confer the greatest risk of NDDs; thus, BPA 

potentially operates in association with genetic predispositions for NDDs to hinder neural 

development [7]. A study conducted by Stein et al. 2016 revealed an association between higher 

levels of BPA and children with ASD [7]. The increased frequency in NDD diagnoses in recent 

years, most notably ASD, is of urgent concern; the increased prevalence of both BPA in common 

materials and evidence supporting a role in neurodevelopmental impairment warrants 

investigation [8]. Despite the mounting evidence that BPA can impair neural development, the 

specific molecular mechanisms affected are not well characterized [9]. The discovery of the 

characterizations of these mechanisms will help advance drug development to treat NDDs and 

could help inform new social policy to reduce environmental BPA.  

 The common fruit fly, Drosophila melanogaster (D. melanogaster), has long been used 

as a model organism for human diseases and for developmental biology research. In recent years, 

D. melanogaster has increasingly been used for investigations in toxicology given its low cost, 

short life cycle, and ability to be easily maintained and exposed to environmental chemicals [10]. 

In the laboratory of Dr. Kimberly Mulligan at California State University, Sacramento, wild-type 

D. melanogaster larvae were exposed to BPA in order to investigate the neurodevelopmental 

impacts at both the cellular and behavioral levels [6]. Using flies for this study allows 

disentangling EDC-related vs non-EDC-related neurodevelopmental impacts, since flies lack 

 2
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estrogen receptors and hence do not have the confounding factor of EDC-related impacts. In 

recently published work by Mulligan’s research group, BPA exposure was shown to impact axon 

guidance, neuroblast development, locomotor behavior, grooming activity, and courtship 

behaviors in wild-type D. melanogaster [6]. Further, axon guidance was specifically impaired in 

the mushroom body, an adult neural structure required for olfactory-based learning and memory 

[6]. Indeed, unpublished research from the Mulligan research group indicates that developmental 

BPA exposure also affects learning memory in adult D. melanogaster (personal communication). 

However, the molecular mechanisms influencing these cellular and behavioral changes are 

unknown. Using RNA sequencing analysis to identify transcriptional changes caused by BPA 

will help elucidate the specific molecular changes that underlie these neurodevelopmental 

outcomes.  

 The aim of this project was to establish an RNA sequencing pipeline that can be used for 

investigating how BPA influences neurodevelopmentally-related pathways in D. melanogaster. 

In addition, this pipeline was established to validate and provide molecular explanations for the 

cellular and behavioral outcomes observed in the laboratory of Dr. Kimberly Mulligan. This 

project proposes the incorporation of RNA sequencing (RNA-Seq) analysis through the use of a 

pipeline that runs on the samples generated by next-generation sequencing. The output of the 

pipeline is a set of genes found to be statistically significant in terms of differential expression 

among the two treatment conditions—wild-type flies exposed to BPA exposed compared to 

unexposed wild-type control flies. In addition, the RNA-Seq pipeline identifies 

neurodevelopmentally-relevant molecular pathways that the genes of interest are involved in. 

The overall goal of the pipeline was to identify genes and molecular pathways of interest that 
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have neurodevelopmental significance in order to determine the transcriptional impact of BPA as 

it pertains to neurodevelopment.  

 This transcriptional profiling using RNA-Seq analysis offers deeper insight into which 

neurodevelopmentally-related molecular processes are being affected by BPA exposure. RNA-

Seq analysis has been used in practice to perform differential expression analysis and to 

investigate the change of expression between treatment groups [11]. The benefits of using RNA-

Seq for transcriptional profiling in this particular application is that it will comprehensively 

delineate molecular pathways of neurological significance and help characterize specific genes 

that may potentially serve as targets in drug development for the treatment of NDDs. The RNA-

Seq pipeline incorporated the use of the Bioinformatics tools FastQC, Trimmomatic, HiSAT2, 

HTSeq-Count, DESeq2, and GSEA to have an end-to-end workflow. 

1.2 Technical Background 

 The general workflow of the pipeline analysis includes a preprocessing step that includes 

a quality check and quality trimming, read mapping and genome indexing, the marking and 

removal of duplicates, mapped transcript quantification, differential expression analysis, and 

gene set enrichment analysis.   

1.2.1 NGS Read Quality Control


FastQC was used in the preprocessing step of the workflow to evaluate the quality of the 

sequenced reads [12]. FastQC evaluates raw sequencing data and marks possible problem areas 

that can hopefully be resolved with other preprocessing tools. FastQC provides metrics that show 
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the quality of the raw sequencing data based upon per base sequence quality, per sequence 

quality scores, sequence duplication levels, overrepresented sequences, and adapter content [12]. 

FastQC is used before and after other preprocessing tools to ensure high data quality prior to data 

analysis. FastQC was chosen because it is an industry standard for read quality evaluation.  

1.2.2 Sequencing Adapter and Quality Trimming 

Trimmomatic is a tool that was incorporated in the pre-processing step of the RNA-

sequencing workflow and works to remove any adapters or primers that were used during the 

preparation step for sequencing [13]. Trimmomatic works by taking in the raw sequencing data 

files generated from sequencing and performs read trimming and filtering to result in high 

quality and relevant reads [13]. The filtering step is based upon a user-input threshold, in this 

case a Phred quality score of 33. A local alignment is performed between the adapters and reads; 

reads with below-threshold phred quality scores are removed [13]. This filtering step is essential 

for maintaining the integrity of the sequenced reads for the downstream analysis. Trimmomatic 

was chosen for quality filtering and trimming of adapters as Illumina adapters were used for 

sequencing.  

1.2.3 Read Mapping and Genome Indexing 

HiSAT2 (hierarchical indexing for spliced alignment of transcripts 2) is an alignment that 

can be used for next-generation sequencing read-mapping of RNA when provided a reference 

genome [14]. When using HiSAT2 with a reference genome for read mapping, two major tasks 

are performed—genome indexing and read mapping. In the genome indexing step, HiSAT2 

works to index a reference genome by utilizing a graph-based indexing. When provided with a 
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genome-annotation file (GTF) that contains the splice site information of the genome, this 

indexing scheme works to increase the speed of read mapping in the next step [14]. The mapping 

step works by using the HiSAT2 created-indexes and a graph-based alignment approach to result 

in a reliable alignment [14]. With adjustable parameters for minimum and maximum mismatch 

penalties as well as its speed, HiSAT2 was chosen as the alignment tool for the RNA sequencing 

pipeline. The HiSAT2 protocol proposed by Pertea et al. 2016 was incorporated into the 

workflow [15].  

Samtools contains a utility toolset that can manipulate the SAM file format [16]. The 

Samtools toolset includes the option to convert .sam files into .bam files. The BAM files, which 

are compressed, are the binary formatted version of SAM files.  

1.2.4 Mark Duplicates 

Picard contains command-line tools for manipulating data in the SAM/BAM format [17]. 

One tool that was utilized was the MarkDuplicates feature, which takes in reads in the SAM/

BAM format and marks them as duplicates and then outputs them in the BAM format, with 

duplicates marked or removed when provided the appropriate flag [17]. The MarkDuplicates tool 

was utilized in this pipeline to account for the possibility of PCR duplicates and to remove them 

before the count step to further validate results generated by the count files.  

1.2.5 Transcript Quantification 

HTSeq (high-throughput sequencing) count is a tool that can count how many reads map to 

certain genomic features, given a file with aligned reads in the SAM/BAM format and a genome 

annotation file with features to reference [18]. This helps quantify how many of the sequenced 
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reads align to known transcripts and genomic features. The count files generated by HTSeq count 

serve as input for downstream differential expression analysis. 

1.2.6 Differential Expression Analysis 

DESeq2 performs differential expression analysis on count data [11]. When performing 

RNA-Seq analysis, a desired result is the identification of genes that are being differentially 

expressed across different sample conditions [11]. DESeq2 creates a dispersion estimation using 

the negative binomial (Gamma-Poisson) distribution, which results in assigning the input genes 

p-values, p-adj values, and log2 fold change values between control and treatment groups. The 

DE analysis step results in the identification of genes that are differentially expressed between 

the sample conditions. The results can be further refined by filtering the results table to only 

include genes with p-adj values < 0.01. This significance level threshold can further validate that 

identified genes were not differentially expressed due to chance, and show a notable difference in 

expression between the control and treatment samples. A main metric for comparison is the log2 

fold change (LFC) between two different treatment groups; a LFC value of zero would indicate 

no differential expression between treatment conditions for a particular gene [11]. 

1.2.7 Gene Set Enrichment Analysis 

Fgsea (fast gene set enrichment analysis) is a library in R that performs fast gene set 

enrichment analysis on a set of ranked genes based upon a metric [19]. The metrics used can be 

p-values, p-adj values, log2 fold changes, or can be obtained from a pre-ranked list. The 

algorithm used by fgsea results in statistically significant p-values associated to molecular 

pathways and genes within those pathways. The Molecular Signatures Database (MSigDB) is 
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often used as a reference database when performing gene set enrichment analysis as it contains 

common pathways and associated genes specific to model organisms, such as D. melanogaster 

[20]–[23]. The ranked gene list provided as input can be compared to the D. melanogaster 

pathways and genes identified by MSigDB; this comparison can be used to identify the 

significant genes and corresponding pathways that are up-regulated and down-regulated across 

sample conditions. Delineating the pathways impacted by differential genes can provide critical 

insight into the specific molecular networks that are disrupted following exposure to an 

environmental chemical such as BPA. GSEA can be performed directly through the Broad 

institute application; however, fgsea in R was chosen to minimize the use of additional software 

dependencies.     

1.2.8 Pipeline Execution Tool 

Snakemake is a Python-based workflow that works to deploy multiple tools in a variety 

of environments, including high performance computing (HPC), cluster, and cloud environments 

[24]. The Snakemake workflow takes in expected input and output and runs tools based upon 

“rules” in a Snakefile, similar to a script. Snakemake makes highly scalable data analysis 

workflows that allow for ease of execution of popular Bioinformatics analysis tools that have 

their own Snakemake wrappers [24]. Snakemake was utilized in the execution of this RNA-Seq 

pipeline given its compatibility with the various Bioinformatics tools used in the analysis, and its 

reproducibility in multiple types of environments. 
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2. Methods 

2.1 Tools/Pipeline Execution 

The sequencing data was generated from four biological replicates, four samples referred to 

as the wild-type condition (unexposed wild-type flies), and four samples referred to as the BPA-

exposed condition (wild-type flies exposed to 1 mM of BPA throughout development). The 

samples were sequenced on the HiSeq 4000 platform at 100 bp reads to generate single end data 

(SR100) at the UC Davis genomics core. The sample names, their condition, and the relative 

yields can be found in Table I below.  

Table I. Raw sequencing data reference 

 The overall workflow of this pipeline follows the flowchart seen in Figure 1 below. The 

flowchart includes the major steps of the pipeline denoted in bold, the tools incorporated in the 

Sample Name Condition Yield (# of reads)

A_2_S123_L004_R1_001 1 mM BPA 37,602,008

A_S119_L004_R1_001 Wild-type (0 mM BPA) 35,233,735

B_2_S124_L004_R1_001 1 mM BPA 43,739,934

B_S120_L004_R1_001 Wild-type (0 mM BPA) 36,384,564

C_2_S125_L004_R1_001 1 mM BPA 37,941,942

C_S121_L004_R1_001 Wild-type (0 mM BPA) 38,523,284

D_2_S126_L004_R1_001 1 mM BPA 37,090,520

D_S122_L004_R1_001 Wild-type (0 mM BPA) 36,610,735
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pipeline denoted in boxes, as well as input and output of each tool.

  

Figure 1. Pipeline Flowchart Overview


In the preprocessing step, FastQC (0.11.8) was used to evaluate the raw sequencing data 

quality in the HTML output files. The FastQC output was also used to identify which Illumina 

adapters needed to be trimmed using Trimmomatic (0.39). Trimmomatic was used to trim the 

TruSeq Adapter, Index 12 

‘GATCGGAAGAGCACACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGCCGTCTTCTGCTTG’, 

and RNA PCR Primer Index 12 

‘CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTC’ adapters from the raw 

sequencing data. Trimmomatic was used in the single-end read mode, as the raw sequencing data 

was not paired ended, and a phred quality score threshold of 33 was used to only have high-

 10
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quality reads after the trimming step. These trimmed reads were evaluated once again using 

FastQC to ensure proper trimming of adapters and to validate read quality and to ensure enough 

reads were still present after using the Trimmomatic tool to perform downstream analysis. 

A reference genome fasta file and genome annotation file in the form of general transfer 

format (gtf) were obtained from Flybase, for the FB2020_04, dmel.r6.35 version [25]. HiSAT2 

(2.1.0) was used for genome indexing provided the genome fasta file and the genome annotation 

file. Read mapping was performed in HiSAT2 using the newly indexed reference genome and the 

trimmed reads output by Trimmomatic. For HiSAT2, the --mp flag was adjusted to 4,2 the 

maximum and minimum penalties for mismatches. The read mapping step resulted in .sam files, 

which are a common format for storing aligned reads and their reference sequences. The SAM 

files were then sorted and converted into BAM files to get the files into binary format using 

Samtools (1.4.1). The Picard tool, MarkDuplicates (2.21.8), was used on the mapped BAM files 

output by Samtools, and duplicates were marked and removed and output into new BAM files. 

The types of duplicates that can be removed from the samples include sequencing duplicates and 

PCR duplicates.  

For read feature quantification, HTSeq count (0.11.3) was used on the deduplicated 

mapped BAM files created by Picard. To deal with reads that align with more than one feature, 

HTSeq count provides three different modes, union, intersection_strict, and 

intersection_nonempty [18]. When not specified, the default mode is union, and the 

default mode was used in this pipeline as it is the mode recommended for most cases. HTSeq 

count was provided the reads with duplicates removed, and the genome annotation file (gtf) as 

input. The input genome annotation file (gtf) contained Ensembl annotated transcripts to 
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associate the reads with known transcripts in the reference genome [26]. Provided these inputs, 

HTSeq count generated count files containing counts for each known transcript per sample. 

Specific parameters that were set were the parameters -s to no, -i to transcript_id to 

obtain the Ensembl transcript ID for the mapped read, and --additional-attr to 

gene_id. These count files were used as input for differential expression (DE) analysis.  

DE analysis was performed using the DESeq2 package (1.28.1) in R. DESeq2 works by 

using the count files generated by HTSeq count as input, providing sample names and each 

sample’s corresponding condition (treatment or control), and converting the count files into 

statistically significant datasets, with specific genes identified as being more statistically 

significant than others based upon p-adj values at threshold of 0.01 in the current usage of this 

application. Since the input count files contained the D. melanogaster Ensembl transcript ID 

rather than the gene symbol the transcripts are associated with, the R library, biomaRt (2.44.4), 

was used to retrieve the entire Ensembl entry for D. melanogaster in order to get the needed gene 

symbols for the gene list. The table of significant genes with their corresponding gene symbols 

and statistics were output into a .csv file and ordered by p-adj value, in ascending order.  

Gene set enrichment analysis was performed using the fgsea package (1.14.0) in R. The 

ranked gene list was created based upon the .csv file output from DESeq2 and contained only 

genes with associated gene symbols, and the log2 fold change metric was used as the ranking 

metric. This ranked gene list had duplicates removed, on the occasion that multiple transcripts 

observed in the results mapped to the same gene. The msigdb package was used to gather 

molecular pathways and their corresponding genes listed for D. melanogaster to demonstrate the 

significance of differentially expressed neurodevelopmentally related pathways when compared 
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across molecular processes from the Gene Ontology (GO) collection in the Cellular Component 

(CC) and Biological Processes (BP) subcategories. The fgsea algorithm was used after being 

provided the ranked gene list from DESeq2 results and the gene sets for D. melanogaster as 

input for the GO collection, CC and BP subcategories. As output, a gene set enrichment table 

was created, along with a text file containing the top 10 up-regulated and down-regulated 

pathways, their statistical significance, and a list of their leading edge genes. The leading edge 

genes represent the genes in a specific pathway with the highest contribution to the enrichment 

score. Genes that appear in multiple leading edge subsets for different pathways are likely 

subject to differential expression following a treatment vs. a control condition [20]–[23]. An 

enrichment plot was created for each of the top 10 up-regulated and top 10 down-regulated 

pathways observed in the gene set enrichment table.  

2.2 Implementation of Pipeline Execution 

The analysis pipeline was designed to perform an end-to-end workflow. The steps of 

Snakemake are split into 9 major steps for pipeline execution on the SJSU Spartan HPC (High 

Performance Computer): 

● FastQC on the raw sequencing reads 

● Trimmomatic on the raw sequencing reads 

● FastQC on the trimmed reads 

● HiSAT2 indexing 

● HiSAT2 read mapping of the trimmed reads 

● Removal of all types of duplicates from the mapped reads with Picard 
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● HTSeq-count for mapped read quantification  

● Differential expression analysis on the count files using DESeq2 

● Gene set enrichment analysis on the statistically significant differentially expressed genes   

using fgsea 

The requirements for the pipeline are as follows: 

● Linux system with scalable nodes  

● FastQC (0.11.8) 

● Trimmomatic (0.39) 

● HiSAT2 (2.1.0) 

● Samtools (1.4.1) 

● Picard MarkDuplicates (2.21.8)  

● Python 3+ 

● HTSeq Count (0.11.3)  

● R 4.0+ 

● DESeq2 (1.28.1) 

● fgsea (1.14.0) 

● Snakemake (4.3.0)  

The main pipeline call is in a single shell script that is intended to be deployed in an HPC 

environment. In the script, the pipeline was allocated 8 compute nodes and 8 CPUs for each 

node, and 10 GB per node. For a reference genome size of 180 million base pairs (bp) for D. 
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melanogaster, full pipeline-execution takes ~3.5 hours from start to finish when analyzing 8 

samples with raw library sizes ranging from 35,000,000 to 45,000,000 [27]. Execution is 

dependent upon the library size of the trimmed samples, the number of samples, and the size of 

the reference genome. This pipeline is scalable to allocate more nodes and CPUs for processing. 

In addition, since the pipeline is deployed using Snakemake, it can easily be deployed in other 

environments.  

3. Results 

3.1 Read Quality Filtering and Trimming 

The first round of FastQC results generated HTML files that contained graphs and visuals 

for each sample processed. The FastQC results indicated that Illumina Universal adapters were 

present in the raw sequencing, and therefore a trimming step would be required. The FastQC 

results for the raw sequencing reads can be found in the appendix.  

Table II includes the results for each of the 8 samples with input, output, and dropped read 

counts, as well as percentages of reads surviving and reads dropped following trimming. As 

observed in Table II, the number of reads dropped per sample following trimming at a phred 

score threshold of 33 resulted in less than 1% of reads being dropped in each sample. Table II 

shows the number of reads before and after the trimming step, the number of reads dropped, as 

well as the percent of reads dropped and percent surviving for each sample following the 

trimming step. 
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Table II. Trimmomatic Results 

 A second FastQC check was performed on the trimmed reads to ensure proper removal of 

the adapters from the raw reads, and to ensure only high quality reads remained after the 

trimming step. FastQC results were observed in the form of an HTML file to confirm that 

analysis could proceed with passing values for each FastQC metric. The FastQC results from the 

trimmed reads can be found in the appendix. The trimmed read files served as input files for the 

read mapping step using HiSAT2.  

3.2 Read Mapping and Removal of Duplicates 

HiSAT2 created an indexed reference genome from the dmel-all-r6.35 reference genome 

and genome annotation file (gtf) obtained from Flybase. The indexes were used by HiSAT2 to 

Sample Name Raw Input Reads Surviving % Surviving Dropped % Dropped

A_2_S123_L004_R1_001 37,602,008 37,521,543 99.79% 80,465 0.21%

A_S119_L004_R1_001 35,233,735 35,160,114 99.79% 73,621 0.21%

B_2_S124_L004_R1_001 43,739,934 43,655,424 99.81% 84,510 0.19%

B_S120_L004_R1_001 36,384,564 36,312,251 99.80% 72,313 0.20%

C_2_S125_L004_R1_001 37,941,942 37,860,379 99.79% 81,563 0.21%

C_S121_L004_R1_001 38,523,284 38,460,091 99.84% 61,193 0.16%

D_2_S126_L004_R1_001 37,090,520 37,013,085 99.79% 77,435 0.21%

D_S122_L004_R1_001 36,610,735 36,547,791 99.83% 62,944 0.17%
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map the reads. The mapping rates for each of the 8 samples can be observed in Table III. Table 

III includes metrics to show the percentage of reads that aligned 0, 1, or greater than 1 time and 

the final overall alignment percentage. All samples processed through the pipeline had alignment 

rates higher than 78% when mapped to the indexed reference genome. In addition, less than 25% 

of the overall reads for each sample did not align to the indexed reference genome at all. All 

mapped reads were used for downstream analysis. 

Table III. HiSAT2 Results 

The mapped reads were then processed by Samtools to produce BAM files to get the 

mapped read files into binary format for usage by other tools. The newly created mapped BAM 

files were then processed by the Picard tool MarkDuplicates. MarkDuplicates was run twice 

during the testing portion of the pipeline for comparing counts and percentages of surviving 

reads compared to raw input reads; once with the optional flag of REMOVE_DUPLICATES set to 

true to remove any type of duplicate from the file, and another time with the optional flag 

Sample Name Trimmed 
Input reads

% Aligned 0 
times

% Aligned 
exactly 1 time

% Aligned >1 
times

Overall 
alignment rate

A_2_S123_L004_R1_001 37,521,543 14.41% 83.79% 1.79% 85.59%

A_S119_L004_R1_001 35,160,114 21.82% 77.06% 1.11% 78.18%

B_2_S124_L004_R1_001 43,655,424 16.56% 81.93% 1.51% 83.44%

B_S120_L004_R1_001 36,312,251 19.12% 79.18% 1.70% 80.88%

C_2_S125_L004_R1_001 37,860,379 17.86% 80.36% 1.78% 82.14%

C_S121_L004_R1_001 38,460,091 19.50% 78.03% 2.46% 80.50%

D_2_S126_L004_R1_001 37,013,085 16.66% 82.13% 1.21% 83.34%

D_S122_L004_R1_001 36,547,791 21.90% 76.65% 1.46% 78.10%
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REMOVE_SEQUENCING_DUPLICATES set to true to remove optical or sequencing 

duplicates from the file. The counts and percentages of reads remaining for each type of 

duplicate removal compared to the raw input reads in each of the 8 samples in comparison to 

each raw input read counts can be found in Table IV. 

Table IV. MarkDuplicates Results 

3.3 Counting 

HTSeq Count was used to create count files based upon the mapped reads with duplicates 

removed. The count files include information about the Ensembl gene ID and the Ensembl 

transcript ID the reads mapped to and the counts of how many reads were mapped to these 

known transcript entries. These count files served as input for differential expression analysis 

with DESeq2.  

Sample Name Raw Input 
Reads

Reads 
Remaining: 

Remove 
Sequencing 
Duplicates

Reads 
Remaining: 

Remove 
Sequencing 
Duplicates 

(Percentage)

Reads 
Remaining: 
Remove All 
Duplicates

Reads 
Remaining: 
Remove All 
Duplicates 

(Percentage)

A_2_S123_L004_R1_001 37,602,008 34,341,679 91.33% 3,143,138 8.36%

A_S119_L004_R1_001 35,233,735 29,017,175 82.36% 1,743,988 4.95%

B_2_S124_L004_R1_001 43,739,934 38,813,870 88.74% 3,371,633 7.71%

B_S120_L004_R1_001 36,384,564 31,542,053 86.69% 2,475,934 6.81%

C_2_S125_L004_R1_001 37,941,942 33,987,880 89.58% 4,021,337 10.60%

C_S121_L004_R1_001 38,523,284 33,703,298 87.49% 3,103,708 8.06%

D_2_S126_L004_R1_001 37,090,520 32,624,585 87.96% 2,305,966 6.22%

D_S122_L004_R1_001 36,610,735 30,664,167 83.76% 2,344,468 6.40%
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3.4 Differential Expression Analysis 

DESeq2 was used in R to perform differential expression analysis. DESeq2 produced a 

table of significant genes, with p-values, p-adj values, and log2 fold changes as some noted 

associated statistics. A threshold of a p-adj value of 0.01 was used to filter out genes that were 

not found to be statistically significant. The significant genes were output into a .csv file and 

ordered by p-adj value, in ascending order and were used as input to perform gene set 

enrichment analysis. The DESeq function of DESeq2 runs a diagnostic test for outliers, called 

Cook’s distance for every gene and for every sample. Cook’s distance is a measure of the 

influence an individual sample has over the fitted coefficients for a particular gene; a large 

Cook’s distance value can be used for inferring a high outlier count [11]. Furthermore, genes 

with low counts are due to high dispersion [11]. Table V below includes a summary of the 

significant results, including the counts and percentages of genes that experienced a positive log2 

fold change, a negative log2 fold change, as well as outliers and low counts.  

Table V. Summary of Significant DESeq2 Results 

Feature Counts Percentage

LFC > 0 (up) 597 57%

LFC < 0 (down) 443 43%

Outliers 0 0%

Low counts 0 0%

Total 1040 100%
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3.5 Gene Set Enrichment Analysis (GSEA) 

 GSEA was used to help identify which processes and molecular pathways experienced a 

large log2 fold change between unexposed control samples and BPA-exposed samples. GSEA 

was used on the GO collection, with the Cellular Component (CC) and Biological Processes 

(BP) subcategories of D. melanogaster gene sets available in order to demonstrate the influence 

of BPA exposure on a focused set of neurodevelopmentally-relevant pathways. GSEA was 

performed using the fgsea library in R, which resulted in a table with the top 10 up-regulated and 

top 10 down-regulated pathways for both the GO CC and GO BP collections. The pathways in 

each collection were given an associated p-value, p-adjusted value, a NES (Normalized 

enrichment score), and an Enrichment Score (ES) to display statistical significance [20]–[23]. 

The p-value metric is an enrichment p-value, estimating the statistical significance of the ES for 

a specific gene set, and the p-adjusted value is a Benjamini-Hocheberg (BH)-adjusted p-value 

[20]–[23]. The ES denotes to which degree a gene set is overrepresented at the top (with a 

positive value) or at the bottom (with a negative value) of a ranked list of genes. The NES is the 

normalized ES that accounts for differences in gene set sizes by taking the actual ES and 

dividing by the mean of ESs against all permutations of the dataset, making NES comparable 

across gene sets [20]–[23]. Up-regulated pathways are associated with NES values greater than 

0, and down-regulated pathways are associated with NES values less than 0. Tables VI and VII 

organize the qualifying pathways based upon descending NES. 
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Table VI. GSEA top up-regulated and down-regulated pathways for GO Collection, CC Subset 

pathway pval padj ES NES

GO_SYNAPSE 6.4156E-07 0.00034 0.4994 2.6477

GO_NUCLEAR_BODY 1.8008E-06 0.00047 0.5008 2.6085

GO_PRESYNAPSE 5.7737E-06 0.0010 0.6826 2.4786

GO_CHROMATIN 8.2669E-05 0.0087 0.4450 2.2785

GO_NUCLEAR_CHROMOSOME 8.0105E-05 0.0087 0.4450 2.2770

GO_CELL_CORTEX 0.0005864 0.0343 0.6528 2.1293

GO_CELL_PROJECTION_MEMBRANE 0.0005045 0.0343 0.5540 2.1295

GO_NUCLEAR_SPECK 0.0005300 0.0343 0.4722 2.1430

GO_POSTSYNAPSE 0.0005400 0.0343 0.5042 2.1222

GO_GLUTAMATERGIC_SYNAPSE 0.0006525 0.0343 0.5391 2.1142

GO_DENDRITE_TERMINUS 0.0541082 0.2886 -0.9745 -1.3065

GO_CILIARY_TIP 0.0541082 0.2886 -0.9745 -1.3065

GO_RADIAL_SPOKE 0.0471312 0.2695 -0.7655 -1.4943

GO_SPINDLE_POLE 0.0437376 0.2654 -0.7077 -1.5560

GO_MOTILE_CILIUM 0.0408560 0.2589 -0.4888 -1.6005

GO_XY_BODY 0.0300601 0.2227 -0.9883 -1.3249

GO_DEUTEROSOME 0.0300601 0.2227 -0.9883 -1.3249

GO_TIM23_MITOCHONDRIAL_IMPORT_ 
INNER_MEMBRANE_TRANSLOCASE_COMPLEX

0.0155024 0.1751 -0.9147 -1.5330

GO_TERTIARY_GRANULE_LUMEN 0.0117841 0.1512 -0.9922 -1.3301

GO_CILIARY_PLASM 0.0070265 0.1067 -0.5559 -1.8897
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Table VII. GSEA top up-regulated and down-regulated pathways for GO Collection, BP Subset 

pathway pval padj ES NES

GO_NERVOUS_SYSTEM_PROCESS 4.5632E-06 0.0105 0.5820 2.6134

GO_POSITIVE_REGULATION_OF_RNA_ 
BIOSYNTHETIC_PROCESS

6.5687E-06 0.0105 0.4319 2.4935

GO_POSITIVE_REGULATION_OF_ 
TRANSCRIPTION_BY_RNA_POLYMERASE_II

9.5165E-06 0.0105 0.4579 2.4321

GO_REGULATION_OF_TRANSPORT 7.3319E-06 0.0105 0.4565 2.4896

GO_BIOLOGICAL_ADHESION 3.9518E-05 0.0158 0.4649 2.3600

GO_NEGATIVE_REGULATION_OF_MOLECULAR_ 
FUNCTION

4.0231E-05 0.0158 0.4237 2.3304

GO_NEGATIVE_REGULATION_OF_ 
CELLULAR_BIOSYNTHETIC_PROCESS

2.7439E-05 0.0158 0.3916 2.2941

GO_NEGATIVE_REGULATION_OF_NUCLEOBASE_ 
CONTAINING_COMPOUND_METABOLIC_PROCESS

2.35995E-05 0.0158 0.3870 2.2975

GO_REGULATION_OF_CELLULAR_LOCALIZATION 3.9927E-05 0.0158 0.5110 2.4245

GO_REGULATION_OF_CELL_POPULATION_ 
PROLIFERATION

3.6673E-05 0.0158 0.3816 2.2144

GO_PYRIMIDINE_CONTAINING_COMPOUND_ 
CATABOLIC_PROCESS

0.0148325 0.2078 -0.9922 -1.3263

GO_PYRIMIDINE_CONTAINING_COMPOUND_ 
BIOSYNTHETIC_PROCESS

0.0148325 0.2078 -0.9922 -1.3263

GO_NUCLEOSIDE_SALVAGE 0.0148325 0.2078 -0.9922 -1.3263

GO_NUCLEOSIDE_CATABOLIC_PROCESS 0.0148325 0.2078 -0.9922 -1.3263

GO_NUCLEOBASE_METABOLIC_PROCESS 0.0148325 0.2078 -0.9922 -1.3263

GO_NUCLEOBASE_CONTAINING_SMALL_ 
MOLECULE_CATABOLIC_PROCESS

0.0148325 0.2078 -0.9922 -1.3263

GO_NUCLEOBASE_CONTAINING_SMALL_ 
MOLECULE_BIOSYNTHETIC_PROCESS

0.0148325 0.2078 -0.9922 -1.3263

GO_GLYCOSOL_COMPOUND_CATABOLIC_PROCESS 0.0148325 0.2078 -0.9922 -1.3263

GO_GLYCOSOL_BIOSYNTHETIC_ 
CATABOLIC_PROCESS

0.0148325 0.2078 -0.9922 -1.3263

GO_CELLULAR_METABOLIC_COMPOUND_SALVAGE 0.0148325 0.2078 -0.9922 -1.3263
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The subset of leading edge genes for each of the top up-regulated and down-regulated 

pathways in the GO CC and GO BP collections can be observed in Tables VIII and IX below. 

Tables VIII and IX also include a column “size” which denotes the size of the particular pathway 

after removing genes that were not present in the pre-ranked gene list [20]–[23]. 

Table VIII. GSEA pathways leading edge gene subsets for GO Collection, CC Subcategory 

pathway size leadingEdge

GO_SYNAPSE 45 tty Nlg2 SK dlg1 ck Nlg4 Rtnl1 Adar milt CtBP CG5059 
scrib CASK sgg 5-HT7 mbt fz4 CG9328 IRSp53 Nufip dsh 
Galphai Sh LanA rdgA Pp1-87B

GO_NUCLEAR_BODY 42 tou mle CG5059 cnc Atx2 Gmap nop5 pan Sh3beta dom 
CG12877 CG3335 CG6843 Sirt1 sima CG9328 CkIalpha 
dsh Cwc25 CG1234 ncm rdgA Pp1-87B Mi-2 Ino80 Usp7 
CG1677 Pabp2 Rbp1-like nonA peb Srpk79D Slu7 Lk6 
pico MYPT-75D

GO_PRESYNAPSE 15 Nlg2 dlg1 Nlg4 milt CtBP scrib CASK IRSp53 Nufip dsh 
Sh rdgA Pp1-87B

GO_CHROMATIN 40 tou Lim3 mle Hnf4 jing Pdp1 cnc Dp Acf Caf1-180 pan 
dom Ssrp CG7154 Sirt1 sima pros Nufip dsh Mi-2 Ino80 
CG33051 salr His3.3B Lim1 emc nonA Srpk79D CkIIbeta 
Mrtf Hr4 CG7137 Smox sqd XRCC1

GO_NUCLEAR_CHROMOSOME 38 Lim3 mle Hnf4 jing Pdp1 cnc Dp Acf Caf1-180 pan dom 
Ssrp CG7154 Sirt1 sima pros Nufip dsh Pp1-87B Mi-2 
Ino80 SMC2 CG33051 His3.3B Lim1 emc Mrtf Hr4 fs(1)h 
tna Smox sqd XRCC1

GO_CELL_CORTEX 11 dlg1 ck milt CtBP CASK Fim capu chb Galphai

GO_CELL_PROJECTION_MEMBRANE 17 aru tty dlg1 CASK Fim chb mgl CG9328 Kank Galphai Sh

GO_NUCLEAR_SPECK 28 tou CG5059 Atx2 Gmap dom CG3335 CG6843 sima 
CG9328 CkIalpha Cwc25 CG1234 ncm rdgA Pp1-87B 
Mi-2 CG1677 Pabp2 Rbp1-like nonA peb Srpk79D Slu7 
MYPT-75D

GO_POSTSYNAPSE 23 Nlg2 SK dlg1 Nlg4 Rtnl1 milt CG5059 scrib sgg IRSp53 
dsh Sh rdgA Pp1-87B zip Prosalpha4

GO_GLUTAMATERGIC_SYNAPSE 18 Nlg2 dlg1 Nlg4 CtBP scrib sgg fz4 IRSp53 dsh Sh rdgA 
Pp1-87B

GO_DENDRITE_TERMINUS 1 IFT57

GO_CILIARY_TIP 1 IFT57

GO_RADIAL_SPOKE 3 CG15143 CG15144 CG13436

GO_SPINDLE_POLE 4 SAK fzy asp
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Table IX. GSEA pathways leading edge gene subsets for GO Collection, BP Subcategory 

GO_MOTILE_CILIUM 11 CG15143 CG10252 CG12020 CG15144 CG13436 
CG16719 CG10064

GO_XY_BODY 1 SAK

GO_DEUTEROSOME 1 SAK

GO_TIM23_MITOCHONDRIAL_IMPORT_ 
INNER_MEMBRANE_TRANSLOCASE_ 
COMPLEX

2 ttm3 CG7382 

GO_TERTIARY_GRANULE_LUMEN 1 CG8349

GO_CILIARY_PLASM 12 CG6652 IFT57 CG15143 CG12020 CG15144 CG13436 
gudu CG16719

pathway size leadingEdge

GO_NERVOUS_SYSTEM_PROCESS 26 aru Nlg2 dlg1 ck Nlg4 Adar kis Dcp-1 sgg mbt fz4 mgl 
sima CG9328 IRSp53 dsh Galphai Sh rdgA

GO_POSITIVE_REGULATION_OF_ 
RNA_BIOSYNTHETIC_PROCESS

59 myo Su(dx) ewg Lim3 skd Fhos mle Hnf4 CtBP Pdp1 kis 
cnc Gmap Dp Spt5 CASK pAbp pan CG4751 dom 
TfIIFalpha CG7154 CG6770 mtd Sirt1 fz4 sima pros Nufip 
dsh vg

GO_POSITIVE_REGULATION_OF_ 
TRANSCRIPTION_BY_RNA_ 
POLYMERASE_II

44 Su(dx) ewg Lim3 skd Fhos mle Hnf4 CtBP Pdp1 kis cnc Dp 
Spt5 CASK pan CG4751 TfIIFalpha mtd Sirt1 sima pros 
Nufip dsh vg CG43658 Ino80

GO_REGULATION_OF_TRANSPORT 47 Su(dx) SK dlg1 Nlg4 Rtnl1 milt mle CG5059 kis scrib cnc 
Dp CASK sgg Sik2 pan Fim chb Mdr50 Sirt1 sima dsh 
Galphai Sh rdgA Pp1-87B Ubqn Odc1

GO_BIOLOGICAL_ADHESION 37 CG32066 tty Nlg2 dlg1 Nlg4 Dcp-1 scrib CASK sgg chb 
mbt fz4 CG9328 IRSp53 Kank Pka-C3 LanA CG6066 mrj 
Pp1-87B noc sog CG31915 zip emc peb pico Rac2 N Tis11 
tna Smox

GO_NEGATIVE_REGULATION_ 
OF_MOLECULAR_FUNCTION

49 myo Mkp3 Su(dx) dlg1 Adar skd CG32264 Dcp-1 scrib Dp 
sgg Sik2 pan TfIIFalpha CG2182 CG6770 Sirt1 pros dsh 
Galphai mrj rdgA Pp1-87B bip2 Ubqn Pdk Usp7

GO_NEGATIVE_REGULATION_OF_ 
CELLULAR_BIOSYNTHETIC_ 
PROCESS

65 myo Su(dx) ewg Lim3 skd Fhos mle Hnf4 CtBP Pdp1 kis 
cnc Gmap Dp Spt5 CASK pAbp pan CG4751 dom 
TfIIFalpha CG7154 CG6770 mtd Sirt1 fz4 sima pros Nufip 
dsh vg

GO_NEGATIVE_REGULATION_OF_ 
NUCLEOBASE_CONTAINING_ 
COMPOUND_METABOLIC_PROCESS

68 myo Su(dx) ewg Lim3 skd Fhos mle Hnf4 CtBP Pdp1 kis 
cnc Gmap Dp Spt5 CASK pAbp pan CG4751 dom 
TfIIFalpha capu CG7154 RpII215 CG6770 mtd Sirt1 fz4 
sima pros Nufip dsh vg CG43658 Ino80 Usp7 salr Lim1 
Not1 emc pum nonA peb Mrtf CG8519 Hr4 N Tis11 fs(1)h 
tna Smox sqd XRCC1

GO_REGULATION_OF_CELLULAR_ 
LOCALIZATION

31 dlg1 Nlg4 Rtnl1 milt mle CG5059 kis scrib Dp CASK sgg 
pan Fim sima dsh Galphai Sh rdgA Pp1-87B
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GO_REGULATION_OF_CELL_ 
POPULATION_PROLIFERATION

63 myo Mgstl dlg1 Rtnl1 Adar Rox8 mle CtBP Dcp-1 scrib Dp 
CASK pan CG7154 CG2182 Jarid2 CG6770 Sirt1 mgl sima 
Kank pros dsh Galphai Sh LanA mrj Pp1-87B Mi-2 Odc1 
noc sog sty CG8545 Lim1 disco-r emc peb Srpk79D 
l(1)G0320 RpL23 CkIIbeta Mrtf MYPT-75D Rac2 N Tis11 
tna Smox

GO_PYRIMIDINE_CONTAINING_ 
COMPOUND_CATABOLIC_PROCESS

1 CG8349

GO_PYRIMIDINE_CONTAINING_ 
COMPOUND_BIOSYNTHETIC_ 
PROCESS

1 CG8349

GO_NUCLEOSIDE_SALVAGE 1 CG8349

GO_NUCLEOSIDE_CATABOLIC_ 
PROCESS

1 CG8349

GO_NUCLEOBASE_METABOLIC_ 
PROCESS

1 CG8349

GO_NUCLEOBASE_CONTAINING_ 
SMALL_MOLECULE_CATABOLIC_ 
PROCESS

1 CG8349

GO_NUCLEOBASE_CONTAINING_ 
SMALL_MOLECULE_ 
BIOSYNTHETIC_PROCESS

1 CG8349

GO_GLYCOSOL_COMPOUND_ 
CATABOLIC_PROCESS

1 CG8349

GO_GLYCOSOL_BIOSYNTHETIC_ 
CATABOLIC_PROCESS

1 CG8349

GO_CELLULAR_METABOLIC_ 
COMPOUND_SALVAGE

1 CG8349
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4. Discussion 

4.1 PCR Contributed to the Majority of Duplicated Reads 

 Duplicate reads can be caused by PCR duplicates that occur during the library 

preparation process, or by duplicates that occur during the sequencing process. Duplicates can 

confound the estimation of the transcript abundance if not properly handled and removed [28]. 

Fortunately, duplicate reads can be removed using bioinformatics tools such as MarkDuplicates 

in the Picard tool suite. The MarkDuplicates step of the pipeline was tested with two different 

option flags that could be set to remove all types of duplicates, such as PCR and sequencing 

duplicates, or a flag that could be set to only remove sequencing duplicates. Depending on the 

flag that was set, the step would result in different numbers of surviving reads following the 

removal of duplicates. Table IV shows the counts and percentages of the surviving reads for each 

type of flag. As observed in Table IV, the samples contained high counts of PCR duplicates as a 

significantly lower number of reads remained following the removal of all possible types of 

duplicates across all samples. In comparison to the raw input read quantities, roughly 10% of 

reads were viable for quantification across all samples. 

 The FastQC results were used as another form of validation for the presence of PCR 

duplicates in the reads after trimming. Metrics containing information about sample GC% 

content can be compared to the expected GC% content of D. melanogaster to demonstrate levels 

of contamination. In Figure 2, the per base sequence content graph output by FastQC for the 

BPA-exposed sample, A_2_S123_L004_R1_001, can be observed. The GC% content for this 

sample can be found by summing the average of the black and blue lines observed in Figure 2, 

and the combined GC% content appears to be around ~20-30%. In comparison, the expected 
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median GC% content in D. melanogaster is roughly 42% [29]. The expected GC% content of D. 

melanogaster is significantly higher than what is observed in this sample’s reported GC% 

content, indicating the possibility of partial contamination, despite reads mapping to the indexed 

reference D. melanogaster genome in downstream analysis. 

  

Figure 2. Per base sequence content for sample A_2_S123_L004_R1 

  

 Figure 3 contains a graph of the per sequence GC content output by FastQC for the same 

BPA-exposed sample, A_2_S123_L004_R1_001. The blue line is representative of the expected 

GC% content for D. melanogaster. It can be clearly seen that the GC count per read does not 

remain aligned with the expected theoretical distribution after the first 12 bases, and this could be 

due to contaminating sequences, such as different species, adapters, mitochondrial/rRNA, and/or 

overrepresented sequences. Multiple peaks in a GC content graph such as those observed in 
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Figure 3, are usually an indication of contamination. 

  

Figure 3. Per sequence GC content for sample A_2_S123_L004_R1 

 Further confirmation of the presence of duplicates was found by investigating sequence 

duplication levels. Figure 4 contains a graph of the sequence duplication levels output by FastQC 

for the same BPA-exposed sample A_2_S123_L004_R1_001. The blue line is representative of 

the total percent of sequences and reads in the sample. It can be seen that according to Figure 4, 

the percent of sequences remaining if the present reads were deduplicated would only be 5.32%. 

The high levels of sequence duplications could be due to a low complexity library used during 

preparation, too many cycles of PCR amplification during library preparation, or could also be 

due to too little of starting material and target messenger RNA (mRNA) material for sequencing.  
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Figure 4. Sequence duplication levels for sample A_2_S123_L004_R1 

An additional metric that was investigated output by the FastQC results for the same BPA-

exposed sample A_2_S123_L004_R1_001 was overrepresented sequences. Two of the top 3 

overrepresented sequences, 

“GTCCTTTCGTACTAAAATATCACAATTTTTTAAAGATAGAAACCAACCTG” and 

“GTCCAACCATTCATTCCAGCCTTCAATTAAAAGACTAATGATTATGCTAC”, accounted for 

6.74% and 2.67% of overrepresented sequences in the sample, respectively. A BLASTn search 

was performed on these two sequences [30]. Figure 5 shows the top BLAST hit for the first 

overrepresented sequence, which had 100% identity and 100% coverage matching the D. 

melanogaster mitochondrial complete genome. Figure 6 shows a BLAST hit that was among the 

top hits for the second overrepresented sequence, in which the query overrepresented sequence 
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had 100% identity and 100% coverage matching a different Drosophila species’ ribosomal RNA. 

The contaminating sequences, while Drosophila, are not the target mRNA material for analysis. 

It would be ideal to avoid the amplification of this non-target material through the use of a ribo-

depletion kit that can be used during the library preparation step. The use of a ribo-depletion kit 

would also minimize the waste of sequencing resouces.   

Figure 5. Top BLAST hit for first overrepresented sequence in sample A_2_S123_L004_R1


Figure 6. BLAST hit for second overrepresented sequence in sample A_2_S123_L004_R1


While DE analysis could have continued with only the removal of sequencing duplicates 

and the pipeline would still have been able to correctly identify affected pathways, it was decided 

to remove all duplicates, due to the high levels of duplicated sequences and to generate stronger 

results. It appears that there were a substantial number of PCR duplicates in all samples; thus, it 

was essential that this PCR bias was accounted for with the conservative removal. 

4.2 BPA Exposure Caused Up-regulated Gene Expression Involved in Axon Guidance 
and Neuron Development 

DESeq2 performed differential expression analysis by performing analysis on the count 

files generated from the transcript quantification step. Table V summarizes the significant results 

exported by DESeq2. The results of Table V indicate that the majority of the differentially 

expressed genes that had p-adjusted values less than 0.01 were genes that were up-regulated by 

BPA exposure. Furthermore, there are no outliers in this subset of statistically significant results, 
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indicating that the data is not skewed to show more up or down-regulated genes. As noted in 

Table V, of these significant differentially expressed genes, there were 0 with low counts, 

providing more evidence that the differences in expression detected by DESeq2 were entirely 

due to genes that had high differences in counts.  

Figure 7 contains a heatmap of the normalized count matrix from DESeq2 data and 

displays levels of expression among differing sample conditions for the top 50 differentially 

expressed genes. In addition, Figure 7 includes a size factor and condition labeling scheme in its 

legend. 

  

Figure 7. Heatmap of Normalized Count Matrix 

The statistically significant genes (genes with p-adj < 0.01) were output into a .csv file 

and ordered by ascending p-adj values. The subset of differentially expressed genes included 
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1040 genes that were exported into the .csv file based upon the p-adj threshold of < 0.01. 

The .csv file can be found in the appendix. One of the notable top 50 genes differentially 

expressed based upon normalized counts, Smox—this gene is involved with axon guidance, 

mushroom body development, and neuron development [31]–[33]. Smox being present in this 

heatmap of the normalized count matrices is aligned with cellular and behavioral phenotypes 

observed in the lab of Dr. Kimberly Mulligan. 

Log2 fold change was plotted in a histogram in Figure 8 based upon the 1040 

statistically-significant differentially expressed genes output from DESeq2. 50 bins were created 

based upon the log2 fold change value on the x-axis, and frequency was plotted on the y-axis for 

each bin. It can be observed that most genes exported in the significant results file experienced a 

positive fold change since the histogram plot has heavier weight to the right-side of the plot; 

however, higher frequency of the fold-changes of these genes were on the scale of 1. Figure 8 

demonstrates that very few genes experienced extremely high (greater than 4) or extremely low 

(less than -4) fold change. However, of the 10 genes that experienced extremely high log2 fold 

change, 4 of the genes have known neurodevelopmental significance in D. melanogaster. The 4 

genes, aru, myo, tou, and Exn, are listed in Table X. Since the histogram from Figure 8 was 

created with input data from all 1040 statistically significant differentially expressed genes, the 

fact that the neurodevelopmentally-related genes are among the genes with extremely high log2 

fold change, indicates that these genes involved in neurodevelopment stand out as being 

differentially regulated by BPA, even when examining all differentially expressed genes 

regardless of biological context.  
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Figure 8. Histogram plot of log2 fold change and frequency for 1040 genes (padj < 0.01) 

Table X. Top 10 differentially expressed genes with log2 fold changes greater than 4 

symbol log2 fold change

rdgA 5.494587

Osi15 4.930355

myo 4.792463

tou 4.746440

aru 4.569626

CG32066 4.526561

Mkp3 4.417412

Su(dx) 4.246549

Exn 4.152533

lncRNA:CR45919 4.102425
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4.3 Molecular Pathways Involved with Axon Guidance and Neuron Development 
Affected by BPA Exposure 

Gene set enrichment analysis provides insight into the specific molecular pathways and 

genes subject to change following exposure to an experimental condition. A GSEA table was 

generated by fgsea and is shown in Figure 9. This figure displays gene ranks, NES, and statistical 

significance for the top 10 up-regulated and top 10 down-regulated pathways for GO gene set 

collection, CC subcategory from MSigDB for D. melanogaster. The GSEA table provided 

insight as to which molecular processes were influenced by BPA exposure, and multiple 

pathways showed direct association with neurologically significant pathways. All of the 

pathways that were listed in the table had significantly low p-values, and almost half of the top 

up-regulated pathways were of neurological significance. Some of the pathways listed that were 

of note were GO_SYNAPSE, GO_PRESYNAPSE, GO_POSTSYNAPSE, 

GO_GLUTAMATERGIC_SYNAPSE, and GO_DENDRITE_TERMINUS as these pathways 

have direct known association with neurological processes as reported in the Molecular 

Signature database [20]–[23]. The presence of these pathways—which are involved with 

synapses, neurotransmitters and the endocrine system—further supports the observed cellular 

and behavioral impacts of BPA as an EDC observed in the lab of Dr. Mulligan. Based upon the 

results observed in Figure 9, it can be concluded that BPA affects neurological molecular 

pathways in developing D. melanogaster larvae, in a manner that is of statistical significance 

with significance being based upon LFC ranking. 

 34



Transcriptional Profiling of Neurological Development of Drosophila Following Bisphenol A Exposure

  
Figure 9. GSEA Table for the GO collection, CC subcategory of gene sets in D. melanogaster 

Enrichment plots of the notable molecular pathways related to neurodevelopmental 

pathways are included below. The enrichment plots help denote the ranking of their leading edge 

genes as those genes included in the subset are represented by the black dashes before the 

maximum enrichment score, denoted by the dashed red line across the plot in Figures 10-14. 

Given the size of the leading edge subsets for each pathway listed in Table VIII, one can get an 

idea of how many genes are included in these pathways based upon the number of black dashes 

on the “rank” line of Figures 10-14. Note in Figure 14, the number of black dashes, or the 

number of genes in the pathway are notably lower in comparison to what is observed in Figures 

10-13. This is also reflected in Table VIII in the “size” column. 
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Figure 10. Enrichment plot for the GO_SYNAPSE pathway 

  


Figure 11. Enrichment plot for the GO_PRESYNAPSE pathway 
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Figure 12. Enrichment plot for the GO_POSTSYNAPSE pathway 

  
Figure 13. Enrichment plot for the GO_GLUTAMATERGIC_SYNAPSE pathway 
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Figure 14. Enrichment plot for the GO_DENDRITE_TERMINUS pathway 

To further investigate using GSEA, the gene set collection was refined to only include 

those pathways GO gene set, and was further refined to only include the BP subcategory. When 

refining to the GO BP subset, the following GSEA table is generated in Figure 15. 
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Figure 15. GSEA Table for the GO collection, BP subcategory of gene sets in D. melanogaster 

The GSEA table listed in Figure 15 shows that the most up-regulated pathway when 

focusing on this particular gene set collection is the GO_NERVOUS_SYSTEM_PROCESS 

pathway, an additional neurodevelopmentally-relevant pathway identified by the analysis. In 

Figure 16 below, the enrichment plot for this pathway can be found.   
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Figure 16. Enrichment plot for the GO_NERVOUS_SYSTEM_PROCESS pathway 

The data in Figure 15 clearly indicates that further refining the collection of genes to the 

GO BP subset and performing GSEA with the genes observed in the significant results revealed 

an additional pathway with neurodevelopmental significance. Narrowing the collection of gene 

sets to the GO Collection instead of looking over all possible processes affected helped bring 

new insights to the neurodevelopmentally-related pathways affected by BPA-exposure. The 

GSEA step was able to reveal neurodevelopmentally-relevant pathways, with direct association 

with synapses, dendrites, and endocrine signaling. 

4.4 Leading Edge Genes Include Neurodevelopmentally Significant Genes 

The leading edge genes are the genes in a pathway that contributed the most to the 

enrichment score. Genes that are present in multiple leading edge subsets for different pathways 
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are likely susceptible to differential expression following exposure to an experimental condition. 

Leading edge genes were organized into a table based upon frequency in the pathways listed in 

the GSEA tables from Figures 9 and 15, from the GO CC and BP gene sets. The counts of the 

genes reflect the number of statistically significant molecular pathways the genes are involved 

in; for genes with higher frequency, one can infer that these genes are subject to differential 

expression following exposure to BPA. As observed in Table XI, eight of the genes that appeared 

in multiple leading gene subsets were previously identified to be involved in functions that affect 

cellular and behavioral outcomes, including axon guidance, courtship, and locomotion (dlg1, 

CASK, Adar, nonA, mbt, Smox, myo, Rtnl1) [34]–[41]. 

Two genes of particular interest are among the highest frequency— dlg1 and CASK. The 

gene dlg1 is important for nervous system development and courtship behavior [34], [42]. In 

addition, CASK encodes a protein important for memory, synaptic transmission at the 

neuromuscular junction, and courtship behavior [43], [35], [44]. These two genes have 

established neurodevelopmental pathway significance and are among the most frequent of the 

leading edge genes; their frequency indicates that neurodevelopmental pathways are subject to 

change following BPA exposure. Another notable gene that is among the most frequent, is dsh. 

The gene dsh is the dishevelled gene that was originally identified in mutant flies [45]. In a study 

conducted by Srahna et. al 2006, dsh was shown to be needed for dorsal cluster neuron axon 

extension and stabilization in wild-type Drosophila [46]. The identification of leading edge 

genes assist in identifying the molecular underpinnings of the cellular and behavioral phenotypes 

identified in the Mulligan research group [6]. 
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All of the leading edge genes listed in Table XI provide explicit support and molecular 

evidence that BPA exposure influences neurodevelopmentally-related genes and pathways; 39 

genes of known neurologically-significant function are differentially expressed. The GSEA step 

of the RNA-Seq analysis pipeline was able to identify specific neurodevelopmentally-related 

pathways and genes that has not been done in other studies involving RNA-Seq analysis in D. 

melanogaster following BPA exposure. 

Table XI. Neurologically significant leading edge genes that occurred in more than one pathway 

Gene Frequency Gene Frequency

dsh 16 Smox (mushroom body development) 5

CASK (male courtship behavior) 12 Rtnl1 (axon/axonal cone growth) 5

dlg1 (male courtship behavior) 12 Adar (male courtship behavior) 4

Pp1-87B 12 chb 4

mle 10 Dcp-1 4

scrib 9 Lim1 4

Sh 9 nonA (male courtship behavior) 4

cnc 8 Srpk79D 4

Galphai 8 LanA 3

Nlg4 8 mbt (mushroom body development) 3

pros 8 N 3

sgg 8 SK 3

dom 7 tou 3

kis 7 aru 2

Lim3 6 Atx2 2

milt 6 jing 2

Nlg2 6 noc 2

myo (mushroom body development) 5 Rac2 2

pAbp 5 zip 2

peb 5
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4.5 Future Directions 

Future projects can incorporate the usage of the RNA-Seq pipeline deployed here to 

determine differential expression in D. melanogaster resulting from environmental exposures 

and/or genetic risk factors associated with NDDs. Given that NDDs have both environmental and 

genetic etiologies that may work in concert with one another, exploring the influence of BPA in 

different genetic backgrounds may provide further insight into how BPA influences the 

pathophysiology of NDDs. In addition, this pipeline may also be used for execution on D. 

melanogaster samples following exposure to other environmental chemicals. There are 

thousands of environmental chemicals in use that have undergone little to no toxicological 

testing. This pipeline, combined with D. melanogaster as a model, provides a rapid risk 

assessment strategy to identify chemicals that may confer risk of NDDs. Of immediate relevance 

to the current project, this pipeline could be used to compare the impact of BPA-analogs 

commonly used in BPA-free products—in order to compare their impact to that of BPA. Such a 

study would help determine if BPA-free products are indeed a safer choice than BPA-containing 

products.  

 Possible areas of further research can include further gene set enrichment analysis that 

can hopefully help identify additional molecular pathways that are neurodevelopmentally-

relevant. Additional research may include a deeper investigation into the differential expression 

of the leading edge genes listed in Table XI. A future project may include a specific focus on 

these genes in wild-type larvae since multiple molecular pathways affected by BPA include these 

genes. In addition, it is of interest to determine the relative influence of BPA-analogs on 
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molecular pathways, with a targeted interest in investigating their effects on neurological 

pathways.  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APPENDIX 

Trimmed FastQC Files 

https://www.dropbox.com/s/sh0q4hvnk31hq25/A_2_S123_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/m02v0z4s7vswtqm/A_S119_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/uh1dtm4zgdyw1z6/B_2_S124_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/3cu92tfcs9a0888/B_S120_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/vkzpk37ipj6irn3/C_2_S125_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/rfz16wxp5pnq8ju/C_S121_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/74ph1ljqrp4ys4h/D_2_S126_L004_R1_001_fastqc.html?dl=0 

https://www.dropbox.com/s/br2kr5tohna0sky/D_S122_L004_R1_001_fastqc.html?dl=0 

DESeq2 CSV File 

https://www.dropbox.com/s/yrza7ndljr7mw2p/significant_results.csv?dl=0 
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