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ABSTRACT 

 

Humans often use facial expressions along with words in order to communicate effectively. 

There has been extensive study of how we can classify facial emotion with computer vision 

methodologies. These have had varying levels of success given challenges and the 

limitations of databases, such as static data or facial capture in non-real environments. 

Given this, we believe that new preprocessing techniques are required to improve the 

accuracy of facial detection models. In this paper, we propose a new yet simple method for 

facial expression recognition that enhances accuracy. We conducted our experiments on 

the FER-2013 dataset that contains static facial images. We utilized Unsharp Mask and 

Histogram equalization to emphasize texture and details of the images. We implemented 

Convolution Neural Networks [CNNs] to classify the images into 7 different facial 

expressions, yielding an accuracy of 69.46% on the test set. We also employed pre-trained 

models such as Resnet-50, Senet-50, VGG16, and FaceNet, and applied transfer learning 

to achieve an accuracy of 76.01% using an ensemble of seven models.  

 

Keywords - Facial Expression Recognition, Image pre-processing, Deep Learning, 

Transfer Learning, Convolution Neural Network [CNN]. 
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I. INTRODUCTION 

Computer vision allows a machine to see and perceive objects just like a human does. It is 

one of the major areas which have laid the foundation for artificial general intelligence. 

This paper will focus on Facial Expression Recognition, which is to classify a person’s 

emotion based on his/her facial expression. Improvement in Facial expression recognition 

(FER) has led to advancements in face detection, face recognition, face tracking, 

techniques, and cognitive detection [14]. Facial expression recognition (FER) is prominent 

in many fields such as human computer interaction, security, marketing, new analysis and 

so on [35], [36]. However, it is still a challenge to process the data and extract the features 

required for the analysis. To classify an expression into a number of finite expression 

categories with a high accuracy, computers need to learn and understand the different 

features required for each particular expression. In order to accomplish something like this, 

we would require a database that contains a large set of images with many expression 

features. Researchers have made significant progress on FER algorithms by mapping facial 

expressions directly into abstract classes [15][16][3]. Others have used data-driven deep 

learning models that are able to extract features and learn from a large input dataset 

[17][34]. 

The common databases used for FER analysis are divided into two categories. One 

type depends on recognizing basic facial expressions (e.g. happiness, sadness, surprise, 

anger, disgust, fear, and neutral) from human facial expression in RGB or greyscales 

images [36], [37]. The other type focuses on extracting fine-grained descriptions for facial 

expressions [38]. Both types have two issues, which is either the 
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limited number of images in the dataset, or the acted expression instead of a 

spontaneous one in highly controlled environments. Both issues make it difficult for 

learning models to effectively classify expressions. 

Convolutional Neural Networks (CNNs) have been extensively used for image 

classification tasks, especially FER, due to their ability to extract image features [31][19] 

[21] [26] [29]. Generally, training CNN model for FER may have some challenges. For 

example, it may result in overfitting on uncertain inputs that could be mislabeled. 

Moreover, a high ratio of incorrect labels can make the model unable to converge during 

the early stage of optimization.  

One of the deep learning methods is called transfer learning, which has gained a lot 

of interest in deep learning. It uses a pre-trained CNN to solve a problem that is similar to 

a problem that the CNN has been originally trained to solve. It has been used in many FER 

studies [24][20][4]. Oztelet al, conducted an experimental study that compared transfer 

learning vs training the CNN from scratch using popular networks (alexnet and vgg16) 

[18]. They found that the transfer learning approach resulted in shorter training time and 

better results. Ngo and Yoon proposed a loss function called as weight-clustered loss, 

which is a novel loss function that they used during the fine-tuning phase [23]. This 

technique assisted them in handling the imbalance in a facial expression dataset by 

assigning each emotion class a weight based on its proportion of the total number of 

images. 

Transfer Learning optimizes performance by freezing the pre-trained layers, which 

means that the layers will not be trained, and the weights will not be changed. This 
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technique saves computation time, as the network does not need to learn how to extract 

generic features from scratch. However, by not updating the weights of most of the 

network, the optimization only occurs in a subset of the feature space. Thus, the freezing 

technique can decrease the accuracy of the dataset is not similar to any subset of the dataset. 

On the other hand, unfreezing the pre-trained network can improve accuracy. However, 

this process requires caution, as it can result in either over-fitting or decreasing the accuracy 

in the latter process [1]. Common measures to consider when deciding to unfreeze the 

network are usually a few epochs and a small learning rate to avoid over-fitting.  

In this study, we avoid the over-fitting problem while still unfreezing the network 

to train the entire model. The first iteration was performed by freezing the entire pre-trained 

network by detaching their classification layer. Then, we added two fully connected layers 

and trained them for a few epochs. To still take advantage of a pre-trained model on a large 

number of images, unfreezing the last 20-30 layers of the pre-trained network was 

performed in the second iteration. We used a small learning rate and trained the network 

for fewer epochs. This strategy fine-tuned the parameters without training the network. 
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II. Project Roadmap 

The first part of the project involves experimenting with Image preprocessing filters. We 

believe that applying preprocessing techniques can result in improvement in the model 

performance. We have seen how histogram equalization led to an improvement in accuracy 

from previous research [29]. The goal is to experiment with other Image preprocessing 

filters such as Image sharpening, Image smoothing, Adaptive histogram equalization, 

Contrast Limited Adaptive Histogram Equalization etc. Image sharpening enhances the 

edges of the prominent features such as eyes and mouth which play a major role in 

classifying the emotion. We will evaluate the difference in performance by feeding the 

preprocessed images to a 5-layer CNN. 

The second part of the project involves applying transfer learning on the pre-trained 

models in order to achieve better results. We used pre-trained models such as Resnet-50, 

Senet-50, VGG-16, and FaceNet which were trained on millions of facial images. Our goal 

is to fine-tune these pre-trained models on the FER2013 dataset and finally use an ensemble 

to achieve the best results. 
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III. RELATED WORK 

 

Previous studies have developed different methods with increasing progress in facial 

emotion recognition performance [17], [19]. Conventional classification has shown its 

robustness when it is preceded by image preprocessing techniques [7]. Rani et al. [39] used 

edge detection algorithms for prefiltering the raw images for FER. Other studies used 

Gaussian edge detectors [40], Colored edge detectors [41] for multi-view face detection, 

and Canny edge detection [42] for feature extraction. A study by Yu et. al [43] used 

standard histogram equalization for preprocessing facial images data. In unconstrained 

environments, obtained a sparse representation of faces for person-specific verification. 

The datasets available for FER are limited and consist of a small number of images. 

Training CNNs on such small datasets may result in overfitting. To overcome this problem, 

researchers have started adopting transfer learning for facial recognition tasks. Moreover, 

overall performance of the system can be improved by using auxiliary data. This often 

helps model achieve a higher capacity without over-fitting. Applying transfer learning to 

the FER models achieved better results, as opposed training networks from scratch on small 

FER datasets[27]. 

Though CNNs perform well on their own, performing image preprocessing and feeding 

the preprocessed image as input to the CNN has shown significant improvement in 

accuracy as opposed to feeding a raw input image [29]. Earlier implementation of CNN 

architectures did not employ image data augmentation and preprocessing techniques [10], 

[11], [26] making them less robust to rotated and deviated facial images. Tang [12] 

implemented CNN with a linear Support Vector Machine (SVM). Wang et al. [29] 
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employed the same technique, but that they used SVM to stack the result of the “softmax” 

activation function. They also used data augmentation with histogram equalization, which 

resulted in better performance. The performance of an ensemble of classifiers can be 

boosted by applying various preprocessing techniques and feature extract parameters. 

Nanni et al. [44] showed that it is possible to further boost performance by designing an 

ensemble of classifiers based on different preprocessing techniques and feature extraction 

parameters. 

Existing datasets available for facial recognition have been used in fine-tuned 

networks databases such as FER+ and RAF-DB datasets [4], (RaFD) [18], CK+, JAFFE 

and FACES [b2], and FER2013 [2]. The accuracy of the CNN models to detect facial 

expression in the FER-2013 dataset was 65%. The highest accuracy in the Kaggle 

competition was 71.2% which was achieved using CNN with SVM as the loss function for 

training [12]. Many researchers have used pre-trained models to improve the accuracy on 

the FER2013 dataset. Pramerdorfer et al. achieved an accuracy of 75.2% using an ensemble 

of 6 models and without using auxiliary data or face registration [25]. Zhang et al. achieved 

an accuracy of 75.1% using auxiliary data, HoG features, and facial landmark registration 

[33]. Khanzada and colleagues achieved an accuracy of 75.8% using auxiliary data and an 

ensemble of 7 CNNs [28]. In their study, they applied transfer learning on 5 pre-trained 

networks and trained two CNNs from scratch. This is the highest reported accuracy to the 

best of our knowledge. In our method, we used Khanzada et al. findings as a base for our 

approach in training pre-trained models.  
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Our goal is to combine the best of both methods, using an image preprocessing 

technique with data augmentation to enhance each image features and feed it to the CNN 

model. We found that Image Sharpening technique enhances the prominent features of the 

input facial images. Our CNN architecture is tantamount to [29] with some additional 

changes in the convolutions and normalization, and without the need to stack SVM with 

the CNNs output. We used class weight in Resnet-50, Senet-50, and VGG-16 models and 

created an ensemble model. We also combined CNNs such as Resnet- 50, Senet-50, VGG-

16 with image processing filters such as Unsharp Mask and Histogram equalization 

resulting in an ensemble model with an accuracy of 76.01%. Our recent method achieved 

the highest accuracy on the FER2013 with no auxiliary data.  
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IV. DATASET DESCRIPTION 

FER2013 is a well-established dataset used for facial expression recognition tasks (see 

Figure 1). It was developed by Goodfellow et al. [13]  and introduced in a Kaggle 

competition with the intention to promote researchers to improve FER systems. Google 

Image search API was used for the generation of this dataset. It consists of 28,709 training 

images, 3589 validation images, and 3589 test images. The “emotion” field from the 

dataset is the target attribute which consists of six emotions namely “Anger”, “Disgust”, 

“Fear”, “Happy”, “Sad”, “Surprise”, and “Neutral”, with labels 0 to 6 respectively. The 

dataset distribution is depicted in Table 1. The class emotions are not all equally 

distributed. There are only 547 facial images of category “Disgust”.  

                                                   Table 1: Distribution of target class labels 

 

 

Emotion type Number of images Label 

Angry 4593 0 

Disgust 547 1 

Fear 5121 2 

Happy 8989 3 

Sad 6077 4 

Surprise 4002 5 

Neutral 6198 6 
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There is a “pixel” field that consists of a 48*48 facial images. It is stored as a flattened 

1-dimensional string. Some of these images are considered noisy. For example, the comic 

images, images with occluded facial expressions, and completely black images. For 

comparison of results with previous research, none of these images were excluded from 

training. 

 

            Figure 1: Sample images from the FER-2013 dataset 
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V. FACIAL IMAGE PREPROCESSING 

There are multiple factors that can affect the performance of CNNs such as the cluttered 

background, illumination, and posture deviation. Applying preprocessing filters can 

potentially result in improved accuracy in classifying facial expressions. For example, 

sharpening the images can enhance the edges of important features such as mouth and eyes 

[7]. These edges are essential in predicting facial expressions. Histogram equalization helps 

in differentiating the foreground from the background when both the colors are identical 

[32]. In our experiments, we use three pre-processing techniques mainly used in facial 

expression recognition models.  

 

A. Data Augmentation 

The first is data augmentation, which was applied as a preprocessing step to all our models. 

We used “ImageDataGenerator” by Keras for data augmentation. It generates 32 

augmented images from one image by rotating, flipping, and applying other specified 

techniques as shown in Figure 2. 
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Figure 2: Data augmentation output (Patidar, P. (2020, November 20). Image data Augmentation- image processing IN 

TensorFlow- Part 2. Retrieved April 28, 2021, from https://medium.com/mlait/image-data-augmentation-image-

processing-in-tensorflow-part-2-b77237256df0) 

                              

B. Image Sharpening 

The second is image sharpening, for which we used “Unsharp Mask” filter from 

PIL(Python Imaging Library) package. Unsharp Mask uses a blurred or negative image to 

create a mask of the original image. The final positive “less blurred” image is obtained by 

combining the original image with the blurred image. The advantage of using Unsharp 

Mask over other sharpening filters like Gaussian High Pass is the ability to control the 

sharpening process. Unsharp Mask provides adjustable parameters which can be modified. 

By observing and understanding the images in FER-2013, we found that the images is 

slightly blurry and applying sharpening to these images helped to define the edges of 

prominent features, such as eyes and mouth which are relevant for detecting human 

emotions as shown in Figure 3. 
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Figure 3: raw image vs sharpened image 

 

C. Histogram Equalization 

The third is histogram equalization, which we used “skimage” package. We applied 

sharpening technique prior to feeding the images to our baseline 5-layer CNN. The 

Histogram equalization was applied to the raw images as shown in Figure 4.  

 

     Figure 4: raw image vs histogram equalized image 
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However, this training technique was applied to only two models, the 5-layer CNN 

and Resnet-50, in the final ensemble among the seven models. The remaining five models 

Resnet-50, Resnet-50 with class weights, Senet-50, Senet-50 with class weights, and 

FaceNet were trained only by using Data Augmentation. This mask is useful for specific 

applications which require pixel level details. 
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VI. FACIAL EMOTION RECOGNITION 

 

A. FER with traditional Machine Learning 

In the traditional Machine Learning pipeline for Facial Emotion Recognition, face 

detection is performed first to determine the region of interest. Well known face detection 

algorithms like Haar-cascades and Histogram of oriented gradients (HoG) are used to 

identify the face in the image. The second step is to extract important features from the 

region of interest. Feature detection algorithms are used to identify facial landmarks in the 

bounding box as shown in the Figure 5.  

                      

Figure 5: Facial landmark detection (Raut, Nitisha, "Facial Emotion Recognition Using Machine Learning" (2018). 

Master's Projects. 632. DOI: https://doi.org/10.31979/etd.w5fs-s8wd) 

 

These features are then fed as input to Machine Learning classification models    

like SVM to identify the emotion category as shown in Figure 6. 
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Figure 6: Traditional Machine Learning pipeline for FER (Raut, Nitisha, "Facial Emotion Recognition Using Machine 

Learning" (2018). Master's Projects. 632. DOI: https://doi.org/10.31979/etd.w5fs-s8wd) 

  

B. FER with Deep Learning 

As opposed to traditional Machine Learning where we manually extract facial   features 

from an input image to perform classification of emotions, in Deep Learning features 

are automatically extracted by the Neural Network. One such variation of neural 

networks, known to capture spatial information and extract useful features from an 

image is a Convolutional Neural Network.  

A Convolutional Neural Network requires minimal preprocessing. It takes an 

image as the input and assigns weights to different aspects in the image. From Figure 

7, we can see that a convolutional Neural Network typically consists of Convolutional 

layers followed by BatchNormalization and pooling layers followed by Fully 

Connected layers in the end.  
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Figure 7: A typical Convolution Neural Network architecture (Saha, S. (2018, December 17). A comprehensive guide 

to convolutional neural networks - the eli5 way. Retrieved April 28, 2021, from https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53) 

  

           

Figure 8: 3x3x1 kernel operation on 5x5x1 image (Saha, S. (2018, December 17). A comprehensive guide to 

convolutional neural networks - the eli5 way. Retrieved April 28, 2021, from https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53) 
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1) Convolutional Layer 

A convolution layer is where a kernel is applied on the input with a certain stride to obtain 

the convolved feature (see Figure 8). A kernel is essentially a set of weights initialized 

randomly and tweaked by the network during backpropagation based on the loss function. 

When the kernel is applied on the input, a dot product is performed between the kernel 

weights and the region it is being applied on. Therefore, the convolved feature is the sliding 

dot product of the input image from top to bottom as shown in Figure 9. 

                                    

 Figure 9: Movement of the kernel (Saha, S. (2018, December 17). A comprehensive guide to convolutional neural 

networks - the eli5 way. Retrieved April 28, 2021, from https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53) 

 

The kernel has the same depth as the input it is being applied on. For a grayscale image, 

the depth of the kernel is 1 whereas for a color image with three channels (RGB – Red, 

Green, and Blue), the depth of the kernel would be 3. Therefore, three kernels would be 

applied to three different channels (see Figure 10). In Figure 10, we can observe how three 

different kernels with different set of weights are being applied on the three channels of 
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the image. The dot product of all the three channels is summed up with bias to obtain the 

feature output. 

 

Figure 10: Kernel operation on input with depth > 1 (Saha, S. (2018, December 17). A comprehensive guide to 

convolutional neural networks - the eli5 way. Retrieved April 28, 2021, from https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53) 

There can be multiple Convolutional layers in a CNN. The initial Convolutional 

layers extract the low-level features of an image such as edge, color and gradient 

orientation. The deeper Convolutional layers extract more complex high-level information 

such as shapes, objects etc. When we perform a convolution, we also choose the type of 

padding. There are two types of padding called as “same padding” and “valid padding”. If 

we do not intend to reduce the dimensionality of the input, then “same padding” can be 

performed which pads all sides of the image with zeroes. On the other hand, if we do not 

want to reduce the dimensionality of the input, “valid padding” can be selected. 
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2) Pooling Layer 

A Pooling Layer is applied after the Convolutional layer to reduce the dimensionality and 

capture the most relevant information. There are two types of pooling that are commonly 

used: Max Pooling and Average pooling. Max pooling only selects the maximum value of 

the region on which the kernel is applied. Average pooling computes the average of all the 

values of the region on which the kernel is applied. Max pooling is heavily used as it also 

eliminates noise along with reducing the dimensions as we discard the less useful 

information. Figure 11 shows the result of a 2x2 max pooling and a 2x2 average pooling 

with a stride of 2 being applied an input feature map. 

                             

 Figure 11: max pooling and average pooling on input feature map (Saha, S. (2018, December 17). A comprehensive 

guide to convolutional neural networks - the eli5 way. Retrieved April 28, 2021, from 

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53) 

  

3) Fully Connected Layer 
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To capture the non-linear properties of the features obtained by the convolutional layers, 

we use fully connected layers after the convolutional layers. The output is flattened before 

feeding it to the Fully connected layers. To perform classification, we typically use a 

Softmax layer right after the fully connected layers. 

Different variations of Convolutional Neural Networks have been developed overtime 

with the intent to reduce training time, improve accuracy, and deal with the vanishing 

gradient problem that is common in Deep Convolutional Neural Networks. Let us look at 

a few models used in this project. 

 

C. VGG-16 

VGG-16 was the winner of the ImageNet competition in 2014. It uses a 3x3 filter with a 

stride of 1 and padding as “same”. It uses a 2x2 filter for max pooling with a stride of 2. It 

uses 13 convolutional layers followed by 2 fully connected layers and a softmax layer (see 

Figure 12). It has about 138 million parameters due to which the training time is much 

higher compared to other CNNs. 
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Figure 12: VGG Architecture (Thakur, R. (2020, November 24). Step by step VGG16 implementation in Keras for 

beginners. Medium. https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners 

a833c686ae6c#:%7E:text=VGG16%20is%20a%20convolution%20neural,competition%20in%202014.&text=It%20fo

llows%20this%20arrangement%20of,by%20a%20softmax%20for%20output.) 

    

D. Resnet-50 (Residual Networks) 

Resnet-50 was the winner of the ImageNet competition in 2015. Resnet-50 made it possible 

to drain really deep CNNs while avoiding the vanishing gradient problem. It achieved this 

with the use of “skip connections”. Skip connections are responsible for adding the original 

input of previous convolutions to the output of the current convolution. This provides a 

shorter path for the gradient to flow while backpropagation. Another advantage is that this 

https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners


IMPROVING FACIAL EMOTION RECOGNITION WITH IMAGE PROCESSING AND DEEP LEARNING 

22 

identity function enables the model to learn useful features in the higher layers as well. 

Figure 13 depicts the Resnet-50 architecture. 

 

 Figure 13: Resnet-50 architecture (Dwivedi, P. (2019, March 27). Understanding and Coding a ResNet in Keras - 

Towards Data Science. Medium. https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras 

446d7ff84d33#:%7E:text=The%20ResNet%2D50%20model%20consists,over%2023%20million%20trainable%20par

ameters.&text=Our%20ResNet%2D50%20gets%20to,in%2025%20epochs%20of%20training.) 

       

E. SeNet – 50 (SqueezeNet) 

SqueezeNet was developed by researchers at UC Berkeley, DeepScale, and Stanford 

University. SqueezeNet uses a smaller CNN architecture while retaining the performance. 

Firstly, it replaces 3x3 filters with 1x1 filters, which results in 9x fewer parameters. 

Secondly, it decreases the number of input channels to 3x3 using Squeeze layers (see 

Figure 14). Finally, it performs delayed downsampling (uses downsampling late in the 

network) in order to get large activation maps. 

https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras
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Figure 14: Fire modulde in SqueezeNet – Sqeeuze+expand (Tsang, S. (2019, April 22). Review:SqueezeNet (Image 

Classification) - Towards Data Science. Medium. https://towardsdatascience.com/review-squeezenet-image-

classification-e7414825581a) 

 

SqueezeNet comprises of multiple FireModules as shown in Figure. Each Fire Module is 

composition of a Squeeze Convolutional layer with 1x1 filters and an expand layer which 

consists of both 1x1 and 3x3 filters. The complete Squeeze architecture can be seen in 

Figure 15. 
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 Figure 15: SqueezeNet architecture (Tsang, S. (2019, April 22). Review: SqueezeNet (Image Classification) - Towards 

Data Science. Medium. https://towardsdatascience.com/review-squeezenet-image-classification-e7414825581a) 

F. FaceNet 

FaceNet is one of the state-of-the-art models for Face recognition. It creates embeddings 

of the image by mapping each image into a Euclidean space. These embeddings can then 

be used as feature vectors and fed to models like k-NN for face recognition. Clustering 

techniques can also be applied on the embeddings. FaceNet uses a loss function called as 

the triplet loss function. It makes sure that the distance between the positive image and the 
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anchor image is as small as possible and the distance between the negative image and the 

anchor image is as large as possible. This principle is demonstrated in Figure 16 below. 

  

  Figure 16: working of Triplet loss (Kumar, D. (2020, June 21). Introduction to FaceNet: A Unified Embedding for 

Face Recognition and Clustering. Medium. https://medium.com/analytics-vidhya/introduction-to-facenet-a-unified-

embedding-for-face-recognition-and-clustering-dbdac8e6f02) 
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VII. PROPOSED MODELS 

We trained one 5-layer CNN. We fine-tuned three pretrained models: Resnet-50, Senet-50, 

and VGG-16, which were available from keras-vggface library [8]. We performed two 

stages of fine-tuning for each of these pretrained models. In the first iteration, the entire 

network is frozen and only the fully connected layers are trained. 

In the second iteration, the entire network or the last 30-40 layers is unfrozen depending 

on the depth of the network and fine-tuned with a small learning rate of 0.0001. We used 

the VGGFace library that provides Resnet-50 and Senet-50 models. Those models were 

trained previously on VGGFace2 dataset that consists of 3.3 million facial images. The 

library also provides the VGG16 model, which was trained on VGGFace dataset. The 

VGGFace consists of 2.6 million facial images. Another model we fine-tuned is a pre-

trained model called FaceNet [9][5]. FaceNet was trained previously on MS-Celeb-1M 

dataset [5]. Since these three models were trained on millions of facial images, all of them 

must have learned to capture the essential information or embeddings from a face which 

can be helpful in recognizing facial expressions. We applied transfer learning on these four 

models, Resnet-50, Senet-50, VGG-16, and FaceNet, and customized their weights based 

on the FER2013 dataset. 
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Figure 17: 5-layer CNN architecture 

 

A. Baseline 5-layer CNN 

The grey-scale input images of size 48*48 for 5-layer CNN were obtained by the 

ImageDataGenerator, which produced rescaled, rotated, flipped, and sharpened images. 

The output of the CNN was the probability of seven categories of facial expressions. The 

model was composed of five convolutional layers, three max-pooling layers, and three fully 

connected layers as shown in Figure 17. All the convolutional layers used the same padding 

and ReLU activation function. The first two fully connected layers used ReLU as their 

activation function. The last fully connected layer used “Softmax” activation function. The 

first, third, and fifth convolutional layers were followed by batch normalization, max-

pooling of size 2x2, stride 2x2, and dropout of 20%. The first convolutional layer was 

composed of a 5x5 kernel with 64 filters. The second and third convolutional layers were 

composed of 3x3 kernels with 128 filters. The fourth and fifth convolutional layers were 

composed of 3x3 kernels with 256 filters. 

The first fully connected layer consisted of 1024 neurons. The second fully connected 

layer consisted of 512 neurons followed by a drop out of 20%. The final fully connected 
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layer which produced the output consisted of 7 neurons representing the 7 categories. The 

model used the categorical crossentropy loss function and adam optimizer. The total 

trainable parameters in the model were 11, 075, 847 and non-trainable parameters were 

896. Keras callback ReduceLROnPlateau was used to modify the learning rate if the 

validation accuracy does not increase for every 10 epochs. The model was trained for a 

total of 100 epochs using a batch size of 128. Applying Unsharp Mask as the preprocessing 

function in ImageDataGenerator resulted in around a 2% increase in accuracy. The 5-layer 

CNN with Data Augmentation and sharpening resulted in 69.6% accuracy. Figures 18 and 

19 depict the training accuracy vs validation accuracy and training loss vs validation loss 

of the 5-layer CNN. 

 

Figure 18: train accuracy vs validation accuracy - 5 Layer CNN 
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    Figure 19: train loss vs validation loss - 5 Layer CNN 

 

B. Resnet – 50 

We used Resnet-50 is a deep residual network that was originally trained on 240x240 

images. As FER2013 dataset consists of images with dimensions 48x48, resizing a 48x48 

image to 240x240 cannot be ideal. The network breaks if we use a width or height lesser 

than 197 as the dimension becomes smaller than the applied convolution. Therefore, we 

reduced the Resnet-50 input dimensions to 197x197 [28]. We froze the entire network 

except for the Batch Normalization (BN) layers. The BN layers represent the statistics 

captured on VGGFace2 model. We modified the BN layers to have the mean, standard 

deviation, and parameters corresponding to FER2013 [6]. Then, we added two fully 

connected layers with 4,096 and 1,024 neurons. We added a drop out of 50% after each of 

these fully connected layers, and before the first fully connected layer. We used Stochastic 

Gradient Descent (SGD) optimizer with a learning rate of 0.01, momentum of 0.9, decay 
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of 0.0001, and nesterov set to True. Keras callback “ReduceLROnPlateau” was used to 

reduce the learning rate by a factor of 0.5 with patience 10. The model was trained for 100 

epochs with a batch size of 128 resulting in an accuracy of 72.8% without fine-tuning the 

entire network.  

After completing the first iteration of training, we unfroze the entire network. As 

Keras’s implementation of Resnet-50 consists of 175 layers, we used SGD optimizer with 

a very small learning rate of 0.0001 and trained the entire network for 100 epochs with a 

batch size of 128. We used Keras callback early stopping to stop training if validation 

accuracy did not increase for 20 epochs. This technique can boost the accuracy by 1.5% in 

most cases, but it must be monitored cautiously to avoid the risk of over-fitting when 

training the entire network. Our model achieved an accuracy of 73.8%. The transfer 

learning approach we used is summarized in Figure 20. 

 

 

 Figure 20: Transfer learning approach pipeline 
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C. Resnet-50 with class weights 

Keras class weights help to solve the class imbalance problem. The classes are not equally 

distributed in the FER2013 dataset, hence class weight is a useful method to emphasize the 

minority classes. When we applied this method to our model, it reduced the 

misclassification rate from 60% to 28% comparing with the experiments conducted in [28]. 

We used the same approach and trained Resnet-50 as in section 5.2 with added class 

weights.  

In the first iteration, we froze the entire network except for BN layers and trained the 

last two fully connected layers. In the second iteration, we unfroze the entire network and 

fine-tuned the model with a small learning rate which achieved an accuracy of 73.4%.         

                       

            Figure 21: train accuracy vs validation accuracy - Resnet-50 
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Figure 22: train loss vs validation loss – Resnet-50 

D. Resnet-50 with Image preprocessing filters 

In this method, we applied two image preprocessing filters: Unsharp Mask and histogram 

equalization to Resnet-50, because it demonstrated improved performance while training 

the baseline 5-layer CNN. By applying Unsharp Mask, we achieved test accuracy of 73.3% 

on Resnet-50. By applying Histogram equalization, we achieved an accuracy of 72.4% on 

Resnet-50. While the accuracy is lesser than the Resnet-50 that was trained without any 

image preprocessing filters, the classification rate for emotion such as “Anger” was 

increased. This improvement in the performance is due to the fact that these filters enhance 

important facial details in an image.  

For the baseline 5-layer CNN, we observed an improvement in performance when 

the image preprocessing filters were applied. In this case, the images were not resized as 

the input to the CNN is a 48*48 image. However, all the pre-trained models required the 

images to be resized to higher width and height. Keras’s ImageDataGenerator resizes the 
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image first and then applies the preprocessing filter which might have caused a decline in 

model performance. Given limited compute resources, we decided not to experiment 

further with this. In future work, we want to experiment with these filters again by first 

applying them and then resizing the image. 

 

              Figure 23: Resnet-50 architecture (layers include Batchnormalization and pooling) 

E. Senet-50 without class weights 

The same approach that was used for training Resnet-50 was employed for Senet-50. The 

input images were resized to 197x197, the entire network was frozen except BN layers, 

and 2 fully connected layers were added with a dropout of 50%. SGD optimizer with a 

learning rate of 0.01, the momentum of 0.9, and decay of 0.0001 was used with nesterov 

set to True. The model was trained for 100 epochs using a batch size of 128 resulting in a 

test accuracy of 70.02%.  

Keras’s implementation of Senet-50 consists of 286 layers. In the second iteration 

of training, instead of unfreezing the entire network, we kept the first 200 layers frozen as 

there were too many model parameters resulting in “Out of memory” exception on Google 

Collab pro. The layers starting from 200 were unfrozen and fine-tuned along with the fully 

connected layers for 100 epochs with a batch size of 128, the learning rate of 0.0001, and 
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early stopping enabled. We achieved a test accuracy of 73.3% post-finetuning which is 

almost a 3% boost in accuracy as opposed to no fine-tuning. 

 

  Figure 24: train accuracy vs validation accuracy - Senet-50 

                             

Figure 25: train loss vs validation loss-Senet-50 
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F. Senet-50 with class weights 

Keras class weights were used to emphasize the minority classes. Senet-50 with Keras’s 

class weights resulted in a test accuracy of 72.4%. Since the usage of image preprocessing 

filters in ImageDataGenerator degraded the performance of Resnet-50 and due to limited 

compute resources, we decided not to proceed with this model. 

 

Figure 26: Senet-50 architecture 

G. VGG-16 without class weights 

VGG-16 was trained in the same way as Resnet-50 and Senet-50. Unlike Resnet-50 and 

Senet-50, VGG-16 does not have any BN layers. Keras’s implementation of VGG16 

consists of 19 layers. We froze the entire network, added 2 fully connected layers with 

drop-out layers in the same pattern as in Resnet-50 and Senet-50. The dropout was reduced 

to 0.3 due to VGG16 being a smaller network. The model was trained for 100 epochs using 

a batch size of 128 and SGD optimizer resulting in an accuracy of 69.5%. 

 In the second iteration of training, the entire network was unfrozen, the learning 

rate of 0.0001 was used, and the entire network was fine-tuned for 100 epochs with a batch 

size of 128 and early stopping enabled. This resulted in a test accuracy of 71.2%. 
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                                      Figure 27: train accuracy vs validation accuracy - VGG-16 

                                       

 

Figure 28: train loss vs validation loss VGG-16 

 

H. VGG-16 with class weights 

Keras class weights were used to emphasize the minority classes. VGG-16 with class 

weights resulted in an accuracy of 70.9%.  
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VGG16 and VGG16 with class weights were excluded from the ensemble as their 

predictions were not improving the test accuracy. 

 

Figure 29: VGG-16 architecture 

I. FaceNet 

FaceNet is a facial recognition system proposed by Google Researchers in 2015 and was 

used on many face recognition datasets [5]. It uses deep learning architecture such as ZF-

net and Inception. In this method, we tested fine-tuning on a pre-trained model using 

FER2013 dataset. We used Keras’s implementation of FaceNet that consists of426 layers. 

The input dimensions for FaceNet are 160x160. In the first iteration of training, we resized 

FER2013 images to 160x160, froze the entire network except for BN layers, added two 

fully connected layers with 4096 and 1024neurons, respectively. Each of these two layers 

is followed by a dropout of 30%. This dropout was added before the first fully connected 

layer as well. We usedSGD optimizer with a learning rate of 0.01, the momentum of 0.9, 

the decay of0.0001, and nesterov that was set to true. We used Keras 

callbackReduceLROnPlateau to reduce the learning rate by a factor equals to 0.5 when the 

validation accuracy does not improve for 10 epochs. The model was trained for 150 epochs 
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with a batch size of 128 and early stopping enabled. We recorded a test accuracy of 70.2%. 

In the second iteration of training, we unfroze the entire network, used a small learning rate 

of 0.0001 with SGD optimizer, and fine-tuned the model. This resulted in a test accuracy 

of 70.8%. 

 

Figure 30: FaceNet architecture 

 

                    

Figure 31: train accuracy vs validation accuracy - FaceNet 
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    Figure 32: train loss vs validation loss – FaceNet 
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VIII. RESULTS 

Our ensemble which resulted in test accuracy of 76.01% is composed of seven models (5-

layer CNN, Resnet- 50, Resnet-50+ class weights, Resnet-50 using Histogram 

equalization, Senet-50 without class weights, Senet-50 + class weights, and FaceNet) as 

shown in Table 2. The prediction from VGG16 and VGG16 models of class weights did 

not improve the test accuracy. In an ensemble model, it is beneficial to have different 

models performing well in different classes. Though models of class weights resulted in 

lower individual accuracy, they contributed to a better ensemble model.  

Our method of using 5-layer CNN has an accuracy of 69.6%. This is a relatively 

simple model that takes less time to train. Applying preprocessing techniques such as Data 

Augmentation and Image Sharpening resulted in improved performance comparing with 

most of the previous CNN models [30][10][11]. Our method using Resnet-50, Senet- 50 

and VGG-16 models had accuracies of 73.8%, 73.3%, and 71.2% respectively. This 

outperformed previous studies’ results that have employed pre-trained models [28][25] 

(see Table 2 that summarized previous results). Our ensemble as shown in Table 2 

composed a unique blend of models, some of which were trained on sharpened images and 

histogram equalized images led to an accuracy of 76.01%.  
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Figure 33: Confusion matrx – Resnet-50 

Figures 21 and 22 displays the training and validation accuracy of Resnet-50. Most pre-

trained networks displayed a similar training and validation accuracy. After the 15th epoch, 

the validation accuracy stagnates while the training accuracy keeps increasing. Even the 

best individual model such as Resnet-50 performed poorly on emotions such as Anger, 

Fear, and Sadness (see confusion matrix in Figure 33). Some facial expressions can have 

multiple interpretations [28] such as Fear and Sadness or Fear and Anger which make it 

even harder for models to identify differentiating patterns. We used a small learning rate 

with early stopping to avoid over-fitting when we unfroze the entire network. 
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Table 2: Ensemble model and summary of test accuracies (no auxiliary data was used). The ensemble is composed of 

seven models (5-layer CNN , Resnet-50, Resnet-50+ class weights, Resnet-50 using Histogram equalization, Senet-50 

without class weights, Senet-50 + 

Model Preprocessing Test Accuracy 

(%) 

Used in 

Ensemble 

Model? 

5-layer CNN Data Augmentation (DA) 

+ Unsharp Mask 

69.6 ✓ 

Resnet-50 DA 73.8 ✓ 

Resnet-50 + class 

weights 

DA 73.4 ✓ 

Resnet-50 DA + Histogram 

equalization 

72.4 ✓ 

Resnet-50 DA + Unsharp Mask 73.3  

Senet-50 DA 73.3 ✓ 

Senet-50 + class 

weights 

DA 72.4 ✓ 

VGG-16 DA 71.2  

VGG-16 + class 

weights 

DA 70.9  

FaceNet DA 70.8 ✓ 

Ensemble - 76.01  
 

 

 

 

                Table 3: Test accuracies of the previous studies (No auxiliary data was used).                        

Previous Studies Model Test Accuracy (%) 

Khanzada et al. Resnet-50 73.2 

 Senet-50 70.0 

 VGG-16 69.5 

 Ensemble 74.8 

Pramerdorfer et al. Resnet-50 72.4 

 Inception 71.6 

 VGG-16 72.7 

 Ensemble 75.2 
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IX. CONCLUSION AND FUTURE WORK 

In this study, we were able to demonstrate that the use of sharpening technique to 

preprocess data for a CNN model boosted performance even though the CNN model is 

relatively simple. This is improved performance vis a vis previously published methods 

such as Wang et al. [29] and Shin et al. [11]. Our image preprocessing technique led to 

emphasizing the prominent edges in facial images resulting in higher accuracy. Our 

baseline model has resulted in an accuracy of 69.46%. We were able to achieve a higher 

test accuracy for each of the pre-trained models compared to the previous FER studies 

[28][25] using the FER2013, no auxiliary data and without freezing the entire network. 

Future work can include performing data cleaning such as eliminating noisy images 

from the FER2013 and employing auxiliary data to boost the model performance. Better 

detection of human emotions can help children with autism, blind people to read facial 

expressions, robots to better interact with humans, and ensure driver safety by monitoring 

attention while driving. FER can also enhance the emotional intelligence of applications 

and improve customer experience by using emotion recognition. 
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