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ABSTRACT 

 Data deduplication is a concept of physically storing a single instance of data by 

eliminating redundant copies to save the storage space. The adoption of deduplication is 

minimal in actively accessed primary storage because of its complexities, such as random 

access patterns to data and the need for quicker request response time. Most of the 

solutions designed for primary storage are offline and dependent on the concept of locality. 

This paper proposes an inline deduplication system with a Machine Learning based cache 

eviction policy to reduce the metadata overhead in the deduplication process, eliminate the 

redundant writes and improve the overall throughput in latency-sensitive storage workload. 

The system’s major components are superblocking, categorizing superblocks, similarity 

detection, and deduplication supported by an efficient caching mechanism. It categorizes 

identical sequence of blocks based on the minimal fingerprint value of the superblock.  

Caching of the fingerprints plays a vital role in improving performance during 

deduplication. A novel Machine Learning model for cache eviction is built based on the 

recency, frequency, and category of a block. The experimental results show that more than 

33% of redundant writes are eliminated with smaller superblocks, the metadata overheads 

are minimized by at least 54.5% by categorizing similar superblocks, and the cache hit rates 

based on the workload-dependent Machine Learning model are higher by 5.43%,10.36% 

over system with LRU eviction and LFU eviction policy respectively resulting in 14.4% better 

throughput than a system with traditional cache eviction policy with a metadata cache 

allocation of 10% of average metadata stream size. The cache system learns the past evicted 

block I/O statistics and refines itself while choosing an eviction candidate. The system has 

shown satisfactory performance in all the real-world I/O traces considered for experiments. 

Keywords – inline deduplication, block similarity, cache eviction, data fragmentation  
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I. INTRODUCTION 

The recent buzzword in the technology industry is digitization. As part of the digital 

transformation, the earlier available information on paper and other sources are now 

transformed into digital information. With the advent of technology, there is an increase in 

data sources such as Internet of Things (IoT) sensors, mobile phones, personal computers, 

and storage systems. According to the reports from the International Data Corporation 

(IDC), the amount of data growth across the globe is expected to be 175 Zettabytes (ZB) by 

2025 [1]. Hence, the storage of growing digital data becomes challenging. However, we 

cannot ascertain that all these data are unique; there is considerable duplicate data [2] that 

can be eliminated to incur space savings.  To maintain an efficient storage system, the 

removal of duplicate data becomes necessary. Data deduplication becomes an essential tool 

in storage optimization. 

Several studies [2], [3], [4] were conducted to understand the access pattern and the 

storage footprints of the primary and secondary storage workloads. The results suggest that 

deduplication can help in reducing space consumption by 10x in a backup storage 

environment [2]. Deduplication is not limited to space savings, but it also helps in reducing 

the load in the I/O path and traffic in the network. The application of deduplication is 

leveraged extensively in the backup storage environment. Adopting the deduplication 

technique in primary storage is minimal due to its operational complexities such as 

computationally expensive fingerprint generation, metadata overhead, and meeting 

performance metrics of the storage system. There are multiple primary storage systems [5] 

that have deduplication and compression. Compression techniques such as LZ77 and LZ78 

[6], [7] find additional data within a particular data chunk and effectively reduce redundant 
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data. Deduplication is more efficient than the compression technique since it removes a 

large amount of redundant data across several files. 

In the primary storage system, the access pattern and storage footprints are 

irregular leading to poor temporal locality [8], [9]. Therefore, it becomes a challenging task 

for researchers to design an efficient deduplication system with minimal impact on the 

performance. An efficient deduplication system for primary workload should have a high 

throughput characteristic with minimal latency and overhead in metadata management and 

duplicate elimination. Most deduplication systems efficiency focuses on metadata 

management [10], [11]. There exists a tradeoff between the storage gain and performance 

on account of deduplication. Splitting of data into smaller fixed or variable-sized chunks will 

increase duplicate elimination, but the overhead of storing metadata for smaller blocks 

increases resulting in degradation of performance.  

The fundamental process involved in deduplication is chunking, fingerprint 

generation for chunks, and duplicate elimination. The incoming data stream is split into 

multiple blocks of the same or varying sizes for which a fingerprint is generated using hash 

functions such as MD5 and SHA1. Though the hash collision is possible with standardized 

algorithms, the collision rate is much lower than physical disk failure [12]. The fingerprints 

are then compared with fingerprints in the disk, and the duplicates are eliminated. When a 

block is identified as a duplicate block, the system will not store the duplicate block; 

however, a reference to the unique block will be stored in place of the duplicate block, and 

the reference count of the unique block will be increased. Blocks are flagged for garbage 

collection to reclaim the space if the block is no longer referenced by any file. 

The process of deduplication can also lead to disk fragmentation issues. After 

deduplicating the incoming data, the block sequence in a file can be scattered across the 
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disk. The performance of read request in these scenarios will degrade because multiple I/O 

operations have to be made to collect and organize the sequential data. The above 

challenges are addressed by building an inline deduplication system with Machine Learning 

based cache eviction. The primary focus of this design is to reduce the metadata overhead, 

eliminate the redundant writes, and improve the overall throughput in latency-sensitive 

storage workload while performing deduplication. The results of the experiments shows 

that the system works well with an environment exhibiting poor locality information and 

random-access pattern. The core concept of the system is to break down the incoming 

stream of data into superblocks and categorize similar superblocks sharing the same 

metadata, thereby limiting the metadata lookup of those superblocks only to a particular 

category. The categorization of the superblock is based on the minimal fingerprint of the 

superblock. The system leverages similarity within superblocks to reduce the metadata 

overhead and to improve the performance while deduplicating. The entire similarity 

detection process is supported by a Machine Learning based cache eviction policy. The 

significant contributions from the project are as follows. 

1) Building an inline deduplication system for reducing the metadata overhead, 

eliminating duplicate requests, increasing the system throughput, and reducing 

the latency. 

2) An algorithm to split the incoming data stream into superblocks and categorize 

similar superblocks based on the minimal fingerprint of superblock to confine the 

metadata lookup space for duplicate identification and elimination. 

3) Developing a novel workload-dependent Machine Learning model for cache 

eviction based on the recency, frequency, and category of a block to increase the 

cache hit rate thereby increasing the throughput of the system. 
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4) Using Bloom filter data structure to reduce the disk lookup while generating a 

new category. 

The rest of the paper is organized as follows: Section II provides the necessary 

background of deduplication process. Section III describes existing deduplication for primary 

storage systems. Section IV describes the design, flow, architecture, and implementation of 

the deduplication system. Section V describes the results obtained from various 

experiments. Section VI discusses the conclusion and describes the future scope of this 

project. 

 

  



EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY 

 5 

II. BACKGROUND 

Deduplication as a process is dependent on multiple parameters. We can obtain 

maximum gain by tuning the deduplication parameters. The categorization of the 

deduplication process can be as follows.  

1) Size based deduplication 

2) Time based deduplication 

3) Node based deduplication 

4) Environment based deduplication 

Various categories and sub-categories of deduplication system are shown in Fig. 1. 

 

Fig. 1. Categories of deduplication 

A. Size Based Deduplication 

The basic unit of deduplication can depend based on the choice and the overhead of 

duplicate elimination. 

1) File-level: The basic unit for deduplicating is an entire file. Each file is considered as a  

single unit for duplicate detection and elimination. During the process of deduplication, the 

fingerprints are calculated for the entire file. This technique can flag a duplicate only if two 

files are identical and contain the exact same content. The metadata overhead in this type 
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of deduplication is relatively lower because fewer chunks are created while deduplicating. 

The limitation of this technique is that the deduplication ratio is poor because only identical 

files are considered duplicates. However, it is much simpler to implement this technique 

when compared to other deduplication techniques.  

2) Block-level: As mentioned in the earlier section, the incoming data request is split into 

several blocks. The basic unit of deduplication is a block. These blocks are later processed 

for duplicate detection. We can further categorize it into two types based on the size of the 

block. 

a) Fixed-size: In this approach, we define the block size such as 4 KB, 8 KB, 16 KB, 32  

KB, 64 KB blocks, and so on. Based on the choice of the size, the incoming data stream is 

split uniformly into fixed-size blocks; even with the fixed-size blocking, the last block of a file 

is either a small block or it is zero-padded. Ideally, fixed-size blocks are more superficial and 

straightforward to implement. However, the deduplication ratio will be decreased since any 

minor change to the file’s content will change the boundaries of the blocks. 

b) Variable-size: This approach uses a Content Defined Chunking (CDC) algorithm to 

split the data stream into variable-length blocks. When the block contents are changed or 

modified, the border of the blocks is altered accordingly and split. It gives a higher 

deduplication ratio when compared to fixed-size chunking because of handling the contents 

effectively. Since each block can have varying sizes, the management of the blocks is 

complex at the storage level resulting in higher metadata overhead. CDC is computationally 

expensive while finding the exact border for splitting. 

B. Time Based Deduplication 

The appropriate time for carrying out the deduplication will depend on the storage 

requirement such as performance, I/O traffic, the number of disk writes. 
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1) Inline deduplication: The deduplication process is triggered as there is an incoming  

data stream. It splits the incoming stream, generates the fingerprints for the blocks, and 

eliminates duplicates before storing the data block on the disk. The need for storing the 

data in a temporary location is avoided. The main drawback of this approach is having 

overhead in the I/O path while performing deduplication. The response of the system might 

be degraded. 

2) Offline deduplication: This technique does not deduplicate the data in real-time. 

When the system is idle, the deduplication process is triggered. However, this technique 

requires a temporary location to store the data, but the performance of the critical path 

remains unaffected. The deduplication is triggered post processing of incoming data. It is 

difficult to identify the right time for triggering the deduplication process. 

3) Hybrid deduplication: This technique combines both the inline and offline  

deduplication techniques to achieve a higher deduplication ratio. The primary focus of this 

technique is to achieve maximum deduplication benefit through inline deduplication. 

However, a threshold for latency is maintained. If the latency increases beyond the 

threshold, the data is stored on the disk and deduplicated in an offline manner. The 

complexity in this technique lies in managing the file data that can be in two different 

states. 

C. Node Based Deduplication 

Deduplication can be applied to each node or a cluster of nodes based on the 

requirement and architecture of the storage system. 

1) Single node: Each node in the storage system will be installed with an independent  

deduplication engine. Only the data that is inside that node will be considered for duplicate 

comparison and elimination during the deduplication process. It is easier to manage the 
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metadata for each node separately. However, the deduplication ratio will be higher only 

within the node, but it fails to identify the identical blocks existing in other nodes resulting 

in a lower deduplication ratio across the cluster. 

2) Multi-node: A centralized or distributed metadata server can be chosen to store the  

metadata obtained from all the nodes. Deduplication can be applied to all the nodes across 

the cluster. The deduplication ratio across the cluster is higher than single node since the 

duplicate blocks can be identified even if the block is scattered across cluster nodes. 

However, there is an additional overhead to maintain a central metadata server. The 

operational cost of detecting a duplicate in a centralized server is higher than the cost 

involved in a single node [2]. It also depends on the decision of the sending the data to the 

right node for deduplication. If the data is sent to a wrong node, the deduplication ratio can 

get lower than the benefit achieved through single node system.  

D. Environment Based Deduplication 

In a backup or archival environment, deduplication can be carried out in either the 

source system or at the destination system based on the need and availability of the 

resources. 

1) Source: Deduplication is performed in the data origin environment. The deduplicated  

data is sent over the network to the destination system. This approach helps in reducing the 

number of packets that are sent and thus require lower bandwidth. Employing this 

technique in low bandwidth and low space-constrained destination systems is beneficial. 

But the computation of the source environment should be higher. 

2) Destination: The non-deduplicated data is transferred from the source environment  

to a backup or archival environment. Deduplication is triggered after the receipt of the data 

at the destination environment. This reduces the load in the source system. But it requires 
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higher bandwidth for transferring data from source to destination. We can leverage the idle 

time of the system to perform deduplication. 

E. Cache Eviction 

The latency incurred in serving a request in a latency-sensitive primary storage 

system should be minimal. It is important to reduce the overall latency in a system by 

maintaining the hot data in the faster accessed medium and evicting the colder or less 

accessed data from a faster access medium to slower access medium. Caching plays a vital 

role in maintaining the hot data during the deduplication process. Primary storage 

workloads exhibit random access patterns, making it difficult to choose an ideal cache 

eviction strategy. The recency, frequency, current sequence, future sequence of a block are 

the most common parameters which decide the eviction candidate when the cache is full. 

Designing an algorithm that can yield hit rates closer to an optimal caching algorithm is 

significant. In our current system, each element in the cache represents a block structure. 

Each block structure contains a fingerprint, Physical Block Address (PBA) and reference 

count of that particular block.  

1) BELADY’S Lookahead Page Replacement: This algorithm provides an optimal hit  

rate for a direct-mapped cache and serves as a baseline for evaluating the other cache 

eviction strategies [13]. It helps in directing the nonlookahead algorithms to increase the 

gain as closer to optimal gain. It considers the future usage statistics of blocks such as the 

recency and/or frequency to choose an eviction candidate that can be used furthest in the 

future. This is a theoretical approach that provides an optimal hit rate with a minimal cache 

miss rate. However, this algorithm cannot be implemented in a real-world situation since 

we cannot predict the blocks that will be accessed in the future.  

2) Least Frequently Used (LFU): A counter is placed to record the number of times a  
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block is used in the cache. It records the frequency of a block based on the number of times 

the block is requested while in the cache. Once the block is evicted from the cache, the 

counter is set to 0. It depends on the logic that a block that has been accessed frequently 

has higher chances that it will be accessed in the future block accesses. However, the less 

frequently accessed blocks in the cache are chosen as eviction candidates and evicted from 

the cache. 

3) Least Recently Used (LRU): The LRU will keep recording the block recency. When  

a block is accessed, it is removed and added to the queue to maintain the recency. The 

blocks that are least recently accessed are evicted from the cache during an eviction. It 

depends on the logic that a recently used block has higher chances to be accessed in the 

future block accesses. 

F. Machine Learning (ML) Algorithms 

The statistics of recency and frequency of a block can build an ML model to find out 

the suitable candidates for eviction when the cache is full. We have used two supervised ML 

models that are trained with the incoming data stream. 

1) Random Forest Classifier (RFC): It is an ensemble approach with multiple  

decision trees working together towards generating a classification [14]. Each decision tree 

will generate a class, and the class that is voted by most of the decision trees is considered 

the model’s output. A setup with an ensemble will yield better results than an individual 

tree model. The classifier model will take the incoming block requests as an input, analyzes 

the statistics of blocks that are evicted in the past and generate the eviction candidates 

based on the current items in the cache. It classifies the noneviction candidate as class 0 and 

the eviction candidates as class 1. 

2) K-Nearest Neighbors Classifier (KNNC): It is an approach where the nearest items  
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are similar with higher probability. In other words, similar items will be closer to each other. 

Therefore, it is important to find and associate the elements that are in closest proximity to 

a given data block entry in cache. The distance between the data blocks is measured using 

the Euclidean distance. Based on the distance between the two items, we can measure the 

similarity. The rationale behind using a KNNC is to explore the similarity between the blocks 

that are present in the cache and associate similar blocks for the incoming cache entry. 

Depending on the value of “K (number of neighbors),” the items will be aligned into multiple 

groups. The model will associate all the similar elements and retain similar elements in the 

cache while selecting the elements that are not similar as eviction candidates. It classifies 

the noneviction candidate as class 0 and the eviction candidates as class 1. 

3) Scikit-learn: It is a library that provides various ML algorithms [15]. An ML  

algorithm from scikit-learn can pre-process, fit, and generate new user data based on the 

need. It provides support for both supervised and unsupervised ML algorithms. NumPy is a 

scientific library that helps perform analysis with the data. We have leveraged the Scikit-

learn library for implementing the RFC and KNNC algorithm. 
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III. RELATED WORK 

Disk bottleneck and performance degradation are the two critical issues in 

implementing a primary workload. Deduplication has seen its success for backup and 

archival environment [2], [18-21]. Most of the solutions for the primary storage are 

implemented as offline mode. Few of the productized offline storage systems are EMC 

Celerra [5] and NetApp ASIS [22]. Locality and similarity are the two concepts that have 

been explored extensively in the primary storage system while implementing deduplication 

[11], [17], [23], [24]. 

iDedup [17] is considered the pioneer in the inline deduplication system 

implemented for the primary storage workload. It exploits spatial locality to store data on 

the disk and supports sequential access and temporal locality to build an effective cache 

system. Unfortunately, the primary workload does not exhibit extensive locality property. 

iDedup ignores the smaller files and requests that are below a threshold value to improve 

the performance. It is also dependent on the underlying file system. The Partially Dedupped 

File System (PDFS) [8] segments the incoming data stream and applies Locality Sensitive 

Hashing (LSH) to find similar blocks. The LSH technique is complex and computationally 

expensive. Therefore, it is challenging to implement PDFS for the real-time primary 

workload. Performance Oriented Deduplication (POD) [23] focuses primarily on minimizing 

the performance degradation while deduplicating. POD assumes a temporal locality in the 

primary workload and indexes the fingerprint and metadata based on the locality resulting 

in improved performance in the I/O path during deduplication. It is difficult to witness 

performance gain in workloads exhibiting poor temporal locality. Heuristically Arranged 

Non-Backup Deduplication System (HANDS) [24] is another approach exploiting the 

temporal and spatial locality of the data stream. It employs several heuristic methods to 
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index the fingerprint to reduce the number of lookups and increase the system’s overall 

performance. Nevertheless, it fails to address the issue of random-access patterns in 

primary workload. 

Hybrid Deduplication Systems (HDS) is efficient in deduplicating the data since it 

involves both inline and offline deduplication. Steam Locality Aware Deduplication (SLADE) 

[27] assumes temporal locality in the data stream and designs a cache of fingerprints based 

on the temporal locality. On the other HDS – A Block-Level Similarity-Based Approach [10] 

exploits similarity between the data segments and uses the locality preserving indexing built 

in the form of a graph to improve the performance on the I/O path. However, using the 

graph data structure to preserve the locality is an expensive operation in any modification 

to the structure. 
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IV. DESIGN AND IMPLEMENTATION 

The primary objective of this research is to reduce the metadata overhead and 

response time while achieving higher deduplication ratio, increased overall throughput and 

higher cache hit rate. The capacity optimization is driven by the large files, whereas 

performance optimization is driven by smaller files. The incoming data stream is divided into 

multiple superblocks of fixed size that can be configured depending on the user 

requirement. Each of the superblocks is further divided into fixed-size blocks. The blocks are 

sent to a fingerprint generator that hashes the data using hashing algorithms such as MD5 

and SHA-256. The minimal fingerprint of the superblock is calculated and considered as the 

Super Block Representative (SBR). The categorization of similar superblocks is based on the 

SBR value. Each block’s fingerprints are compared with other existing fingerprints within the 

same category. The performance of the deduplication engine is dependent on the caching 

strategy. Workload-dependent ML model is used to evict the items in cache while targeting 

to achieve cache hit rate near to optimal hit rate described in previous section. 

Categorization of similar superblocks into the same category and effective cache 

management serves as the backbone to the system resulting in a reduction of lookups and 

disk I/O operations during deduplication of data. Bloom filters are used to check if an SBR 

exists in the system and helps in category management. The overall architecture of the 

system is shown in Fig. 2.  

A. Terminologies 

Before describing the system’s design, it is essential to understand the terminologies 

used as part of the prototype. 

1) Superblock: Superblocks are the basic unit for file organization in deduplication 
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enabled storage. The size of the superblock is fixed and configurable. However, for the 

experimentation of the system, multiple superblock sizes are used, such as 32 KB, 64 KB, 

128 KB, 256 KB of size. A larger file is split into multiple smaller superblocks based on the 

size of the file. The illustration of a file that is split into superblocks is depicted in Fig. 3. 

 

Fig. 2. Architecture of deduplication system 

 

2) Block: Each of the superblocks is further divided into multiple blocks of fixed  
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length. Variable-sized blocks can be used in the backup environment where the size of the 

files is often larger than 100 MB. An insertion or deletion can shift the boundary of the 

block. Therefore, using variable-sized blocks is beneficial in this setup. However, in the 

primary storage system, each file is lesser than 1 MB, and hence, using a fixed-sized blocking 

will reduce the latency incurred by variable-sized blocking while achieving most of the 

potential deduplication. A block is the smallest unit for deduplication. We use the block size 

of 4 KB for the experiments.  

 

Fig. 3. Representation of superblock and block 

 

3) Category:  For each of the superblocks, the smallest fingerprint value of the  

block is considered as SBR and it is passed through a Bloom filter to determine if the SBR is 

present in the system. If SBR does not exist, a new category is created for the superblock 

and blocks within the superblock is added to the newly created category. When an identical 

SBR is found, the incoming superblock is categorized into the same category as SBR and only 

unique blocks are added to the existing category. Superblocks belonging to the same 

category share metadata information. The existing system does not have a limit on number 

of unique blocks for a category.  

4) Deduplicated file layout: The deduplicated file contains the superblocks and  

blocks. Duplicates that are part of the deduplication process contain references to the 

unique blocks. The illustration of the layout of the deduplicated file is depicted in Fig. 4. As 
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described in the figure, each of the deduplicated files has a category ID and the fingerprint 

reference where a duplicate is replaced with a reference. 

 

Fig. 4. Representation of deduplicated file 

B. Data Structure 

Data structures are essential in metadata management. Several different data 

structures must be maintained for each block of data. For each of the superblock, an SBR 

must be mapped with a category ID. Blocks within a superblock should be mapped with the 

category ID, fingerprint, and a counter for each block reference. Logical Block Address (LBA) 

to Physical Block Address (PBA) mapping must be established. Similarly, for each of the PBA, 

a category ID must be mapped. The current system considers the smaller files that are of 

size lesser than the superblock. A hash table of fingerprints of each block is maintained to 

address small files. Fig. 5. — Fig. 8. illustrates the various data structures that are used as 

part of the prototype. 

 

 
 

Fig. 5. SBR to category ID mapping and category ID to blocks mapping 

 
Fig. 6. Hash table for smaller files 
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Fig. 7. LBA to PBA mapping   Fig. 8.  PBA to category ID mapping 

C. Similarity Detection 

The key idea of the system is to categorize similar superblocks into the same 

category. Metadata of the blocks in the same category such as fingerprints, count of all the 

blocks inside a superblock, LBA to PBA mappings are stored in individual categories. To find 

the similarity between different superblocks, we leverage the concept of Broder’s theorem 

[28]. According to the theorem, superblocks are similar to each other, with a higher 

probability if the smallest fingerprint of the superblocks is similar. When the superblocks are 

similar, it shares most of the underlying block between them. For illustration, consider two 

superblocks SB1 and SB2. Let FP1 be the smallest fingerprint of SB1 and FP2 be the smallest 

fingerprint of SB2. If FP1 and FP2 are the same, then SB1 and SB2 have a higher probability 

of being similar. During categorization of the superblocks, we consider the smallest 

fingerprint of the block as SBR and represent the superblock with SBR. A decrease in the size 

of the superblock will help in identifying more similarities between the files. The Broder’s 

theorem can be summarized as the below equation. 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐹𝑃1 = 𝐹𝑃2) = |"#$	Ç	"#&|
|"#$	È	"#&|

      (1)  

When similar superblocks are categorized, the deduplication system will group all 

the blocks within the superblocks into the existing category. If the superblocks are not 

similar, a new category will be created, and the blocks of the superblock will be added to 
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the new category. Identifying identical blocks in the incoming data stream and categorizing 

them into the same bin helps exploit block similarity, reducing the overhead incurred in 

metadata lookup. This approach limits the duplicate comparison and elimination to the 

blocks within a particular category ID.  

D. Bloom Filter Implementation 

A probabilistic data structure that can reveal if an element is present in the set or 

not [29]. It is hugely memory efficient and provides the output rapidly since it does not store 

the actual data within the data structure. The Bloom filter can certain if an element is 

certainly not present in the set of values. They can produce false-positive results, and 

therefore it will always reveal if an element might be on the set or not. The Bloom filter 

cannot produce a false-negative result. However, we can control the false-positive rate by 

varying the parameters of Bloom filter such as, increasing the Bloom filter’s size and using 

different number of hash functions. We have leveraged the Bloom filter to find if the SBR 

already exists in the metadata. The SBR that does not pass through the Bloom filter is the 

candidate for a new category. The workflow of the Bloom filter is depicted in Fig. 9.  

 
Fig. 9.  Bloom filter implementation 
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We have used the Bloom filter package provided by the Guava library [25]. It is 

important to vary the Bloom filter size based on the size of the incoming data stream. 

Therefore, it is critical to choose the expected number of elements that might be entered 

into the Bloom filter beforehand. In this project setup, the size of the Bloom filter has two 

dependent parameters – number of block I/O and size of the superblock. Based on this, we 

can obtain the expected number of elements for a dataset. False-positive rates of the Bloom 

filter can be decreased by increasing the size of the Bloom filter. Since the Bloom filters are 

memory efficient and occupy minimal space, we can consider having the filter in the 

memory. It is important to note that Bloom filters do not store the actual data; it simply 

verifies and returns if an element exists in a set. 

E. Request Processing 

The request to a file comes as a data stream containing LBA’s of the read or write 

operation. All the incoming write requests are split into multiple superblocks. For each of 

the blocks in the superblock, a fingerprint has been generated. Based on the fingerprints 

obtained for each superblock, an SBR is identified representing a superblock. Each SBR is 

checked for its existence in the storage. If an SBR is already present, then the respective 

superblock might contain identical or duplicate blocks based on the similarity detection 

algorithm mentioned in the earlier section. If an SBR is not found, a new category is created 

along with the respective metadata into the storage. The cache is updated with the newer 

category and superblock details. 

F. Prototype Workflow 

The primary workflows that are part of the system are the write request to files of 

size larger than or equal to the size of a superblock, smaller files that are lesser than the 
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superblock’s size and read requests to the files. Each of the requests is handled and 

processed separately. After identifying the SBR for a superblock, deduplication is applied to 

the superblock. Typically, the number of smaller requests is greater than large requests in 

the primary storage workload resulting in greater number of duplicate requests [3], [4]. 

These smaller requests are ignored by most of the deduplication systems [17] because of 

the overhead involved in finding the duplicates in the smaller requests. However, as 

mentioned earlier, identifying duplicates in smaller requests can eliminate duplicate I/O 

requests resulting in enhancing the system’s performance. In this project, smaller requests 

are handled effectively to avoid duplicate write requests. The metadata information for the 

smaller request is stored separately with category ID as 0. It becomes convenient to look up 

the hash table while processing the smaller requests. The size of the category ID as 0 will 

grow depending on the number of small requests that are served in primary storage. 

The maximum space savings can be obtained from the large requests. This project 

focuses on deduplication at the superblock level. Performing deduplication at a block-level 

will increase in deduplication ratio and save more space. However, this approach will lead to 

disk fragmentation resulting in multiple metadata access while performing a sequential read 

of deduplicated file. On the other hand, when we deduplicate at the superblock level by 

maintaining a threshold of matching blocks to deduplicate, the consequences of disk 

fragmentation can be avoided. Deduplication in our setup is applied when two blocks 

belong to the same category, and the number of identical blocks is greater than or equal to 

the threshold value defined by the user. When the blocks do not satisfy the above 

condition, the block inside the superblock is not deduplicated even if the superblocks 

contains duplicate blocks, and they are added to the metadata of the existing category. The 
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algorithms Algorithm 1, Algorithm 2, Algorithm 3 describe the process flow of various 

requests. Notations used in the algorithms are shown in Table I. 

TABLE I 
ALGORITHM NOTATIONS 

Definition Notation 

Incoming Blocks, Blocks from category B, B_C 

Superblock consisting of blocks SB 

Block Fingerprint FP 

Category C 

Request I/O R 

Super Block Representative SBR 

Bloom Filter BF 

 

Algorithm 1: Handling write requests of file size larger than superblocks 

 1. Split the incoming request R into set {SB} 

 2. foreach SB in set {SB} do: 

 3. Split into further Fixed-size B and generate set {B} 

 4. foreach B in set {B} within a SB do: 

 5.  Calculate FP by MD5 (B) 

 6.  Add FP to set {FP} 

 7. end for 

 8. SBR = min (set {FP}) 

 9. Pass SBR through BF and get C 

 10. if SBR does not pass: 
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 11.  C = Call CreateNewCategory (SBR) 

 12.  Call InsertIntoMetadataTables (SBR, B, C) 

 13. else: 

 14.  set {B_C} = Call LoadCategoryBlocks (C) 

 15.  foreach B in set {B} do: 

 16.   Check if B is in set {B_C} 

 17.   if exists then  

 18.    Replace B with reference to unique block 

 19.    unique block count += 1 

 20.   else: Write B to set {B_C} and load B in C  

 22.  Call UpdateMetadataTables (SBR, B_C, C) 

 23. end if 

 24: Write Unique blocks back to storage and end for 

 

Algorithm 2: Handling write requests of smaller files 

 1. foreach B in set {B} of R do: 

 2. Calculate FP by MD5 (B) 

 3. Add FP to set {FP} 

 4. B_C = Call LoadBlockSmallRequestMetadata (B) 

 5. if exists then  

6.  Replace B with reference to B_C 

 7.  unique block count (B_C) += 1 

 8. else:  

 9.  Call InsertBlockSmallRequestMetadata (B) 
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 10. end if 

 11: Write Unique blocks back to storage  

12: end for 

 

Algorithm 3: Handling Read request 

 1: Read the request R 

 2. Lookup LBA to PBA mapping table in cache 

 3. If exists then: 

 4. Load the block data 

 5. Add block to File construction buffer by resolving block references 

 6. else: 

 7. Fetch B from the disk 

 8. Add block to File construction buffer by resolving block references 

 9. end if 

 10. Return constructed file 

Each of the requests is served back to the user as per the algorithm mentioned 

above. The deduplication is performed inline where the incoming data stream deduplicates 

the block I/O and stores only the unique blocks into the storage. The metadata of each block 

plays a vital role in deduplicating the file. Multiple procedures are called within the 

algorithms mentioned above. The description of the procedure calls Proc 1 - Proc 6 are 

explained below. Care has been taken while deduplicating so that the performance of the 

system does not degrade. 

Proc 1: CreateNewCategory (SBR) 

 1: Insert SBR into C — SBR table 
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 2: return C  

 3: If C is not null then: 

 4: Insert SBR into BF 

 5: else: Notify failure to user 

 6: end if 

 

Proc 2: InsertIntoMetadataTables (SBR, B, C) 

1: Insert set {LBA (B)} in LBA — PBA table 

 2: return PBA of LBA 

 3: Insert set {B} with PBA (set {B}), C into Category Metadata table 

 4: If PBA exists then: 

 5:  Increase the count of PBA by 1 

 6: else: 

 7:  Set PBA count of FP to be 1 

 8: end if 

 9: Insert into PBA — C table 

 10: return Acknowledgement 

 11. Call CachingProcedure (C) 

Proc 3: LoadCategoryBlocks (C) 

 1: Fetch set {B} from Category Metadata table for C 

 2: return set {B} 

3: Call CachingProcedure (C) 

 

Proc 4: UpdateMetadataTables (SBR, B_C, C) 
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1: Update / Insert set {LBA (B_C)} in LBA — PBA table 

2: Update / Insert set {B_C} with PBA (set {B_C}), count (PBA), C into Category 

     Metadata table 

 3: Update / Insert into PBA — C table 

 4: return Acknowledgement 

 5: Call CachingProcedure (C) 

 

Proc 5: InsertBlockSmallRequestMetadata (B) 

1: Update / Insert LBA (B) in LBA — PBA table 

 2: return PBA of LBA 

 3: Insert B with PBA (B), 0 as C into Small Request Metadata table 

 4: If PBA exists then: 

 5:  Increase the count of PBA by 1 

 6: else: 

 7:  Set PBA count of FP to be 1 

 8: end if 

 9: Insert into PBA — C table 

 10: return Acknowledgement 

 11. Call CachingProcedure (C) 

 

Proc 6: LoadBlockSmallRequestMetadata (B) 

1: Fetch set {B} from Small Request Metadata table for C 

 2: return set {B} 

3: Call CachingProcedure (C) 
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The above procedure and algorithm perform inline deduplication of incoming data 

stream. The categorization of superblocks restricts the number of block comparisons for 

duplicate comparisons with the blocks in the same category.  

G. Caching 

Deduplication is a computationally expensive process. The system’s performance while 

deduplicating the data depends on how quickly we can access data and metadata for 

comparing the duplicates. Caching of data and metadata plays a significant role while 

deduplicating. It is relatively difficult to build a cache due to random access patterns and 

poor locality in primary workloads. However, the block’s recency – absolute last access time 

and frequency – number of times a block is accessed while the block is in cache can help to 

build a cache system that can yield higher hit rates. The success of cache management 

depends on two factors — building an effective cache eviction strategy and prefetching of 

blocks based on heuristics. An efficient cache will reduce the number of metadata lookups 

to the disk. The data structures described above are used for caching the metadata 

information. The system requires minimal cache size for storing and processing the 

fingerprint and other blocks related information.  The current system uses the derived 

statistics of a block – recency, frequency, category (4 byte), and LBA (4 Byte).  

1) Data collection: Belady’s Lookahead replacement algorithm is used to find the  

block that can be the eviction candidates. We have two parameters for collecting the data 

to implement an ML based cache eviction strategy — Sampling Frequency and Eviction 

count. Sampling Frequency is a value for sampling the data in the cache and collecting the 

statistics of blocks present in the cache. These statistics are the features of a block. Eviction 

count provides us the number of eviction candidates that can be generated for eviction 

when the cache is full. We pass the data stream to Belady’s algorithm and find out the 
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blocks that can be evicted at that instance. Therefore, at every sampling frequency instance, 

we collect the recency, frequency, category, and LBA of a block and their eviction status (0 

for No eviction, 1 for Eviction) as per the number of candidates given in the eviction count. 

Based on both the parameters, several experiments have been conducted, and the results 

are presented in the next section. This data obtained is used as an input to the ML model 

that will be built. 

2) Normalization: Each of the features considered above has different covariances,  

resulting in distortion in the data. The value of each feature is normalized to a value 

between 0 and 1 to overcome the above constraint. All the feature values are normalized 

and later sent as an input to the ML model 

3) Data for ML model: As mentioned earlier, the features of an entry in the cache  

are recency, frequency, category, and LBA. The features are selected after feature 

engineering each property of a block. The following section will depict the result of the 

feature engineering. Below Fig. 10. depicts the data input that is given to a supervised ML 

model. 

 

Fig. 10. Input for ML model 

4) Training ML model: Several experiments were performed with three  

hyperparameters – sampling frequency count, eviction count, and cache size. For each of 

the experiments, hit rate has been calculated and the parameters yielding highest hit rate 
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for the ML model are considered for the dataset. The ML model is trained with the dataset 

generated described in above section. Sampling the cache and retrieving the statistics of the 

entries in the cache based on the sampling frequency has helped us avoid overfitting the 

model. Several blocks in the dataset that have been accessed more frequently and are not 

evicted for a more extended period. Similarly, the eviction count helps in choosing the 

candidates with highest probability of getting evicted.  

 We developed two different ML models using scikit-learn library and evaluated each 

model’s performance based on the hit rate and the time consumed to generate eviction 

candidates. 

• KNNC: The model has been trained with the dataset by varying the hyper-parameter 

— number of neighbors. The training time for KNN is faster when compared to RF 

model. The number of features to this model remained the same as described in the 

earlier section. 

• RFC: The training data is made to fit by varying multiple hyper-parameters —max 

depth of decision tree, minimum sample split for each tree, number of trees in the 

forest). The training time for the RF model is relatively higher than the KNN model 

since it involves results from multiple decision trees.  

At the end of each day, the data blocks that have been served so far will be sent to 

Belady’s algorithm to generate the input statistics to the model. The ML model gets trained 

on the statistics, and when the cache is full, the model generates the eviction candidates 

based on the data present in the cache instance at that period. 

5) K-fold Cross Validation: The primary storage workload witnesses random access  

to the data blocks. It is crucial for the model to get trained on a dataset that represents the 

overall data of the workload. Cross validation is employed to fit the training data well and 
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increase the accuracy of the model. This project uses a 5-fold cross validation strategy to 

train and validate the model’s performance. We shuffle the input data and split them into 

five groups. Each time, four parts of the data are sent for training the model and one part 

for the validation. 

6) Testing: Apart from validation, the actual testing is done when the cache is full.  

Each of the blocks in the data stream is captured in the cache, and when the cache is full, 

the ML based eviction algorithm as described in Algorithm 4 is called. The algorithm takes 

the current cache instance statistics and predicts the eviction candidates based on the 

probability of eviction. The candidates that are predicted by the ML algorithm are evicted 

and replaced with the incoming data block. The ML model’s hit rates are analyzed and the 

model yielding the highest hit rate is deployed as a cache eviction strategy. 

Algorithm 4: CachingProcedure (C) 

 1: foreach B in SB: 

 2:  if B in cache then: 

 3:  hit += 1 

 4:  update recency and frequency statistics 

 5:  else if cache not full then: 

 6:  Add B to cache 

 7:   update recency and frequency statistics 

 8:  miss +=1  

 9: else if cache is full then: 

 10.   evict_candidates = MLmodel (C) 

 11:  replace evict_candidate [0] with B 

 12:   update recency and frequency statistics 
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 13:   miss += 1 

 14:  end if 

 15: end for 

The system has two independent modules where one of the modules takes care of 

superblocking and deduplicating and the other module consists of logic for ML based 

eviction model. Both the modules are integrated using API. We have used a third-party 

library Jython [26], to establish communication between both modules.  
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V. EXPERIMENT AND RESULTS 

The system was built on Linux Operating System (OS) running on a 2.2 GHz Quad-

core Intel i7 processor with RAM specification — 16 GB 1600 MHz DDR3 memory. All the 

experiments have been conducted in the same setup with different datasets. The objective 

of conducting multiple experiments is to find the correct value for each hyper-parameter 

used in the system and show that the system can handle a primary storage workload with 

lower metadata overhead.  

A. Dataset 

We use a publicly available data source. It consists of I/O block traces collected from 

the three production systems and available as FIU block trace [16]. The I/O details were 

recorded from Virtual Machines (VM) hosting a web server, Computer Science department 

email server, and a file server dedicated to researchers. The I/O traces were collected for 21 

days using blktrace – mechanism to trace blocks. The details of dataset are provided in 

Table II. Each of the records in the I/O trace file consists of the following 

• Timestamp 

• Process ID 

• Process name 

• LBA 

• Size allocated in 512 bytes 

• Request type – Write or Read 

• Major device number 

• Minor device number 

• Fingerprint – MD5 per 512 bytes 
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TABLE II 
DATASET STATISTICS 

 Homes (approx.) Web Server (approx.) 

Total number of 
requests 

17.83 Million 14.29 Million 

Total number of Read 
I/O 

0.72 Million 3.11 Million 

Total number of Write 
I/O 

17.11 Million 11.17 Million 

 
For experimentation, a low memory cache has been used to store the fingerprints of 

the block for faster duplicate comparison. Typically, a 10% of average everyday working 

data stream size is allocated for cache. However, we have experimented with multiple cache 

sizes to understand the performance of the system. We have considered 21 days of I/O 

traces from 2 production systems during the analysis of the system. 

B. Feature Engineering 

An ML based cache eviction model is built and integrated as part of the 

deduplication engine. It is important to understand the features of the model. As mentioned 

in the previous section, there are nine features representing block I/O requests. However, 

we can derive other features from the given block I/O tracer file. We have considered three 

derived features from the dataset. The importance of each of the features is shown in Table 

III. To understand the importance of each feature, we have leveraged Recursive Feature 

Elimination from scikit-learn library. Each of the features is ranked and the top 4 features 

are considered for building the model.  
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TABLE III 
FEATURE ENGINEERING 

Feature Rank Score 
LBA 1 0.31046 

Category ID 1 0.22911 
Frequency 1 0.21896 
Recency 1 0.2145 

Fingerprint 2 0.01991 
Timestamp 4 0.00283 
Process ID  3 0.00283 

Read / Write 4 0.0014 
 

C. Request Response Time 

Response time for a read or write request is the most critical for measuring the 

performance of the primary storage system. The current workload that has been 

experimented with is typically a write-intensive and balanced workload. The deduplication 

engine will be immensely occupied to serve the requests. However, the read requests from 

the storage client should be served with minimal latency. Reducing the metadata overhead 

by leveraging the block similarity has helped improve the performance of both read and 

write request. Table IV and Table V describe the response time of write and read requests, 

respectively. The time described in the below tables includes only the access time of 

metadata and construction or deduplication of a file. It also includes the time to read the 

metadata from the disk during a cache miss. It does not include the time involved in 

calculating the fingerprint for the content and the write-back time from the cache to disk. 

The workload-dependent cache eviction model built on top of the deduplication system 

yields higher hit rate resulting in substantial time-saving response time.  
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TABLE IV 
WRITE RESPONSE TIME 

Superblock Size (KB) Average Response Time (ms) 
32 15.483 
64 38.41 

128 57.326 
256 96.112 

 

TABLE V 
READ RESPONSE TIME 

Superblock Size (KB) Average Response Time (ms) 
32 5.23 
64 11.324 

128 19.553 
256 25.612 

 

 From the above tables it is evident that response time increases as we 

increase the superblock’s size. As the superblock size increases, the number of blocks within 

the superblock increases. During deduplication, the number of metadata comparisons 

increases, increasing response time. Though the data fragmentation issue is minimal with 

larger superblock sizes, response time and number of writes eliminated are higher in smaller 

superblock sizes. 

D. Metadata Overhead 

The objective of the project is to keep the number of metadata lookups to be 

minimal. Experiments were conducted to understand the number of metadata operations 

involved for every block read or write in a system enabled with deduplication. Fig. 11. 

depicts the average number of metadata operations for a sequence of blocks. The results 

help in understanding that the categorization of superblocks helps in storing the shared 

metadata. During deduplication, we can narrow the duplicate comparison only with the 
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metadata belonging to a particular category. The system without categorization involves an 

extensive search throughout the database for relevant metadata during write or read 

operation. This increases the overhead of metadata in a system without categorization. 

However, in the homes block I/O trace, the number of metadata operations is slightly higher 

since most of the LBA’s are continuously modified and updated, leading to the creation of 

new fingerprints. 

 

Fig. 11. Metadata overhead 

 

E. Write Elimination 

 Elimination of duplicate writes will help in improving the performance of the I/O 

path. Fig. 12. depicts the percentage of duplicate writes that have been eliminated by the 

deduplication system for two different datasets. However, certain duplicate writes were not 

eliminated due to the constraint in fragmentation of the data. As mentioned in the earlier 

sections, a threshold value should be satisfied to perform deduplication on the write 

request. If the threshold is not met, the request is executed without deduplication. Though 
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there are few duplicate writes that have not been eliminated, the performance gain from 

reducing the data fragmentation is huge. As the size of the superblock grows, the amount of 

duplicate writes elimination decreases.  

 

Fig. 12. Eliminated write requests 

 

F. Throughput Analysis 

One of the important measures to primary storage performance is throughput. It is 

important to exhibit higher throughput in an actively accessed storage environment. Due to 

the absence of a unified test environment, it is relatively difficult to compare the 

throughput for multiple systems. The throughput depends on the hardware, deduplication 

ratio, cache hit rate, and percentage of duplicate write eliminated. The exploitation of the 

similarity between the blocks contributes to higher throughput. The critical component for 

performance is measuring the caching performance of the system. We have investigated 

several caching algorithms that are in practice for the primary storage system. The workload 

that has been tested is write intensive and balanced. The cache is built with a Write-back 
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strategy. The updates to the elements present in the cache are updated only in the cache 

and are not written onto the disk till the element is flushed out of the cache. This helps in 

reducing the disk access for the elements in the cache. The time taken to flush the data 

marked with the dirty bit is not considered in the initial analysis. The time taken to write the 

data and metadata updates into the disk is not considered during the below throughput 

analysis. It measures the efficiency of different caching schemes.  

The below figures Fig. 13. and Fig. 14. depicts the analysis of throughput between 

different systems enabled with different cache eviction policies. From the figures, the 

throughput is higher with smaller-sized superblocks since the overhead in the deduplication 

process is lower as compared with larger block sizes and the number of smaller requests 

that are processed are lower with smaller superblock size. An increase in the number of 

smaller requests will increase the number of metadata lookups thereby increasing the 

processing time.  

A system design with the concept of categorizing similar superblocks supported by 

ML-based cache eviction policy with a pre-trained KNN model and a Bloom filter yields a 

higher throughput than LRU and LFU cache eviction strategy. Higher cache hit rates and 

duplicate elimination percentage contribute to the higher throughput of the system. The 

below section describes the hit rate analysis between several cache eviction policies. 

Though the hit rate is significant in deduplication, the processing time of the cache eviction 

policy plays a vital role in the throughput of the system. The results are shown in fig. 15. and 

fig. 16. shows that the hit rates of ML-based cache eviction policy are higher than LRU and 

LFU. However, the processing time of the RF model in choosing the eviction candidate is 

significantly higher than the KNN and LRU. During the throughput analysis, a system enabled 

with the RF model has lower throughput than a system with a lower hit rate such as the LRU 
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eviction policy. Hence, the RF model is not suitable for primary storage deployment. On the 

other hand, the KNN model processes faster and it has a higher hit rate thereby witnessing a 

higher throughput than a cache enabled with the LRU and LFU policy.  

The throughput of LRU is higher in 128 KB superblock size since the hit rate of ML-

based eviction policy is only slightly higher than LRU model. From a performance 

perspective, LRU performs better than ML-based eviction policy for larger superblock sizes. 

As the size of the superblock increases, the number of categories, amount of data to train 

the ML-based model’s decreases resulting in a poorer hit rate. We could achieve a 

maximum cache component throughput of 13.478 MB/S for 21 days of real-world workload. 

The cache component throughput is at least 14.4% better with ML-based eviction policy as 

compared with LRU and LFU eviction policy in a write-intensive workload. 

 

Fig. 13 Caching Policy vs Throughput Analysis 

 

The overall throughput includes the processing time of storing the metadata, file to disk, 

caching, deduplication. The system with the above-mentioned setup could achieve a 

maximum overall throughput of 3.74 MB/S for 21 days of real-world workload. The overall 
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throughput is at least 22.19% better with ML-based eviction policy as compared with LRU 

and LFU eviction policy in a write-intensive workload. The below analysis supports the fact 

that the throughput of the system is dependent on the underlying hard disk. The overall 

throughput drops because of writing the metadata and file into the disk.  

 

Fig. 14. Overall Throughput Analysis 

 

G. Cache Analysis 

Effective cache management will help in improving the performance of the 

deduplication system. Belady’s algorithm is considered as a baseline to understand the 

performance of the traditional and workload-dependent ML cache eviction strategy. The ML 

algorithm has experimented with multiple hyperparameters. The ML model will predict the 

eviction probability of each item in the cache by learning the statistics of past cache misses 

and considering the current instance of the cache. The experimentation setup includes 15 

MB cache, 0.3 * number of items in the cache as eviction count, four features providing 

various statistics for items in the cache, sampling the data for every number of items in the 

cache to avoid overfitting the ML model. The experiment was conducted by warming up the 

2.
95

2.
34

2.
30

7

1.
58

1.
05

0.
90

7

3.
74

2.
95

2.
22

72.
87

2.
06

7

1.
32

0
0.5

1
1.5

2
2.5

3
3.5

4

3 2 6 4 1 2 8

Th
ro

ug
hp

ut
 (M

B/
S)

Superblock Size (KB)

LRU (MB/S) LFU (MB/S) KNN-ML (MB/S) RF-ML (MB/S)



EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY 

 41 

cache with 19 days of block I/O and measuring the hit rate in the cache by various 

algorithms by sending two days of block I/O. Below are the results for the setup. 

1) Belady’s algorithm:  The optimal hit rate that can be achieved for the above set is  

63.046%. This hit is considered as the baseline for measuring the performance of the other 

algorithms. 

2) LRU: The maximum hit rate that the LRU cache eviction policy can achieve is 

47.297%. The processing time of LRU strategy for two days of block I/O is 1.14 minutes. 

3)  LFU: The maximum hit rate that the LFU cache eviction policy can achieve is  

42.41%. The processing time of LFU strategy for two days of block I/O is 2.09 minutes. 

4) Traditional vs. ML eviction strategy: From the results obtained from traditional  

and workload-dependent ML based eviction policies, we have analyzed the performance of 

both methods in terms of hit rate and processing time. Below Fig. 15. describes the 

efficiency achieved by traditional and ML eviction strategies with respect to hit rate and Fig. 

16. describes the processing time. The cache allocated for the metadata information for this 

experiment is 15MB to mimic the actual cache in a storage system.  

 

Fig. 15. Traditional vs. ML eviction strategy hit rate analysis 
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Fig. 16. Traditional vs. ML eviction strategy time analysis 
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mainly the choice because of the throughput gain as depicted in fig. 13. and the hit rates. 

Though the RF model has higher hit rates as compare with LRU, it performs slower and has 

lower throughput than the system with LRU eviction policy. It is mainly because of multiple 

individual decision trees that are involved in choosing an eviction candidate. The time 

involved in the RF model is relatively higher and thus there is a degradation in throughput 

performance. 

5) Cache Size Analysis: The ML-based cache is workload-dependent, and it is crucial  

to find the correct size of the cache for storing the metadata information. The size of the 

cache was decided on the average workload metadata statistics obtained over 19 days. An 

analysis of the cache size for metadata and hit rates was made. The results are shown in fig. 

17. From the below figure, it is evident that as we increase the size of the metadata cache, 

the hit rate increases. However, this cache refers to only the metadata cache and not the 

actual data cache. The hit rate increases as we increase the size of the metadata cache. 

However, there is a significant increase in hit rate when the cache size is increased from 5% 

to 10% of average metadata. The hit rate does not seem to be higher as we double the 

metadata cache size from 10% to 20%. The candidate cache size for the real-world workload 

that was experimented with is 10% of everyday metadata size. The cache hit rates based on 

the workload-dependent Machine Learning model are higher by 5.43%,10.36% over LRU 

eviction and LFU eviction policy respectively with a metadata cache allocation of 10% of the 

average everyday working data stream size. 
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Fig. 17. Cache Size vs Hit Rate Analysis 
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Fig. 18. KNNC hit rate analysis 
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trees. A more precise information about the dataset is conveyed to the decision trees for 

classification between an eviction and noneviction candidate class with larger depth. From 

the below Fig. 19. we can see that the hit rates increases as we increase the depth of the 

decision trees. However, the computational cost increases as we increase the depth of the 

tree. Table VII shows that the training and testing time of a RFC model increases with an 

increase in the depth of the tree.  

 

Fig. 19. RFC hit rate analysis 
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rates for the ML based model. Fig. 20. depicts the relationship between the eviction count 

and hit rate. The trend shows that the hit rate gets decreased when the number of eviction 

count increases. However, for the current setup, an eviction count of 0.3 * number of 

elements in cache yields the best result. 

 

Fig. 20. Eviction count vs. hit rate analysis 
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two days of block I/O requests with different caching algorithms is shown in Fig. 21. The 

figure shows that the LRU cache eviction system processes the blocks faster than any other 

eviction policy in our setup. Though the processing time of KNNC is slightly higher, the 

benefits are realized with higher hit rates of KNNC compared with LRU eviction system as 

shown in Fig. 13., Fig. 14. and Fig. 17. Also, as we increase the metadata cache size, the 

processing time increases due to an increase in the number of elements in the cache. 

 

Fig. 21. Cache size vs. block processing time 
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H. Superblocks and Categorization 

In the experiments conducted with two production systems, the I/O traces are 

passed to the deduplication engine, where the incoming data stream is split into 

superblocks and categorized based on the similarity. Table VIII shows the relation between 

size of the superblock and the number of categories. 

TABLE VIII 
SUPERBLOCK VS. CATEGORY 

  
Web Server Block I/O 

 
Homes Block I/O 

Size 
(KB) 

# of 
categories 

Duplicate Duplicate 
% 

# of categories Duplicate Duplicate 
% 

32 608194 254458 29.5 958924 549852 36.43 
64 237997 78083 24.7 396980 196936 33.12 

128 97199 25379 20.7 121288 30062 19.86 
256 14149 1554 9.01 25056 3513 12.6 

 

 
Fig. 22. Duplicate percentage vs. superblock size 
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percentage of superblocks having duplicate blocks. The duplicate percentage increases as 

the superblock size decrease. 

I. Bloom Filter Significance 

Bloom filters serve as an important component during the categorization. As 

mentioned in the earlier section, while creating a new category, SBR is passed on to the 

Bloom filter and check if there is a category already present. We evaluated the Bloom filter 

data structure with a hash table for looking up if a category is already present. We know 

that hash table structure yields a quicker response during a search operation; the 

performance of the data structure degrades as the data size grows. This key observation has 

been captured in Fig. 23. The figure depicts the analysis obtained from the Bloom filter 

implementation to web server block I/O tracer dataset. 

 

Fig. 23. Category insertion time analysis 
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 The above figure helps in understanding the trend of the insertion time when we use 

different data structures. The insertion time of the Bloom filter performs much better than 

the hash table as data grows. Since insertion time is the most time-consuming activity in the 

BF, it is advisable to activate BF for the deduplication system when the number of 

categories increases beyond 100K entries. Fig.  24. helps in understanding the space saving 

trend between different data structures. Bloom filters do not store the data. Therefore, the 

Bloom filter size can incur constant space based on the False Positive Rate (FPR) and 

number of entries. We have used a Bloom filter of same size (1.5 MB) for all the superblock 

sizes. However, the trend is nearly exponential when we use the hash tables since the actual 

data is stored in the tables. From a memory perspective, it is beneficial to use a Bloom filter 

in deduplication engine for primary storage workload.  

 

Fig. 24. Category space analysis 
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less than 1%, and it can be ignored for the configuration mentioned above. We can maintain 

a lower FPR if the size of BF is increased. 
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VI. CONCLUSION AND FUTURE WORK 

The above system leverages the similarity between the blocks to build a deduplication 

system with lower metadata overhead and higher throughput for primary storage. The 

incoming data block request is split into multiple superblocks and categorized based on the 

Broder’s theorem. The categorization narrows the metadata search during deduplication 

resulting in lower metadata I/O’s and eliminating redundant write requests. A real-world 

block I/O trace is used for the evaluation of the system. The result from the experiments 

shows that the elimination of duplicate writes by the system can be as high as 32.89% and 

45.93% in web server and homes block I/O traces. The average response time of both the 

read and write requests of the newly designed deduplication system is around 5.23 ms and 

15.483 ms respectively. The overall throughput gain is at least 14.4% better with ML-based 

eviction policy as compared with LRU and LFU eviction policy in a write-intensive workload. 

The number of metadata I/O’s has reduced significantly by building an efficient ML based 

cache eviction strategy, leveraging superblock similarity and categorization. Hence the 

newly built system can be implemented for a primary storage system. 

Following entities achieve an efficient metadata management system for 

deduplication: 

1) An efficient workload-dependent ML based cache eviction strategy is designed  

for the write-intensive and balanced workload with varying parameters like eviction count 

and sampling frequency, the ML based cache eviction strategy have hit rate higher by 

5.43%,10.36% over LRU eviction and LFU eviction policy respectively with a metadata cache 

allocation of 10% of average everyday working data stream size. 

2) Similarity detection algorithm was built to identify similar superblocks and share 
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their metadata information, reducing the number of lookups while deduplicating the 

incoming block of the same category. 

3) Reducing the disk fragmentation issue by deduplication only the superblocks that  

satisfy a threshold value for the match percentage. 

4) We have implemented a Bloom filter in the system for reducing the number of  

disk I/O in new category creation or identification. 

 The future directions for this system are: 

1) Currently, this system works only on a single node environment. The future aim  

is to build a deduplication system for a multi-node environment. 

2) Improving the workload-dependent ML based cache eviction strategy by  

hyperparameter tuning and prefetching blocks based on category access pattern to reach 

hit rate nearer to optimal cache hit rate. 

3) Studying and understanding the locality of the blocks after deduplication and  

reorganizing to preserve block locality. 
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