
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 2021

Efficient Metadata Lookup In Inline Deduplication Systems Efficient Metadata Lookup In Inline Deduplication Systems

Leveraging Block Similarity Leveraging Block Similarity

Rakesh Gururaj
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gururaj, Rakesh, "Efficient Metadata Lookup In Inline Deduplication Systems Leveraging Block Similarity"
(2021). Master's Projects. 1033.
DOI: https://doi.org/10.31979/etd.75z5-shf5
https://scholarworks.sjsu.edu/etd_projects/1033

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1033&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1033?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

Efficient Metadata Lookup In Inline Deduplication Systems Leveraging Block Similarity

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Rakesh Gururaj

May 2021

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 i

ABSTRACT

 Data deduplication is a concept of physically storing a single instance of data by

eliminating redundant copies to save the storage space. The adoption of deduplication is

minimal in actively accessed primary storage because of its complexities, such as random

access patterns to data and the need for quicker request response time. Most of the

solutions designed for primary storage are offline and dependent on the concept of locality.

This paper proposes an inline deduplication system with a Machine Learning based cache

eviction policy to reduce the metadata overhead in the deduplication process, eliminate the

redundant writes and improve the overall throughput in latency-sensitive storage workload.

The system’s major components are superblocking, categorizing superblocks, similarity

detection, and deduplication supported by an efficient caching mechanism. It categorizes

identical sequence of blocks based on the minimal fingerprint value of the superblock.

Caching of the fingerprints plays a vital role in improving performance during

deduplication. A novel Machine Learning model for cache eviction is built based on the

recency, frequency, and category of a block. The experimental results show that more than

33% of redundant writes are eliminated with smaller superblocks, the metadata overheads

are minimized by at least 54.5% by categorizing similar superblocks, and the cache hit rates

based on the workload-dependent Machine Learning model are higher by 5.43%,10.36%

over system with LRU eviction and LFU eviction policy respectively resulting in 14.4% better

throughput than a system with traditional cache eviction policy with a metadata cache

allocation of 10% of average metadata stream size. The cache system learns the past evicted

block I/O statistics and refines itself while choosing an eviction candidate. The system has

shown satisfactory performance in all the real-world I/O traces considered for experiments.

Keywords – inline deduplication, block similarity, cache eviction, data fragmentation

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 ii

ACKNOWLEDGEMENT

 I want to express my deepest gratitude towards my Advisor, Mentor, and Counselor,

Dr. Teng-Sheng Moh, who guided me throughout my graduate education. His enthusiasm in

teaching enabled a positive environment for continuous learning and research. His

persistent encouragement and support have helped me to achieve this feat. In the absence

of his help, this project would not have been possible.

 I would like to sincerely thank my committee member and The Chair of the

department Dr. Melody Moh who kept me constantly engaged in the research and helped

me connect with the Industry experts to stay up to date with the technology and advance in

my research.

 I express my heartfelt appreciation to my committee member Dr. Philip Shilane, Dell

Technologies, and Mr. Bhimsen Bhanjois, Senior Distinguished Engineer, Dell Technologies,

for their valuable feedback and direction to this research. Their insights have contributed to

a greater extent in advancing this research.

 I wish to express my indebtedness to my family for constantly motivating and

supporting me in achieving my dream. I thank my friends and my colleagues for inspiring

and helping me grow in life.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 iii

TABLE OF CONTENTS

I. INTRODUCTION ... 1

II. BACKGROUND .. 5

A. Size Based Deduplication ... 5

B. Time Based Deduplication ... 6

C. Node Based Deduplication ... 7

D. Environment Based Deduplication .. 8

E. Cache Eviction .. 9

F. Machine Learning (ML) Algorithms ... 10

III. RELATED WORK .. 12

IV. DESIGN AND IMPLEMENTATION ... 14

A. Terminologies ... 14

B. Data Structure .. 17

C. Similarity Detection ... 18

D. Bloom Filter Implementation ... 19

E. Request Processing .. 20

F. Prototype Workflow .. 20

G. Caching ... 27

V. EXPERIMENT AND RESULTS ... 32

A. Dataset ... 32

B. Feature Engineering ... 33

C. Request Response Time ... 34

D. Metadata Overhead .. 35

E. Write Elimination ... 36

F. Throughput Analysis .. 37

G. Cache Analysis .. 40

H. Superblocks and Categorization .. 49

I. Bloom Filter Significance ... 50

VI. CONCLUSION AND FUTURE WORK .. 53

REFERENCES ... 55

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 iv

LIST OF TABLES

1. Algorithm Notations

2. Dataset Statistics

3. Feature Engineering

4. Write Response Time

5. Read Response Time

6. KNNC Time Analysis

7. RFC Time Analysis

8. Superblock vs. Category

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 v

LIST OF FIGURES

1. Categories of deduplication

2. Architecture of deduplication system

3. Representation of superblock and block

4. Representation of deduplicated file

5. SBR to category ID mapping and category ID to blocks mapping

6. Hash table for smaller files

7. LBA to PBA mapping

8. PBA to category ID mapping

9. Bloom filter implementation

10. Input for ML model

11. Metadata overhead

12. Eliminated write requests

13. Caching Policy vs Throughput Analysis

14. Throughput Analysis

15. Traditional vs. ML eviction strategy hit rate analysis

16. Traditional vs. ML eviction strategy time analysis

17. Cache Size vs Hit Rate Analysis

18. KNNC hit rate analysis

19. RFC hit rate analysis

20. Eviction count vs. hit rate analysis

21. Cache size vs. block processing time

22. Duplicate percentage vs. superblock size

23. Category insertion time analysis

24. Category space analysis

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 1

I. INTRODUCTION

The recent buzzword in the technology industry is digitization. As part of the digital

transformation, the earlier available information on paper and other sources are now

transformed into digital information. With the advent of technology, there is an increase in

data sources such as Internet of Things (IoT) sensors, mobile phones, personal computers,

and storage systems. According to the reports from the International Data Corporation

(IDC), the amount of data growth across the globe is expected to be 175 Zettabytes (ZB) by

2025 [1]. Hence, the storage of growing digital data becomes challenging. However, we

cannot ascertain that all these data are unique; there is considerable duplicate data [2] that

can be eliminated to incur space savings. To maintain an efficient storage system, the

removal of duplicate data becomes necessary. Data deduplication becomes an essential tool

in storage optimization.

Several studies [2], [3], [4] were conducted to understand the access pattern and the

storage footprints of the primary and secondary storage workloads. The results suggest that

deduplication can help in reducing space consumption by 10x in a backup storage

environment [2]. Deduplication is not limited to space savings, but it also helps in reducing

the load in the I/O path and traffic in the network. The application of deduplication is

leveraged extensively in the backup storage environment. Adopting the deduplication

technique in primary storage is minimal due to its operational complexities such as

computationally expensive fingerprint generation, metadata overhead, and meeting

performance metrics of the storage system. There are multiple primary storage systems [5]

that have deduplication and compression. Compression techniques such as LZ77 and LZ78

[6], [7] find additional data within a particular data chunk and effectively reduce redundant

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 2

data. Deduplication is more efficient than the compression technique since it removes a

large amount of redundant data across several files.

In the primary storage system, the access pattern and storage footprints are

irregular leading to poor temporal locality [8], [9]. Therefore, it becomes a challenging task

for researchers to design an efficient deduplication system with minimal impact on the

performance. An efficient deduplication system for primary workload should have a high

throughput characteristic with minimal latency and overhead in metadata management and

duplicate elimination. Most deduplication systems efficiency focuses on metadata

management [10], [11]. There exists a tradeoff between the storage gain and performance

on account of deduplication. Splitting of data into smaller fixed or variable-sized chunks will

increase duplicate elimination, but the overhead of storing metadata for smaller blocks

increases resulting in degradation of performance.

The fundamental process involved in deduplication is chunking, fingerprint

generation for chunks, and duplicate elimination. The incoming data stream is split into

multiple blocks of the same or varying sizes for which a fingerprint is generated using hash

functions such as MD5 and SHA1. Though the hash collision is possible with standardized

algorithms, the collision rate is much lower than physical disk failure [12]. The fingerprints

are then compared with fingerprints in the disk, and the duplicates are eliminated. When a

block is identified as a duplicate block, the system will not store the duplicate block;

however, a reference to the unique block will be stored in place of the duplicate block, and

the reference count of the unique block will be increased. Blocks are flagged for garbage

collection to reclaim the space if the block is no longer referenced by any file.

The process of deduplication can also lead to disk fragmentation issues. After

deduplicating the incoming data, the block sequence in a file can be scattered across the

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 3

disk. The performance of read request in these scenarios will degrade because multiple I/O

operations have to be made to collect and organize the sequential data. The above

challenges are addressed by building an inline deduplication system with Machine Learning

based cache eviction. The primary focus of this design is to reduce the metadata overhead,

eliminate the redundant writes, and improve the overall throughput in latency-sensitive

storage workload while performing deduplication. The results of the experiments shows

that the system works well with an environment exhibiting poor locality information and

random-access pattern. The core concept of the system is to break down the incoming

stream of data into superblocks and categorize similar superblocks sharing the same

metadata, thereby limiting the metadata lookup of those superblocks only to a particular

category. The categorization of the superblock is based on the minimal fingerprint of the

superblock. The system leverages similarity within superblocks to reduce the metadata

overhead and to improve the performance while deduplicating. The entire similarity

detection process is supported by a Machine Learning based cache eviction policy. The

significant contributions from the project are as follows.

1) Building an inline deduplication system for reducing the metadata overhead,

eliminating duplicate requests, increasing the system throughput, and reducing

the latency.

2) An algorithm to split the incoming data stream into superblocks and categorize

similar superblocks based on the minimal fingerprint of superblock to confine the

metadata lookup space for duplicate identification and elimination.

3) Developing a novel workload-dependent Machine Learning model for cache

eviction based on the recency, frequency, and category of a block to increase the

cache hit rate thereby increasing the throughput of the system.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 4

4) Using Bloom filter data structure to reduce the disk lookup while generating a

new category.

The rest of the paper is organized as follows: Section II provides the necessary

background of deduplication process. Section III describes existing deduplication for primary

storage systems. Section IV describes the design, flow, architecture, and implementation of

the deduplication system. Section V describes the results obtained from various

experiments. Section VI discusses the conclusion and describes the future scope of this

project.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 5

II. BACKGROUND

Deduplication as a process is dependent on multiple parameters. We can obtain

maximum gain by tuning the deduplication parameters. The categorization of the

deduplication process can be as follows.

1) Size based deduplication

2) Time based deduplication

3) Node based deduplication

4) Environment based deduplication

Various categories and sub-categories of deduplication system are shown in Fig. 1.

Fig. 1. Categories of deduplication

A. Size Based Deduplication

The basic unit of deduplication can depend based on the choice and the overhead of

duplicate elimination.

1) File-level: The basic unit for deduplicating is an entire file. Each file is considered as a

single unit for duplicate detection and elimination. During the process of deduplication, the

fingerprints are calculated for the entire file. This technique can flag a duplicate only if two

files are identical and contain the exact same content. The metadata overhead in this type

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 6

of deduplication is relatively lower because fewer chunks are created while deduplicating.

The limitation of this technique is that the deduplication ratio is poor because only identical

files are considered duplicates. However, it is much simpler to implement this technique

when compared to other deduplication techniques.

2) Block-level: As mentioned in the earlier section, the incoming data request is split into

several blocks. The basic unit of deduplication is a block. These blocks are later processed

for duplicate detection. We can further categorize it into two types based on the size of the

block.

a) Fixed-size: In this approach, we define the block size such as 4 KB, 8 KB, 16 KB, 32

KB, 64 KB blocks, and so on. Based on the choice of the size, the incoming data stream is

split uniformly into fixed-size blocks; even with the fixed-size blocking, the last block of a file

is either a small block or it is zero-padded. Ideally, fixed-size blocks are more superficial and

straightforward to implement. However, the deduplication ratio will be decreased since any

minor change to the file’s content will change the boundaries of the blocks.

b) Variable-size: This approach uses a Content Defined Chunking (CDC) algorithm to

split the data stream into variable-length blocks. When the block contents are changed or

modified, the border of the blocks is altered accordingly and split. It gives a higher

deduplication ratio when compared to fixed-size chunking because of handling the contents

effectively. Since each block can have varying sizes, the management of the blocks is

complex at the storage level resulting in higher metadata overhead. CDC is computationally

expensive while finding the exact border for splitting.

B. Time Based Deduplication

The appropriate time for carrying out the deduplication will depend on the storage

requirement such as performance, I/O traffic, the number of disk writes.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 7

1) Inline deduplication: The deduplication process is triggered as there is an incoming

data stream. It splits the incoming stream, generates the fingerprints for the blocks, and

eliminates duplicates before storing the data block on the disk. The need for storing the

data in a temporary location is avoided. The main drawback of this approach is having

overhead in the I/O path while performing deduplication. The response of the system might

be degraded.

2) Offline deduplication: This technique does not deduplicate the data in real-time.

When the system is idle, the deduplication process is triggered. However, this technique

requires a temporary location to store the data, but the performance of the critical path

remains unaffected. The deduplication is triggered post processing of incoming data. It is

difficult to identify the right time for triggering the deduplication process.

3) Hybrid deduplication: This technique combines both the inline and offline

deduplication techniques to achieve a higher deduplication ratio. The primary focus of this

technique is to achieve maximum deduplication benefit through inline deduplication.

However, a threshold for latency is maintained. If the latency increases beyond the

threshold, the data is stored on the disk and deduplicated in an offline manner. The

complexity in this technique lies in managing the file data that can be in two different

states.

C. Node Based Deduplication

Deduplication can be applied to each node or a cluster of nodes based on the

requirement and architecture of the storage system.

1) Single node: Each node in the storage system will be installed with an independent

deduplication engine. Only the data that is inside that node will be considered for duplicate

comparison and elimination during the deduplication process. It is easier to manage the

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 8

metadata for each node separately. However, the deduplication ratio will be higher only

within the node, but it fails to identify the identical blocks existing in other nodes resulting

in a lower deduplication ratio across the cluster.

2) Multi-node: A centralized or distributed metadata server can be chosen to store the

metadata obtained from all the nodes. Deduplication can be applied to all the nodes across

the cluster. The deduplication ratio across the cluster is higher than single node since the

duplicate blocks can be identified even if the block is scattered across cluster nodes.

However, there is an additional overhead to maintain a central metadata server. The

operational cost of detecting a duplicate in a centralized server is higher than the cost

involved in a single node [2]. It also depends on the decision of the sending the data to the

right node for deduplication. If the data is sent to a wrong node, the deduplication ratio can

get lower than the benefit achieved through single node system.

D. Environment Based Deduplication

In a backup or archival environment, deduplication can be carried out in either the

source system or at the destination system based on the need and availability of the

resources.

1) Source: Deduplication is performed in the data origin environment. The deduplicated

data is sent over the network to the destination system. This approach helps in reducing the

number of packets that are sent and thus require lower bandwidth. Employing this

technique in low bandwidth and low space-constrained destination systems is beneficial.

But the computation of the source environment should be higher.

2) Destination: The non-deduplicated data is transferred from the source environment

to a backup or archival environment. Deduplication is triggered after the receipt of the data

at the destination environment. This reduces the load in the source system. But it requires

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 9

higher bandwidth for transferring data from source to destination. We can leverage the idle

time of the system to perform deduplication.

E. Cache Eviction

The latency incurred in serving a request in a latency-sensitive primary storage

system should be minimal. It is important to reduce the overall latency in a system by

maintaining the hot data in the faster accessed medium and evicting the colder or less

accessed data from a faster access medium to slower access medium. Caching plays a vital

role in maintaining the hot data during the deduplication process. Primary storage

workloads exhibit random access patterns, making it difficult to choose an ideal cache

eviction strategy. The recency, frequency, current sequence, future sequence of a block are

the most common parameters which decide the eviction candidate when the cache is full.

Designing an algorithm that can yield hit rates closer to an optimal caching algorithm is

significant. In our current system, each element in the cache represents a block structure.

Each block structure contains a fingerprint, Physical Block Address (PBA) and reference

count of that particular block.

1) BELADY’S Lookahead Page Replacement: This algorithm provides an optimal hit

rate for a direct-mapped cache and serves as a baseline for evaluating the other cache

eviction strategies [13]. It helps in directing the nonlookahead algorithms to increase the

gain as closer to optimal gain. It considers the future usage statistics of blocks such as the

recency and/or frequency to choose an eviction candidate that can be used furthest in the

future. This is a theoretical approach that provides an optimal hit rate with a minimal cache

miss rate. However, this algorithm cannot be implemented in a real-world situation since

we cannot predict the blocks that will be accessed in the future.

2) Least Frequently Used (LFU): A counter is placed to record the number of times a

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 10

block is used in the cache. It records the frequency of a block based on the number of times

the block is requested while in the cache. Once the block is evicted from the cache, the

counter is set to 0. It depends on the logic that a block that has been accessed frequently

has higher chances that it will be accessed in the future block accesses. However, the less

frequently accessed blocks in the cache are chosen as eviction candidates and evicted from

the cache.

3) Least Recently Used (LRU): The LRU will keep recording the block recency. When

a block is accessed, it is removed and added to the queue to maintain the recency. The

blocks that are least recently accessed are evicted from the cache during an eviction. It

depends on the logic that a recently used block has higher chances to be accessed in the

future block accesses.

F. Machine Learning (ML) Algorithms

The statistics of recency and frequency of a block can build an ML model to find out

the suitable candidates for eviction when the cache is full. We have used two supervised ML

models that are trained with the incoming data stream.

1) Random Forest Classifier (RFC): It is an ensemble approach with multiple

decision trees working together towards generating a classification [14]. Each decision tree

will generate a class, and the class that is voted by most of the decision trees is considered

the model’s output. A setup with an ensemble will yield better results than an individual

tree model. The classifier model will take the incoming block requests as an input, analyzes

the statistics of blocks that are evicted in the past and generate the eviction candidates

based on the current items in the cache. It classifies the noneviction candidate as class 0 and

the eviction candidates as class 1.

2) K-Nearest Neighbors Classifier (KNNC): It is an approach where the nearest items

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 11

are similar with higher probability. In other words, similar items will be closer to each other.

Therefore, it is important to find and associate the elements that are in closest proximity to

a given data block entry in cache. The distance between the data blocks is measured using

the Euclidean distance. Based on the distance between the two items, we can measure the

similarity. The rationale behind using a KNNC is to explore the similarity between the blocks

that are present in the cache and associate similar blocks for the incoming cache entry.

Depending on the value of “K (number of neighbors),” the items will be aligned into multiple

groups. The model will associate all the similar elements and retain similar elements in the

cache while selecting the elements that are not similar as eviction candidates. It classifies

the noneviction candidate as class 0 and the eviction candidates as class 1.

3) Scikit-learn: It is a library that provides various ML algorithms [15]. An ML

algorithm from scikit-learn can pre-process, fit, and generate new user data based on the

need. It provides support for both supervised and unsupervised ML algorithms. NumPy is a

scientific library that helps perform analysis with the data. We have leveraged the Scikit-

learn library for implementing the RFC and KNNC algorithm.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 12

III. RELATED WORK

Disk bottleneck and performance degradation are the two critical issues in

implementing a primary workload. Deduplication has seen its success for backup and

archival environment [2], [18-21]. Most of the solutions for the primary storage are

implemented as offline mode. Few of the productized offline storage systems are EMC

Celerra [5] and NetApp ASIS [22]. Locality and similarity are the two concepts that have

been explored extensively in the primary storage system while implementing deduplication

[11], [17], [23], [24].

iDedup [17] is considered the pioneer in the inline deduplication system

implemented for the primary storage workload. It exploits spatial locality to store data on

the disk and supports sequential access and temporal locality to build an effective cache

system. Unfortunately, the primary workload does not exhibit extensive locality property.

iDedup ignores the smaller files and requests that are below a threshold value to improve

the performance. It is also dependent on the underlying file system. The Partially Dedupped

File System (PDFS) [8] segments the incoming data stream and applies Locality Sensitive

Hashing (LSH) to find similar blocks. The LSH technique is complex and computationally

expensive. Therefore, it is challenging to implement PDFS for the real-time primary

workload. Performance Oriented Deduplication (POD) [23] focuses primarily on minimizing

the performance degradation while deduplicating. POD assumes a temporal locality in the

primary workload and indexes the fingerprint and metadata based on the locality resulting

in improved performance in the I/O path during deduplication. It is difficult to witness

performance gain in workloads exhibiting poor temporal locality. Heuristically Arranged

Non-Backup Deduplication System (HANDS) [24] is another approach exploiting the

temporal and spatial locality of the data stream. It employs several heuristic methods to

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 13

index the fingerprint to reduce the number of lookups and increase the system’s overall

performance. Nevertheless, it fails to address the issue of random-access patterns in

primary workload.

Hybrid Deduplication Systems (HDS) is efficient in deduplicating the data since it

involves both inline and offline deduplication. Steam Locality Aware Deduplication (SLADE)

[27] assumes temporal locality in the data stream and designs a cache of fingerprints based

on the temporal locality. On the other HDS – A Block-Level Similarity-Based Approach [10]

exploits similarity between the data segments and uses the locality preserving indexing built

in the form of a graph to improve the performance on the I/O path. However, using the

graph data structure to preserve the locality is an expensive operation in any modification

to the structure.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 14

IV. DESIGN AND IMPLEMENTATION

The primary objective of this research is to reduce the metadata overhead and

response time while achieving higher deduplication ratio, increased overall throughput and

higher cache hit rate. The capacity optimization is driven by the large files, whereas

performance optimization is driven by smaller files. The incoming data stream is divided into

multiple superblocks of fixed size that can be configured depending on the user

requirement. Each of the superblocks is further divided into fixed-size blocks. The blocks are

sent to a fingerprint generator that hashes the data using hashing algorithms such as MD5

and SHA-256. The minimal fingerprint of the superblock is calculated and considered as the

Super Block Representative (SBR). The categorization of similar superblocks is based on the

SBR value. Each block’s fingerprints are compared with other existing fingerprints within the

same category. The performance of the deduplication engine is dependent on the caching

strategy. Workload-dependent ML model is used to evict the items in cache while targeting

to achieve cache hit rate near to optimal hit rate described in previous section.

Categorization of similar superblocks into the same category and effective cache

management serves as the backbone to the system resulting in a reduction of lookups and

disk I/O operations during deduplication of data. Bloom filters are used to check if an SBR

exists in the system and helps in category management. The overall architecture of the

system is shown in Fig. 2.

A. Terminologies

Before describing the system’s design, it is essential to understand the terminologies

used as part of the prototype.

1) Superblock: Superblocks are the basic unit for file organization in deduplication

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 15

enabled storage. The size of the superblock is fixed and configurable. However, for the

experimentation of the system, multiple superblock sizes are used, such as 32 KB, 64 KB,

128 KB, 256 KB of size. A larger file is split into multiple smaller superblocks based on the

size of the file. The illustration of a file that is split into superblocks is depicted in Fig. 3.

Fig. 2. Architecture of deduplication system

2) Block: Each of the superblocks is further divided into multiple blocks of fixed

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 16

length. Variable-sized blocks can be used in the backup environment where the size of the

files is often larger than 100 MB. An insertion or deletion can shift the boundary of the

block. Therefore, using variable-sized blocks is beneficial in this setup. However, in the

primary storage system, each file is lesser than 1 MB, and hence, using a fixed-sized blocking

will reduce the latency incurred by variable-sized blocking while achieving most of the

potential deduplication. A block is the smallest unit for deduplication. We use the block size

of 4 KB for the experiments.

Fig. 3. Representation of superblock and block

3) Category: For each of the superblocks, the smallest fingerprint value of the

block is considered as SBR and it is passed through a Bloom filter to determine if the SBR is

present in the system. If SBR does not exist, a new category is created for the superblock

and blocks within the superblock is added to the newly created category. When an identical

SBR is found, the incoming superblock is categorized into the same category as SBR and only

unique blocks are added to the existing category. Superblocks belonging to the same

category share metadata information. The existing system does not have a limit on number

of unique blocks for a category.

4) Deduplicated file layout: The deduplicated file contains the superblocks and

blocks. Duplicates that are part of the deduplication process contain references to the

unique blocks. The illustration of the layout of the deduplicated file is depicted in Fig. 4. As

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 17

described in the figure, each of the deduplicated files has a category ID and the fingerprint

reference where a duplicate is replaced with a reference.

Fig. 4. Representation of deduplicated file

B. Data Structure

Data structures are essential in metadata management. Several different data

structures must be maintained for each block of data. For each of the superblock, an SBR

must be mapped with a category ID. Blocks within a superblock should be mapped with the

category ID, fingerprint, and a counter for each block reference. Logical Block Address (LBA)

to Physical Block Address (PBA) mapping must be established. Similarly, for each of the PBA,

a category ID must be mapped. The current system considers the smaller files that are of

size lesser than the superblock. A hash table of fingerprints of each block is maintained to

address small files. Fig. 5. — Fig. 8. illustrates the various data structures that are used as

part of the prototype.

Fig. 5. SBR to category ID mapping and category ID to blocks mapping

Fig. 6. Hash table for smaller files

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 18

Fig. 7. LBA to PBA mapping Fig. 8. PBA to category ID mapping

C. Similarity Detection

The key idea of the system is to categorize similar superblocks into the same

category. Metadata of the blocks in the same category such as fingerprints, count of all the

blocks inside a superblock, LBA to PBA mappings are stored in individual categories. To find

the similarity between different superblocks, we leverage the concept of Broder’s theorem

[28]. According to the theorem, superblocks are similar to each other, with a higher

probability if the smallest fingerprint of the superblocks is similar. When the superblocks are

similar, it shares most of the underlying block between them. For illustration, consider two

superblocks SB1 and SB2. Let FP1 be the smallest fingerprint of SB1 and FP2 be the smallest

fingerprint of SB2. If FP1 and FP2 are the same, then SB1 and SB2 have a higher probability

of being similar. During categorization of the superblocks, we consider the smallest

fingerprint of the block as SBR and represent the superblock with SBR. A decrease in the size

of the superblock will help in identifying more similarities between the files. The Broder’s

theorem can be summarized as the below equation.

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐹𝑃1 = 𝐹𝑃2) = |"#$	Ç	"#&|
|"#$	È	"#&|

 (1)

When similar superblocks are categorized, the deduplication system will group all

the blocks within the superblocks into the existing category. If the superblocks are not

similar, a new category will be created, and the blocks of the superblock will be added to

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 19

the new category. Identifying identical blocks in the incoming data stream and categorizing

them into the same bin helps exploit block similarity, reducing the overhead incurred in

metadata lookup. This approach limits the duplicate comparison and elimination to the

blocks within a particular category ID.

D. Bloom Filter Implementation

A probabilistic data structure that can reveal if an element is present in the set or

not [29]. It is hugely memory efficient and provides the output rapidly since it does not store

the actual data within the data structure. The Bloom filter can certain if an element is

certainly not present in the set of values. They can produce false-positive results, and

therefore it will always reveal if an element might be on the set or not. The Bloom filter

cannot produce a false-negative result. However, we can control the false-positive rate by

varying the parameters of Bloom filter such as, increasing the Bloom filter’s size and using

different number of hash functions. We have leveraged the Bloom filter to find if the SBR

already exists in the metadata. The SBR that does not pass through the Bloom filter is the

candidate for a new category. The workflow of the Bloom filter is depicted in Fig. 9.

Fig. 9. Bloom filter implementation

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 20

We have used the Bloom filter package provided by the Guava library [25]. It is

important to vary the Bloom filter size based on the size of the incoming data stream.

Therefore, it is critical to choose the expected number of elements that might be entered

into the Bloom filter beforehand. In this project setup, the size of the Bloom filter has two

dependent parameters – number of block I/O and size of the superblock. Based on this, we

can obtain the expected number of elements for a dataset. False-positive rates of the Bloom

filter can be decreased by increasing the size of the Bloom filter. Since the Bloom filters are

memory efficient and occupy minimal space, we can consider having the filter in the

memory. It is important to note that Bloom filters do not store the actual data; it simply

verifies and returns if an element exists in a set.

E. Request Processing

The request to a file comes as a data stream containing LBA’s of the read or write

operation. All the incoming write requests are split into multiple superblocks. For each of

the blocks in the superblock, a fingerprint has been generated. Based on the fingerprints

obtained for each superblock, an SBR is identified representing a superblock. Each SBR is

checked for its existence in the storage. If an SBR is already present, then the respective

superblock might contain identical or duplicate blocks based on the similarity detection

algorithm mentioned in the earlier section. If an SBR is not found, a new category is created

along with the respective metadata into the storage. The cache is updated with the newer

category and superblock details.

F. Prototype Workflow

The primary workflows that are part of the system are the write request to files of

size larger than or equal to the size of a superblock, smaller files that are lesser than the

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 21

superblock’s size and read requests to the files. Each of the requests is handled and

processed separately. After identifying the SBR for a superblock, deduplication is applied to

the superblock. Typically, the number of smaller requests is greater than large requests in

the primary storage workload resulting in greater number of duplicate requests [3], [4].

These smaller requests are ignored by most of the deduplication systems [17] because of

the overhead involved in finding the duplicates in the smaller requests. However, as

mentioned earlier, identifying duplicates in smaller requests can eliminate duplicate I/O

requests resulting in enhancing the system’s performance. In this project, smaller requests

are handled effectively to avoid duplicate write requests. The metadata information for the

smaller request is stored separately with category ID as 0. It becomes convenient to look up

the hash table while processing the smaller requests. The size of the category ID as 0 will

grow depending on the number of small requests that are served in primary storage.

The maximum space savings can be obtained from the large requests. This project

focuses on deduplication at the superblock level. Performing deduplication at a block-level

will increase in deduplication ratio and save more space. However, this approach will lead to

disk fragmentation resulting in multiple metadata access while performing a sequential read

of deduplicated file. On the other hand, when we deduplicate at the superblock level by

maintaining a threshold of matching blocks to deduplicate, the consequences of disk

fragmentation can be avoided. Deduplication in our setup is applied when two blocks

belong to the same category, and the number of identical blocks is greater than or equal to

the threshold value defined by the user. When the blocks do not satisfy the above

condition, the block inside the superblock is not deduplicated even if the superblocks

contains duplicate blocks, and they are added to the metadata of the existing category. The

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 22

algorithms Algorithm 1, Algorithm 2, Algorithm 3 describe the process flow of various

requests. Notations used in the algorithms are shown in Table I.

TABLE I
ALGORITHM NOTATIONS

Definition Notation

Incoming Blocks, Blocks from category B, B_C

Superblock consisting of blocks SB

Block Fingerprint FP

Category C

Request I/O R

Super Block Representative SBR

Bloom Filter BF

Algorithm 1: Handling write requests of file size larger than superblocks

 1. Split the incoming request R into set {SB}

 2. foreach SB in set {SB} do:

 3. Split into further Fixed-size B and generate set {B}

 4. foreach B in set {B} within a SB do:

 5. Calculate FP by MD5 (B)

 6. Add FP to set {FP}

 7. end for

 8. SBR = min (set {FP})

 9. Pass SBR through BF and get C

 10. if SBR does not pass:

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 23

 11. C = Call CreateNewCategory (SBR)

 12. Call InsertIntoMetadataTables (SBR, B, C)

 13. else:

 14. set {B_C} = Call LoadCategoryBlocks (C)

 15. foreach B in set {B} do:

 16. Check if B is in set {B_C}

 17. if exists then

 18. Replace B with reference to unique block

 19. unique block count += 1

 20. else: Write B to set {B_C} and load B in C

 22. Call UpdateMetadataTables (SBR, B_C, C)

 23. end if

 24: Write Unique blocks back to storage and end for

Algorithm 2: Handling write requests of smaller files

 1. foreach B in set {B} of R do:

 2. Calculate FP by MD5 (B)

 3. Add FP to set {FP}

 4. B_C = Call LoadBlockSmallRequestMetadata (B)

 5. if exists then

6. Replace B with reference to B_C

 7. unique block count (B_C) += 1

 8. else:

 9. Call InsertBlockSmallRequestMetadata (B)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 24

 10. end if

 11: Write Unique blocks back to storage

12: end for

Algorithm 3: Handling Read request

 1: Read the request R

 2. Lookup LBA to PBA mapping table in cache

 3. If exists then:

 4. Load the block data

 5. Add block to File construction buffer by resolving block references

 6. else:

 7. Fetch B from the disk

 8. Add block to File construction buffer by resolving block references

 9. end if

 10. Return constructed file

Each of the requests is served back to the user as per the algorithm mentioned

above. The deduplication is performed inline where the incoming data stream deduplicates

the block I/O and stores only the unique blocks into the storage. The metadata of each block

plays a vital role in deduplicating the file. Multiple procedures are called within the

algorithms mentioned above. The description of the procedure calls Proc 1 - Proc 6 are

explained below. Care has been taken while deduplicating so that the performance of the

system does not degrade.

Proc 1: CreateNewCategory (SBR)

 1: Insert SBR into C — SBR table

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 25

 2: return C

 3: If C is not null then:

 4: Insert SBR into BF

 5: else: Notify failure to user

 6: end if

Proc 2: InsertIntoMetadataTables (SBR, B, C)

1: Insert set {LBA (B)} in LBA — PBA table

 2: return PBA of LBA

 3: Insert set {B} with PBA (set {B}), C into Category Metadata table

 4: If PBA exists then:

 5: Increase the count of PBA by 1

 6: else:

 7: Set PBA count of FP to be 1

 8: end if

 9: Insert into PBA — C table

 10: return Acknowledgement

 11. Call CachingProcedure (C)

Proc 3: LoadCategoryBlocks (C)

 1: Fetch set {B} from Category Metadata table for C

 2: return set {B}

3: Call CachingProcedure (C)

Proc 4: UpdateMetadataTables (SBR, B_C, C)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 26

1: Update / Insert set {LBA (B_C)} in LBA — PBA table

2: Update / Insert set {B_C} with PBA (set {B_C}), count (PBA), C into Category

 Metadata table

 3: Update / Insert into PBA — C table

 4: return Acknowledgement

 5: Call CachingProcedure (C)

Proc 5: InsertBlockSmallRequestMetadata (B)

1: Update / Insert LBA (B) in LBA — PBA table

 2: return PBA of LBA

 3: Insert B with PBA (B), 0 as C into Small Request Metadata table

 4: If PBA exists then:

 5: Increase the count of PBA by 1

 6: else:

 7: Set PBA count of FP to be 1

 8: end if

 9: Insert into PBA — C table

 10: return Acknowledgement

 11. Call CachingProcedure (C)

Proc 6: LoadBlockSmallRequestMetadata (B)

1: Fetch set {B} from Small Request Metadata table for C

 2: return set {B}

3: Call CachingProcedure (C)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 27

The above procedure and algorithm perform inline deduplication of incoming data

stream. The categorization of superblocks restricts the number of block comparisons for

duplicate comparisons with the blocks in the same category.

G. Caching

Deduplication is a computationally expensive process. The system’s performance while

deduplicating the data depends on how quickly we can access data and metadata for

comparing the duplicates. Caching of data and metadata plays a significant role while

deduplicating. It is relatively difficult to build a cache due to random access patterns and

poor locality in primary workloads. However, the block’s recency – absolute last access time

and frequency – number of times a block is accessed while the block is in cache can help to

build a cache system that can yield higher hit rates. The success of cache management

depends on two factors — building an effective cache eviction strategy and prefetching of

blocks based on heuristics. An efficient cache will reduce the number of metadata lookups

to the disk. The data structures described above are used for caching the metadata

information. The system requires minimal cache size for storing and processing the

fingerprint and other blocks related information. The current system uses the derived

statistics of a block – recency, frequency, category (4 byte), and LBA (4 Byte).

1) Data collection: Belady’s Lookahead replacement algorithm is used to find the

block that can be the eviction candidates. We have two parameters for collecting the data

to implement an ML based cache eviction strategy — Sampling Frequency and Eviction

count. Sampling Frequency is a value for sampling the data in the cache and collecting the

statistics of blocks present in the cache. These statistics are the features of a block. Eviction

count provides us the number of eviction candidates that can be generated for eviction

when the cache is full. We pass the data stream to Belady’s algorithm and find out the

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 28

blocks that can be evicted at that instance. Therefore, at every sampling frequency instance,

we collect the recency, frequency, category, and LBA of a block and their eviction status (0

for No eviction, 1 for Eviction) as per the number of candidates given in the eviction count.

Based on both the parameters, several experiments have been conducted, and the results

are presented in the next section. This data obtained is used as an input to the ML model

that will be built.

2) Normalization: Each of the features considered above has different covariances,

resulting in distortion in the data. The value of each feature is normalized to a value

between 0 and 1 to overcome the above constraint. All the feature values are normalized

and later sent as an input to the ML model

3) Data for ML model: As mentioned earlier, the features of an entry in the cache

are recency, frequency, category, and LBA. The features are selected after feature

engineering each property of a block. The following section will depict the result of the

feature engineering. Below Fig. 10. depicts the data input that is given to a supervised ML

model.

Fig. 10. Input for ML model

4) Training ML model: Several experiments were performed with three

hyperparameters – sampling frequency count, eviction count, and cache size. For each of

the experiments, hit rate has been calculated and the parameters yielding highest hit rate

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 29

for the ML model are considered for the dataset. The ML model is trained with the dataset

generated described in above section. Sampling the cache and retrieving the statistics of the

entries in the cache based on the sampling frequency has helped us avoid overfitting the

model. Several blocks in the dataset that have been accessed more frequently and are not

evicted for a more extended period. Similarly, the eviction count helps in choosing the

candidates with highest probability of getting evicted.

 We developed two different ML models using scikit-learn library and evaluated each

model’s performance based on the hit rate and the time consumed to generate eviction

candidates.

• KNNC: The model has been trained with the dataset by varying the hyper-parameter

— number of neighbors. The training time for KNN is faster when compared to RF

model. The number of features to this model remained the same as described in the

earlier section.

• RFC: The training data is made to fit by varying multiple hyper-parameters —max

depth of decision tree, minimum sample split for each tree, number of trees in the

forest). The training time for the RF model is relatively higher than the KNN model

since it involves results from multiple decision trees.

At the end of each day, the data blocks that have been served so far will be sent to

Belady’s algorithm to generate the input statistics to the model. The ML model gets trained

on the statistics, and when the cache is full, the model generates the eviction candidates

based on the data present in the cache instance at that period.

5) K-fold Cross Validation: The primary storage workload witnesses random access

to the data blocks. It is crucial for the model to get trained on a dataset that represents the

overall data of the workload. Cross validation is employed to fit the training data well and

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 30

increase the accuracy of the model. This project uses a 5-fold cross validation strategy to

train and validate the model’s performance. We shuffle the input data and split them into

five groups. Each time, four parts of the data are sent for training the model and one part

for the validation.

6) Testing: Apart from validation, the actual testing is done when the cache is full.

Each of the blocks in the data stream is captured in the cache, and when the cache is full,

the ML based eviction algorithm as described in Algorithm 4 is called. The algorithm takes

the current cache instance statistics and predicts the eviction candidates based on the

probability of eviction. The candidates that are predicted by the ML algorithm are evicted

and replaced with the incoming data block. The ML model’s hit rates are analyzed and the

model yielding the highest hit rate is deployed as a cache eviction strategy.

Algorithm 4: CachingProcedure (C)

 1: foreach B in SB:

 2: if B in cache then:

 3: hit += 1

 4: update recency and frequency statistics

 5: else if cache not full then:

 6: Add B to cache

 7: update recency and frequency statistics

 8: miss +=1

 9: else if cache is full then:

 10. evict_candidates = MLmodel (C)

 11: replace evict_candidate [0] with B

 12: update recency and frequency statistics

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 31

 13: miss += 1

 14: end if

 15: end for

The system has two independent modules where one of the modules takes care of

superblocking and deduplicating and the other module consists of logic for ML based

eviction model. Both the modules are integrated using API. We have used a third-party

library Jython [26], to establish communication between both modules.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 32

V. EXPERIMENT AND RESULTS

The system was built on Linux Operating System (OS) running on a 2.2 GHz Quad-

core Intel i7 processor with RAM specification — 16 GB 1600 MHz DDR3 memory. All the

experiments have been conducted in the same setup with different datasets. The objective

of conducting multiple experiments is to find the correct value for each hyper-parameter

used in the system and show that the system can handle a primary storage workload with

lower metadata overhead.

A. Dataset

We use a publicly available data source. It consists of I/O block traces collected from

the three production systems and available as FIU block trace [16]. The I/O details were

recorded from Virtual Machines (VM) hosting a web server, Computer Science department

email server, and a file server dedicated to researchers. The I/O traces were collected for 21

days using blktrace – mechanism to trace blocks. The details of dataset are provided in

Table II. Each of the records in the I/O trace file consists of the following

• Timestamp

• Process ID

• Process name

• LBA

• Size allocated in 512 bytes

• Request type – Write or Read

• Major device number

• Minor device number

• Fingerprint – MD5 per 512 bytes

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 33

TABLE II
DATASET STATISTICS

 Homes (approx.) Web Server (approx.)

Total number of
requests

17.83 Million 14.29 Million

Total number of Read
I/O

0.72 Million 3.11 Million

Total number of Write
I/O

17.11 Million 11.17 Million

For experimentation, a low memory cache has been used to store the fingerprints of

the block for faster duplicate comparison. Typically, a 10% of average everyday working

data stream size is allocated for cache. However, we have experimented with multiple cache

sizes to understand the performance of the system. We have considered 21 days of I/O

traces from 2 production systems during the analysis of the system.

B. Feature Engineering

An ML based cache eviction model is built and integrated as part of the

deduplication engine. It is important to understand the features of the model. As mentioned

in the previous section, there are nine features representing block I/O requests. However,

we can derive other features from the given block I/O tracer file. We have considered three

derived features from the dataset. The importance of each of the features is shown in Table

III. To understand the importance of each feature, we have leveraged Recursive Feature

Elimination from scikit-learn library. Each of the features is ranked and the top 4 features

are considered for building the model.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 34

TABLE III
FEATURE ENGINEERING

Feature Rank Score
LBA 1 0.31046

Category ID 1 0.22911
Frequency 1 0.21896
Recency 1 0.2145

Fingerprint 2 0.01991
Timestamp 4 0.00283
Process ID 3 0.00283

Read / Write 4 0.0014

C. Request Response Time

Response time for a read or write request is the most critical for measuring the

performance of the primary storage system. The current workload that has been

experimented with is typically a write-intensive and balanced workload. The deduplication

engine will be immensely occupied to serve the requests. However, the read requests from

the storage client should be served with minimal latency. Reducing the metadata overhead

by leveraging the block similarity has helped improve the performance of both read and

write request. Table IV and Table V describe the response time of write and read requests,

respectively. The time described in the below tables includes only the access time of

metadata and construction or deduplication of a file. It also includes the time to read the

metadata from the disk during a cache miss. It does not include the time involved in

calculating the fingerprint for the content and the write-back time from the cache to disk.

The workload-dependent cache eviction model built on top of the deduplication system

yields higher hit rate resulting in substantial time-saving response time.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 35

TABLE IV
WRITE RESPONSE TIME

Superblock Size (KB) Average Response Time (ms)
32 15.483
64 38.41

128 57.326
256 96.112

TABLE V
READ RESPONSE TIME

Superblock Size (KB) Average Response Time (ms)
32 5.23
64 11.324

128 19.553
256 25.612

 From the above tables it is evident that response time increases as we

increase the superblock’s size. As the superblock size increases, the number of blocks within

the superblock increases. During deduplication, the number of metadata comparisons

increases, increasing response time. Though the data fragmentation issue is minimal with

larger superblock sizes, response time and number of writes eliminated are higher in smaller

superblock sizes.

D. Metadata Overhead

The objective of the project is to keep the number of metadata lookups to be

minimal. Experiments were conducted to understand the number of metadata operations

involved for every block read or write in a system enabled with deduplication. Fig. 11.

depicts the average number of metadata operations for a sequence of blocks. The results

help in understanding that the categorization of superblocks helps in storing the shared

metadata. During deduplication, we can narrow the duplicate comparison only with the

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 36

metadata belonging to a particular category. The system without categorization involves an

extensive search throughout the database for relevant metadata during write or read

operation. This increases the overhead of metadata in a system without categorization.

However, in the homes block I/O trace, the number of metadata operations is slightly higher

since most of the LBA’s are continuously modified and updated, leading to the creation of

new fingerprints.

Fig. 11. Metadata overhead

E. Write Elimination

 Elimination of duplicate writes will help in improving the performance of the I/O

path. Fig. 12. depicts the percentage of duplicate writes that have been eliminated by the

deduplication system for two different datasets. However, certain duplicate writes were not

eliminated due to the constraint in fragmentation of the data. As mentioned in the earlier

sections, a threshold value should be satisfied to perform deduplication on the write

request. If the threshold is not met, the request is executed without deduplication. Though

45

13
7

10
2

22
4

0

50

100

150

200

250

C a t e g o r i z a t i o n Wi t h o u t
C a t e g o r i z a t i o n

M
et

ad
at

a
op

er
at

io
ns

pe
r 2

56
 b

lo
ck

s (
1

M
B)

Dataset
Superblock(64 KB)

Web Server Homes

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 37

there are few duplicate writes that have not been eliminated, the performance gain from

reducing the data fragmentation is huge. As the size of the superblock grows, the amount of

duplicate writes elimination decreases.

Fig. 12. Eliminated write requests

F. Throughput Analysis

One of the important measures to primary storage performance is throughput. It is

important to exhibit higher throughput in an actively accessed storage environment. Due to

the absence of a unified test environment, it is relatively difficult to compare the

throughput for multiple systems. The throughput depends on the hardware, deduplication

ratio, cache hit rate, and percentage of duplicate write eliminated. The exploitation of the

similarity between the blocks contributes to higher throughput. The critical component for

performance is measuring the caching performance of the system. We have investigated

several caching algorithms that are in practice for the primary storage system. The workload

that has been tested is write intensive and balanced. The cache is built with a Write-back

32
.8

9

25
.9

0

21
.1

6

6.
16

45
.9

3

38
.0

3

23
.2

4

9.
60

0

5

10

15

20

25

30

35

40

45

50

3 2 6 4 1 2 8 2 5 6

El
im

in
at

io
n

(%
)

Superblock Size (KB)
Web Homes

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 38

strategy. The updates to the elements present in the cache are updated only in the cache

and are not written onto the disk till the element is flushed out of the cache. This helps in

reducing the disk access for the elements in the cache. The time taken to flush the data

marked with the dirty bit is not considered in the initial analysis. The time taken to write the

data and metadata updates into the disk is not considered during the below throughput

analysis. It measures the efficiency of different caching schemes.

The below figures Fig. 13. and Fig. 14. depicts the analysis of throughput between

different systems enabled with different cache eviction policies. From the figures, the

throughput is higher with smaller-sized superblocks since the overhead in the deduplication

process is lower as compared with larger block sizes and the number of smaller requests

that are processed are lower with smaller superblock size. An increase in the number of

smaller requests will increase the number of metadata lookups thereby increasing the

processing time.

A system design with the concept of categorizing similar superblocks supported by

ML-based cache eviction policy with a pre-trained KNN model and a Bloom filter yields a

higher throughput than LRU and LFU cache eviction strategy. Higher cache hit rates and

duplicate elimination percentage contribute to the higher throughput of the system. The

below section describes the hit rate analysis between several cache eviction policies.

Though the hit rate is significant in deduplication, the processing time of the cache eviction

policy plays a vital role in the throughput of the system. The results are shown in fig. 15. and

fig. 16. shows that the hit rates of ML-based cache eviction policy are higher than LRU and

LFU. However, the processing time of the RF model in choosing the eviction candidate is

significantly higher than the KNN and LRU. During the throughput analysis, a system enabled

with the RF model has lower throughput than a system with a lower hit rate such as the LRU

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 39

eviction policy. Hence, the RF model is not suitable for primary storage deployment. On the

other hand, the KNN model processes faster and it has a higher hit rate thereby witnessing a

higher throughput than a cache enabled with the LRU and LFU policy.

The throughput of LRU is higher in 128 KB superblock size since the hit rate of ML-

based eviction policy is only slightly higher than LRU model. From a performance

perspective, LRU performs better than ML-based eviction policy for larger superblock sizes.

As the size of the superblock increases, the number of categories, amount of data to train

the ML-based model’s decreases resulting in a poorer hit rate. We could achieve a

maximum cache component throughput of 13.478 MB/S for 21 days of real-world workload.

The cache component throughput is at least 14.4% better with ML-based eviction policy as

compared with LRU and LFU eviction policy in a write-intensive workload.

Fig. 13 Caching Policy vs Throughput Analysis

The overall throughput includes the processing time of storing the metadata, file to disk,

caching, deduplication. The system with the above-mentioned setup could achieve a

maximum overall throughput of 3.74 MB/S for 21 days of real-world workload. The overall

11
.5

3

10
.8

1

10
.6

8

8.
35

7.
12

7

6.
11

13
.4

78

12
.0

8

10
.0

5

10
.3

43

8.
46

6.
25

0

2

4

6

8

10

12

14

16

3 2 6 4 1 2 8

Th
ro

ug
hp

ut
 (M

B/
S)

Superblock Size (KB)

LRU (MB/S) LFU (MB/S) KNN-ML (MB/S) RF-ML (MB/S)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 40

throughput is at least 22.19% better with ML-based eviction policy as compared with LRU

and LFU eviction policy in a write-intensive workload. The below analysis supports the fact

that the throughput of the system is dependent on the underlying hard disk. The overall

throughput drops because of writing the metadata and file into the disk.

Fig. 14. Overall Throughput Analysis

G. Cache Analysis

Effective cache management will help in improving the performance of the

deduplication system. Belady’s algorithm is considered as a baseline to understand the

performance of the traditional and workload-dependent ML cache eviction strategy. The ML

algorithm has experimented with multiple hyperparameters. The ML model will predict the

eviction probability of each item in the cache by learning the statistics of past cache misses

and considering the current instance of the cache. The experimentation setup includes 15

MB cache, 0.3 * number of items in the cache as eviction count, four features providing

various statistics for items in the cache, sampling the data for every number of items in the

cache to avoid overfitting the ML model. The experiment was conducted by warming up the

2.
95

2.
34

2.
30

7

1.
58

1.
05

0.
90

7

3.
74

2.
95

2.
22

72.
87

2.
06

7

1.
32

0
0.5

1
1.5

2
2.5

3
3.5

4

3 2 6 4 1 2 8

Th
ro

ug
hp

ut
 (M

B/
S)

Superblock Size (KB)

LRU (MB/S) LFU (MB/S) KNN-ML (MB/S) RF-ML (MB/S)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 41

cache with 19 days of block I/O and measuring the hit rate in the cache by various

algorithms by sending two days of block I/O. Below are the results for the setup.

1) Belady’s algorithm: The optimal hit rate that can be achieved for the above set is

63.046%. This hit is considered as the baseline for measuring the performance of the other

algorithms.

2) LRU: The maximum hit rate that the LRU cache eviction policy can achieve is

47.297%. The processing time of LRU strategy for two days of block I/O is 1.14 minutes.

3) LFU: The maximum hit rate that the LFU cache eviction policy can achieve is

42.41%. The processing time of LFU strategy for two days of block I/O is 2.09 minutes.

4) Traditional vs. ML eviction strategy: From the results obtained from traditional

and workload-dependent ML based eviction policies, we have analyzed the performance of

both methods in terms of hit rate and processing time. Below Fig. 15. describes the

efficiency achieved by traditional and ML eviction strategies with respect to hit rate and Fig.

16. describes the processing time. The cache allocated for the metadata information for this

experiment is 15MB to mimic the actual cache in a storage system.

Fig. 15. Traditional vs. ML eviction strategy hit rate analysis

63
.0

46

47
.2

97

42
.4

1

52
.7

7

51
.1

3

0

10

20

30

40

50

60

70

B E L A D Y O P T L R U L F U K N N R F

Hi
t R

at
e

(%
)

Algorithm

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 42

Fig. 16. Traditional vs. ML eviction strategy time analysis

The results obtained from the above experiments show that the cache hit rates

based on the workload-dependent Machine Learning model are higher by 5.43%,10.36%

over LRU eviction and LFU eviction policy respectively with a metadata cache allocation of

10% of average everyday working data stream size. The cache system learns the past

evicted block I/O statistics and refine itself while choosing an eviction candidate, thereby

performing better than traditional cache eviction policies. Though the processing time of ML

based eviction policy is slightly higher than the traditional approach, it is acceptable to

adopt ML based eviction policy because of higher hit rates. The time taken to process block

I/O on account of a cache miss is much higher than the processing time of ML based eviction

model. ML based cache eviction policies can be deployed to the primary workload, and

therefore, it is wise to adopt ML based cache eviction policy for the current system. For the

practical reasons, the amount of time taken to process the blocks in a ML-based model

should be minimal. From the results shown in fig. 15. and fig. 16., it is evident that a pre-

trained KNN model will be the best choice for a primary storage deduplication system. It is

1.
14

2.
09

1.
39

2.
51

L R U L F U K N N R F

To
ta

l T
im

e
(M

in
ut

es
)

Algorithm

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 43

mainly the choice because of the throughput gain as depicted in fig. 13. and the hit rates.

Though the RF model has higher hit rates as compare with LRU, it performs slower and has

lower throughput than the system with LRU eviction policy. It is mainly because of multiple

individual decision trees that are involved in choosing an eviction candidate. The time

involved in the RF model is relatively higher and thus there is a degradation in throughput

performance.

5) Cache Size Analysis: The ML-based cache is workload-dependent, and it is crucial

to find the correct size of the cache for storing the metadata information. The size of the

cache was decided on the average workload metadata statistics obtained over 19 days. An

analysis of the cache size for metadata and hit rates was made. The results are shown in fig.

17. From the below figure, it is evident that as we increase the size of the metadata cache,

the hit rate increases. However, this cache refers to only the metadata cache and not the

actual data cache. The hit rate increases as we increase the size of the metadata cache.

However, there is a significant increase in hit rate when the cache size is increased from 5%

to 10% of average metadata. The hit rate does not seem to be higher as we double the

metadata cache size from 10% to 20%. The candidate cache size for the real-world workload

that was experimented with is 10% of everyday metadata size. The cache hit rates based on

the workload-dependent Machine Learning model are higher by 5.43%,10.36% over LRU

eviction and LFU eviction policy respectively with a metadata cache allocation of 10% of the

average everyday working data stream size.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 44

Fig. 17. Cache Size vs Hit Rate Analysis

6) KNNC: The number of neighbors is a hyperparameter that can be varied to yield

better results. The performance of the ML model is measured based on the Hit rate

achieved by the model and the time it takes to process the block I/O of two consecutive

days. Fig. 18. describes the hit rate for various hyperparameter setups. The highest hit rate

we can achieve through a KNNC for web server dataset is 52.77%. Table VI describes the

time involved in training and testing of the KNNC model. As we increase the number of

neighbors, the training and testing time tends to drop. When the number of neighbors is

reduced, the complexity of the KNN technique increases since it must run more

regularization or smoothing. Assuming if the number of neighbors is 1, each data point

becomes the center of an eviction candidate class and noneviction candidate class. The

points will become intertwined. Thus, it becomes difficult to differentiate between the

classes for a point which also increases the complexity. However, when we increase the

number of neighbors, the classification area becomes more smoother, and the class of the

point is decided by the majority from the nearest neighbors. As the area of nearest neighbor

increases, it becomes less complex to classify an eviction and noneviction candidate class.

41
.1

5 47
.2

97

51
.7

5

38
.3

6

42
.4

1

46
.1

8

44
.5

1 52
.7

7

54
.8

2

44
.6

3 51
.1

3

54
.5

4

52
.7

4 63
.0

46

66
.8

6

0

10

20

30

40

50

60

70

80

5 % 1 0 % 2 0 %

Hi
t R

at
e

(%
)

Cache Size (% of Metadata)

LRU LFU KNN-ML RF-ML Belady

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 45

Fig. 18. KNNC hit rate analysis

TABLE VI
KNNC TIME ANALYSIS

Neighbors Training Time (min) Testing Time (min)
KNN - 3 28.33 2.04

KNN – 4 26.14 1.55
KNN – 5 22.07 1.39
KNN – 6 21.59 1.18

7) RFC: The no_of_estimators, max_depth, min_sample is a hyperparameter that

can be varied to yield better results. Fig. 19. describes the hit rate for various

hyperparameter setups. The highest hit rate we can achieve through RFC for web server

dataset is 51.13%. Table VII describes the time involved in training and testing of the RFC

model. Though multiple hyperparameter combinations were tested, we have considered

only the series of experiments that yield the best results. The RFC setup in the below figure

can be read as RF (no_of_estimators, max_depth, min_sample). In RFC, the model can be

improved by increasing the number of decision trees, however, the cost of the model grows

as we increase the number of decision trees. Another hyperparameter is the depth of the

tree. More information is conveyed to the decision trees if we increase the depth of the

63
.0

46

51
.0

3

51
.5

8

52
.7

7

52
.5

0

10

20

30

40

50

60

70

B E L A D Y K N N - 3 K N N - 4 K N N - 5 K N N - 6

Hi
t R

at
e

(%
)

KNN Neighbors Count

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 46

trees. A more precise information about the dataset is conveyed to the decision trees for

classification between an eviction and noneviction candidate class with larger depth. From

the below Fig. 19. we can see that the hit rates increases as we increase the depth of the

decision trees. However, the computational cost increases as we increase the depth of the

tree. Table VII shows that the training and testing time of a RFC model increases with an

increase in the depth of the tree.

Fig. 19. RFC hit rate analysis

TABLE VII
RFC TIME ANALYSIS

Hyperparameters Training Time (min) Testing Time (min)
RF (100,5,10) 40.56 2.22

RF (100,10,10) 41.18 2.41
RF (100,30,10) 45.27 2.45
RF (100,50,10) 50.16 2.51

8) Eviction count: Eviction count provides us the number of eviction candidates that

can be generated for eviction when the cache is full. It is one of the hyperparameters for the

ML based eviction setup. Based on the size of the eviction count, there is a change in the hit

63
.0

46

50
.2

50
.4

2

50
.9

6

51
.1

3
0

10

20

30

40

50

60

70

B E L A D Y R F (1 0 0 , 5 , 1 0) R F (1 0 0 , 1 0 , 1 0) R F (1 0 0 , 3 0 , 1 0) R F (1 0 0 , 5 0 , 1 0)

Hi
t R

at
e

(%
)

RFC Hyperparameters

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 47

rates for the ML based model. Fig. 20. depicts the relationship between the eviction count

and hit rate. The trend shows that the hit rate gets decreased when the number of eviction

count increases. However, for the current setup, an eviction count of 0.3 * number of

elements in cache yields the best result.

Fig. 20. Eviction count vs. hit rate analysis

9) Complexity Analysis: The above experiments show that implementing a

ML-based cache eviction policy results in increased hit rates and overall throughput

compared to a system with LRU and LFU cache eviction policy. There exists complexity in

building a system with a workload-dependent Machine Learning model to understand the

workload statistics and choose the right eviction candidate. The ML model runs as a

background process with continuous learning from the incoming block I/O requests. The

model refines and gets better as the number of input data increases. The time involved in

processing the eviction candidate by the model is another important factor contributing to

the system’s overall throughput. The implementation of the ML model is resource-intensive,

depending on the model hyperparameters and workload. The time involved in processing

51.702 50.702 52.77
49.862 49.002 47.762 46.212 45.342 44.272

63.046 63.046 63.046 63.046 63.046 63.046 63.046 63.046 63.046

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hi
t R

at
e

(%
)

Eviction (% of cache)

Hit rate Target Linear (Hit rate)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 48

two days of block I/O requests with different caching algorithms is shown in Fig. 21. The

figure shows that the LRU cache eviction system processes the blocks faster than any other

eviction policy in our setup. Though the processing time of KNNC is slightly higher, the

benefits are realized with higher hit rates of KNNC compared with LRU eviction system as

shown in Fig. 13., Fig. 14. and Fig. 17. Also, as we increase the metadata cache size, the

processing time increases due to an increase in the number of elements in the cache.

Fig. 21. Cache size vs. block processing time

From the above tables VI and VII, it is evident that the time taken to train and yield

eviction candidates for RFC model is higher than the KNNC model. Therefore, the overall

throughput is affected based on the model and the hyperparameters of the model. The hit

rate of KNNC is slightly higher than RFC for this setup; We can choose KNNC model for

having better performance. Though the background learning process of the model utilizes

additional computation, we can realize benefits with higher hit rates and lower eviction

candidate processing time. Therefore, implementing ML-based cache eviction depends on

the choice of the model, resource utilization, hit rate and processing time of the model

compared with traditional cache eviction techniques.

1.
02 1.
14

2.
23

1.
53

2.
09

3.
49

2.
31 2.

51

4.
29

1.
15 1.

39

3.
01

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

7 1 5 3 0

Ti
m

e
(m

in
ut

es
)

Cache Size (MB)

LRU LFU RF KNN

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 49

H. Superblocks and Categorization

In the experiments conducted with two production systems, the I/O traces are

passed to the deduplication engine, where the incoming data stream is split into

superblocks and categorized based on the similarity. Table VIII shows the relation between

size of the superblock and the number of categories.

TABLE VIII
SUPERBLOCK VS. CATEGORY

Web Server Block I/O

Homes Block I/O

Size
(KB)

of
categories

Duplicate Duplicate
%

of categories Duplicate Duplicate
%

32 608194 254458 29.5 958924 549852 36.43
64 237997 78083 24.7 396980 196936 33.12

128 97199 25379 20.7 121288 30062 19.86
256 14149 1554 9.01 25056 3513 12.6

Fig. 22. Duplicate percentage vs. superblock size

From the above table, we can see that the categorizing the incoming blocks helps

categorize similar blocks into a single category. Fig. 22. describes the presence of a certain

29
.5

24
.7

20
.7

9.
01

36
.4

3

33
.1

2

19
.8

6

12
.6

0

5

10

15

20

25

30

35

40

3 2 6 4 1 2 8 2 5 6

Du
pl

ic
at

e
Ca

te
go

ry
 %

Superblock Size (KB)

Web Server Block I/O Homes Block I/O

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 50

percentage of superblocks having duplicate blocks. The duplicate percentage increases as

the superblock size decrease.

I. Bloom Filter Significance

Bloom filters serve as an important component during the categorization. As

mentioned in the earlier section, while creating a new category, SBR is passed on to the

Bloom filter and check if there is a category already present. We evaluated the Bloom filter

data structure with a hash table for looking up if a category is already present. We know

that hash table structure yields a quicker response during a search operation; the

performance of the data structure degrades as the data size grows. This key observation has

been captured in Fig. 23. The figure depicts the analysis obtained from the Bloom filter

implementation to web server block I/O tracer dataset.

Fig. 23. Category insertion time analysis

25
43

11
19

86
6

27
0

32
09

12
67

96
1

31
2

46
30

16
29

76
5

13
5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

3 2 6 4 1 2 8 2 5 6

In
se

rt
io

n
im

e
(m

s)

Superblock Size (KB)

BF with 2 Hash fns. BF with 3 Hash fns. Hash Table (ms)

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 51

 The above figure helps in understanding the trend of the insertion time when we use

different data structures. The insertion time of the Bloom filter performs much better than

the hash table as data grows. Since insertion time is the most time-consuming activity in the

BF, it is advisable to activate BF for the deduplication system when the number of

categories increases beyond 100K entries. Fig. 24. helps in understanding the space saving

trend between different data structures. Bloom filters do not store the data. Therefore, the

Bloom filter size can incur constant space based on the False Positive Rate (FPR) and

number of entries. We have used a Bloom filter of same size (1.5 MB) for all the superblock

sizes. However, the trend is nearly exponential when we use the hash tables since the actual

data is stored in the tables. From a memory perspective, it is beneficial to use a Bloom filter

in deduplication engine for primary storage workload.

Fig. 24. Category space analysis

From the results, it is evident that the usage of BF is significantly practical when the

size of the superblock is 64 KB or below. In our setup, we configured BF for the superblock

size of 64 KB. BF is a probabilistic data structure, and it might incur false positives. The FPR is

1.
5

1.
5

1.
5

1.
5

15
6

54

35

10

0

20

40

60

80

100

120

140

160

180

3 2 6 4 1 2 8 2 5 6

To
ta

l S
ize

 (M
B)

Super Block Size (KB)

Bloom Filter size (KB) Hash Table - JVM Heap (KB) Expon. (Hash Table - JVM Heap (KB))

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 52

less than 1%, and it can be ignored for the configuration mentioned above. We can maintain

a lower FPR if the size of BF is increased.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 53

VI. CONCLUSION AND FUTURE WORK

The above system leverages the similarity between the blocks to build a deduplication

system with lower metadata overhead and higher throughput for primary storage. The

incoming data block request is split into multiple superblocks and categorized based on the

Broder’s theorem. The categorization narrows the metadata search during deduplication

resulting in lower metadata I/O’s and eliminating redundant write requests. A real-world

block I/O trace is used for the evaluation of the system. The result from the experiments

shows that the elimination of duplicate writes by the system can be as high as 32.89% and

45.93% in web server and homes block I/O traces. The average response time of both the

read and write requests of the newly designed deduplication system is around 5.23 ms and

15.483 ms respectively. The overall throughput gain is at least 14.4% better with ML-based

eviction policy as compared with LRU and LFU eviction policy in a write-intensive workload.

The number of metadata I/O’s has reduced significantly by building an efficient ML based

cache eviction strategy, leveraging superblock similarity and categorization. Hence the

newly built system can be implemented for a primary storage system.

Following entities achieve an efficient metadata management system for

deduplication:

1) An efficient workload-dependent ML based cache eviction strategy is designed

for the write-intensive and balanced workload with varying parameters like eviction count

and sampling frequency, the ML based cache eviction strategy have hit rate higher by

5.43%,10.36% over LRU eviction and LFU eviction policy respectively with a metadata cache

allocation of 10% of average everyday working data stream size.

2) Similarity detection algorithm was built to identify similar superblocks and share

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 54

their metadata information, reducing the number of lookups while deduplicating the

incoming block of the same category.

3) Reducing the disk fragmentation issue by deduplication only the superblocks that

satisfy a threshold value for the match percentage.

4) We have implemented a Bloom filter in the system for reducing the number of

disk I/O in new category creation or identification.

 The future directions for this system are:

1) Currently, this system works only on a single node environment. The future aim

is to build a deduplication system for a multi-node environment.

2) Improving the workload-dependent ML based cache eviction strategy by

hyperparameter tuning and prefetching blocks based on category access pattern to reach

hit rate nearer to optimal cache hit rate.

3) Studying and understanding the locality of the blocks after deduplication and

reorganizing to preserve block locality.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 55

REFERENCES

[1] T.Coughlin, 175 zettabytes by 2025, Nov. 2018. Accessed on: Aug. 06, 2020. [Online].

Available: https://www.forbes.com/sites/tomcoughlin/2018/11/27/175-zettabytes-by-

2025/?sh=265c0c315459.

[2] Z. J. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov, N. Xiao, and E. Zadok, “Cluster

and Single-Node Analysis of Long-Term Deduplication Patterns,” ACM Transactions on

Storage, vol. 14, no. 2, pp. 1–27, 2018.

[3] A. El-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean and S. Sengupta, "Primary Data

Deduplication—Large Scale Study and System Design", Proceedings of the 2012

conference on USENIX Annual Technical Conference, pp. 285-296, 2012.

[4] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication,” ACM Transactions on

Storage, vol. 7, no. 4, pp. 1–20, 2012.

[5] EMC, "Achieving storage efficiency through EMC Celerra data deduplication". EMC white

paper, March 2010. [Online]. Available:

https://www.dell.com/community/s/vjauj58549/attachments/vjauj58549/celerra/660/1

/h6065-achieve-storage-effficiency-celerra-dedup-wp.pdf.

[6] J. Ziv and A. Lempel, "A universal algorithm for sequential data compression", in IEEE

Transactions on Information Theory, vol. 23, no. 3, pp. 337-343, May 1977.

[7] J. Ziv and A. Lempel, "Compression of individual sequences via variable-rate coding", in

IEEE Transactions on Information Theory, vol. IT-24, pp. 530-536, Sept. 1978.

[8] H. Yu, X. Zhang, W. Huang, and W. Zheng, “PDFS: Partially Dedupped File System for

Primary Workloads,” in IEEE Transactions on Parallel and Distributed Systems, vol. 28,

no. 3, pp. 863–876, Mar. 2017.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 56

[9] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, “Extreme Binning: Scalable,

parallel deduplication for chunk-based file backup,” in IEEE International Symposium on

Modeling, Analysis & Simulation of Computer and Telecommunication Systems, pp. 1–9,

2009.

[10] A. Godavari, C. Sudhakar and T. Ramesh, "Hybrid Deduplication System — A Block-

Level Similarity - Based Approach," in IEEE Systems Journal, pp. 1-11, 2020.

[11] X. Du, W. Hu, Q. Wang, and F. Wang, “ProSy: A similarity based inline deduplication

system for primary storage,” in IEEE International Conference on Networking,

Architecture and Storage (NAS), pp. 195–204, 2015.

[12] S. Quinlan and S. Dorward, "Venti: A new approach to archival storage", in

Proceedings of the First USENIX Conference on File and Storage Technologies (FAST), pp.

89-101, 2002.

[13] L.A. Belady, "A study of replacement algorithms for virtual-storage computers", IBM

Systems Journal, vol. 5, no. 2, pp. 78-101, 1966.

[14] Tony Yiu, Understanding Random Forest, Jun. 2019. Accessed on: June 07, 2020.

[Online]. Available:https://towardsdatascience.com/understanding-random-forest-

58381e0602d2

[15] “Scikit-learn: machine learning in Python,” Jun. 2008. Accessed on: Dec. 02, 2020.

[Online]. Available: https://scikit-learn.org/stable/

[16] FIU traces web-link. 2010. Accessed on: June 07, 2020. [Online].Available:

http://iotta.snia.org/traces/390/

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 57

[17] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voruganti, “idedup:latency-aware,

inline data deduplication for primary storage,” in Proceedings of the Tenth USENIX

Conference on File and Storage Technologies (FAST), vol. 12, pp. 1–14, 2012.

[18] W. Dong, F. Douglis, K. Li, H. Patterson, S. Reddy, P. Shilane, "Tradeoffs in scalable

data routing for deduplication clusters", in Proceedings of the Ninth USENIX Conference

on File and Storage Technologies (FAST), pp. 15–29, 2011.

[19] Y. Fu, H. Jiang, and N. Xiao, “A scalable inline cluster deduplication framework for big

data protection”, in Proceedings of the 13th International Middleware Conference, pp.

354–373, 2012.

[20] G. Grangia, Q. Xu, A. Bianco and P. Giaccone, "Balancing the storage in a

deduplication cluster", in IEEE International Conference on Networking, Architecture and

Storage (NAS), pp. 1-4, 2017.

[21] A. Khan, C. Lee, P. Hamandawana, S. Park and K. Youngjae, "A robust fault-tolerant

and scalable cluster-wide deduplication for shared-nothing storage systems", in IEEE

26th International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), pp. 87-93, 2018.

[22] C. Alvarez. "NetApp deduplication for FAS and V-Series deployment and

implementation guide". Technical Report TR-3505, NetApp, 2011.

[23] B. Mao, H. Jiang, S. Wu, and L. Tian, “Leveraging data deduplication to improve the

performance of primary storage systems in the cloud,” in IEEE Transactions on

Computers, vol. 65, no. 6, pp. 1775–1788, Jun. 2016.

EFFICIENT METADATA LOOKUP IN INLINE DEDUPLICATION SYSTEMS LEVERAGING BLOCK SIMILARITY

 58

[24] A. Wildani, E. L. Miller, and O. Rodeh, “Hands: A heuristically arranged non-backup

in-line deduplication system,” in IEEE 29th International Conference on Data Engineering

(ICDE), pp. 446–457, 2013.

[25] “BloomFilter (Guava: Google Core Libraries for Java 23.0 API,” Nov. 2020. Accessed

on: Dec. 17, 2020. [Online]. Available:

https://guava.dev/releases/23.0/api/docs/com/google/common/hash/BloomFilter.html

[26] “Home | Jython,” Feb. 2001. Accessed on: Feb. 13, 2021. [Online]. Available:

https://www.jython.org/

[27] H. Wu, C. Wang, Y. Fu, S. Sakr, K. Lu and L. Zhu, “A differentiated caching mechanism

to enable primary storage deduplication in clouds,” in IEEE Transactions on Parallel and

Distributed Systems, vol. 29, no. 6, pp. 1202–1216, Jun. 2018.

[28] A. Broder, "On the resemblance and containment of documents", in IEEE

Proceedings Compression and Complexity of Sequences Conference (SEQUENCES '97), pp.

21-29, 1998.

[29] B.H. Bloom, “Space/time trade-offs in hash coding with allowable errors”,

Communications of the ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

	Efficient Metadata Lookup In Inline Deduplication Systems Leveraging Block Similarity
	Recommended Citation

	Microsoft Word - CS 298_Rakesh_Gururaj_007500597_V6.docx

