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ABSTRACT 

 
    Over time Online Social Networks (OSNs) have grown exponentially in terms of active 

users and have now become an influential factor in the formation of public opinions. Due to this, 

the use of bots and botnets for spreading misinformation on OSNs has become a widespread 

concern. The biggest example of this was during the 2016 American Presidential Elections, 

where Russian bots on Twitter pumped out fake news to influence the election results. 

    Identifying bots and botnets on Twitter is not just based on visual analysis and can require 

complex statistical methods to score a profile based on multiple features and compute a result. 

Benford’s Law or the Law of Anomalous Numbers states that in any naturally occurring 

sequence of numbers, the first significant leading digit frequency follows a particular pattern 

such that they are unevenly distributed and reducing. This principle can be applied to the first-

degree egocentric network of a Twitter profile to assess its conformity to Benford’s Law and 

classify it as a bot profile or normal profile. 

    This project focuses on leveraging Benford’s Law in combination with various Machine 

Learning (ML) classifiers to identify bot profiles on Twitter. In addition, the project also 

discusses various statistical methods that are used to verify the classification results. 

Keywords – Benford’s Law, Twitter, Machine Learning, Social Bots       
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1. Introduction 

 
Online Social Networks (OSNs) or Social Media Platforms (SMPs) as we know them 

have accumulated millions of users worldwide [9]. With the exponential growth in the 

number of accounts and active users on SMPs, it is becoming harder and harder to moderate 

the content and account activities. While a genuine user and malicious user are being 

considered in this scenario, we also need to consider informational bots and malicious bots. 

OSNs have been plagued with many types of malicious bots in recent years. Twitter is a 

popular microblogging and social networking service with millions of users worldwide. 

Twitter account holders have the option to follow other accounts i.e., make friends, each 

account can have any number of accounts following them i.e., followers, and each account 

can post status updates with a character limit of 280 characters in the form of tweets. Twitter 

has gained popularity due to its adaptation by numerous influential figures and regular 

political coverage. These services offered by Twitter have become a target of social media 

bots for spreading fake and malicious content online. One of the biggest examples of bots 

spreading fake news and malicious misinformation was during the 2016 presidential elections 

where Russian bots tried to interfere in the election. Since then, Twitter has taken numerous 

measures for content moderation by suspending suspicious accounts that spread 

misinformation and flagging baseless or questionable tweets.  

In context of the OSNs a social bot or a suspicious user account is a computer 

algorithm or script that will automatically interact with other accounts and produce content 

without human input or intervention. There are different types of bots or sybil accounts, but 

we will only consider two scenarios where either a bot is malicious i.e., it violates the Twitter 

community guidelines, or it is an informational bot which is not involved in malicious 
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activities. There can also be levels of bots i.e., fully automated bots, partially automated bots, 

and hacked real user accounts for malicious activities. Bots or suspicious accounts participate 

in activities that can seriously harm the integrity of online communities. Previously, there 

have been numerous studies which tackle the social bots on Twitter with the help of ML 

techniques. There are also some real-time Twitter bot detection platforms like Bot Sentinel 

and BotOrNot, but they have their limitations. Due to these efforts to tackle bots, the bot 

accounts have started changing their patterns and they are now able to better camouflage 

themselves such that previous methods are not enough to identify them [8]. This project 

focuses on identifying these camouflaged bots with the help of Benford’s Law, Machine 

Learning (ML) classifiers, and Statistical Analysis. 

The Benford’s Law or Newcomb-Benford’s Law states that in any naturally occurring 

sequence of numbers, the First Significant Leading Digit (FSLD) frequencies follow a 

particular pattern such that they are unevenly distributed and reducing in nature [1], [2]. The 

astrologer Simon Newcomb in 1881 first observed that the logarithmic tables in the library 

had their initial pages more worn out and dirtier than the latter ones [1]. He concluded that 

the initial digits are more commonly to appear or used than the latter digits. Physicist Frank 

Benford re-discovered this lost phenomenon after 50 years and later published a paper titled 

“The Law of Anomalous Numbers” [2]. For experimentation he researched on 20 sets of 

naturally occurring sequences with more than 20,000 samples which included data from 

sources like river areas, population, newspapers, addresses, and death rates [2]. The different 

dataset tested by him followed the Benford’s Law and can be calculated with P predicted for 

any digit d can be obtained by using the following formula: 

P(d) = log10 (1 + 1 / d) 
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Benford’s Law is not obeyed by all datasets, there are certain conditions that a dataset 

must fulfil to follow it [18]. Let use compare a few general conditions and compare Twitter 

datasets with them below: 

• All digits from 1 to 9 should occur in leading position: In our Twitter datasets when 

we consider following_counts all digits from 1 to 9 can be possible FSLDs. 

• There should be more smaller numbers than large numbers: In our Twitter datasets 

when we consider status_counts the small numbers are more likely to occur than 

larger numbers. 

• The dataset should be natural: Twitter relationships where users follow each other 

should form organically. There are botnets which will follow a particular user to 

inflate their followers_counts when paid for the service. 

•  There should be no sequence in numbers: Every individual Twitter account has 

different number of status_counts, following_counts, and followers_counts.  

• No predefined boundaries: Twitter has no maximum or minimum number set for the 

parameters like favorite_counts, likes_counts, and status_counts. 

• Orders of magnitude: Twitter has numbers in tens, hundreds, thousands, and even in 

millions so this condition is satisfied. 

• Dataset should be large: Twitter has millions of users, so a large dataset of users is 

accessible for research.  
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Table 1: Benford’s Distribution FSLD Frequencies [2] 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental findings of Prof. Jennifer Golbeck in [3], [4] and Lale Madahali & 

Margeret Hall in [10] have paved the way for the use of Benford’s Law on the first-degree 

egocentric network of any social media profile for its Benford Analysis. It has been 

experimentally proved that first significant leading digits of friend counts of a social media 

account follow the Benford’s distribution given above [3], [4]. If any account doesn’t follow 

the Benford’s distribution it can be a suspicious account or malicious bot. 

In Chapter 2, we review the background with various approaches and machine 

learning techniques used in the past for bot detection on Twitter with the help of multiple 

research papers, journals, and articles. In Chapter 3, we go over the methodology, 

experimental setup, and datasets used to implement the project. In Chapter 4, we discuss the 

results and observations of our experiments. In Chapter 5, the conclusion of our work is 

presented, and any possible future scope of the project is explored with clarification.

Digit: Frequency: (%) 

1 30.103 

2 17.609 

3 12.494 

4 9.691 

5 7.918 

6 6.695 

7 5.799 

8 5.115 

9 4.576 
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2. Background 

 
In this chapter, we discuss about the background of other related works in the field of 

social bot detection on twitter with and without application of Benford’s Law. We also show 

some of the drawbacks of previous works, which make it difficult to tackle the problem of 

bot detection. In addition, this chapter also discusses various classification techniques used in 

this project. 

2.1 Related Work 

 
This section discusses the previous works of social bot detection on Twitter and 

analyzes their performance and drawbacks. Twitter was launched in 2006 merely as a simple 

SMS mobile app but has grown into a full-fledged communication platform. Most of the 

previous works tackle the problem of social bot detection with supervised machine learning 

[12]. The main issue to be addressed here is that there is no standard definition of a social 

bot. Hence, the labelled datasets used to train the classifier are created by researchers after 

manual analysis which can have human error and bias.    

2.1.1 Botometer Service  

 
The Botometer service was formerly known as BotOrNot service. It is a popular 

publicly available bot detection tool which gives out a real-time social bot score for Twitter 

accounts [14]. The BotOrNot service was released in May 2014, and it has been developed by 

researchers from Indiana University at Bloomington. The service is based on a supervised 

machine learning classifier which leverages over 1,000 features of the target account to 

produce a classification score also called as the social bot score. According to the algorithm 

of Botometer, the higher the social bot score is the more likely that target account is being 
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controlled by a software. To get the features required by the classifier the target account’s 

200 most recent tweets and 100 recent mentions from other users are required. Its features 

can be grouped into six main classes: Network, User, Friends, Temporal, Content, and 

Sentiment. The classifier has been trained on 15k manually verified bots and 16k human 

accounts with millions of tweets. It uses Random Forest classifier which is an ensemble 

supervised machine learning technique to run seven classifiers (one for each feature and one 

for overall score). Since, some features are based on English language the social bot score is 

for accounts in English language. Botometer is accessible through both a web interface 

(botometer.org) and an API endpoint. Botometer service does not have a browser plugin and 

requires Twitter authentication and permissions. 

 
Fig.1 Botometer Service Bot Score [14]
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Fig.2 Botometer Detailed Profile Analysis [14] 
 

 
 

2.1.2 Human, Bot, or Cyborg? 

 
The researchers Chu et al. have designed a supervised machine learning classifier 

to distinguish a target account into three different groups: human, bot, and cyborg [16]. 

An account classified as human is said to have no automated activity, whereas an account 

classified as bot will be fully automated. An account with a mix of automated and non-

automated activity is classified as a cyborg. Their classifier is based on four components: 

entropy, machine learning, account properties, and decision maker. The entropy 
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component is used to detect automation by detecting a periodic or regular timing for 

tweeting. The machine learning component is based on a Bayesian classifier to identify 

text patterns of social spambots on Twitter. The account properties component analyses 

account information to differentiate humans from bots. Finally, the decision maker 

component employs Linear Discriminant Analysis on the features shortlisted by other 

three components to make a classification. The researchers collected their data by 

crawling on Twitter using the Twitter API and found that data constitutes of 53% human, 

36% cyborg, and 11% bot accounts. For the creation of ground truth, the researchers 

chose random samples from collected data and classified them manually by going 

through their homepages and user logs. For the training set each class of humans, 

cyborgs, and bots have 1000 samples and the classifier is trained on total three thousand 

samples. The test set is also created with the same method and contains three thousand 

samples. The researchers have used a very small dataset for the training of the classifier 

and have changed a binary classification problem into multi-class classification problem 

by introducing cyborgs. As the results show, their classifier makes no mistakes in 

identifying humans and bots apart but gets confused between human and cyborg accounts 

or bot and cyborg accounts.  

 

 

Fig.3 Confusion Matrix on Human, Cyborg, and Bot Classification 

[16] 
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2.1.3 Benford’s Law Applies to OSNs 

 
Prof. Jennifer Golbeck from University of Maryland College Park was the first to 

apply Benford’s Law on the data from OSNs in 2015 [3]. The author experimented with 

five major OSNs namely: Facebook, Google Plus, LiveJournal, Pinterest, and Twitter. 

They were able to discover that certain features of OSNs like the friend’s 

following_counts conformed to Benford’s Law i.e., Benford’s Law was applicable to the 

first-degree egocentric networks of a target profile. The research findings on Twitter 

dataset indicate that accounts which strongly deviated from Benford’s Law were engaged 

in malicious or unnatural behavior. This Twitter dataset used for analysis of Benford’s 

Law has been made public by the author and can be accessed at 

https://github.com/jgolbeck/BenfordData. 

 

Fig.4 FSLDs for Twitter, Google Plus, Pinterest, Facebook [3] 
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This discovery from [3] led the author to test a hypothesis that the social 

connections made by bots are unnatural in nature and they tend to violate Benford’s Law 

[4]. The author reinvestigated the previously discovered Russian bot accounts from 2015 

and uncovered a larger Russian botnet with about 13,609 Twitter accounts out of which 

99.6 percent did not conform to Benford’s Law. This study concluded that first 

significant leading digits of a friend’s following_counts can be utilized to identify 

anomalous behavior of malicious bots and it is a significant feature to differentiate 

between humans and malicious bots. Unfortunately, the author has not made the Russian 

botnet dataset used in this research public. 

2.2 Machine Learning Techniques 

 
In this section, the different machine learning techniques used in the project have 

been discussed in detail. We have experimented using different techniques like Logistic 

Regression, Naïve Bayes, Support Vector Machine, Random Forest, AdaBoost, and MLP 

and evaluated the models with Confusion Matrix, Accuracy, Precision, Recall, F-

Measure, and AUC-ROC Curve. We have also validated our classification results with 

statistical tests like Pearson’s chi-squared test, Kolmogorov-Smirnov test, Mean Absolute 

Deviation (MAD). 

2.2.1 Naïve Bayes 

 
The Naïve Bayes classifier is an efficient and very simple supervised learning 

model which performs well for many different types of applications [20]. Naïve Bayes 

works on the assumption that all the features of the model are independent and do not 

have any correlation. It is based on the Bayes Theorem of probabilities which can be 
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given as: 

 

Fig.5 Bayes’ Theorem 

 

Treating all the features as independent helps the naïve bayes algorithm to be very fast 

but this means speed is preferred over accuracy and it works well with high-dimensional 

data compared to other complex algorithms.   

2.2.2 Logistic Regression 

 
Logistic Regression is one of the basic machine learning models based on a liner 

classifier with an objective to predict the influence of different features based on the 

probability of an event [19]. It is a supervised machine learning algorithm that can be 

used to predict a binary classification problem. It has a complex cost function called as a 

Sigmoid Function which is very different from the liner function used in linear 

regression. The sigmoid function is used to map any value into a value between zero and 

one. To reduce the cost in Logistic Regression Gradient Descent algorithm is employed 

to optimize the model parameters.  

 
Fig.6 Sigmoid Function Graph 
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Fig.7 Formula of Sigmoid Function 

 

2.2.3 Support Vector Machine 

 
Support Vector Machine (SVM) is a supervised machine learning algorithm 

which can be used for classification as well as for regression [21]. It works well with 

smaller datasets as processing takes a lot of time. SVM divides the data with the help of a 

hyperplane which slices the data into different parts. Support vector points are the points 

closest to the hyperplane and their distance from the hyperplane is called the margin 

width. SVM has three types of kernels: linear, polynomial, and radial basis function / 

gaussian. SVM is well suited for binary classification and high dimensional data with 

more features than training data. Since it has three kernels using the right kernel trick 

makes all the difference. 

 

Fig.8 SVM Hyperplane with support vector points and margin width 
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2.2.4 Random Forest 

 
Random Forest is an ensemble learning technique which is an extension of 

bagging approach [22]. Random Forest Classifier is a tree-based classifier which consist 

of individual decision trees that work on ensemble. So, the prediction accuracy increases 

with the number of trees in the model. With the help of bagging the trees can be trained 

on different sets of data and can also use different features for making the classification. 

This helps to create an uncorrelated forest of trees where the nodes are split on random 

subset of features for each tree. The difference between node splitting of decision trees 

and random forest model is shown in the diagram below: 

 

Fig.9 Node splitting on random features in Random Forest vs Decision Trees 

 

2.2.5 AdaBoost 

 
Adaptive Boosting works on the principle of making a high accuracy classifier by 

using many weak accurate classifiers [23]. It is also an ensemble learning technique and 

can be used for classification and regression. If each weak classifier satisfies the accuracy 
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condition of 50 % it will be accepted for aggregation of results. With each round weights 

are assigned, and the misclassification rate drops down, but it can also lead to overfitting. 

AdaBoost is widely used in face detection but is also useful as a binary classifier with 

high accuracy and speed. 

 

Fig.10 Adaptive Boosting assigning weights and generating final classifier 

 

2.2.6 MLP 

 
Multilayer Perceptron is a feedforward Artificial Neural Network also based on 

supervised machine learning [24]. The algorithm learns a non-linear function for 

classification or regression from the given set of features and labels. It is like the Logistic 
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Regression with the difference that we can have multiple intermediate layers instead of 

just input and output layers. These intermediate layers are called hidden layers and they 

contain multiple neurons which use a nonlinear activation function. All the features are 

the first input layer and for the following layers the input is the previous layer’s 

processed output. MLP uses backpropagation for training, and it is sensitive to feature 

scaling. 

 

 

Fig.11 Multilayer Perceptron with 2 hidden layers 

 



IDENTIFYING BOTS ON TWITTER WITH BENFORD’S LAW 

 

26 

 

 

2.2.6.1 Activation 

 
The Activation function is also known as the transfer function. There are many 

different activation function types: Sigmoid, ReLU, Leaky ReLU, and Tanh. These are 

used to determine the output of the internal hidden layers. In our project we use the 

default activation function of MLP i.e., ReLU. 

2.2.6.2 Optimization 

 
Optimization is the method used to reduce the loss of the neural network by 

changing parameters like weight and learning rate.  There are many different optimizer 

types: lbfgs, sgd, and adam. The default optimization function is adam but in our project 

we use lbfgs instead.  

2.2.6.3 Regularization 

 
Regularization ensures that the neural network is not overfitting by using 

penalties while training the model. There is also dropout method where outputs are 

randomly selected and dropped to reduce overfitting. The alpha is the regularization 

parameter in the MLP model, and we set the alpha to 0.00001 value. 

2.3 Evaluation Metrics 

 
In this section, the different evaluation metrics used in the project have been 

discussed in detail. Evaluation metrics help us better understand the performance of our 

machine learning classifier. 

2.3.1 Confusion Matrix 

 
Confusion Matrix is a measure of performance of a machine learning classifier 

[25].   It is useful for calculating Precision, Recall, Accuracy, and AUC-ROC curves. The 
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matrix is divided into four parts, and we will explain this with our human vs bots 

example: 

• True Positive (TP): the number of bots recognized as bots 

• True Negative (TN): the number of humans recognized as humans 

• False Positive (FP): the number of humans recognized as bots 

• False Negative (FN): the number of bots recognized as humans 

 

Fig.12 Evaluation Metric: Confusion Matrix 

2.3.2 Accuracy 

 
Accuracy is the proportion of true results by the total number of samples in the 

dataset. The formula for accuracy is given as: 

 

Fig.13 Evaluation Metric: Accuracy  

2.3.3 Precision 

 
Precision is the proportion of predicted positive cases that are actually positive. 

The formula for precision is given as: 
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Fig.14 Evaluation Metric: Precision 

2.3.4 Recall 

 
Recall is the proportion of predicted positive cases that we predicted correctly. 

The formula for recall is given as: 

 

Fig.15 Evaluation Metric: Recall 

2.3.5 F-Measure 

 
F-measure is the harmonic mean of the precision and recall values. The formula 

for F-measure is given as: 

 

Fig.16 Evaluation Metric: F-measure 

2.3.6 AUC-ROC Curve 

 
The Area Under the Curve Receiver Operating Characteristic is one of the most 

important evaluation metrics to measure the performance of our classifier. ROC can be 

defined as the probability curve and the AUC can be defined as degree of separability 

[26]. The higher the AUC the better the model is at predicting our classes correctly. 
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Fig.17 Evaluation Metric: AUC-ROC Curve 

2.4 Statistical Tests 

 
In this section, the different statistical tests used in the project have been 

discussed in detail. In machine learning, it is important to understand if the results of the 

classifier are statistically distinguishable. We have used three statistical tests to get the 

majority voting and verify the results of our classifier. 

2.4.1 Pearson chi-squared test 

 
The first step is to determine the chi-squared test statistic which is normalized 

sum of squared deviations between observed and desired values [27]. Second step is 

defining the degrees of freedom and since all 9 digits are possible in our data, the degrees 

of freedom are 8. The Pearson chi-squared test is given by the following formula: 

 

Fig.18 Formula: Pearson Chi-Squared Test 
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2.4.2 Kolmogorov-Smirnov test (K-S test) 

 
The Kolmogorov-Smirnov test is popularly known as goodness of fit test. The 

two-sample K-S test is a general nonparametric method which compares the distribution 

of two independent samples and gives a statistic and p-value [28]. The p-value is 

interpreted the same as other tests where you can reject the null hypothesis that two 

samples are identical if the p-value is less than level of significance. Our level of 

significance is 0.05 or five percent. 

2.4.3 Pearson Correlation Coefficient test 

 
Pearson Correlation Coefficient test is also known as Pearson’s r test. It measures 

the linear correlation between 2 sets of sample values. The test is essentially the 

normalization of covariance or the ratio of covariance of two values divided by the 

product of their standard deviation [29]. The test will always give a correlation value 

between -1 and 1.  

 

Fig.19 Formula: Pearson Correlation Coefficient Test 

 



IDENTIFYING BOTS ON TWITTER WITH BENFORD’S LAW 

 

31 

 

 

3. Implementation 

 
In this chapter, we will discuss in detail the databases and step-by-step pipeline 

for the implementation of the project. This chapter will explain the setup used to train the 

ML models and statistical techniques used in detail. 

3.1 Setup 

 
Each part of implementation of project has been done by using multiple conda 

virtual environments. Conda can run on many operating systems, and it is an open-source 

package and environment management system. The host machine has the following 

configurations: 

• Model: MacBook Pro 

• Processor: 2.3 GHz 8-Core Intel Core i9 

• Memory: 16 GB 2400 MHz DDR4 

• Graphics: Intel UHD Graphics 630 1536 MB 

• Operating System: macOS Monterey Version 12.0.1 

All the tests, trainings, and experiments have been executed on the host machine only. 

3.2 Dataset 

 

Twitter is a global communication network available to the public in real-time. It 

is used by millions of users daily who end up generating lots of metadata in the form of 

short bio, location, @handle, display name, number of followers, number of statuses, 

number of friends, etc. Twitter metadata can be accessed and retrieved programmatically 
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with the help of the Twitter API which has the latest version Twitter API v2 launched in 

November 2021. Twitter has recently announced rate limits to the API service which has 

in turn reduced the access to the metadata and slowed down data collection and retrieval. 

Due to the rate limits, this project has been built with the help of four publicly available 

datasets [2], [11], [12], [13]. All the datasets have been discussed in detail below. 

Prof. Jennifer Golbeck conducted an analysis over five social networking 

websites to study if Benford’s Law applies to online social networks [2]. For analysis of 

Benford’s Law on Twitter they collected egocentric data of 21,135 Twitter users by 

randomly generating user IDs. This dataset called anonymizedTwitter dataset is not 

labelled so the labelling approach is explained below. This is the only dataset that 

provided us with first-degree egocentric network data, and it is available at 

https://github.com/jgolbeck/BenfordData. 

The botometer-feedback dataset was constructed by researchers Kai-Cheng Yang 

et. al. in 2019. The Botometer service formerly known as BotOrNot is a bot detection tool 

which was developed by the researchers at Network Science Institute of Indiana 

University. It has been live since May 2014 and has been used significantly over the 

years. The botometer-feedback dataset was created by manually labeling the Twitter 

accounts flagged by Botometer service. The dataset has 143 ‘bot’ and 386 ‘human’ 

labelled accounts.  

The third dataset is called cresci-2017 and was collected by Stefano Cresci et. al. 

[12]. To create this dataset the authors made a more fine-grained classification to group 

three different categories: traditional spambots, social spambots, and fake followers. 

Traditional spambots tend to just tweet out the same content repeatedly while social 
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spambots will try to disguise themselves like normal profiles. Fake followers are just part 

of a botnet that follows an account for money. The cresci-2017 dataset is annotated with 

9391 ‘bot’ and 3474 ‘human’ labelled accounts. 

The last dataset gilani-17 was collected by Zafar Gilani et. al. [13]. The 

researchers used the Twitter streaming API to group accounts into four categories based 

on followers counts. They then sampled the accounts and got them annotated from four 

undergraduate students according to key information. The dataset is comprised of 1090 

‘bot’ and 1413 ‘human’ labelled accounts. 

Table 2: Datasets Bot and Human label counts 

Dataset #Bot #Human 

anonymizedTwitter 317 20,818 

botometer-feedback 143 372 

cresci-2017 9391 3474 

gilani-17 1,090 1,413 

Total 10,941 26,077 
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3.3 Approach 

 The approach to implement this project is divided into two easy steps: 

preprocessing each dataset and combining them, training and testing multiple classifier 

models and selecting the best model. 

 

Fig.20 Overview of our approach 

3.3.1 Data Preprocessing 

 Since the first dataset i.e., anonymizedTwitter did not have labels the 

labelling was done by the author of the project. For the task of labeling, the FSLDs of 

each of the 21,135 data samples were extracted from their following_counts and then 

their frequencies were visualized in the form of a histogram against the Benford’s Law 

distribution one sample at a time. Exploratory Data Analysis was performed on each data 

sample and a bot or human label was assigned to all samples manually.  
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Fig.21 EDA Data Sample that follows Benford’s Law Distribution 

 

Fig.22 EDA Data Sample that doesn’t follows Benford’s Law Distribution 
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The datasets from [11], [12], [13] were only used to collect the Twitter @handle 

and the ‘bot’ or ‘human’ label provided by the original authors. Afterwards the first-

degree egocentric network data i.e., the following_counts of each friend for that @handle 

was collected with the help of the Twitter API manually by the author of this project. 

Once all the first-degree egocentric data from each of the four datasets was available a 

new combined dataset was created. This combined dataset only contained the FSLD 

frequencies of each data sample and a label of 0 for human and 1 for bot profile.  

 

Fig.23 Final Dataset with FSLD Frequencies and Bot Label 

3.3.2 Training and Testing Classifiers 

 Once the preprocessing was done and the combined dataset with labels was 

available Jupyter Notebook was used to read the csv data file. The data was split into 

train and test sets with a 75:25 split. Synthetic Minority Oversampling Technique 

(SMOTE) was used to treat the imbalance between our bot and human samples. We 

trained and tested six supervised machine learning classifiers namely: Logistic 

Regression, Naïve Bayes, Support Vector Machine, Random Forest, AdaBoost, and 

MLP. Random Forest and AdaBoost models gave high accuracy scores, but the best 

model was the neural network model MLP. Next chapter discusses the results. 
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4. Results 

 
In this chapter, we discuss the results of the experiments performed in our project. 

The training results for each ML model are discussed in detail with performance measure 

Confusion Matrix, Accuracy, Precision, Recall, F-Measure, and AUC-ROC curve. 

4.1 Naïve Bayes 

 
The first phase of experiments was the training and testing of Naïve Bayes 

classifier. This was a naïve approach as the model considers all the features 

independently with no correlation. With all the 9 features evaluated independently the 

Naïve bayes model has good performance. Figure 24 shows the AUC-ROC curve and 

Confusion Matrix. Table 3 shows the overall performance of the first phase of 

experiments.  

 

Fig.24 AUC-ROC Curve and Confusion Matrix of Naïve Bayes 

 

Table 3: Naive Bayes Performance 

Model Accuracy Precision Recall F-Measure 

Naive Bayes 95.44 % 99.02 % 89.68 % 94.12% 
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         4.2 Logistic Regression 

 
In the second phase of experiments, we trained the logistic regression model 

which was very quick at training and easier to implement. Since we have only 9 features 

and a binary classification problem logistic regression model has high performance. 

Figure 25 shows the AUC-ROC curve and Confusion Matrix. Table 4 shows the overall 

performance of the second phase of experiments. 

 

 

 
Fig.25 AUC-ROC Curve and Confusion Matrix of Logistic 

Regression 

 

 

Table 4: Logistic Regression Performance 

 

Model Accuracy Precision Recall F-Measure 

Logistic Regression 99.11 % 98.59 % 99.22 % 98.91 
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4.3 SVM 

 
In the third phase of experiments, we trained and tested a Support Vector Classifier 

model on our dataset. The SVC took more time to train that the previous experiments, but it 

is well suited for our dataset as we have a binary classification problem at hand. Figure 26 

shows the AUC-ROC curve and Confusion Matrix. Table 5 shows the overall performance of 

the third phase of experiments. 

 

 

Fig.26 AUC-ROC Curve and Confusion Matrix of SVC 

 

 

Table 5: SVC Performance 
 

Model Accuracy Precision Recall F-Measure 

SVC 99.82 % 99.56 % 100 % 99.78 % 
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4.4 Random Forest 

 
In the fourth phase of experiments, we trained and tested a Random Forest Classifier 

which uses multiple decision trees to gain high accuracy. The model trained faster that SVM 

and has better overall performance compared to all the previous phases. In supervised 

machine learning approaches Random Forest model is expected to deliver very high 

accuracy. Figure 27 shows the AUC-ROC curve and Confusion Matrix. Table 6 shows the 

overall performance of the fourth phase of experiments. 

 

 

Fig.27 AUC-ROC Curve and Confusion Matrix of Random Forest 

 

 

Table 6: Random Forest Performance 
 

Model Accuracy Precision Recall F-Measure 

Random Forest 99.91 % 99.83 % 99.95 % 99.89 % 
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4.5 AdaBoost 

 
The fifth phase of experiments was to push the accuracy score as high as possible, so 

we trained and tested an Adaptive Boosting Model. This is another ensemble learning 

technique like Random Forest with high accuracy. It trains multiple weak models and 

aggregates them with weights to form a strong classifier, but the model tends to overfit. 

Figure 28 shows the AUC-ROC curve and Confusion Matrix. Table 7 shows the overall 

performance of the fifth phase of experiments. 

 

Fig.28 AUC-ROC Curve and Confusion Matrix of AdaBoost Classifier 

 

 

Table 7: AdaBoost Classifier Performance 
 

Model Accuracy Precision Recall F-Measure 

AdaBoost Classifier 99.93 % 99.89 % 99.95 % 99.92 % 
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4.6 MLP 

 
The sixth and final phase of experiments was completed by training and testing a 

feedforward neural network model called Multi-Layer Perceptron. The MLP classifier have 

and Input and Output layer just like the Logistic Regression model, but it also has hidden 

layers with neurons to achieve the best possible results. The MLP model ended up giving the 

highest accuracy (near perfect) and overall performance. This is the final model that was 

selected as our final classifier. Figure 29 shows the AUC-ROC curve and Confusion Matrix. 

Table 8 shows the overall performance of the sixth phase of experiments. 

 

Fig.29 AUC-ROC Curve and Confusion Matrix of MLP 

 

 

Table 8: MLP Performance 
 

Model Accuracy Precision Recall F-Measure 

MLP 99.98 % 100 % 99.95 % 99.97 % 
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4.7 Latency Analysis of ML Algorithms 

 In this section, we are going to study the latency in training our supervised machine 

learning models on our ground truth dataset. When the size of the dataset increases the 

training time of our models tends to increase significantly. We are going to train each of our 

models on our training dataset of around 25k samples. The latency analysis will be based on 

the training time taken by each model in milliseconds. The Table 9 below shows the latency 

analysis results. 

 

 Table 9: Latency Analysis on Training Dataset 

 

 

 

  

 

 

 

 

 

With this data we will be able to understand the training times of the algorithms as we 

scale our datasets for better prediction accuracy. The optimum algorithm will be chosen 

based on time and speed constraints for future scaling. 

 

 

 

              MODEL        Latency (ms) 

               Naïve Bayes 7.26 ms 

           Logistic Regression 51.26 ms 

   Support Vector Machine 2935.64 ms 

  Random Forest Classifier 1862.07 ms 

         AdaBoost Classifier 1526.95 ms 

     Multi-Layer Perceptron 3308.19 ms 
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4.8 Statistical Tests Majority Vote 

 Once the neural network MLP model was trained and selected for its high-performance 

accuracy, we were ready to test our model on new accounts and then verify our model’s 

classification based on a majority vote of our three statistical tests. We took four random 

samples with two bots and two humans and tested our MLP classifier prediction with our 

statistical tests for majority vote. Here we are testing the goodness of fit of the FSLDs with 

the Benford’s Law distribution. The hypothesis for tests was formulated as: 

 Null hypothesis (H0) = Account FSLDs follow Benford’s Law 

 Alternative hypothesis (H1) = Account FSLDs violate Benford’s Law 

 If p-value < 0.05 then reject H0 (Nonconformity), else accept H0 (Conformity) 

 

Table 10: Statistical Tests Majority Vote 

 Bot1 Bot2 Human1 Human2 

Pearson Chi-Squared 

Test 

Nonconformity Nonconformity Conformity Conformity 

Kolmogorov-Smirnov 

Test 

Nonconformity Conformity Conformity Conformity 

Pearson Correlation 

Coefficient Test 

Nonconformity Nonconformity Conformity Conformity 

Majority Vote Bot Bot Human Human 

 

 The majority vote of our statistical tests validates the prediction results of our MLP 

classifier and hence we have proved that the MLP classifier trained on our ground truth 

dataset can be used to detect social bots on Twitter. 
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5. Conclusion and Future Works 

 
This chapter will discuss in detail the conclusion of our project and any future scope 

for improvements or advancements. Since social media bot detection is becoming an 

increasing problem more research and advanced techniques can extend this project. 

5.1 Conclusion 

 The proposed technique in this project, which given a Twitter @handle will 

collect the following_counts of all the friends of that profile and extract the FSLD 

frequencies to feed our neural network classifier works best for detecting malicious social 

bots against humans. This is due to the strategic selection of our databases used as ground 

truth for training our model. The main goal of the project was to create a ground truth dataset 

from scratch and then training a neural network model on the dataset while also validating the 

results with majority vote of statistical tests has been achieved. The project enables us to 

identify if a Twitter user is a malicious social bot or human with very little efforts. The 

overall project technique is novel and has never been implemented in this fashion.  

Any supervised machine learning technique used for bot detection will only be as 

good as the ground truth data that was used to train it. As the social bots keep changing their 

patterns and techniques rapidly, even the most sophisticate bot detection algorithms will fail 

as their training rules become outdated. Benford’s Law is an unavoidable naturally occurring 

phenomenon present in the world and it is prevalent on Twitter [18]. Since, the malicious 

bots break away from the natural pattern by synthetically following other social bots and 

malicious accounts they tend to unknowingly violate the Benford’s Law. Hence, our project 

will be able to identify malicious bots or suspicious accounts even if the bot behavior patterns 

keep evolving. 



IDENTIFYING BOTS ON TWITTER WITH BENFORD’S LAW 

 

 

46 

 

 

 

There are certain limitations faced by our project due to the use of anonymizedTwitter 

dataset [3] and the way Benford’s Law works. To analyze any account on Twitter we need 

the account to be following at least 100 other accounts. First reason for this is, it was the 

technique used in data collection by the authors of anonymizedTwitter dataset, this makes our 

classifier bad at detection if the account has less friends. Second reason for this is, Benford’s 

Law requires orders of magnitude and certain number of samples to work with the FSLD 

frequency distribution. 

5.2 Future Works 

The project can be extended to create a web browser extension where the users will be 

able to classify Twitter accounts in real-time without gathering all the first-degree egocentric 

data and feeding it to our model. The browser extension will be able to send pop-up messages 

to user to warn about any suspicious profile that is encountered during regular activity.  

Another extension to this project would be, once our classifier flags a Twitter account, 

we could employ other techniques to identify if the suspicious account is part of a bigger 

botnet. 

This same research technique can be applied on Facebook datasets to see if we can 

successfully classify bots on Facebook with the help of Benford’s Law. 
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