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ABSTRACT This work, for the first time, experimentally demonstrates a TCAD-Machine Learning (TCAD-
ML) framework to assist the analysis of device-to-device variation and operating (ambient) temperature
without the need of physical quantities extraction. The ML algorithm used in this work is the Principal
Component Analysis (PCA) followed by third order polynomial regression. After calibrated to limited
‘expensive’ experimental data, ‘low cost” TCAD simulation is used to generate a large amount of device
data to train the ML model. The ML was then used to identify the root cause of device variation and
operating temperature from any given experimental current-voltage (I-V) characteristics. We applied this
framework to study the ultra-wide-bandgap gallium oxide (Ga;O3) Schottky barrier diode (SBD), an
emerging device technology that holds great promise for temperature sensing, RF, and power applications
in harsh environments. After calibration, over 150,000 electrothermal TCAD simulations are performed
with random variation of physical parameters (anode effective work function, drift layer doping, and drift
layer thickness) and operating temperature. An ML model is trained using these TCAD data and we
found 1,000-10,000 TCAD data can train an accurate machine. We show that without physical quantities
extraction, performing PCA is essential for the TCAD trained ML model to be applicable to analyze
experimental characteristics. The physical parameters and temperatures predicted by the ML model show
good agreement with experimental analysis. Our TCAD-ML framework shows great promise to accelerate
the development of new device technologies with a significantly more efficient process of material and
device experimentation.

INDEX TERMS TCAD simulation, machine learning, variation, principal component analysis, ultra-wide
bandgap, gallium oxide.

I. INTRODUCTION

Machine learning (ML) has recently gained increased atten-
tion for applications in semiconductor manufacturing, such
as the etch anomaly analysis [1], lithographic hotspot
detection [2] and optical proximity correction [3]. On the
other hand, wafer-level device variation analysis is critical for
the development of any nascent semiconductor technologies.
These variations may be material-related and process-related.

Today’s analysis practices mostly rely on extensive device
and material characterizations. Many of these character-
izations (e.g., cross-sectional microscopic inspection) are
destructive, prohibitively costly, and time-consuming to
implement for every device in a wafer. An ML assisted
variation analysis based on device electrical characteristics
is highly desired to allow for more efficient material and
device experimentation.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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FIGURE 1. Flow chart diagram of the proposed TCAD-Machine Learning
framework. All components are demonstrated in this article except the ML
Database which stores previously trained ML algorithms.

Recently, it has been proposed that the TCAD simulation
based on well-calibrated parameters can be used to generate
enough data for ML in variation and failure analysis [4], [5].
Reference [6] proposed to use ML to replace TCAD sim-
ulation for device variation analysis and [7] used ML to
replace TCAD simulation to for power device breakdown
prediction. However, none of these frameworks has been
verified with experimental data, which are usually non-ideal
due to equipment limitation, extra variables, and measure-
ment noise. Moreover, physical quantities extraction (e.g.,
extraction of threshold voltage and sub-threshold slope in
I-V characteristics) was required in the ML frameworks that
were reported in [5] and [6], which limits their applicability.

In this work, we for the first time demonstrate an ML-
based TCAD framework with experimental data verification.
Fig. 1 shows the flow chart diagram of the proposed
framework. As a feasibility demonstration, our ML-TCAD
framework was applied to analyze the variation of gallium
oxide (GayO3) Schottky barrier diodes (SBDs) fabricated
on 2-inch wafers and shows an agreement with experiment
with no need of physical quantities extraction. Note that
this framework is used to study the device-to-device varia-
tion instead of performing statistical variation analysis like
in [10]. We also showed that TCAD data can be generated
accurately and at low-cost (150,000 simulations in 2 weeks
on 1 server), and studied the minimum amount of TCAD
data that are required to train an accurate ML model for the
analysis of experimental data. This framework allows the use
of various types of ML algorithms, from the simplest lin-
ear regression to more sophisticated neural network [8], [9].
Principal Component Analysis (PCA) followed by third order
polynomial regression is used in this article.

We believe this framework is particularly useful at the
nascent stage of any technology development. This is
because a large amount of training data is required to develop
a good ML model. However, for immature technology, there
are not enough wafers but can be complemented by TCAD
simulations. Meanwhile, the results presented in this work
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show great promise for applying the TCAD-ML frame-
work onto more mature semiconductors and commercially
available device technologies.

As an emerging ultra-wide-bandgap semiconductor,
Gay03 has recently emerged as a promising material for
high-temperature sensing, RF, and power applications, due
to its ultra-wide bandgap (~4.8 eV), the availability of
large-diameter wafers, and superior thermal stability when
compared to Si, SiC and GaN [11], [12]. Polycrystalline
Gay03 sensors have been demonstrated to operate at over
500°C [8]. Single crystalline Ga, O3 power devices with hun-
dreds of volts breakdown voltage have been demonstrated
to function at 350°C [13]. However, as a nascent material
and device technology, Ga;O3 electronics suffer from con-
siderable epitaxy and process non-uniformity and therefore
require extensive variation analysis in its development. This
makes the Ga;O3 device an excellent platform for exper-
imental verification of our TCAD-ML framework. On the
other hand, the successful application of our ML-TCAD
framework in Gap;O3 shows great promise to expedite its
commercialization and applications.

Due to the high-temperature potentials of Ga;O3 devices,
we also used the same framework to analyze the device
operating (ambient) temperature based on its experimen-
tal I-V curves. Our framework shows the feasibility to
predict the device operating temperature, which obviates
the use of special temperature-sensing circuits in high-
temperature Internet-of-Things (IoTs) applications or costly
thermal characterizations such as thermoreflectance and
Raman spectroscopy during device characterizations.

Besides the demonstration of the ML-TCAD framework,
this work also provides new device insights into GayOs3
devices. The accurate TCAD calibration and simulations
have been performed for vertical Ga,O3 power SBDs. For the
first time, both Ge-doped and Si-doped Ga;O3 temperature-
dependent electron mobilities are calibrated for the Philips
Unified Mobility Model in TCAD in a wide temperature
range. The incomplete ionization of dopants was also imple-
mented in Ga;O3 and achieved a good agreement with the
experiment.

Il. EXPERIMENT

Fig. 2(a) shows the schematic of the Gay;Oz SBDs fab-
ricated on 2-inch free-standing (001) GayO3z wafers. The
wafer epitaxial structure consists of a Si-doped n-Ga; O3 drift
layer grown on a commercial 2-inch n*-Ga;O3 (Sn-doped)
substrate by Halide Vapor Phase Epitaxial (HVPE). The
substrate has good uniformity in thickness and resistivity.
The thickness (fp) and net donor concentration (Np) of the
n-Gay O3 drift layer were measured at five spots across the 2-
inch wafer using electrochemical capacitance-voltage (ECV)
and secondary ion mass spectrometry (SIMS), respectively.
Fig. 2 (b) shows the SIMS profile for Si ion concentration
measured at two spots, where the increase in Si concen-
tration marks the interface between the drift region and
substrate. Note the donor in the drift region not only comes
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FIGURE 2. (a) Schematic of the fabricated vertical Ga; 05 power Schottky
barrier diodes; (b) An exemplary illustration of the drift layer thickness at
two spots on the wafer determined by the Si profile measured by
secondary ion mass spectrometry. (c) Cross-sectional scanning electron
microscopy (SEM) image of the field plate region; (d) Top-view SEM image
of the fabricated device.

TABLE 1. PhuMob parameters calibrated in TCAD against experiment.
The symbols are the same as those in [17, Tab. 1]. ¢ is the exponent of
temperature dependence due to lattice scattering.

As in Si Si in Ga,03 Ge in Ga,05
Umax (cm?/V's) 1.42x103 123 115
Uimin (cm?/V°s) 52.2 80 0
[C) 2.29 1.8 1.65
N1 (cm™) 9.68x10'° 2x10"7 5.68x10'%
o 0.68 0.9 0.68

from Si but also from other impurities such as O, so the
measured Np by ECV is higher than the measured Si con-
centration by SIMS. From the measurement across these
spots, a relatively large variation in tp (7.5 ~ 11.9 um) and
Np (2.1 ~ 4.6 x 10'° cm™3) was found for the drift layer.
Note these techniques are difficult to measure the tp and
Np in every fabricated device, as ECV and SIMS are both
destructive and have a large spatial size (hundreds of micron
meters) for each measurement point.

Over 55 field-plated power Ga;O3 SBDs were fabricated
across the wafer, with the cross-sectional and top-view scan-
ning electron microscopy (SEM) images shown in Fig. 2(c)
and (d). The device fabrication starts with mesa etch, fol-
lowed by the deposition of spin-on-glass (SOG) as the
field-plate (FP) dielectrics. A blanket backside Ohmic con-
tact was formed by Ti/Au deposition followed by a 470°C
annealing. The SOG was then opened through wet etch, fol-
lowed by the metal deposition to form Schottky contacts and
field plates. More details of device fabrication are described
in [13] and [14]. Before the Schottky metal deposition, the
wafer was cut into small samples, and different surface chem-
ical treatment (water, hydrochloric acid, buffered oxide etch)
were applied to intentionally introduce the variations in the
Schottky barrier height [15]. From our experimental device
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FIGURE 3. Comparison of experimental [18], [20] and TCAD PhuMob
electron mobility and free carrier concentration data in Si-doped ((a)-(b))
and Ge-doped ((c)-(d)) Ga,O5.

analysis, the different surface treatment creates the varia-
tion in effective metal workfunction in the range of ~0.1eV,
rendering a good representative of the effective Schottky bar-
rier height variations due to (one or multiple) mechanisms
such as metal workfunction uncertainties, surface doping
and roughness variations, and interface states uncertainties.
Meanwhile, the variation in the Schottky barrier height (or
effective metal workfunction) can be measured with non-
destructive and low-cost electrical technique to check the
performance of the framework. The fabricated Ga; O3 SBDs
have a circular anode with a diameter of 250 pm.

The I-V characteristics of the 55 fabricated devices at
different locations of the 2-inch wafer were collected, where
each device was measured from 300 K to 510 K, with the
chuck temperature carefully calibrated by a thermal camera.
Each I-V measurement is performed from a reverse bias of
—10 V to a forward bias of 4 V.

1Il. TCAD CALIBRATION AND SIMULATIONS

TCAD Sentaurus is used in this study [16]. Since GayO3
is an emerging material, simulation models and parameters
need to be chosen and calibrated carefully. Philips Unified
Mobility Model (PhuMob) [17] is calibrated for Si-doped
Gay03 experimental data (Fig. 3(a)) [18]. The incomplete
ionization model is turned on. Doping dependent activation
energy model is used [16],

Ep = Epo+aN'/3 (1)

where Ep is the activation energy of the dopant, Ep g is the
activation energy when the dopant concentration approaches
zero, « is a constant and N is the doping concentration
in cm™3. For the best fitting to experimental data in [18],
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FIGURE 4. Simulated temperature distribution at a forward bias of 4 V in
the whole simulated structure with cylindrical coordinates (identical to
total piece size) and in the zoomed-in anode region.
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FIGURE 5. Experimental (lines) and TCAD simulated (markers) I-V curves
in (a) linear and (b) log scale at different temperatures. Inset shows the I-V
curves in the turn-on region.

Epo=52meV and @ = 3.4 x 1078 eV-cm are used for Si.
This is consistent with the literature results in [18], [19] and
gives excellent agreement with experimental free carrier den-
sities obtained from Hall measurement in [18] (Fig. 3(b)).
To increase the confidence of the appropriateness of our
calibration methodology, the TCAD model is also calibrated
against Ge-doped Ga;Os experimental data [20] and excel-
lent agreement is also achieved in both mobility and free
carrier concentrations from 77K to 550K (Fig. 3(c) and (d)).
The calibrated parameters for PhuMob in Ga;O3 are shown
in Table 1 together with the parameters in Si for compar-
ison. Only parameters different from Silicon are shown in
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FIGURE 6. Schematic of the ML algorithm used in this study. (a) 374 order
polynomial generation for “with physical quantities extraction”

and (b) PCA followed by 3" order polynomial generation for “without
physical quantities extraction”. Meanings of the symbols are explained in
Table 3.

TABLE 2. Means and ranges of parameters and temperature variation in
TCAD simulations.

Mean Range
WF (eV) 5.09 0.1
T (K) 400 100
tp (um) 9 4
Np (cm™) 4x10' 3x10'°

Table 1. ® is the exponent of temperature dependence due
to lattice scattering.

Due to the low thermal conductivity of GayO3, device
self-heating and three-dimensional (3-D) heat dissipation in
the whole sample need to be considered. Thermal con-
ductivity along the [001] axis is selected based on [21].
Thermodynamic model is turned on. A half 2-D cross-section
of the experimental structure is simulated using a cylindrical
coordinate, which performs essentially a 3-D simulation of
the SBD in a 0.5 mm? sample (Fig. 4). This obviates the
need for lump thermal resistance calibration. This is because
if limited domain or pure 2D simulation is used, in order
to capture the thermal resistance due to the 3D substrate,
an effect lumped thermal resistor needs to be attached and
calibrated. It can be seen that self-heating occurs mostly in
the drift layer (top ~10 pm) below the Schottky contact.

The simulation deck is calibrated against the experimental
results of the selected diode at various operating temperatures
from 300 K to 510K. As shown in Fig. 5, an excellent
agreement in experimental and simulated I-V characteristics
has been achieved in the reverse bias, forward bias, and
device turn-on regions in both the linear and log scales.

IV. MACHINE LEARNING

By using the calibrated TCAD simulation deck, three phys-
ical parameters, effective work function (WF, i.e., the work
function that takes into account the Schottky barrier height
variation), fp, Np, and the operating (ambient) temperature T’
are varied randomly. Table 2 shows the means and ranges of
the parameters. Parameters are generated uniformly within
the mean & range of the corresponding parameter. For exam-
ple, T is varied between 300K and 500K. So mean = 400K
and range = 100K. The ranges are set to be larger than the
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TABLE 3. Explanations of the symbols of the ML algorithms in Fig. 6.

Range of i Meaning
I 0-51 Discretization of the current
! value of the IV curve
ol; 1-51 I-I;
pi 0-3 Extracted Principal Components

expected variation of the parameters. Meanwhile, all experi-
mental I-V characteristics are from the “functional” devices
with no obvious failure. The WF variation is mainly produced
by various surface treatment mentioned in Section II. The
consideration of the WF variation is essential to mimic
the barrier height inhomogeneity widely reported in GayOs3
SBDs [13], [22], [23].

150,000 devices are generated in Sentaurus Structure
Editor [24] with these varied parameters and their I-V curves
are obtained through device simulation in SDevice [16].
Supervised learning ML is used [8]. The I-V curves are the
input features and the varied parameters and temperature (W,
tp, Np, T) are the labels/outputs. 80% is used for the ML
model training and 20% for validation. All the simulations
are completed in 2 weeks on 1 single server (2 Fourteen-Core
Intel Xeon Processor E5-2690 v4 2.60GHz with hyperthread-
ing), which is virtually impossible to obtain experimentally.
This demonstrates that TCAD can be used to generate data to
augment the ML with a very low cost.

The I-V curves are discretized to 52 points from V = 0V
to V = 4V as input features for ML. Polynomial regression
of the 3™ order is used to capture the non-linear depen-
dence of outputs on input features. Fig. 6 shows two types
of algorithms are tested for with and without physical quan-
tities extraction. The meanings of the symbols are shown in
Table 3. Terms up to third order are generated as the input
(e.g., Ip (first order), Ipls; (second order), Illg2 (third order))
to the linear regression and is regressed against the output
(T, W, tp, Np).

Higher order polynomial regression (up to 5™ order) and
neural networks (NNs) were also explored in this work. For
example, a neuron network with 3 hidden layers, each with
32, 16, and 10 internal nodes, respectively, have been applied
to the dataset. However, in general, they were found to pro-
duce a worse result and require much longer training time
than 3" order polynomial regression. This is probably due to
overfitting. This also indicates that a more substantial effort
might be needed to optimize the NNs, which may offset the
benefit of ML without physical quantities extraction. While
the underlying mathematical mechanisms of the failure in
NNs will be scrutinized in our future work, only 3" order
polynomial regression is discussed in this work.

A. WITH PHYSICAL QUANTITIES EXTRACTION

Based on the knowledge in semiconductor physics, it is
expected that the slope of the I-V curve in the subthresh-
old region represents nk7/q and the maximum change of
slope represents the turn-on voltage, which is related to WF.
Therefore, changes of the current at each voltage bias (81;)
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FIGURE 7. Training results of 120,000 data points (left) and testing results
of 30,000 data points (right). The white dotted line shows the reference
that the predicted values agree with the actual ones.

are also computed as the input features as shown in Fig. 6(a),
where §I; = I; —I;_1 for i = 1 to 52. Note that, even though
physical quantities extraction is required in this case, it is
intentionally minimized. It is important to avoid too much
human intervention as in traditional inverse designs reported
in [25]-[28]. 3" order polynomials are then generated from
I and dI for machine learning. Without d/, machine training
is more difficult and more data are required to get the same
level of accuracy. Fig. 7 shows the training (on 120,000
I-V curves) and testing (on 30,000 I-V curves) results. The
trained machine is able to predict the three physical param-
eters and device operating temperature accurately for any
given I-V curves.

Fig. 8 shows the normalized root mean squared
errors (RMS) for different parameters as a function of train-
ing data set size. The RMS error is normalized to the range
of variation (see Table 2) of the corresponding parameter
used to generate the data set. For example, WF is generated
randomly within the range of 5.09 eV+0.1 eV. The RMS is
normalized to 0.1 eV. Therefore, 7% error refers to about
0.007eV of RMS. Fig. 8 shows that only 10,000 training
data is required to attain less than 10% of the variation range
for tp and Np. This means that sufficient TCAD data can be
generated in less than 2 days to train the machine. For T and
WF, even with only 1,000 training data, the errors are still
very low. Therefore, if one is only interested in predicting T
and WF, only 1,000 TCAD data needs to be generated and
it takes less than 4 hours.

Therefore, a machine is trained successfully to predict
the structural parameters (WF, fp, and Np) and operating
condition (7') for any given ideal /-V. Here ‘ideal’ means
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FIGURE 8. Testing data set root-mean-squared errors normalized to
data variation range as a function of training data set size.

the I-V’s are created by only varying these four variations
(T, WF, tp, and Np). This will not be the case in experiment
because there are other variations and noises which will
affect the I-V’s. This is an example of an inverse design
problem [26]-[29] which can also be used for defect analysis
and reverse engineering.

The TCAD trained machine is then used to predict the
device parameters from experimental /I-V curves. However,
the result is found to be quite unsatisfactory. For example,
while the TCAD simulated data matches the experimental
data very well in Fig. 9 (the only visual discrepancy is
the region where Vapoge < 0.4V, due to noise and equip-
ment limitation in the experimental curve) and the machine
can predict the device parameter and operating temperature
very well from the TCAD data (Fig. 7), it cannot predict
the parameters and temperature well based on the given
experimental I-V curve. While one can exclude the data in
the voltage range below 0.4V in the training to avoid this
problem, it is not desirable because there will be too much
human intervention.

B. WITHOUT PHYSICAL QUANTITIES EXTRACTION
Ideally, a smart machine should be trained without the need
of physical quantities extraction. Moreover, experimental I-
V curves contain more variables than the ones considered
in TCAD simulations and the measurement accuracy may
be limited by equipment capability (such as noise). These
factors can result in the failure of TCAD trained machine
when it uses experimental I-V curves to predict physical
parameters and operating temperature, such as the case in
Fig. 9. Moreover, due to the immature process technology,
such as contact issues, some I-V curves show anomalies
(e.g., current humps, as shown in Fig. 10), which leads to
unsatisfactory prediction.

To make the methodology applicable to experimental
data and obviate the requirement of physical quantities
extraction, we propose to perform Principal Components
Analysis (PCA) on the input I-V curves before polynomial
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big difference at V < 0.4 V due to measurement equipment limitation,
despite very good overall calibration.
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FIGURE 10. Some experimental I-V curves from the 55 devices collected at
various temperatures. Some typical abnormal I-V curves are highlighted.

regression, as shown in Fig. 6(b) [8]. Four principal com-
ponents are used because the TCAD data are generated by
varying 4 parameters (i.e., WF, tp, Np and T). It is found that
the robustness of the machine can be enhanced significantly.
After the machine is trained using the TCAD-generated I-V
curves with PCA (Fig. 6(b)), it is applied to 55 experimen-
tal I-V curves measured on various devices under different
temperatures (Fig. 10) to predict the physical parameters
of the devices. In Fig. 11, it shows the performance (i.e.,
prediction of the 4 parameters based on experimental /-Vs in
Fig. 10) of the machine trained with (black) and without (red)
PCA. The x-axes represent the experimental /-V’s. Since the
experimental IV are from devices not related to each other,
x-axes are not labeled but each I-V is placed on the same
location of the axes of the 4 graphs. It is fond that with PCA,
the machine is able to predict the physical parameters and
operating temperature of all the experimental I-V curves in
Fig. 10 to be within the expected range (black) while many
from “without PCA” (red) are out of the expected range or
even plotting range.
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Since the operating temperature of each device is known
from the chuck temperature calibrated by thermal camera
and device WF can be extracted by electrical methods (e.g.,
from the sub-threshold region of the forward I-V curve based
on the thermal emission model [13], [29]), the ML predicted
T and WF can be plotted against the known values of all
devices. Fig. 12 shows that our ML model can predict the
operating temperature in agreement with the actual temper-
ature trend. Fig. 13 shows that the machine can predict the
relative WF in agreement with the extracted WF trend from
device experimental data using the device physics. Although
the prediction of the absolute values is not perfect, provided
the non-ideality of many of the experimental I-V curves
shown in Fig. 10 and the co-existence of other unknown vari-
ations, the proposed TCAD ML framework has successfully
provided statistically meaningful information on the phys-
ical properties of the Ga;O3 devices without the need for
expensive and destructive physical characterizations. Most
importantly, no physical quantities extraction is required to
extract physical quantities from IV curves as input features

for ML.

V. SUMMARY

We demonstrated by using TCAD simulation with well-
calibrated parameters and appropriate models, a huge amount
of electrical characteristic data can be generated for machine
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learning. The trained machine can then be used to predict the
device parameters from any given experimental I-V curve. It
should be noted that ML is a statistical process. Therefore,
it is impossible to have 100% accuracy in predicting exper-
imental device parameters. Indeed, for yield improvement
and major defect source discovery in emerging semiconduc-
tor technology development, it is not necessary to have 100%
accuracy.

A key advancement of our framework is to demonstrate
that with PCA, the TCAD data trained machine can give sta-
tistically meaningful predictions of the device parameters.
This framework is also robust as proved by the fact that
even the experiment data is very noisy and affected by many
more known and unknown variables, the framework can still
predict the trend of device parameters well. Moreover, this
framework obviates the need for a large amount of exper-
imental data for ML, which is usually not available and
prohibitively costly in any new semiconductor device tech-
nology development. Therefore, this framework relaxes the
need for the extensive and costly device and material char-
acterizations in the device variation analysis and is believed
to be widely applicable to many new device technologies.
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Similarly, such methodology can be used to predict the
device operating temperature based on experimental [-V
curves and obviates the need for special circuitry for tem-
perature monitoring (particularly in harsh environments, the
circuit would also require bulky and expensive cooling
systems). Although the predicted temperature is not exactly
the same as the experimental temperature, mainly due to the
noises present in experimental data, our results, being the
first experimental demonstration, have shown the feasibility
of using TCAD augmented ML to assist in monitoring the
device operating conditions.

Finally, our framework may be considered as one kind
of inverse design. Compared to other inverse design using
TCAD [25]-[28], our framework requires no physical quan-
tities extraction and no complex optimizer (only simple 34
order polynomial and PCA). The TCAD-based inverse design
has been proposed for many years but it is still far away
from a wide industrial adoption, probably due to the need for
too much domain expertise in both data processing/selection
and optimizer optimization. For example, very often, users
have to carefully design the specifications of the problem to
avoid instability in the optimizer. As such, extensive inter-
actions between the ML and the user are required [27]. Our
framework takes an important step towards solving the above
problems.

In this article, a structure which allows using 2D simula-
tion with cylindrical coordinate to capture full 3D effect is
used. If the same framework is used for 3D simulation, it
is expected that the simulation time can be increased up to
10 times, depending on the types of simulations and models
involved. Thus, the time needed to perform data generation
using TCAD can be as long as 20 days if using our current
computation resources but can be significantly reduced with
enhanced computation capability. Moreover, by choosing the
TCAD models appropriately (such as using a simplified
model with similar accuracy as in [30]) or using innovative
methodologies to perform 3D simulations (such as mixed-
mode simulations with multiple 2D slices as in [31]), the
simulation time can be reduced substantially.

VI. CONCLUSION

An ML-TCAD framework is proposed and demonstrated for
device variation and operating condition analysis, which can
extract the key material and device parameters and operating
conditions (such as ambient temperature) from the device I-
V characteristics and identify the major root cause for the
variation in device I-V characteristics. Using Ga,O3 SBD as
a case study, it is shown that our framework can predict the
physical parameters in agreement with experimental results.
The ML algorithm demonstrated in this work is the Principal
Component Analysis (PCA) followed by third order polyno-
mial regression. PCA on the input I-V curves was found to
be critical for increasing the robustness of ML, which allows
for effective prediction without physical quantities extraction,
even when the experimental data is very noisy. It demon-
strates the potential of the TCAD-ML framework for relaxing

VOLUME 8, 2020

the need for the extensive and costly device and mate-
rial characterizations in the device variation and operating
temperature analysis. Moreover, since no physical quanti-
ties extraction is required and only simple 3™ polynomial
regression and PCA are needed, such a method is readily
transferrable to solve other problems such as defect iden-
tification using Capacitance-Voltage (C-V) curves of other
devices.
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