
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2021

An Open Source Direct Messaging and Enhanced An Open Source Direct Messaging and Enhanced

Recommendation System for Yioop Recommendation System for Yioop

Aniruddha Dinesh Mallya
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Recommended Citation Recommended Citation
Mallya, Aniruddha Dinesh, "An Open Source Direct Messaging and Enhanced Recommendation System for
Yioop" (2021). Master's Projects. 1045.
DOI: https://doi.org/10.31979/etd.474u-r5rn
https://scholarworks.sjsu.edu/etd_projects/1045

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1045?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1045&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

An Open Source Direct Messaging and Enhanced Recommendation System for

Yioop

 A Project Report

 Presented to

 The Faculty of the Department of Computer Science

 San José State University

 In Partial Fulfillment

 Of the Requirements for the

 Degree of Master of Science

By

Aniruddha Dinesh Mallya

Dec, 2021

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

©2021

Aniruddha Dinesh Mallya

ALL RIGHTS RESERVED

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

By

Aniruddha Dinesh Mallya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

MAY 2021

Dr. Christopher Pollett Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

ACKNOWLEDGMENT

First, I want to thank my project advisor, Dr. Chris Pollett, for all his guidance, patience and

motivation throughout the past year. I want to express my sincere appreciation for the

opportunity to work with someone as humble and knowledgeable as him.

My sincere gratitude also goes to, Dr. Katerina Potika and Dr. William Andreopoulos,

esteemed members of my defense committee. I am also grateful to all the CS faculty for

showing their patience, understanding and support towards me during my graduate study.

Finally, I would like to thank my mother, Asha Mallya, for her constant support and faith in

me even during the tough times, my friends, Priyam Dhanuka, for his valuable knowledge of

the tech industry and using it to guide me in my work, Smridhi Seth, for her loving care and

support throughout my studies and to all others who helped me throughout the semester, my

heartfelt thanks.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

1

ABSTRACT

 Recommendation systems and direct messaging systems are two popular components of web portals.

A recommendation system is an information filtering system that seeks to predict the "rating"

or "preference" a user would give to an item and a direct messaging system allows private

communication between users of any platform. Yioop, is an open source, PHP search engine

and web portal that can be configured to allow users to create discussion groups, blogs, wikis

etc.

 In this project, we expanded on Yioop’s group system so that every user now has a

personal group. Personal groups were then used to add user clipboards to the wiki systems and

were used to create a viable direct messaging system in Yioop. Next, we have improved upon

the current recommendation system for Yioop where given a user’s history, threads and

groups are suggested to a user. Yioop uses the concept of term frequency and inverse

document frequency to provide recommendations, so we added upon this by creating a new

recommendation system that uses Hash2Vec. In our experiments we conducted some load

tests on our DM system’s database and using the chi-squared test we hypothesize a linear

execution time in terms of database latency vs volume of data sent by multiple users to our system

and we also compared the accuracy between the old and new recommendation systems and

saw an improvement in the avg. F1 measure by 60.28%.

Index Terms: Yioop, Web-pages, Direct-Messaging, Recommendation Systems.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

2

TABLE OF CONTENTS

1. INTRODUCTION .. 5

2. BACKGROUND ... 7

2.1 Yioop Search Engine .. 7

2.2 Related Work .. 8

3. PRELIMINARY WORK .. 9

4. DESIGN FOR DIRECT MESSAGING ... 12

5. IMPLEMENTATION OF DIRECT MESSAGING ... 14

5.1 Experiments .. 19

6. YIOOP’S RECOMMENDATION SYSTEM ... 22

6.1 TD-IDF Brief Synopsis ... 22

6.1.1 Term Frequency ... 22

6.1.2 Inverse Document Frequency .. 24

6.1.3 TF * IDF to Calculate Weights .. 26

6.2 Recommending Threads and Groups in Yioop ... 27

6.2.1 Computing TF for Threads .. 28

6.2.2 Computing TF for Users .. 28

6.2.3 Computing IDF for Threads ... 29

6.2.4 Computing IDF for Users .. 29

6.2.5 TF-IDF weights for Threads .. 30

6.2.6 Threads and User Cosine Similarity .. 30

6.3 Group Recommendations .. 31

7. ENHANCING YIOOP’S RECOMMENDATION SYSTEM .. 32

7.1 Word Embeddings .. 32

7.2 HASH2VEC .. 32

7.3 Experiments .. 37

8. CONCLUSION .. 39

BIBLIOGRAPHY ... 40

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

3

LIST OF FIGURES

Fig. 1 USERS and USER_GROUP Table Schemas .. 10

Fig. 2 GROUP_ITEM and SOCIAL_GROUPS Table Schemas ... 10

Fig. 3 Personal Chat Group Name for Users .. 12

Fig. 4 Connect Dropdown for Users ... 13

Fig. 5 Public Posts and Chats Dropdown for Users ... 13

Fig. 6 Class Diagram for Direct Messaging .. 14

Fig. 7 Flow Chart for Direct Messaging ... 15

Fig. 8 Use case when user has no friends ... 16

Fig. 9 USER_GROUP Table to establish connection ... 16

Fig. 10 Use case when both users are not connections of each other .. 17

Fig. 11 GROUP_ITEM Table View for Direct Messaging .. 17

Fig. 12 Use case when both users are connected .. 18

Fig. 12. (a) Multiple Users Execution Time with Standard Deviation ... 19

Fig. 12 (b). Database Latency vs Volume of Data Sent by Multiple Users .. 21

Fig. 13 ITEM_TERM_FREQUENCY ... 28

Fig. 14 USER_TERM_FREQUENCY .. 29

Fig. 15 ITEM_TERM_WEIGHTS Table ... 30

Fig. 16 USER_TERM_WEIGHTS Table ... 30

Fig. 17 ITEM_RECOMMENDATION Table ... 31

Fig. 18 Hashing ... 33

Fig. 19 HASH2VEC Table ... 35

Fig. 20 Improved Scores for Recommendation Table .. 35

Fig. 21 Result from Old Recommendation Table ... 36

Fig. 22 Result from New Recommendation Table .. 36

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

4

LIST OF TABLES

Table 1 Document 1 Term Frequency .. 23

Table 2 Document 2 Term Frequency .. 23

Table 3 Document 3 Term Frequency .. 23

Table 4 Document 1 Log Term Frequency .. 24

Table 5 Document 2 Log Term Frequency .. 24

Table 6 Document 3 Log Term Frequency .. 24

Table 7 Inverse Document Frequency of all words in given corpus .. 25

Table 8 Documents Weighted by Query Terms .. 27

Table 9 Precision and Recall Results ... 38

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

5

1. INTRODUCTION

 Yioop is an open source implementation that acts as a search engine and web portal. As a web portal

it lacks some features like Direct messaging (DM). DM is a type of technology that allows one to chat

online in real time over any type of computer network like the Internet. Two or more individuals send

messages over a network when they each input text and trigger a transmission to the recipient(s). The

primary difference between direct messaging and email is that conversations occur in real time, i.e.,

instantly. DM is a feature shared by all social media platforms. Besides being used for personal purposes,

DM can help achieve business goals for example a company can easily interact with clients with DM by

sending custom messages about other business collaborations, advertisements or for simply requesting

feedback. and for these reasons this feature is being added to a Yioop.

 It is important to first note that many social networking websites like Facebook, Twitter, Instagram

provide the capability of creating groups dynamically. Looking at Facebook for example a group creation

option is available on the homepage of the web application. These groups can be dynamically created by a

user, allowing them to connect with different people, such as family, friends, classmates or people who

share the same interests. Yioop precisely provides such a feature. Depending on the role of the user within

the group (owner vs. user), members of a group can be given access control and we further extend this

access control to allow users to directly send messages to other users with whom they are connected.

 In a recommendation system, users are given suggestions as to which news articles to browse, which

movies to watch, which restaurants to eat at, what things to do in a group etc. in this manner we can

potentially find the information most relevant to us, rather than letting us skim through or search through

a series of items. Recommendation systems in companies like Google, Youtube or Facebook use TF-IDF

as a base [12] [13] to provide suggestions for news articles or different medias like music/videos. In this

project, we look at a similarly built recommendation system for Yioop using its open source discussion

groups. Prior to improving this recommendation system, we examined the internal working of Yioop’s

recommendation engine. Initially, the system was built using collaborative filtering but it ran into the risk

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

6

of only recommending popular threads [14]. Next, the recommendation model was extended to make

predictions using term frequency (TF) and the inverse document frequency (IDF) of users and threads.

Here, we observed that the TF-IDF of words with respect to user and threads were only considered while

recommending a thread but contextualizing the word to potentially improve thread recommendations was

missing. So we decided to implement Hash2Vec in order to be able to contextualize the words. We

considered traditional neural networks like word2Vec or Glove to contextualize words however the

problem is that it is expensive to train these models and in order to be able to use these models in quick an

efficient fashion big companies end up relying on cloud based services and permanently rely on such

external services. The novelty of Hash2Vec lies in the fact that it uses a non-neural network model and so

it does not require any training and yet it shows promising results — detailed further in the Chapter 7 —

making Yioop ideal to use for small scale organizations that cannot afford expensive cloud services but

still maintaining its large scale functionality.

 This report is organized as follows: Chapter 2 gives some background about Yioop and we look at

some important background related to the direct messaging and recommender systems. Chapter 3 talks

about the preliminary work that went into understanding and setting up Yioop. Chapter 4 details what the

different tables in Yioop are and how we take advantage of it to setup our direct messaging system.

Chapter 5 goes over some of the basics in the Yioop recommender system and how it is built in Yioop.

Chapter 6 discusses about how the current recommendation system can be improved with a technique

called hashing and Chapter 7 discusses some experiments performed to test the systems effectiveness.

Chapter 8 gives a conclusion to the project and discusses possible future work for it.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

7

2. BACKGROUND

2.1 Yioop Search Engine

 In this chapter we will look at the Yioop’s open discussion group functionality and try to understand

a little bit of how this functionality works. Firstly, Yioop is written in PHP and released under GPLv3

license [2]. It is available as a download for free. In addition to a regular search engine, the Yioop

search engine also allows users to search for URLs that have been pre-defined by them, i.e., when a

crawl is performed in Yioop and the user can select the URLs or URL ranges they want to be

searched for the search results. Yioop uses its own model-view-controller framework and has an

easy-to-use interface. All documentation and resources on Yioop are available on the Seekquarry

website [1].

 Now, coming to Yioop’s group functionality feature, in addition to creating groups users can create

pages within a group with different access controls on these features. Different groups or different users

within a group can share pages amongst each other. Here, each group or user can create its own page for

the articles they have written and these pages can be used just like wikis.

 Despite all these features Yioop leaves a lot to be desired for example if users of the platform would

like to communicate directly with other users rather than openly ask something on a discussion forum like

on threads of a public group where others can see this conversation. This is where a direct messaging

system would be highly desirable allowing users to privately communicate with each other and is

introduced as part of this project.

 Additionally, we know users of Yioop can create discussions groups and start new threads

within those groups to share information with other users. Using this information and based on the

threads or groups a user has viewed previously, Yioop’s recommendation engine suggests threads

or groups they might be interested in. So, users are recommended two items through the

recommendation system, i.e., Groups and Threads.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

8

2.2 Related Work

 In their study, Argerich et. al [8] proposed a new way to derive the embedding vectors for

words that did not involve any neural networks; they utilized a hashing function. We will look at

this hashing concept called Hash2Vec to possibly improve the thread and group suggestions in

Yioop. Now say, we use a Continuous Bag of Words (CBOW) model for a million words it makes

a co-occurrence matrix of size million by million giving it a space complexity of O(n2) and it also

have an expensive training time to process all million words in their vectorized forms. According

to Argerich et. al in Glove, word2vec, the vectors were generated with a predefined length to keep

this matrix optimized, since a massive matrix is impractical to process. While the hashing

technique does not require training, it will require some processing time however it’s space

complexity is O(nk), n = numbers of words in corpus and k = a fixed dimensionality which can be

small, showing an immediate improvement in comparison to the word2vec/Glove training. The

Hash2Vec resultant word embeddings of similar words are on power with Glove’s word

embeddings [8], thus making it favorable to implement in PHP and prevent poor performance that

PHP can face with large scale data [9].

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

9

3. PRELIMINARY WORK

 In this chapter we will look at what and how a direct messaging system works and some of the initial

work that went into integrating it into Yioop. A DM system provides real time transmission of

information between users of the system privately through a medium like the internet. Messages

can even be sent to users not logged in (offline messages), eliminating some of the differences

between direct messaging and email [6]. Similarly, Yioop chat system aims to make text

conversations available to be saved and used later.

 Before tackling the problem of direct messaging we looked at some instant messaging protocols used

by companies like WhatsApp and iMessenger both of which the XMPP protocol [3]. However, since this

leads to dependencies on external libraries we decided to rely on a simple AJAX and database interaction

to simulate the direct messaging. We will first look at how Yioop manages its groups feature. Yioop

follows the model-view-controller (MVC) software design pattern, and the Manage Group functionality

allows users to add, delete or view groups. We are interested in the add and view groups methods,

essentially it works by forwarding requests to the controller, the controller assigns the request to a

relevant action and then passes it to the model. Models perform the necessary actions and send database

responses to the controller, which sends the response and renders the applicable view on the browser.

 The database tables are designed such that they store and retrieve the data efficiently. We are

interested in the following tables: USERS, USER_GROUP, GROUP_ITEM and SOCIAL_GROUPS.

The columns in the four tables mentioned are shown in Fig. 1 and Fig. 2.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

10

Fig. 1 USERS and USER_GROUP Table Schemas

Fig. 2 GROUP_ITEM and SOCIAL_GROUPS Table Schemas

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

11

 The USERS table is updated when a new users registers or is added to the Yioop platform and is

given a “user_id”. The USER_GROUP table is consists of the given “user_id” for a user and the

“group_id” of the groups a user is part off. The SOCIAL_GROUPS table consists of “group_name” and

“user_id”. Finally GROUP_ITEM table consists of the “thread_id” and “group_id” to identify which

threads belong to which group along with the user comments that are part of the thread.

 From this we understand that groups access is controlled by assigning “group_id” to different users in

the USER_GROUP table and comments to a thread are saved in the GOURP_ITEM table. We take

advantage of this in place schema to establish a direct messaging system for Yioop explained in the

following chapters.

 We even researched Netflix’s recommender system [4] to understand how collaborative filtering

works and its different approaches. While Yioop initially was setup with a custom collaborative filtering

technique which involved looking at a user’s posts and the user’s views on a thread, it led to

recommending trending threads to a user. This was further extended using the td-idf technique with user

and thread in mind and which led to more custom recommendations. However, going ahead we will dive

deep into the working of this system and point out what can potentially be improved using a simplified

word embedding technique called Hash2Vec.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

12

4. DESIGN FOR DIRECT MESSAGING

 In this chapter we look at the design idea for a DM system in Yioop. So, earlier we learnt about the

different tables present in the database of Yioop and in order to manipulate the tables related to groups,

the “GroupModel” class was used and to add users the “UserModel” class was used. Hence for our DM

system these models were used to create a pre-defined group called "Personal" through the

"AccountaccessComponent" controller class. So when a new user is introduced into the Yioop

environment and that user logs in for the first time, the aforementioned pre-defined group is created

automatically.

 The SOCIAL_GROUPS table manages the group information for a particular user and one of the

constraints for a user to create a group is that the group name needs to be unique. Now since “Personal” is

a way of identifying the chat group for a user we needed to add something more to this title to make it

more distinguished for a user. We did this by combining the word “Personal” and a user’s unique

identifier in Yioop , i.e., “user_id” in the USER table for example, “Personal$1”, here $ is a delimiter and

1 is the user_id for the admin of this system.

Fig. 3 Personal Chat Group Name for Users

 Before being able to deal with direct messaging between users first we had to decide on how to allow

users to connect with each other. So we decided to allow users to connect with other users through a drop

down option as shown in the Fig. 4.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

13

Fig. 4 Connect Dropdown for Users

 So different users can connect with each other as long as they are part of a common group.

Fig. 5 Public Posts and Chats Dropdown for Users

 Since the “Personal” group is a custom group specially used for DM between people, it appears as the

“Chat” option shown above. This dropdown is available to view from any group feed view in Yioop and a

user can use this option to access their private chats with other users. “Public Posts” as the name implies

shows the posts made by a user and are available for all to see.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

14

5. IMPLEMENTATION OF DIRECT MESSAGING

 Now we have a solid foundation to move forward with implementing the DM system in Yioop. There

are three uses cases for this problem statement, i.e., handling the logic for when a user has no friends,

when one user sends a friend request while the other user has not accepted the connection request and

finally when both users have accepted the connection requests from each other. Since Yioop follows the

MVC model all the logic has to be handled by the controller.

 Fig. 6 and Fig. 7 is the design idea and logic flow behind the direct messaging system to be deployed

on Yioop. The class diagram in Fig. 6 includes the applied methods but is not limited to it.

Fig. 6 Class Diagram for Direct Messaging

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

15

 This DM feature is primarily handled by the groupFeeds() function under the SocialComponent class

which processes requests from user under the controller domain. The SocialComponent sends these

requests to the GroupModel, which executes the tasks like adding users to groups, deleting groups, etc.,

and sends back a response. Next it calls the GroupController class that extends the Controller class which

further calls the ChatFeedElement class that ultimately renders the view.

 Fig. 7 Flow Chart for Direct Messaging

 Looking at use case one, when a user has no connections, i.e., no friends. We simply do this by

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

16

checking if a user’s has any friends—equated to threads—as part of their “Personal” group. Fig. 8 shows

the result of such a scenario.

Fig. 8 Use case when user has no friends

 Now coming to use case two, when a user sends the connection request to a different user and the

connection has not connected with the user then the connection is handled by prompting the user to wait

for the connection to connect with the user as well. To do so, first the user gives the connection access to

their “Personal” group, this done in the backend database in the USER_GROUP table. For example

looking at the table in Fig. 9,

Fig. 9 USER_GROUP Table to establish connection

Here, the “Personal” group for user with “user_id: 1” is also given access to user with “user_id: 1245”.

Next, we do vice versa, i.e., we check if “Personal” group of “user_id: 1245” is given access to “user_id:

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

17

1”, if not the Fig. 10 below is displayed.

Fig. 10 Use Case when both users are not connections of each other

 Final use case three, when both users are connected to each other which is indicated by the

USER_GROUP table as mentioned above, we then have to store the chat between any two users, to do so

we user the GROUP_ITEM table. But since we are dealing with two “Personal” groups of the two users

“texting” each other we had to save the “text” for both the groups. The table is as shown in Fig. 11.

Fig. 11 GROUP_ITEM Table View for Direct Messaging

The table in Fig. 11 is displayed as follows to a user.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

18

Fig. 12 Use Case when both users are connected

 We faced some challenges while creating this DM system. The first experiment we tried was creating

a "Personal" group in one click for all existing users. However, due to the number of dependencies

between different tables in Yioop's database, this proved to be challenging to handle. We then had to

modify the method for each new user. We developed a method for creating groups such that when a user

first logged into Yioop we check if the active status for that user was 1. If so, we created the "Personal"

group for that user and changed their active status from 1 to 5 in the database. When new features are

added to Yioop, this logic will be used to identify it’s different versions. A second challenge was to

manage the title view of the "Personal" group which displayed a user's full “username” and “user_id” on

different webpages that were dependent on the SOCIAL_GROUPS table, such as all the groups they are a

part of or the menu bar. The first step was to work out that all of the display functionality was controlled

by "Element" class under the “views” section on the backend of Yioop and then create a method which

could be used across other elements that extend this class to address this issue.

 The third challenge was to get two different pages to display on the same page. The DM system uses

the “GroupfeedElement” class as a foundation to display results to the user, the logic for a how the page

will look when a list of threads in a group is requested is different from when comments by users under a

particular thread will look is different and is displayed on two different pages. We had essentially

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

19

combine the design for the two separate pages into one page and move things around to get the chat view

displayed in Fig. 12.

5.1 Experiments

 To get an idea of the performance of this implementation we did some load tests on the Yioop

backend database. To simulate multiple users we created a program that created instances of multiple

insertions on the same local machine. These insertions are meant to also simulate the transactions that

take place when users send messages to each other. We timed the programs and the latency information

was captured in terms of seconds the table is shown below in Fig. 12. (a).

 2 users +/- 3 users +/- 5 users +/- 10 users +/- 15 users +/-
200 KB 45.70 19 146.64 43 826.88 30 1390.90 35 3071.35 37
1 MB 167.27 28 497.64 33 1801.69 58 5790.10 23 12079.14 34
2 MB 324.32 20 938.82 21 2850.18 86 11210.13 35 20010.12 34
3 MB 508.60 17 1310.66 38 4084.04 94 16823.21 29 31095.62 34
4MB 698.23 18 1750.06 35 5280.26 54 22619.18 41 40161.49 27

 Fig. 12. (a) Multiple Users Execution Time with Standard Deviation

 We calculated the above table by taking the avg. for each set of multiple users.

 For example consider 5 users interacting with the database; by running it 5 times we took out the avg.

= 826.88 secs and standard deviation = 15. This means in the case of 5 multiple users the total execution

time would be anywhere between 796.88 – 856.88 secs around 95% of the time (assuming all systems run

fall under the normal distribution curve), i.e., within two standard deviations.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

20

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

200 KB 1 MB 2 MB 3 MB 4MB

Da
ta

 L
at

en
cy

 (i
n

se
cs

)

Volume of Data Sent

2 users

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

200 KB 1 MB 2 MB 3 MB 4MB

Da
ta

 L
at

en
cy

 (i
n

se
cs

)

Volume of Data Sent

3 Users

0.00

750.00

1500.00

2250.00

3000.00

3750.00

4500.00

5250.00

200 KB 1 MB 2 MB 3 MB 4MB

Da
ta

 L
at

en
cy

 (i
n

se
cs

)

Volume of Data Sent

5 Users

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

21

 Fig. 12 (b). Database Latency vs Volume of Data Sent by Multiple Users

 After observing the plots in Fig. 12. (b), we can roughly set a linear execution time in terms of

database latency vs volume of data sent by multiple users. So we can see that as the number of users

increases the time taken by multiple users for “text” insertions also increases.

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

200 KB 1 MB 2 MB 3 MB 4MB

Da
ta

 L
at

en
cy

 (i
n

se
cs

)

Volume of Data Sent

10 Users

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

45000.00

200 KB 1 MB 2 MB 3 MB 4MB

Da
ta

 L
at

en
cy

 (i
n

se
cs

)

Volume of Data Sent

15 Users

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

22

6. YIOOP’S RECOMMENDATION SYSTEM

 Before moving ahead and discussing about the potential enhancement to Yioop’s recommendation

system, we need to look at some of the concepts being used in the current implementation of this system.

In particular we will look into term frequency and inverse document frequency (TF-IDF) in depth and

word embeddings to add more detail to it.

 When an information retrieval system like a search engine scores a document as relevant if it contains

the terms in the user's search query it fails to take into account the number of occurrences of the query

words in the document while weighing a document's relevance. Now, term frequency and inverse

document frequency are designed to weigh the documents while taking into consideration the frequency

of terms. A word's performance in TF-IDF is determined by how many documents it appears in compared

to how often it appears in that document [5]. If a user query contains a word with a high TF-IDF value,

the document would be interesting to the user if it contained this word.

6.1 TD-IDF Brief Synopsis

 The TF-IDF returns relevant documents according to the count of the words that are part of a user’s

search query. In order to get such documents two measures are calculated, i.e., term frequency and

inverse document frequency. To better understand how this works we describe the inner workings of the

technique and then work our way through an example. Assume we have a set of ‘n’ documents and user’s

query of ‘m’ words, we intend to return a smaller set of documents in order of most relevance based on

the provided user query.

6.1.1 Term Frequency (TF)

 The term frequency in documents refers to the number of times a word appears in a document. As an

example, let's look at the three documents below and try to understand how the term frequency

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

23

calculation is done.

Document 1: Baguette a bread type can be made with the dry yeast or the fresh yeast.

Document 2: Toasted bread has a tasty pairing with the salted butter.

Document 3: You can make the beer from a dry yeast or a distiller yeast.

 Let us say a user searches a query “bread pairing”, as such free-text queries are usually created by

web users without following a particular language or structure. Instead, they use words to construct a

query expression. There is no standard query structure that all users follow.

Table 1, 2 and 3 show the TF for all three documents respectively.

Table 1: Document 1 Term Frequency

words baguette a bread type can be made with the dry yeast or fresh

frequency 1 1 1 1 1 1 1 1 2 1 2 1 1

Table 2: Document 2 Term Frequency

words toasted bread has a tasty pairing with the salted butter

frequency 1 1 1 1 1 1 1 1 1 1

Table 3: Document 3 Term Frequency

words you can make beer from a dry yeast or distiller

frequency 1 1 1 1 1 2 1 2 1 1

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

24

 In a document the frequency of a word is influenced largely by the document's size, so we normalize

it as a logarithm (log) of the frequency. In the case that a word appears only once in a document, that

word has TF measurement of zero for that document. To avoid this, we add a constant 1.

Normalized TF is calculated as:

TF = log(ft,d) + 1 if (𝑓𝑓t,d) = 0
log(𝑓𝑓t,d) if (𝑓𝑓t,d) > 0

where TF = term frequency, ft, d = frequency of a word ‘t’ in document ‘d’.

Table 4: Document 1 Log Term Frequency

words baguette a bread type can be made with the dry yeast or fresh

frequency 1 1 1 1 1 1 1 1 0.3 1 0.3 1 1

Table 5: Document 2 Log Term Frequency

words toasted bread has a tasty pairing with the salted butter

frequency 1 1 1 1 1 1 1 1 1 1

Table 6: Document 3 Log Term Frequency

words you can make beer from a dry yeast or distiller

frequency 1 1 1 1 1 0.3 1 0.3 1 1

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

25

6.1.2 Inverse Document Frequency

 We consider all words in a document equally important when we calculate the term frequency. But, it

overlooks the effect of a few words common to almost all documents. Some words like a, an, the, etc., are

in almost all of the documents, while others are in only a few, in this situation, the logarithm is helpful.

IDF calculation:

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑁𝑁
𝑁𝑁𝑡𝑡
�

where N = total documents in corpus and Nt = number of documents containing term ‘t’.

Let us look at how IDF is calculated for user’s query “pairing”,

Total document available in corpus (N) = 3,

Number of documents containing term ‘t’ (Nt) = 1,

𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑁𝑁

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
� = 𝑙𝑙𝑙𝑙𝑙𝑙 �

3
1
� = 0.48

IDFs calculated for all terms in our corpus are shown in Table 7.

Table 7 Inverse Document Frequency of all words in given corpus

words IDF

baguette 0.48

a 0

bread 0.18

type 0.48

can 0.18

be 0.48

made 0.48

with 0.18

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

26

the 0

dry 0.18

yeast 0.18

or 0.18

fresh 0.48

toasted 0.48

has 0.48

tasty 0.48

pairing 0.48

salted 0.48

butter 0.48

you 0.48

make 0.48

beer 0.48

from 0.48

distiller 0.48

 As we can see terms like “a”, “the” etc. have a low weight since they appear in most documents and

words like “tasty”, “beer” etc. have a higher weight since they appear in just one document.

6.1.3 TF - IDF to Calculate Weights

 We have TF and IDF of words in given corpus, the next step is to multiply these two quantities to

find out the frequently occurring words in a document and inseminate the influence of their frequency in

the surrounding documents. The stop words such as is, an, etc. found in nearly all documents can be

filtered out with this technique. By reducing the effect of stop words in the weighing process, this method

allows you to gain a better understanding of the relevance of each word to a document.

 So to find the relevant weights, we multiply each document's normalized term frequency with its

inverse document frequency. Looking at our example further, in Doc. 1 the word “bread” has normalized

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

27

term frequency of 1 and IDF of 0.18 so the weight assigned to for that term is 1 x 0.18 = 0.18. Now, we

find the TF-IDF weights for all documents and this is shown in Table 8.

Table 8 Documents Weighted by Query Terms

search terms Doc. 1 Doc. 2 Doc. 3

bread 0.18 0.18 0.18

pairing 0 0.48 0

6.1.4 Cosine Similarity

 Using TF-IDF Weights, we can find the similarity between the user query and each of the documents.

The cosine similarity is a measure of the importance of a document to a user. Just as we calculated the TF

• IDF for the words in a document, we can calculate the TF • IDF for query terms. Based on cosine

similarity (CS), we can determine whether or not a document D1 is relevant to a user query D2. This is

calculated using the following formula:

𝐶𝐶𝐶𝐶(𝐼𝐼1,𝐼𝐼2) = �
𝐼𝐼1 • 𝐼𝐼2

||𝐼𝐼1|| • ||𝐼𝐼2||
�

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (𝐼𝐼1 • 𝐼𝐼2) = (𝐼𝐼1[1] • 𝐼𝐼2[1]) + (𝐼𝐼1[2] • 𝐼𝐼2[2]) + … + (𝐼𝐼1[𝑛𝑛] • 𝐼𝐼2[𝑛𝑛]),

||𝐼𝐼𝑛𝑛|| = �(𝐼𝐼𝑛𝑛[0]2) + (𝐼𝐼𝑛𝑛[1]2) + … + (𝐼𝐼𝑛𝑛[𝑛𝑛]2)

 The document with the highest cosine similarity measure to the query is returned because it is most

similar to the query of the users.

6.2 Recommending Threads and Groups in Yioop

 Yioop initially would recommend threads using a baseline predictor typically implemented using a

“rating” system, however since the rating system was not informative enough in Yioop, a user’s view of

thread was used. This too ended up suggesting mostly the popular threads and so TD-IDF was introduced

to improve the recommendations.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

28

 Initially, a Bag of Words (BoW) is created to using the “title” and “description” columns of the

GROUP_ITEM table shown in Fig. 1 of Chapter 3. Currently “Wiki” pages are excluded while looping

over this table, moving ahead we will have to also exclude entries created for chats between users. After

generating the BoW, the frequency count and log frequency of all those words is computed.

6.2.1 Computing TF for Threads

 A BoW is created by iterating over each thread’s “title” and “description” as mentioned earlier and

the log frequency for each word in the BoW is taken to reduce the impact of a large title or description in

the table shown in Fig. 13.

Fig. 13 ITEM_TERM_FREQUENCY Table

 Here, ‘term_id” is generated using the ‘crc32’ hash value of the word in BoW in Yioop’s backend.

6.2.2 Computing TF for Users

 A log of the user history is stored in the ITEM_IMPRESSION table for each thread viewed by a user.

The bag of words created in the earlier step is used to determine the importance of a word to each user.

Using the ITEM_TERM_FREQUENCY table, we sum up the frequency counts for each word in a thread

to determine how many times a user has seen the word. Next count of word occurrences that user has seen

is stored using it’s log value in the USER_TERM_FREQUENCY table.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

29

Fig. 14 USER_TERM_FREQUENCY Table

6.2.3 Computing IDF for Threads

 To get the IDF for each word in the bag of words, the number of times it appeared in each thread,

versus the corpus of all threads as a whole is calculated. This was done using the

ITEM_TERM_FREQUENCY table. The formula is as follows:

𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤,𝑡𝑡 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑇𝑇𝑟𝑟 𝑐𝑐𝑙𝑙𝑐𝑐𝑛𝑛𝑇𝑇

𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑇𝑇𝑟𝑟𝑟𝑟 𝑐𝑐𝑙𝑙𝑛𝑛𝑇𝑇𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑙𝑙 𝑤𝑤𝑙𝑙𝑒𝑒𝑟𝑟 ′𝑤𝑤′
�

where IDF ‘w’ = word with respect to thread ‘t’.

6.2.4 Computing IDF for Users

 In a similar manner, the inverse document frequency for words with respect to users using the

USER_TERM_FREQUENCY table shown in Fig. 14 is calculated. If there are words, i.e., threads, that

are not being viewed by anyone, add 1 shown below.

𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤,𝑢𝑢 = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟 𝑝𝑝𝑙𝑙𝑟𝑟𝑇𝑇𝑟𝑟 𝑐𝑐𝑛𝑛 𝑌𝑌𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝

𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟 𝑝𝑝𝑙𝑙𝑟𝑟𝑇𝑇𝑟𝑟 𝑤𝑤𝑐𝑐𝑇𝑇ℎ 𝑇𝑇ℎ𝑒𝑒 𝑤𝑤𝑙𝑙𝑒𝑒𝑟𝑟 ′𝑤𝑤′ + 1
�

where IDF ‘w’ = word with respect to user ‘u’.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

30

6.2.5 TF-IDF weights for Threads and Users

 TF is multiplied by IDF for every word with respect to users and threads. The significance of a word

to a thread is measured and stored in the ITEM_TERM_WEIGHTS Table as shown in Fig. 15.

Fig. 15 ITEM_TERM_WEIGHTS Table

 Also, the significance of a word to a user is measured and stored in USER_TERM_WEIGHTS Table

as shown in Fig. 16.

 Fig. 16 USER_TERM_WEIGHTS Table

6.2.6 Thread and User Cosine Similarity

 Next, based on cosine similarity between users and threads, threads that are closest to each user's

taste are determined. Finally, users are recommended the top three similar threads.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

31

 Fig. 17 ITEM_RECOMMENDATION `Table

 In Fig. 17 table, “item_type” is used to distinguish between a thread and group recommendation,

value 2 indicates it’s a thread and 3 indicates it’s a group.

6.3 Group Recommendations

 In addition to suggesting groups based on user interests, the system suggests groups that a user might

be interested in and are not members off. Recommendations are made using thread titles and descriptions

since the group names in Yioop are very generic and don't explain what the group is about. To calculate

cosine similarity for each group, all the threads from the group are extracted and their cosine similarity is

summed. Users are recommended the top three similar groups from the same table as in Fig. 17.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

32

7. ENHANCING YIOOP’S RECOMMENDATION SYSTEM

 So far, we have seen how the recommendation system in Yioop works and how TF-IDF is used to

give user’s recommendations that are closer to their tastes based on their thread viewing history. One

thing to note is TD-IDF only considers a word’s relevance in user query to a document and returns the

most relevant documents based on the word from the entire available corpus. However, it fails to consider

the user word in context to other words surroundings it. Thus, one way to enhance the currently

established recommendation system would be to provide context to the words of interest in the entire

corpus using the concept of word embeddings, particularly we will look at Hash2Vec.

7.1 Word Embeddings

 At its core, it is simply a method of associating words using vectors. The skip-gram model and

CBOW mentioned earlier are mainly used to represent words as vectors. The Neural Network is required

for both architectures in order to convert words into vectors. A CBOW and Skip-gram model are related

to the context of the word, where CBOW attempts to predict the word based on the context, while a Skip-

gram model attempts to predict the context based on the word. The initialization of word vectors is done

by generating vectors with random real numbers, next by performing certain tasks, a program learns

meaningful vectors. These words when represented in say a 2-Dimnesional space based on their new

calculated vectors should make intuitive sense. For example words like “placate” or “pacify” should

appear together.

7.2 HASH2VEC

 To understand the working of Hash2Vec, we need to first look at hashing. Converting variable-length

inputs into fixed-length outputs using some mathematical function, the process is known as hashing [10].

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

33

Fig. 18 Hashing [11]

 An example of a hashing function for keys is shown in Figure 7, which maps them to integer values.

As a mathematical function, a hash function processes input and converts it into a value that can be used.

There are many applications for hashing, including security, optimization, and processing words. It has

been around for a long time. Figure 7 illustrates that when two keys point to the same value, we have a

collision. A good hash function minimizes such collisions and produces a result that fits in our table size.

In order to solve the collision problem effectively, the hash function should run with a minimum

computing time. Double hashing, linear or quadratic probing are all approaches to solving this collision

problem [10].

 When mapping keys to hash functions, the probability distribution should be as even as possible, so

that uniform results would be produced. It is also possible to have the hash function generate results using

an efficient table so that there are fewer collisions when it stores values and goes through them fast. This

would result in better overall performance and less time spent going through values. The efficiency of a

hash function depends on its performance and data storing capabilities. This is always a tradeoff. It is

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

34

important that a hash function produce the same outcome for the same key every time in larger

applications to minimize collisions with larger storage spaces. In this project, we have used a vector size

of 200 and used the first four bytes of md5 hash to map to it and resolve the collision problem as it gives

us sufficient space.

 Now coming to Hash2Vec, using a deterministic approach, Hash2vec creates vectors from words in a

low-dimensional space. We will discuss in detail how these vectors are produced in the next section. This

methodology was developed because the traditional method of creating vectors to represent each word in

a low-dimensional space needed a lot of training when it was applied to neural networks. Using the

Hash2Vec method, however, does not require any training, it merely attempts to derive a word hash from

a context window. Using this method, the hash values of each word are stored a temporary storage system

in the form of a dictionary or hash table. This process is called hashing with context, and it would take

less time than word2vec training. When the same word appears in the corpus again, it updates its existing

hash value.

 The process of Hash2Vec in Yioop works as follows, we create our bag of words using the same the

process as described in Chapter 5. Next, we create a tuple such that for every term in our BoW, we take 5

words before the term and 5 words after the term, here the value 5 is selected arbitrarily. Next we

calculate the distance of the words from our ‘term’ of interest using the formula, (𝑒𝑒−𝑥𝑥)2, where x =

(position of word from ‘term’/standard deviation of range (-n, n)), here n = 5. The idea here is when

calculating distance of word from ‘term’ we get a value between the range (0,1) and the closer the value

to 1 the closer it’s position is to the ‘term’ in the corpus.

 Next, we calculate the hash value of the words to hash to the appropriate position in the vector of

length 200 defined for each term in the BoW. The hash function takes the first 4 bytes of the md5 hash

value of the word then we take the integer value of those 4 bytes. After that we do (integer value % 200)

which gives us the position to hash to in the vectorw[200], where ‘w’ is part of the BoW. We then iterate

over each newline in the corpus and do so for all words which we called as the ‘term’ of interest earlier.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

35

Essentially the vector for each word in our BoW acts as a kind of definition for the word based on its

context in a sentence. The different hash positions store its definition in different contexts.

 Now, in order to find the most similar words we take the cosine similarity of our ‘term’ of interest

vector and each word vector in the BoW. Then we filter out the words with the highest cosine similarity

to the ‘term’ of interest. Now, we store this in a table called Hash2Vec as shown in Fig. 19.

Fig. 19 HASH2VEC Table

 In Fig. 19, we see “Term1” refers to our “term” of interest stored as an integer, “Term2” are the

words most similar to the “term” of interest using the Hash2Vec score. Now in the

USER_TERM_WEIGHTS_HASH2VEC table we update the TF-IDF weights by first multiplying the

Hash2Vec score of the similar words and adding it to the original TF-IDF score, this is done for all the

similar words user has seen, i.e., present in the table. We can see the cosine similarity changes from the

original recommendation table vs the enhanced recommendation table shown in Fig. 20.

Fig. 20 Improved Scores for Recommendation Table

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

36

 Finally the updated TD-IF scores are used to calculate the cosine similarity between user and thread

and provides recommendations as is in the current system. After running the new recommender job on the

Yioop database, we look closely at one of the results we see that recommendations do indeed change

between the old and new. Further observing one of the results for a “user_id” = 938, the old

recommendation table gave the result in Fig. 21.

Fig. 21 Result from Old Recommendation Table

And in the new recommendation table the result is in Fig. 22

Fig. 22 Result from New Recommendation Table

 If we look at the first recommendations between the tables in Fig. 21 and Fig. 22, they retrieve the

threads titled “Happy New Year! August 2019 I did a couple 75 million page crawls …..” and “Post your

solutions tot the Feb 17 In-Class Exercise to this thread. Best, Chris”. Now in order to judge if which of

these recommendations is better for the user, we see the activity of the user. Since the user seems to be

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

37

actively contributing to the in-class assignment threads we can assume they are a student. We can also see

that the first thread is a general update about the Yioop platform and the second thread is about an in-class

exercise which the user may be more interested in. On observing this thread we see that words like “post”,

“in-class” etc. all have the word “solution” as a similar word, hence the context seems to be preserved as

intended and provides relevant thread recommendations.

7.3 Experiments

 To judge the accuracy of the hash2vec implemented recommendation system we use precision and

recall. Precision for the first ‘k’ results is given by,

| Rel ∩ Res[1. . k] |
| Res[1. . k] |

where Rel = is all the relevant documents in this case ‘threads’ and Res = the total thread count

returned by the recommendation system. Recall for first ‘k’ results is given by,

| Rel ∩ Res[1. . k] |
| Rel |

 We observed the results for 10 users both in the current recommendation system and the

hash2vec implemented system and state the result below in Table 9.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

38

 Current Recommendation System Hash2Vec Recommendation System
 precision recall precision recall
Student 0.60 0.025641 0.83 0.042735
Admin 1.00 0.000123 1.00 0.000123
User 1.00 0.000354 1.00 0.000531
Student 0.67 0.000354 0.67 0.000531
Student 0.67 0.000354 1.00 0.000354
Student 0.67 0.000354 1.00 0.000354
Student 0.67 0.000354 1.00 0.000354
User 0.50 0.000266 0.33 0.000177
Student 0.83 0.000443 0.83 0.000443
Student 0.67 0.000443 0.83 0.000443

Table 9 Precision and Recall Results

 Here, we can see that the hash2vec implemented recommendation system has at least the same

precision and recall as the current recommendation system and in some instances gives preforms higher

precision and recall. The current recommender system has an avg. F1 measure of 0.005714 and the

Hash2Vec system has a measure of 0.009159, showing an increase of 0.003444 or 60. 28%. Additionally,

we noted that since Yioop is configured to recommend the top three most similar threads and groups to

users for some of the users the current recommendation system could not satisfy that criteria and showed

fewer suggestions however, our hash2vec recommender for those same users could meet that criteria and

provide more suggestions.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

39

8. CONCLUSION

 We researched some architectures and protocols that could work for direct messaging. We studied in

depth the internal working of Yioop to determine the tables that we are of interest to us to be enable us to

develop the DM system. For old and new users, we developed a "Personal" group in Yioop to facilitate

quick communication. We used AJAX to interact with the database and fetch messages instantly. The

experiments we performed shows the database latency vs volume of data inserted by multiple users

increases linearly based on the chi-squared test. A possible future work for DM system is improving the

latency with multithreading to control multiple user insertions or adding a group function between three

or more users to allow a multi-way private communication between users.

 We studied Yioop’s current recommendation system that suggests threads and groups which may be

of interest to users using the user’s viewing history and engagements in Yioop. Next, we implemented a

Hash2Vec that uses the similarity between words to improve the recommender system in Yioop. Based

on the experiments we performed on the Hash2Vec system we see an improvement of 60.28% in the avg.

F1 measure and we can observe that the performance is on power with the current recommendation

system in Yioop or in some instances Hash2Vec performs better by either giving higher accuracy or more

recommendations.

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

40

BIBLIOGRAPHY

[1] “Seek Quarry”, Retrieved November 26, 2021, Available at: https://www.seekquarry.com/.

[2] “Yioop”, Retrieved November 26, 2021, Available at: https://www.yioop.com/.

[3] Akinbi, A., Ojie, E. Forensic analysis of open-source XMPP/Jabber multi-client instant messaging

apps on Android smartphones. SN Appl. Sci. 3, 430 (2021), https://doi.org/10.1007/s42452-021-04431-9.

[4] Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix Recommender System: Algorithms,

Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4, Article 13 (January 2016), 19

pages. DOI:https://doi.org/10.1145/2843948.

[5] Ramos, J, "Using TF-IDF to Determine Word Relevance in Document Queries.", Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424andrep=rep1andtype=pdf

[6] R.B. Jennings, E.M. Nahum, D.P. Olshefski, D. Saha, S. Zon-Yin, C. Waters, "A Study of Internet

Instant Messaging and Chat Protocols.", IEEE Network 20.4, 2006, pp. 16-21, doi:

10.1109/MNET.2006.1668399.

[7] Mikolov, T., Yih, W. T., Zweig, G.: Linguistic Regularities in Continuous Space Word

Representations. In HLT-NAACL, 746–751 (2013).

[8]] Luis Argerich, Matias J. Cano, and Joaquin Torre Zaffaroni: Hash2Vec: Feature Hashing for Word

Embeddings(2016).

[9] Nikolaj Cholakov. 2008. On some drawbacks of the PHP platform. In Proceedings of the 9th

International Conference on Computer Systems and Technologies and Workshop for PhD Students in

Computing (CompSysTech '08). Association for Computing Machinery, New York, NY, USA, Article

12, II.7–2. DOI:https://doi-org.libaccess.sjlibrary.org/10.1145/1500879.1500894.

[10] “Translate Microsoft”, Retrieved November 26, 2021, Available: https://www.microsoft.com/en-

us/translator/.

[11] “Hash Function” , Retrieved November 26, 2021, Available:

https://en.wikipedia.org/wiki/Hash_function

An Open Source Direct Messaging and Enhanced Recommendation System for Yioop

41

[12] Saksham Sachdev, Hongyu Li, Sifei Luan, Seohyun Kim, Koushik Sen, and Satish Chandra. 2018.

Retrieval on source code: a neural code search. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages (MAPL 2018). Association for Computing

Machinery, New York, NY, USA, 31–41. DOI:https://doi.org/10.1145/3211346.3211353

[13] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking search: making domain

experts out of dilettantes. SIGIR Forum 55, 1, Article 13 (June 2021), 27 pages.

DOI:https://doi.org/10.1145/3476415.3476428.

[14] Sarika Padmashali, “An Open Source Discussion Group Recommendation System”, San Jose State

University, May 2017.

	An Open Source Direct Messaging and Enhanced Recommendation System for Yioop
	Recommended Citation

