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ABSTRACT 

       Recommendation systems and direct messaging systems are two popular components of web portals. 

A recommendation system is an information filtering system that seeks to predict the "rating" 

or "preference" a user would give to an item and a direct messaging system allows private 

communication between users of any platform. Yioop, is an open source, PHP search engine 

and web portal that can be configured to allow users to create discussion groups, blogs, wikis 

etc.  

       In this project, we expanded on Yioop’s group system so that every user now has a 

personal group. Personal groups were then used to add user clipboards to the wiki systems and 

were used to create a viable direct messaging system in Yioop. Next, we have improved upon 

the current recommendation system for Yioop where given a user’s history, threads and 

groups are suggested to a user. Yioop uses the concept of term frequency and inverse 

document frequency to provide recommendations, so we added upon this by creating a new 

recommendation system that uses Hash2Vec. In our experiments we conducted some load 

tests on our DM system’s database and using the chi-squared test we hypothesize a linear 

execution time in terms of database latency vs volume of data sent by multiple users to our system 

and we also compared the accuracy between the old and new recommendation systems and 

saw an improvement in the avg. F1 measure by 60.28%. 

Index Terms: Yioop, Web-pages, Direct-Messaging, Recommendation Systems. 

 

 
 
 
 
 
 
 
 



An Open Source Direct Messaging and Enhanced Recommendation System for Yioop 
  

2  

TABLE OF CONTENTS 
 
1. INTRODUCTION .................................................................................................................................... 5 

2.  BACKGROUND ..................................................................................................................................... 7 

2.1 Yioop Search Engine .......................................................................................................................... 7 

2.2 Related Work .................................................................................................................................... 8 

3. PRELIMINARY WORK .......................................................................................................................... 9 

4. DESIGN FOR DIRECT MESSAGING ................................................................................................. 12 

5. IMPLEMENTATION OF DIRECT MESSAGING ............................................................................... 14 

5.1 Experiments ...................................................................................................................................... 19 

6. YIOOP’S RECOMMENDATION SYSTEM ......................................................................................... 22 

6.1 TD-IDF Brief Synopsis ..................................................................................................................... 22 

6.1.1 Term Frequency ......................................................................................................................... 22 

6.1.2 Inverse Document Frequency .................................................................................................... 24 

6.1.3 TF * IDF to Calculate Weights .................................................................................................. 26 

6.2 Recommending Threads and Groups in Yioop ................................................................................. 27 

6.2.1 Computing TF for Threads ........................................................................................................ 28 

6.2.2 Computing TF for Users ............................................................................................................ 28 

6.2.3 Computing IDF for Threads ....................................................................................................... 29 

6.2.4 Computing IDF for Users .......................................................................................................... 29 

6.2.5 TF-IDF weights for Threads ...................................................................................................... 30 

6.2.6 Threads and User Cosine Similarity .......................................................................................... 30 

6.3 Group Recommendations .................................................................................................................. 31 

7. ENHANCING YIOOP’S RECOMMENDATION SYSTEM ................................................................ 32 

7.1 Word Embeddings ............................................................................................................................ 32 

7.2 HASH2VEC ...................................................................................................................................... 32 

7.3 Experiments ...................................................................................................................................... 37 

8. CONCLUSION .................................................................................................................................... 39 

BIBLIOGRAPHY ..................................................................................................................................... 40 

  

 

 

 



An Open Source Direct Messaging and Enhanced Recommendation System for Yioop 
  

3  

LIST OF FIGURES 

Fig. 1 USERS and USER_GROUP Table Schemas  ................................................................ 10 

Fig. 2 GROUP_ITEM and SOCIAL_GROUPS Table Schemas  ................................................. 10 

Fig. 3 Personal Chat Group Name for Users ............................................................................................  12 

Fig. 4 Connect Dropdown for Users .........................................................................................................  13 

Fig. 5 Public Posts and Chats Dropdown for Users  ................................................................. 13 

Fig. 6 Class Diagram for Direct Messaging  .......................................................................... 14 

Fig. 7 Flow Chart for Direct Messaging ...................................................................................................  15 

Fig. 8 Use case when user has no friends .................................................................................................  16 

Fig. 9 USER_GROUP Table to establish connection ............................................................... 16 

Fig. 10 Use case when both users are not connections of each other  ............................................ 17 

Fig. 11 GROUP_ITEM Table View for Direct Messaging  ........................................................ 17 

Fig. 12 Use case when both users are connected  .................................................................... 18 

Fig. 12. (a) Multiple Users Execution Time with Standard Deviation .....................................................  19 

Fig. 12 (b). Database Latency vs Volume of Data Sent by Multiple Users ..............................................  21 

Fig. 13 ITEM_TERM_FREQUENCY .....................................................................................................  28 

Fig. 14 USER_TERM_FREQUENCY  ................................................................................ 29 

Fig. 15 ITEM_TERM_WEIGHTS Table  ............................................................................. 30 

Fig. 16 USER_TERM_WEIGHTS Table  ............................................................................. 30 

Fig. 17 ITEM_RECOMMENDATION Table  ....................................................................... 31 

Fig. 18 Hashing ............................................................................................................. 33 

Fig. 19 HASH2VEC Table  ............................................................................................... 35 

Fig. 20 Improved Scores for Recommendation Table  .............................................................. 35 

Fig. 21 Result from Old Recommendation Table .....................................................................................  36 

Fig. 22 Result from New Recommendation Table  .................................................................. 36 

 

 

 

 

 

 



An Open Source Direct Messaging and Enhanced Recommendation System for Yioop 
  

4  

LIST OF TABLES 

Table 1 Document 1 Term Frequency .................................................................................. 23 

Table 2 Document 2 Term Frequency .................................................................................. 23 

Table 3 Document 3 Term Frequency .................................................................................. 23 

Table 4 Document 1 Log Term Frequency ............................................................................ 24 

Table 5 Document 2 Log Term Frequency ............................................................................ 24 

Table 6 Document 3 Log Term Frequency ............................................................................ 24 

Table 7 Inverse Document Frequency of all words in given corpus .............................................. 25 

Table 8 Documents Weighted by Query Terms ...................................................................... 27 

Table 9 Precision and Recall Results ................................................................................... 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



An Open Source Direct Messaging and Enhanced Recommendation System for Yioop 
  

5  

1. INTRODUCTION 

       Yioop is an open source implementation that acts as a search engine and web portal. As a web portal 

it lacks some features like Direct messaging (DM). DM is a type of technology that allows one to chat 

online in real time over any type of computer network like the Internet. Two or more individuals send 

messages over a network when they each input text and trigger a transmission to the recipient(s). The 

primary difference between direct messaging and email is that conversations occur in real time, i.e., 

instantly. DM is a feature shared by all social media platforms. Besides being used for personal purposes, 

DM can help achieve business goals for example a company can easily interact with clients with DM by 

sending custom messages about other business collaborations, advertisements or for simply requesting 

feedback. and for these reasons this feature is being added to a Yioop.  

       It is important to first note that many social networking websites like Facebook, Twitter, Instagram 

provide the capability of creating groups dynamically. Looking at Facebook for example a group creation 

option is available on the homepage of the web application. These groups can be dynamically created by a 

user, allowing them to connect with different people, such as family, friends, classmates or people who 

share the same interests. Yioop precisely provides such a feature. Depending on the role of the user within 

the group (owner vs. user), members of a group can be given access control and we further extend this 

access control to allow users to directly send messages to other users with whom they are connected.  

       In a recommendation system, users are given suggestions as to which news articles to browse, which 

movies to watch, which restaurants to eat at, what things to do in a group etc. in this manner we can 

potentially find the information most relevant to us, rather than letting us skim through or search through 

a series of items. Recommendation systems in companies like Google, Youtube or Facebook use TF-IDF 

as a base [12] [13] to provide suggestions for news articles or different medias like music/videos. In this 

project, we look at a similarly built recommendation system for Yioop using its open source discussion 

groups. Prior to improving this recommendation system, we examined the internal working of Yioop’s 

recommendation engine. Initially, the system was built using collaborative filtering but it ran into the risk 
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of only recommending popular threads [14]. Next, the recommendation model was extended to make 

predictions using term frequency (TF) and the inverse document frequency (IDF) of users and threads. 

Here, we observed that the TF-IDF of words with respect to user and threads were only considered while 

recommending a thread but contextualizing the word to potentially improve thread recommendations was 

missing. So we decided to implement Hash2Vec in order to be able to contextualize the words. We 

considered traditional neural networks like word2Vec or Glove to contextualize words however the 

problem is that it is expensive to train these models and in order to be able to use these models in quick an 

efficient fashion big companies end up relying on cloud based services and permanently rely on such 

external services. The novelty of Hash2Vec lies in the fact that it uses a non-neural network model and so 

it does not require any training and yet it shows promising results — detailed further in the Chapter 7 — 

making Yioop ideal to use for small scale organizations that cannot afford expensive cloud services but 

still maintaining its large scale functionality.  

       This report is organized as follows: Chapter 2 gives some background about Yioop and we look at 

some important background related to the direct messaging and recommender systems. Chapter 3 talks 

about the preliminary work that went into understanding and setting up Yioop. Chapter 4 details what the 

different tables in Yioop are and how we take advantage of it to setup our direct messaging system. 

Chapter 5 goes over some of the basics in the Yioop recommender system and how it is built in Yioop. 

Chapter 6 discusses about how the current recommendation system can be improved with a technique 

called hashing and Chapter 7 discusses some experiments performed to test the systems effectiveness. 

Chapter 8 gives a conclusion to the project and discusses possible future work for it. 
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2.  BACKGROUND 

2.1 Yioop Search Engine 

       In this chapter we will look at the Yioop’s open discussion group functionality and try to understand 

a little bit of how this functionality works. Firstly, Yioop is written in PHP and released under GPLv3 

license [2]. It is available as a download for free. In addition to a regular search engine, the Yioop 

search engine also allows users to search for URLs that have been pre-defined by them, i.e., when a 

crawl is performed in Yioop and the user can select the URLs or URL ranges they want to be 

searched for the search results. Yioop uses its own model-view-controller framework and has an 

easy-to-use interface. All documentation and resources on Yioop are available on the Seekquarry 

website [1]. 

       Now, coming to Yioop’s group functionality feature, in addition to creating groups users can create 

pages within a group with different access controls on these features. Different groups or different users 

within a group can share pages amongst each other. Here, each group or user can create its own page for 

the articles they have written and these pages can be used just like wikis.  

       Despite all these features Yioop leaves a lot to be desired for example if users of the platform would 

like to communicate directly with other users rather than openly ask something on a discussion forum like 

on threads of a public group where others can see this conversation. This is where a direct messaging 

system would be highly desirable allowing users to privately communicate with each other and is 

introduced as part of this project.  

       Additionally, we know users of Yioop can create discussions groups and start new threads 

within those groups to share information with other users. Using this information and based on the 

threads or groups a user has viewed previously, Yioop’s recommendation engine suggests threads 

or groups they might be interested in. So, users are recommended two items through the 

recommendation system, i.e., Groups and Threads.  
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2.2 Related Work 

       In their study, Argerich et. al [8] proposed a new way to derive the embedding vectors for 

words that did not involve any neural networks; they utilized a hashing function. We will look at 

this hashing concept called Hash2Vec to possibly improve the thread and group suggestions in 

Yioop. Now say, we use a Continuous Bag of Words (CBOW) model for a million words it makes 

a co-occurrence matrix of size million by million giving it a space complexity of O(n2) and it also 

have an expensive training time to process all million words in their vectorized forms. According 

to Argerich et. al in Glove, word2vec, the vectors were generated with a predefined length to keep 

this matrix optimized, since a massive matrix is impractical to process. While the hashing 

technique does not require training, it will require some processing time however it’s space 

complexity is O(nk), n = numbers of words in corpus and k = a fixed dimensionality which can be 

small, showing an immediate improvement in comparison to the word2vec/Glove training. The 

Hash2Vec resultant word embeddings of similar words are on power with Glove’s word 

embeddings [8], thus making it favorable to implement in PHP and prevent poor performance that 

PHP can face with large scale data [9]. 
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3. PRELIMINARY WORK 

       In this chapter we will look at what and how a direct messaging system works and some of the initial 

work that went into integrating it into Yioop. A DM system provides real time transmission of 

information between users of the system privately through a medium like the internet. Messages 

can even be sent to users not logged in (offline messages), eliminating some of the differences 

between direct messaging and email [6]. Similarly, Yioop chat system aims to make text 

conversations available to be saved and used later.  

       Before tackling the problem of direct messaging we looked at some instant messaging protocols used 

by companies like WhatsApp and iMessenger both of which the XMPP protocol [3]. However, since this 

leads to dependencies on external libraries we decided to rely on a simple AJAX and database interaction 

to simulate the direct messaging. We will first look at how Yioop manages its groups feature. Yioop 

follows the model-view-controller (MVC) software design pattern, and the Manage Group functionality 

allows users to add, delete or view groups. We are interested in the add and view groups methods, 

essentially it works by forwarding requests to the controller, the controller assigns the request to a 

relevant action and then passes it to the model. Models perform the necessary actions and send database 

responses to the controller, which sends the response and renders the applicable view on the browser.  

       The database tables are designed such that they store and retrieve the data efficiently. We are 

interested in the following tables: USERS, USER_GROUP, GROUP_ITEM and SOCIAL_GROUPS. 

The columns in the four tables mentioned are shown in Fig. 1 and Fig. 2.  
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Fig. 1 USERS and USER_GROUP Table Schemas 

 

Fig. 2 GROUP_ITEM and SOCIAL_GROUPS Table Schemas 
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       The USERS table is updated when a new users registers or is added to the Yioop platform and is 

given a “user_id”. The USER_GROUP table is consists of the given “user_id” for a user and the 

“group_id” of the groups a user is part off. The SOCIAL_GROUPS table consists of “group_name” and 

“user_id”. Finally GROUP_ITEM table consists of the “thread_id” and “group_id” to identify which 

threads belong to which group along with the user comments that are part of the thread.  

       From this we understand that groups access is controlled by assigning “group_id” to different users in 

the USER_GROUP table and comments to a thread are saved in the GOURP_ITEM table. We take 

advantage of this in place schema to establish a direct messaging system for Yioop explained in the 

following chapters. 

       We even researched Netflix’s recommender system [4] to understand how collaborative filtering 

works and its different approaches. While Yioop initially was setup with a custom collaborative filtering 

technique which involved looking at a user’s posts and the user’s views on a thread, it led to 

recommending trending threads to a user. This was further extended using the td-idf technique with user 

and thread in mind and which led to more custom recommendations. However, going ahead we will dive 

deep into the working of this system and point out what can potentially be improved using a simplified 

word embedding technique called Hash2Vec. 
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4. DESIGN FOR DIRECT MESSAGING  

       In this chapter we look at the design idea for a DM system in Yioop. So, earlier we learnt about the 

different tables present in the database of Yioop and in order to manipulate the tables related to groups, 

the “GroupModel” class was used and to add users the “UserModel” class was used. Hence for our DM 

system these models were used to create a pre-defined group called "Personal" through the 

"AccountaccessComponent" controller class. So when a new user is introduced into the Yioop 

environment and that user logs in for the first time, the aforementioned pre-defined group is created 

automatically.  

       The SOCIAL_GROUPS table manages the group information for a particular user and one of the 

constraints for a user to create a group is that the group name needs to be unique. Now since “Personal” is 

a way of identifying the chat group for a user we needed to add something more to this title to make it 

more distinguished for a user. We did this by combining the word “Personal” and a user’s unique 

identifier in Yioop , i.e., “user_id” in the USER table for example, “Personal$1”, here $ is a delimiter and 

1 is the user_id for the admin of this system.  

 

Fig. 3 Personal Chat Group Name for Users  

       Before being able to deal with direct messaging between users first we had to decide on how to allow 

users to connect with each other. So we decided to allow users to connect with other users through a drop 

down option as shown in the Fig. 4.  
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Fig. 4 Connect Dropdown for Users 

       So different users can connect with each other as long as they are part of a common group.  

 

Fig. 5 Public Posts and Chats Dropdown for Users 

     

       Since the “Personal” group is a custom group specially used for DM between people, it appears as the 

“Chat” option shown above. This dropdown is available to view from any group feed view in Yioop and a 

user can use this option to access their private chats with other users. “Public Posts” as the name implies 

shows the posts made by a user and are available for all to see.  
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5. IMPLEMENTATION OF DIRECT MESSAGING 

       Now we have a solid foundation to move forward with implementing the DM system in Yioop. There 

are three uses cases for this problem statement, i.e., handling the logic for when a user has no friends, 

when one user sends a friend request while the other user has not accepted the connection request and 

finally when both users have accepted the connection requests from each other. Since Yioop follows the 

MVC model all the logic has to be handled by the controller.  

       Fig. 6 and Fig. 7 is the design idea and logic flow behind the direct messaging system to be deployed 

on Yioop. The class diagram in Fig. 6 includes the applied methods but is not limited to it.  

 

Fig. 6 Class Diagram for Direct Messaging 
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       This DM feature is primarily handled by the groupFeeds() function under the SocialComponent class 

which processes requests from user under the controller domain. The SocialComponent sends these 

requests to the GroupModel, which executes the tasks like adding users to groups, deleting groups, etc., 

and sends back a response. Next it calls the GroupController class that extends the Controller class which 

further calls the ChatFeedElement class that ultimately renders the view. 

                                      

 Fig. 7 Flow Chart for Direct Messaging 

       Looking at use case one, when a user has no connections, i.e., no friends. We simply do this by 
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checking if a user’s has any friends—equated to threads—as part of their “Personal” group. Fig. 8 shows 

the result of such a scenario. 

 

Fig. 8 Use case when user has no friends 

       Now coming to use case two, when a user sends the connection request to a different user and the 

connection has not connected with the user then the connection is handled by prompting the user to wait 

for the connection to connect with the user as well. To do so, first the user gives the connection access to 

their “Personal” group, this done in the backend database in the USER_GROUP table. For example 

looking at the table in Fig. 9, 

 

Fig. 9 USER_GROUP Table to establish connection 

 

Here, the “Personal” group for user with “user_id: 1” is also given access to user with “user_id: 1245”. 

Next, we do vice versa, i.e., we check if “Personal” group of “user_id: 1245” is given access to “user_id: 
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1”, if not the Fig. 10 below is displayed. 

 

Fig. 10 Use Case when both users are not connections of each other 

       Final use case three, when both users are connected to each other which is indicated by the 

USER_GROUP table as mentioned above, we then have to store the chat between any two users, to do so 

we user the GROUP_ITEM table. But since we are dealing with two “Personal” groups of the two users 

“texting” each other we had to save the “text” for both the groups. The table is as shown in Fig. 11. 

 

Fig. 11 GROUP_ITEM Table View for Direct Messaging 

The table in Fig. 11 is displayed as follows to a user. 
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Fig. 12 Use Case when both users are connected 

       We faced some challenges while creating this DM system. The first experiment we tried was creating 

a "Personal" group in one click for all existing users. However, due to the number of dependencies 

between different tables in Yioop's database, this proved to be challenging to handle. We then had to 

modify the method for each new user. We developed a method for creating groups such that when a user 

first logged into Yioop we check if the active status for that user was 1. If so, we created the "Personal" 

group for that user and changed their active status from 1 to 5 in the database. When new features are 

added to Yioop, this logic will be used to identify it’s different versions. A second challenge was to 

manage the title view of the "Personal" group which displayed a user's full “username” and “user_id” on 

different webpages that were dependent on the SOCIAL_GROUPS table, such as all the groups they are a 

part of or the menu bar. The first step was to work out that all of the display functionality was controlled 

by "Element" class under the “views” section on the backend of Yioop and then create a method which 

could be used across other elements that extend this class to address this issue.  

       The third challenge was to get two different pages to display on the same page. The DM system uses 

the “GroupfeedElement” class as a foundation to display results to the user, the logic for a how the page 

will look when a list of threads in a group is requested is different from when comments by users under a 

particular thread will look is different and is displayed on two different pages. We had essentially 
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combine the design for the two separate pages into one page and move things around to get the chat view 

displayed in Fig. 12. 

 

5.1 Experiments 

       To get an idea of the performance of this implementation we did some load tests on the Yioop 

backend database. To simulate multiple users we created a program that created instances of multiple 

insertions on the same local machine. These insertions are meant to also simulate the transactions that 

take place when users send messages to each other. We timed the programs and the latency information 

was captured in terms of seconds the table is shown below in Fig. 12. (a). 

  2 users +/- 3 users +/- 5 users +/- 10 users +/- 15 users +/- 
200 KB 45.70 19 146.64 43 826.88 30 1390.90 35 3071.35 37 
1 MB 167.27 28 497.64 33 1801.69 58 5790.10 23 12079.14 34 
2 MB 324.32 20 938.82 21 2850.18 86 11210.13 35 20010.12 34 
3 MB 508.60 17 1310.66 38 4084.04 94 16823.21 29 31095.62 34 
4MB 698.23 18 1750.06 35 5280.26 54 22619.18 41 40161.49 27 

 

 Fig. 12. (a) Multiple Users Execution Time with Standard Deviation 

       We calculated the above table by taking the avg. for each set of multiple users.  

       For example consider 5 users interacting with the database; by running it 5 times we took out the avg. 

= 826.88 secs and standard deviation = 15. This means in the case of 5 multiple users the total execution 

time would be anywhere between 796.88 – 856.88 secs around 95% of the time (assuming all systems run 

fall under the normal distribution curve), i.e., within two standard deviations. 
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 Fig. 12 (b). Database Latency vs Volume of Data Sent by Multiple Users 

       After observing the plots in Fig. 12. (b), we can roughly set a linear execution time in terms of 

database latency vs volume of data sent by multiple users. So we can see that as the number of users 

increases the time taken by multiple users for “text” insertions also increases.   
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6. YIOOP’S RECOMMENDATION SYSTEM 

       Before moving ahead and discussing about the potential enhancement to Yioop’s recommendation 

system, we need to look at some of the concepts being used in the current implementation of this system. 

In particular we will look into term frequency and inverse document frequency (TF-IDF) in depth and 

word embeddings to add more detail to it. 

       When an information retrieval system like a search engine scores a document as relevant if it contains 

the terms in the user's search query it fails to take into account the number of occurrences of the query 

words in the document while weighing a document's relevance. Now, term frequency and inverse 

document frequency are designed to weigh the documents while taking into consideration the frequency 

of terms. A word's performance in TF-IDF is determined by how many documents it appears in compared 

to how often it appears in that document [5]. If a user query contains a word with a high TF-IDF value, 

the document would be interesting to the user if it contained this word. 

 

6.1 TD-IDF Brief Synopsis 

       The TF-IDF returns relevant documents according to the count of the words that are part of a user’s 

search query. In order to get such documents two measures are calculated, i.e., term frequency and 

inverse document frequency. To better understand how this works we describe the inner workings of the 

technique and then work our way through an example. Assume we have a set of ‘n’ documents and user’s 

query of ‘m’ words, we intend to return a smaller set of documents in order of most relevance based on 

the provided user query. 

6.1.1 Term Frequency (TF) 

       The term frequency in documents refers to the number of times a word appears in a document. As an 

example, let's look at the three documents below and try to understand how the term frequency 
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calculation is done. 

Document 1: Baguette a bread type can be made with the dry yeast or the fresh yeast. 

Document 2: Toasted bread has a tasty pairing with the salted butter. 

Document 3: You can make the beer from a dry yeast or a distiller yeast. 

       Let us say a user searches a query “bread pairing”, as such free-text queries are usually created by 

web users without following a particular language or structure. Instead, they use words to construct a 

query expression. There is no standard query structure that all users follow. 

Table 1, 2 and 3 show the TF for all three documents respectively. 

Table 1: Document 1 Term Frequency  

words baguette a bread  type can be made with the dry yeast or fresh 

frequency 1 1 1 1 1 1 1 1 2 1 2 1 1 

 

Table 2: Document 2 Term Frequency 

words toasted bread has a tasty pairing with the  salted butter 

frequency 1 1 1 1 1 1 1 1 1 1 

 

Table 3: Document 3 Term Frequency 

words you can make beer from a dry yeast or distiller 

frequency 1 1 1 1 1 2 1 2 1 1 
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       In a document the frequency of a word is influenced largely by the document's size, so we normalize 

it as a logarithm (log) of the frequency. In the case that a word appears only once in a document, that 

word has TF measurement of zero for that document. To avoid this, we add a constant 1. 

Normalized TF is calculated as: 

TF = log(ft,d) + 1  if (𝑓𝑓t,d) = 0
log(𝑓𝑓t,d)          if (𝑓𝑓t,d) > 0  

where TF = term frequency, ft, d = frequency of a word ‘t’ in document ‘d’. 

Table 4: Document 1 Log Term Frequency  

words baguette a bread  type can be made with the dry yeast or fresh 

frequency 1 1 1 1 1 1 1 1 0.3 1 0.3 1 1 

 

Table 5: Document 2 Log Term Frequency 

words toasted bread has a tasty pairing with the  salted butter 

frequency 1 1 1 1 1 1 1 1 1 1 

 

Table 6: Document 3 Log Term Frequency 

words you can make beer from a dry yeast or distiller 

frequency 1 1 1 1 1 0.3 1 0.3 1 1 
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6.1.2 Inverse Document Frequency 

       We consider all words in a document equally important when we calculate the term frequency. But, it 

overlooks the effect of a few words common to almost all documents. Some words like a, an, the, etc., are 

in almost all of the documents, while others are in only a few, in this situation, the logarithm is helpful. 

IDF calculation: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡  =  𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑁𝑁
𝑁𝑁𝑡𝑡
� 

where N = total documents in corpus and Nt = number of documents containing term ‘t’. 

Let us look at how IDF is calculated for user’s query “pairing”, 

Total document available in corpus (N) = 3, 

Number of documents containing term ‘t’ (Nt) = 1, 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑁𝑁

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�  =  𝑙𝑙𝑙𝑙𝑙𝑙 �

3
1
�  =  0.48 

 

IDFs calculated for all terms in our corpus are shown in Table 7. 

 

Table 7 Inverse Document Frequency of all words in given corpus 

words IDF 

baguette 0.48 

a 0 

bread 0.18 

type 0.48 

can 0.18 

be 0.48 

made 0.48 

with 0.18 
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the 0 

dry 0.18 

yeast 0.18 

or 0.18 

fresh 0.48 

toasted 0.48 

has 0.48 

tasty 0.48 

pairing 0.48 

salted 0.48 

butter 0.48 

you 0.48 

make 0.48 

beer 0.48 

from 0.48 

distiller 0.48 

 

       As we can see terms like “a”, “the” etc. have a low weight since they appear in most documents and 

words like “tasty”, “beer” etc. have a higher weight since they appear in just one document.   

6.1.3 TF - IDF to Calculate Weights 

       We have TF and IDF of words in given corpus, the next step is to multiply these two quantities to 

find out the frequently occurring words in a document and inseminate the influence of their frequency in 

the surrounding documents. The stop words such as is, an, etc. found in nearly all documents can be 

filtered out with this technique. By reducing the effect of stop words in the weighing process, this method 

allows you to gain a better understanding of the relevance of each word to a document. 

       So to find the relevant weights, we multiply each document's normalized term frequency with its 

inverse document frequency. Looking at our example further, in Doc. 1 the word “bread” has normalized 
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term frequency of 1 and IDF of 0.18 so the weight assigned to for that term is 1 x 0.18 = 0.18. Now, we 

find the TF-IDF weights for all documents and this is shown in Table 8. 

Table 8 Documents Weighted by Query Terms 

search terms Doc. 1 Doc. 2 Doc. 3 

bread 0.18 0.18 0.18 

pairing 0 0.48 0 

 

6.1.4 Cosine Similarity 

       Using TF-IDF Weights, we can find the similarity between the user query and each of the documents. 

The cosine similarity is a measure of the importance of a document to a user. Just as we calculated the TF 

• IDF for the words in a document, we can calculate the TF • IDF for query terms. Based on cosine 

similarity (CS), we can determine whether or not a document D1 is relevant to a user query D2. This is 

calculated using the following formula: 

𝐶𝐶𝐶𝐶(𝐼𝐼1,𝐼𝐼2)  =  �
𝐼𝐼1 •  𝐼𝐼2 

||𝐼𝐼1||  •  ||𝐼𝐼2||
�  

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (𝐼𝐼1 •  𝐼𝐼2)  =  (𝐼𝐼1[1]  •  𝐼𝐼2[1])  +  (𝐼𝐼1[2] •  𝐼𝐼2[2]) + … +  (𝐼𝐼1[𝑛𝑛]  •  𝐼𝐼2[𝑛𝑛]), 

||𝐼𝐼𝑛𝑛||  =  �( 𝐼𝐼𝑛𝑛[0]2)  +  (𝐼𝐼𝑛𝑛[1]2)  + … +  (𝐼𝐼𝑛𝑛[𝑛𝑛]2) 

       The document with the highest cosine similarity measure to the query is returned because it is most 

similar to the query of the users. 

 

6.2 Recommending Threads and Groups in Yioop 

       Yioop initially would recommend threads using a baseline predictor typically implemented using a 

“rating” system, however since the rating system was not informative enough in Yioop, a user’s view of 

thread was used. This too ended up suggesting mostly the popular threads and so TD-IDF was introduced 

to improve the recommendations. 
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       Initially, a Bag of Words (BoW) is created to using the “title” and “description” columns of the 

GROUP_ITEM table shown in Fig. 1 of Chapter 3. Currently “Wiki” pages are excluded while looping 

over this table, moving ahead we will have to also exclude entries created for chats between users. After 

generating the BoW, the frequency count and log frequency of all those words is computed. 

6.2.1 Computing TF for Threads 

       A BoW is created by iterating over each thread’s “title” and “description” as mentioned earlier and 

the log frequency for each word in the BoW is taken to reduce the impact of a large title or description in 

the table shown in Fig. 13. 

 

Fig. 13 ITEM_TERM_FREQUENCY Table 

       Here, ‘term_id” is generated using the ‘crc32’ hash value of the word in BoW in Yioop’s backend.  

 

6.2.2 Computing TF for Users 

       A log of the user history is stored in the ITEM_IMPRESSION table for each thread viewed by a user. 

The bag of words created in the earlier step is used to determine the importance of a word to each user. 

Using the ITEM_TERM_FREQUENCY table, we sum up the frequency counts for each word in a thread 

to determine how many times a user has seen the word. Next count of word occurrences that user has seen 

is stored using it’s log value in the USER_TERM_FREQUENCY table.  
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Fig. 14 USER_TERM_FREQUENCY Table 

6.2.3 Computing IDF for Threads 

       To get the IDF for each word in the bag of words, the number of times it appeared in each thread, 

versus the corpus of all threads as a whole is calculated. This was done using the 

ITEM_TERM_FREQUENCY table. The formula is as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤,𝑡𝑡  =  𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑇𝑇𝑟𝑟 𝑐𝑐𝑙𝑙𝑐𝑐𝑛𝑛𝑇𝑇

𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑇𝑇𝑟𝑟𝑟𝑟 𝑐𝑐𝑙𝑙𝑛𝑛𝑇𝑇𝑇𝑇𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑙𝑙 𝑤𝑤𝑙𝑙𝑒𝑒𝑟𝑟 ′𝑤𝑤′
� 

where IDF ‘w’ = word with respect to thread ‘t’.  

 

6.2.4 Computing IDF for Users 

       In a similar manner, the inverse document frequency for words with respect to users using the 

USER_TERM_FREQUENCY table shown in Fig. 14 is calculated. If there are words, i.e., threads, that 

are not being viewed by anyone, add 1 shown below. 

𝐼𝐼𝐼𝐼𝐼𝐼𝑤𝑤,𝑢𝑢  =  𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟 𝑝𝑝𝑙𝑙𝑟𝑟𝑇𝑇𝑟𝑟 𝑐𝑐𝑛𝑛 𝑌𝑌𝑐𝑐𝑙𝑙𝑙𝑙𝑝𝑝

𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑙𝑙 𝑐𝑐𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟 𝑝𝑝𝑙𝑙𝑟𝑟𝑇𝑇𝑟𝑟 𝑤𝑤𝑐𝑐𝑇𝑇ℎ 𝑇𝑇ℎ𝑒𝑒 𝑤𝑤𝑙𝑙𝑒𝑒𝑟𝑟 ′𝑤𝑤′ +  1
� 

where IDF ‘w’ = word with respect to user ‘u’. 
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6.2.5 TF-IDF weights for Threads and Users 

       TF is multiplied by IDF for every word with respect to users and threads. The significance of a word 

to a thread is measured and stored in the ITEM_TERM_WEIGHTS Table as shown in Fig. 15.  

 

Fig. 15 ITEM_TERM_WEIGHTS Table 

       Also, the significance of a word to a user is measured and stored in USER_TERM_WEIGHTS Table 

as shown in Fig. 16. 

 
 Fig. 16 USER_TERM_WEIGHTS Table 

 

6.2.6 Thread and User Cosine Similarity 

       Next, based on cosine similarity between users and threads, threads that are closest to each user's 

taste are determined. Finally, users are recommended the top three similar threads. 
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 Fig. 17 ITEM_RECOMMENDATION `Table 

       In Fig. 17 table, “item_type” is used to distinguish between a thread and group recommendation, 

value 2 indicates it’s a thread and 3 indicates it’s a group. 

 

6.3 Group Recommendations 

       In addition to suggesting groups based on user interests, the system suggests groups that a user might 

be interested in and are not members off. Recommendations are made using thread titles and descriptions 

since the group names in Yioop are very generic and don't explain what the group is about. To calculate 

cosine similarity for each group, all the threads from the group are extracted and their cosine similarity is 

summed. Users are recommended the top three similar groups from the same table as in Fig. 17.  
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7. ENHANCING YIOOP’S RECOMMENDATION SYSTEM 

       So far, we have seen how the recommendation system in Yioop works and how TF-IDF is used to 

give user’s recommendations that are closer to their tastes based on their thread viewing history. One 

thing to note is TD-IDF only considers a word’s relevance in user query to a document and returns the 

most relevant documents based on the word from the entire available corpus. However, it fails to consider 

the user word in context to other words surroundings it. Thus, one way to enhance the currently 

established recommendation system would be to provide context to the words of interest in the entire 

corpus using the concept of word embeddings, particularly we will look at Hash2Vec. 

 

7.1 Word Embeddings 

       At its core, it is simply a method of associating words using vectors. The skip-gram model and 

CBOW mentioned earlier are mainly used to represent words as vectors. The Neural Network is required 

for both architectures in order to convert words into vectors. A CBOW and Skip-gram model are related 

to the context of the word, where CBOW attempts to predict the word based on the context, while a Skip-

gram model attempts to predict the context based on the word. The initialization of word vectors is done 

by generating vectors with random real numbers, next by performing certain tasks, a program learns 

meaningful vectors. These words when represented in say a 2-Dimnesional space based on their new 

calculated vectors should make intuitive sense. For example words like “placate” or “pacify” should 

appear together. 

 

7.2 HASH2VEC 

       To understand the working of Hash2Vec, we need to first look at hashing. Converting variable-length 

inputs into fixed-length outputs using some mathematical function, the process is known as hashing [10].  
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Fig. 18 Hashing [11] 

       An example of a hashing function for keys is shown in Figure 7, which maps them to integer values. 

As a mathematical function, a hash function processes input and converts it into a value that can be used. 

There are many applications for hashing, including security, optimization, and processing words. It has 

been around for a long time. Figure 7 illustrates that when two keys point to the same value, we have a 

collision. A good hash function minimizes such collisions and produces a result that fits in our table size. 

In order to solve the collision problem effectively, the hash function should run with a minimum 

computing time. Double hashing, linear or quadratic probing are all approaches to solving this collision 

problem [10]. 

       When mapping keys to hash functions, the probability distribution should be as even as possible, so 

that uniform results would be produced. It is also possible to have the hash function generate results using 

an efficient table so that there are fewer collisions when it stores values and goes through them fast. This 

would result in better overall performance and less time spent going through values. The efficiency of a 

hash function depends on its performance and data storing capabilities. This is always a tradeoff. It is 
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important that a hash function produce the same outcome for the same key every time in larger 

applications to minimize collisions with larger storage spaces. In this project, we have used a vector size 

of 200 and used the first four bytes of md5 hash to map to it and resolve the collision problem as it gives 

us sufficient space. 

       Now coming to Hash2Vec, using a deterministic approach, Hash2vec creates vectors from words in a 

low-dimensional space. We will discuss in detail how these vectors are produced in the next section. This 

methodology was developed because the traditional method of creating vectors to represent each word in 

a low-dimensional space needed a lot of training when it was applied to neural networks. Using the 

Hash2Vec method, however, does not require any training, it merely attempts to derive a word hash from 

a context window. Using this method, the hash values of each word are stored a temporary storage system 

in the form of a dictionary or hash table. This process is called hashing with context, and it would take 

less time than word2vec training. When the same word appears in the corpus again, it updates its existing 

hash value. 

       The process of Hash2Vec in Yioop works as follows, we create our bag of words using the same the 

process as described in Chapter 5. Next, we create a tuple such that for every term in our BoW, we take 5 

words before the term and 5 words after the term, here the value 5 is selected arbitrarily. Next we 

calculate the distance of the words from our ‘term’ of interest using the formula, (𝑒𝑒−𝑥𝑥)2, where x = 

(position of word from ‘term’/standard deviation of range (-n, n)), here n = 5. The idea here is when 

calculating distance of word from ‘term’ we get a value between the range (0,1) and the closer the value 

to 1 the closer it’s position is to the ‘term’ in the corpus.  

       Next, we calculate the hash value of the words to hash to the appropriate position in the vector of 

length 200 defined for each term in the BoW. The hash function takes the first 4 bytes of the md5 hash 

value of the word then we take the integer value of those 4 bytes. After that we do (integer value % 200) 

which gives us the position to hash to in the vectorw[200], where ‘w’ is part of the BoW. We then iterate 

over each newline in the corpus and do so for all words which we called as the ‘term’ of interest earlier. 
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Essentially the vector for each word in our BoW acts as a kind of definition for the word based on its 

context in a sentence. The different hash positions store its definition in different contexts.  

       Now, in order to find the most similar words we take the cosine similarity of our ‘term’ of interest 

vector and each word vector in the BoW. Then we filter out the words with the highest cosine similarity 

to the ‘term’ of interest. Now, we store this in a table called Hash2Vec as shown in Fig. 19. 

 

Fig. 19 HASH2VEC Table 

       In Fig. 19, we see “Term1” refers to our “term” of interest stored as an integer, “Term2” are the 

words most similar to the “term” of interest using the Hash2Vec score. Now in the 

USER_TERM_WEIGHTS_HASH2VEC table we update the TF-IDF weights by first multiplying the 

Hash2Vec score of the similar words and adding it to the original TF-IDF score, this is done for all the 

similar words user has seen, i.e., present in the table. We can see the cosine similarity changes from the 

original recommendation table vs the enhanced recommendation table shown in Fig. 20. 

 

Fig. 20 Improved Scores for Recommendation Table 
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       Finally the updated TD-IF scores are used to calculate the cosine similarity between user and thread 

and provides recommendations as is in the current system. After running the new recommender job on the 

Yioop database, we look closely at one of the results we see that recommendations do indeed change 

between the old and new. Further observing one of the results for a “user_id” = 938, the old 

recommendation table gave the result in Fig. 21. 

 

Fig. 21 Result from Old Recommendation Table 

And in the new recommendation table the result is in Fig. 22 

 

Fig. 22 Result from New Recommendation Table 

       If we look at the first recommendations between the tables in Fig. 21 and Fig. 22, they retrieve the 

threads titled “Happy New Year! August 2019 I did a couple 75 million page crawls …..” and “Post your 

solutions tot the Feb 17 In-Class Exercise to this thread. Best, Chris”. Now in order to judge if which of 

these recommendations is better for the user, we see the activity of the user. Since the user seems to be 
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actively contributing to the in-class assignment threads we can assume they are a student. We can also see 

that the first thread is a general update about the Yioop platform and the second thread is about an in-class 

exercise which the user may be more interested in. On observing this thread we see that words like “post”, 

“in-class” etc. all have the word “solution” as a similar word, hence the context seems to be preserved as 

intended and provides relevant thread recommendations. 

 

7.3 Experiments 

       To judge the accuracy of the hash2vec implemented recommendation system we use precision and 

recall. Precision for the first ‘k’ results is given by, 

| Rel ∩  Res[1. . k] |
| Res[1. . k] |

 

where Rel = is all the relevant documents in this case ‘threads’ and Res = the total thread count 

returned by the recommendation system. Recall for first ‘k’ results is given by, 

| Rel ∩  Res[1. . k] |
| Rel |

 

       We observed the results for 10 users both in the current recommendation system and the 

hash2vec implemented system and state the result below in Table 9. 
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  Current Recommendation System Hash2Vec Recommendation System 
  precision recall precision recall 
Student 0.60 0.025641 0.83 0.042735 
Admin 1.00 0.000123 1.00 0.000123 
User 1.00 0.000354 1.00 0.000531 
Student 0.67 0.000354 0.67 0.000531 
Student 0.67 0.000354 1.00 0.000354 
Student 0.67 0.000354 1.00 0.000354 
Student 0.67 0.000354 1.00 0.000354 
User 0.50 0.000266 0.33 0.000177 
Student 0.83 0.000443 0.83 0.000443 
Student 0.67 0.000443 0.83 0.000443 

 

Table 9 Precision and Recall Results 

       Here, we can see that the hash2vec implemented recommendation system has at least the same 

precision and recall as the current recommendation system and in some instances gives preforms higher 

precision and recall. The current recommender system has an avg. F1 measure of 0.005714 and the 

Hash2Vec system has a measure of 0.009159, showing an increase of 0.003444 or 60. 28%. Additionally, 

we noted that since Yioop is configured to recommend the top three most similar threads and groups to 

users for some of the users the current recommendation system could not satisfy that criteria and showed 

fewer suggestions however, our hash2vec recommender for those same users could meet that criteria and 

provide more suggestions.  

 

 

 

 

 

 



An Open Source Direct Messaging and Enhanced Recommendation System for Yioop 
  

39  

8. CONCLUSION 

       We researched some architectures and protocols that could work for direct messaging. We studied in 

depth the internal working of Yioop to determine the tables that we are of interest to us to be enable us to 

develop the DM system. For old and new users, we developed a "Personal" group in Yioop to facilitate 

quick communication. We used AJAX to interact with the database and fetch messages instantly. The 

experiments we performed shows the database latency vs volume of data inserted by multiple users 

increases linearly based on the chi-squared test. A possible future work for DM system is improving the 

latency with multithreading to control multiple user insertions or adding a group function between three 

or more users to allow a multi-way private communication between users. 

       We studied Yioop’s current recommendation system that suggests threads and groups which may be 

of interest to users using the user’s viewing history and engagements in Yioop. Next, we implemented a 

Hash2Vec that uses the similarity between words to improve the recommender system in Yioop. Based 

on the experiments we performed on the Hash2Vec system we see an improvement of 60.28% in the avg. 

F1 measure and we can observe that the performance is on power with the current recommendation 

system in Yioop or in some instances Hash2Vec performs better by either giving higher accuracy or more 

recommendations. 
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