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Abstract

Trading equities can be very lucrative for some and a gamble for others. Professional

traders and retail traders are constantly amassing information to be a step ahead of the market to

profit off the value of stocks on the market. Some of the tools in their arsenal include different

types of calculations based on a variety of data collected on a stock. Technical analysis is a

technique for traders to analyze the data of equities presented on charts. Often, the way the price

changes over time can be used as an indicator for traders to predict how future prices will move.

This practice can be done due to the investing psychology of the masses that indicates a certain

sentiment towards a stock. As artificial intelligence and machine learning have developed,

researchers have also studied how to utilize this technology to analyze the data and forecast how

prices will change.

Most recently, neural networks in deep learning approaches have been shown to

outperform traditional machine learning methods. From the deep learning approaches, utilizing

Long Short-term Memory (LSTM),  a recurrent neural network (RNN) architecture, has been

able to use time-series stock data to forecast future stock prices. This project proposes to extend

this prediction process by layering another deep learning approach called Generative Adversarial

Network (GAN) which pairs two networks to compete and improve each other . The approach

was used to train an LSTM network to further improve the performance. The performance of the

stacked LSTM-GAN model was compared to the stacked LSTM that had not been improved by

the GAN. Results showed that the proposed model was able to outperform the no GAN extension

by 22-25%, based on the RMSE and MAE, on the test set of the data used in training.

Additionally, on a random set of stock data, the model performed 4-5% better.
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Index terms: Stock markets, generative adversarial networks, long short term memory, deep

learning.
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I. INTRODUCTION

Stocks are securities that show partial ownership of  a company. The value of shares of

companies fluctuate constantly as stock traders around the world buy and sell company shares on

stock exchanges. The push and pull of supply and demand, as stocks are being traded, is what

drives the fluctuation of prices. Traders research companies and analyze trends in price

movement to find the optimal time and situation to buy shares of a company at a low price to

later sell at a higher price for profit. Furthermore, emotions may get in the way and individual

traders start to doubt their technical analyses which leads to lost capital. For example, when

actively monitoring price movements, individuals may see consecutive large drops in price and

sell their holdings to cut losses. This action creates a chain reaction that causes more drops in the

price. Emotions affect decision making and large social media platforms, like Twitter, can be

analyzed to recognize these psychology based stock movements [1]. As studies have shown,

when groups of individuals all behave the same way to price movement, indicators in a trend can

be extracted [2].

With thousands of companies that have been traded back and forth on the stock exchange

for years, the large historical data of companies’ stock movements can be used to create a model

to predict future activity of stocks.  Data is available at resources like Yahoo! Finance [3] or

MarketWatch [4] contain years of trading data for every publicly traded company or Kaggle [5]

which have user uploaded datasets. A prediction model can be used to help less experienced

traders check their stock analyses against a predicted model for confirmation or further optimize

profits for experienced day traders. Programs that utilize an accurate prediction model can then

be used to trade for individuals and cut out the emotions involved.
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As such, trends can be predicted based on previous data that led to a similar trend [6].

Various machine learning models have been applied to stock prediction systems from basic

Decision Trees and K-Nearest Neighbors (KNN) to many other models including deep learning

models like Recurrent Neural Networks (RNN) and Long short-term Memory (LSTM) [7, 8].

Since LSTM performs well with time series data, which stock analysis requires, this approach

has been more popular in recent years. Another improvement is to use a Generative Adversarial

Network (GAN) to train a model to predict price movements better by training it to detect false

trends [9]. Aside from the stock prices themselves, other data points are part of the data used for

prediction. Some of which are the volume of the specific stocks being traded, moving averages,

and momentum calculations [10]. All of this information on stocks can be utilized and applied to

create a prediction system that recognizes trends and supports traders in optimizing their profits.

A. Research Objective

The research aims at analyzing a Generative Adversarial Network (GAN) model which

uses a deep recurrent neural network (DRNN), that is LSTM-based, for its generator and its

effectiveness for stock prediction.  Predictions will be made with an LSTM model then the

system will employ GAN to optimize the LSTM model further. The model will be compared to

current techniques. The archived stock data will be obtained from MarketWatch and

preprocessed.
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II. BACKGROUND AND RELATED WORK

Research and studies to analyze and predict the stock market has been continually

developed where new contributions are constantly being made. Most studies are focused on

processing the stock data with values itself and not stock charts [11]. A recent survey by Weiwei

Jiang [9] was created for the purpose of acting as a compendium for new researchers to catch up

with recent studies and developments. Jiang’s research covers the important aspects of stock

prediction techniques. The survey covers the important steps of stock market prediction which

starts with data acquisition and preparation to deep learning systems used to train, and predict

based on the data. Additionally, hundreds of recent papers are cited and categorized for new

researchers to not only learn further about different areas and implementations of the study but to

also recognize more popular and recent techniques and approaches within the past years, since

2017. This section explores different approaches in machine learning and deep learning that

researchers have studied. Some referenced papers may also have been featured in Jiang’s survey.

A. Traditional Approaches

Traditionally, linear models were used for forecasting time-series data, like stocks.

Although research gravitated towards implementing machine and deep learning approaches, the

Autoregressive Integrated Moving Average Model (ARIMA) is still an extremely popular linear

model that is often used as baseline comparisons to other time-series forecasting approaches

[26]. As the name suggests, ARIMA combines two linear methods: autoregressive and moving

averages. Autoregression models are ones that input previous time steps into a specific

regression equation for forecasting, and moving average is the average of a subset of time steps

[27]  Before transitioning to modern approaches ARIMA was widely used both in financial and

economic time-series predictions. Researchers in [26] implemented ARIMA and compared it to
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LSTM in stock prediction where ARIMA had an average RMSE of 511.481 whereas LSTM had

an RMSE of 64.213 indicating that LSTM outperforms ARIMA.

B. Machine Learning

Various machine learning techniques do not have the limitations that classical linear

methods have with non-linear variables. With how much more random the stock market can

behave, machine learning techniques can be a better alternative. Often used machine learning

models include Logistic regression (Logit), random forest regression (RF), and k-nearest

neighbor (KNN) [9].

Logistic regression is similar to a linear model, but generalized [9]. It is used to forecast

if the price will go in a certain direction (up or down), and does not give exact predicted values

[28]. The process is similar to linear regression where there is data normalization, regression

coefficients calculation, matrix transformation, coefficients assignment, then regression equation

(Figure 1)  applied, except that there is a sigmoid equation (Figure 2) instead of a regression

equation to calculate the forecast. Although with decent results, researchers in [29] evaluated a

logistic regression implementation that showed accuracy is dependent on the stock selection.

Z: the predicted value for the dependent variable, response variable
X: a random variable, predictor variable
a: the value of Z when X = 0, intercept

b: rate of change in Z with a unit change in X, regression line slope
e: a random error

Figure 1. Regression Equation [29]

W: predicted value for input x
a: value of W when x = 0, intercept

b: rate of change in W with a unit change in X, regression line slope
x: a random variable, predictor variable

Figure 2. Sigmoid Equation [29]

Random forest regression is a technique that contains multiple random trees that utilize

different tree structured classifiers. Each trees’ outputs are combined and a majority voting

procedure is done to decide the majority output as the final prediction. Majority voting is done

because the idea is that if many unrelated models output the same prediction, then that prediction
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has a higher chance of being more accurate than a minority class [9]. With a random forest

implementation with 100 trees, it was shown that the larger the stock’s time range, the more

accurate the forecasts are [31]. For example, the accuracy of Facebook in a 3 day trading window

is 67.59% compared to a 90 day trading window that has an accuracy of 94.76% in predicting the

next direction of the stock [31].

Another popular approach is k-Nearest Neighbor which classifies unknown data into

labels that have the shortest distance to the known datas’ labels. The distance measures that may

be used can be the Euclidean distance, Minkowski distance, or Manhattan distances [13].

Researchers [30] implemented the KNN and evaluated the approach with five companies on the

Indian stock exchange where KNN resulted in a 63% accuracy using the coefficient of

determination, R2, metric whereas, in comparison, their linear regression approach had a 98%

accuracy.

Additionally, AdaBoost is an ensemble method that creates a strong classifier from a

number of weak classifiers [20]. The AdaBoost algorithm can be used to optimize a classifier.

Researchers in [20] applied the AdaBooster optimization to several popular approaches including

long-short term memory (Section C. 1.) by getting the predictions from an ensemble of each

approach and passing them through AdaBoost. The AdaBoost-LSTM implementation had a

mean-absolute percentage error (MAPE) of 0.80267% on the S*P 500. This was much better

than the single LSTM forecast with a MAPE of 1.9168%. AdaBoost was also applied to other

combinations of datasets and deep learning and machine learning methods that yielded similar

results [20]. This showed that this method could be applied to effectively improve prediction

models.

5



Although these mentioned machine learning approaches are still researched, many of

them are compared against deep learning techniques as a baseline due to deep learning

techniques’ better performance [9]. [29] compared the logistic regression approach against a

deep learning approach and found that it outperformed their Logit implementation. Some of

these classification methods also do not forecast exact values, but predict the general trend of the

price movement.

C. Deep Learning

The StockPred framework proposed by M .Sharaf, E.ED. Hemdan, A. El-Sayed and N.

A. El-Bahnasawy shown in Figure 3 tests various machine learning and deep learning models

with different scenarios [13]. The framework acted as a flowchart for how to process their raw

data and summarized their approach for picking and comparing the better models.The scenarios

conducted were different time ranges of the stock data as well as varying the epoch size and the

batch size for the deep learning models. Although the forecast range can be adjusted to improve

accuracy in machine learning models, it was not worth it.

Figure 3. StockPred Framework [13]

Furthermore, they concluded that balancing epoch and batch size hyperparameters is

needed to improve performance [13]. These hyperparameters would need to be uniquely tuned
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for the specific deep learning model and dataset used. The StockPred framework showed that

deep learning models consistently outperformed machine learning models [13]. Deep learning

techniques, specifically LSTM approaches, have been found to currently be the best for time

series prediction problems [12].

1. Long-Short Term Memory (LSTM)

Between the deep learning models, researchers have leaned towards using Long-Short

Term Memory (LSTM). LSTM is a type of recurrent neural network that has special units within

them that can process longer time-series data [14]. LSTM has a memorizing mechanism that is

useful for time series forecasting, shown in Figure 4 [15]. The sigmoid functions have binary

values that determine whether data can pass through or not. The tanh activation functions add

weights and keep the values between -1 and 1. In Mehtab and Sen’s research, A Time Series

Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models,

they found that LSTM out performs the machine learning models [12]. LSTM is a recurrent

neural network that allows feedback loops to communicate data from nodes in forward and

backwards layers, and it also has a forget gate that helps solve the vanishing gradient problem

[12].

Figure 4. LSTM Structure [15]

Since time series data rely on each other, communicating between forward and backward

layers is important. Other researchers further attempt to optimize LSTM by testing various

7



parameters [16]. Moghar and Hamiche’s studies looked at how the chosen data set and

preparation affects the prediction model, specifically LSTM [17].

Figure 5. LSTM vs. Other Models [17]

The study implemented a multilayered LSTM that tested different epochs along with

different ranges in the dataset. With Nike and Google datasets, Moghar and Hamiche found that

with a longer time period, data becomes less accurate. This may be attributed to different events

that are not part of the regular pattern of the dataset. For example, stock splits are not accounted

for. Also periods like earnings, where volatility in price is higher can affect training. They found

that reasonably less data combined with more epochs was optimal for model training [17]. Figure

5 shows the variety of models that Moghar and Hamiche tested with their Nike and Google

datasets, and LSTM outperforms the opposition.

Another view of the LSTM structure in Figure 6 shows that an LSTM unit has three

main gates. The input, output, and forget gates control the sequential data being passed through

them. The forget gate allows for non-conforming information to be forgotten. These input and

output gates can be linked to more units to form a large system of layered LSTMs. Deep

recurrent neural network LSTMs, or multi-layer LSTM, implementations further improved

accuracy [18]. The LSTM unit is able to keep state as well as managing what information to

forget as the data passes through the units making it very useful in processing time-series data

like stock prices.
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Figure 6. LSTM Unit Structure [19]

In Study On the Prediction Of Stock Price Based On the Associated Network Model Of

LSTM [19], as part of their study, Ding and Qin implemented a DRNN that layered LSTM units

with dropout layers. Figure 7 is the implemented DRNN LSTM structure that Ding and Qin

used. There are two LSTM layers and two dropout layers after each LSTM later.

Figure 7. DRNN LSTM Structure [19]

Dropout layers randomly delete some units to solve overfitting [18]. Figure 8 shows a

visualization of dropouts in a neural network, some units are dropped out at certain stages. The

red-dotted nodes are dropped, and consequently, there are less connected nodes which helps

prevent the model from correlating too closely to the specific dataset being used to train it
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(overfitting). For example, if the Google stock data was used to train the proposed model without

drop out. The result of the model may be too accurate in predicting Google stock data, and

forecasting another company’s stock price may be wildly inaccurate because the price movement

is not similar to Google’s, the data used for training. Dropouts are necessary to keep the model

more general.

Figure 8. Dropout Visualization [19]

Ding and Qin created three connected DRNN LSTM structures that connected to form an

associated network that was used to forecast three different price values for a given day. They

trained and tested an individual DRNN LSTM and compared it to a single LSTM model.  Figure

7 shows the average accuracy of their study. The DRNN implementation has a higher average

accuracy than just the baseline LSTM implementation. They also tested the training times of the

baseline LSTM, a DRNN, and their novel associated net. The LSTM was the fastest as it was just

one unit compared to the stacked units in the DRNN, and expectedly, the associated network

which was three layers of DRNN was the slowest.
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Figure 9. LSTM vs DRNN LSTM vs Associated Net

Their open price accuracy is similar to their DRNN accuracy due to the open price being

the first layer of the associated net, and is essentially just a DRNN (Figure 9).  With high

accuracy, the researchers then use the output of the subsequent DRNN to forecast the next price

target. The open price prediction influences the forecast of the lowest price, and finally, both

forecasts are passed onto the third layer for the last prediction. The associated network results

also show that connected DRNNs have similar accuracies as just the single DRNN model.

Figure 10. Associated Network DRNN LSTM [19]

The researchers showed that a multi-layered LSTM has improved accuracy while having

more layers of stacked LSTMs maintain the same accuracy and was able to be utilized for

multiple predictions at once.

From the various research, when implementing an LSTM, the data preparation for

training is important.  Additionally, the model needs to be correctly balanced and tuned in
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regards to the epoch and batch size hyperparameters to optimize the accuracy and performance

of the forecasting model [12, 16]. An LSTM implementation will be the main prediction model

in the proposed approach for stock forecasting. Research has shown that, currently, LSTM

implementations reign in accuracy over other machine learning models.

2. Generative Adversarial Network (GAN)

Also recently, generative adversarial networks (GAN) have been implemented to further

improve accuracy. GAN is a framework that has two parts: the generator and discriminator [21].

The generator would be the system that generates predictions. On the other hand, a

discriminator’s job would be to try to discern whether the value(s) given to it was artificially

generated or not. Figure 11 shows the architecture of a GAN system [22]. Real data is separately

passed through to the generator and discriminator. The generator passes on its prediction along

with the previous real stock data to the discriminator. If the discriminator is able to correctly

determine that the predicted value was artificially generated, the GAN system would then fine

tune the generator and discriminator to improve both their accuracies [23]. The cycle is then

repeated for multiple iterations until both system’s are sufficiently optimized.

In [22], the researchers implemented a GAN system with LSTM as the generator to

make forecasts for the stock market. On the other hand, the discriminator was created with a

Multilayer Perceptron (MLP) [24]. The LSTM and MLP networks will essentially train and

improve each other over time.
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Figure 11. The GAN Architecture [22]

The training stops when an ideal situation where the discriminator cannot tell the

difference between the two types of data occurs. Their system used the following features: high

price, low price, open price, close price, trade volume, turnover rate, and 5 day moving averages

of the stock prices. The predicted data was then concatenated onto the input data and passed to

the discriminator that was implemented with MLP and three hidden layers (72, 100, and 10

neurons) with leaky ReLu activation functions [22]. The input data is then either classified as 0

or 1 for fake or real, respectively.

The researchers evaluated the model on stock data from various indexes as well as

individual company stocks ranging from the Standard & Poor’s 500 (S&P 500 Index), Shanghai

Composite Index, International Business Machine (IBM), Microsoft (MSFT), and Ping An

Insurance Company of China (PAICC). Their data was split into 90%-95%/5%-10% training and

testing. The results of the study, in Figure 12, show LSTM was already an improvement to a

baseline artificial neural network (ANN) and support vector regression (SVR) models. On top of

that, GAN further improved LSTM, based on the evaluation metrics, where the error metrics

from GAN are less than LSTM.
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Figure 12. GAN Study Results [22]

The discussed related works in recent stock market prediction approaches act as support

and inspiration to this current study. This study aims to improve on these techniques by utilizing

an optimized DRNN LSTM based on studies from [8, 9, 10, 12] to implement as a generator in

the GAN architecture to further train and improve the DRNN LSTM accuracy with an opposing

discriminator, as mentioned in [22]. Within the domain of  LSTM research for stock market

prediction, only a few have employed GAN to experiment with results in forecasting [2, 25]
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III. DATASET AND TECHNOLOGIES

Figure 13 is the general overview of how the proposed GAN and LSTM-RNN will be

structured. Before implementing and experimenting with the proposed model, preparations must

be made to ensure the prediction models can be developed with the correct tools, and the right

dataset is being used for the intended purposes.

Figure 13. GAN LSTM-RNN

A. Dataset

As in Figure 13 and Weiwei’s research shows, the first step to any prediction model or

deep learning model needs to consider the data being used [9]. In the case of stock data, they are

available on many stock related websites. Websites like MarketWatch [4] archive years of market

data, and make them readily available to users. Aside from the data, the data collected from these

resources usually include 5 main features. For every day, there is an open price, close price, high,

low, and volume, shown in Figure 14.
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Figure 14. Stock Data from MarketWatch

The open and close prices are respectively the price when the stock market opens on that

specific day and the price of the stock when the market closes that same day. Since a stock’s

price movement changes throughout the day, high and low prices respectively record what the

high and low prices of the day are. Lastly, volume value represents the number the stock

transacted throughout the day. Figure 15 is a diagram of the candlesticks that represent the price

movement within a certain specified timeframe. In the figure, the high and low prices are the

wicks of the candle and the body of the candle’s open and close prices. Hollow candles, like the

left candle in Figure 15, show a positive price movement in the time frame since the stock

opened at a lower price and closed at a higher price. The opposite is true for filled candles, like

the left, where there is a negative movement from a sell off, and the stock closes at a lower price.

Figure 15. Candlesticks [33]

Collected data features and values are pretty straight forward, but not all may be used in

training the prediction model. Initially, the datasets are scanned and checked for format

consistency, like in Figure 14. For example,  a dataset downloaded from one resource orders
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earlier dates first while another source sorted most current dates first. The pandas library in

Python will be used to quickly preprocess and modify needed data before passing it on to be used

in training.

Other factors that need to be preprocessed include any stock splits that happen anytime

throughout the stock data’s timeline. Since historical data is used to predict future prices, stock

splits, which change the stock prices, will skew the data and training will not be accurate. The

approach does  not yet have a way to deal with stock splits so it must be manually accounted for.

B. Technologies and Libraries

The main technologies utilized are the Python programming language and Google

Research’s Colaboratory (Colab) service. Python is also a popular language used by the artificial

intelligence and data science community so there are many libraries for such use cases. The

libraries that are used include: numpy, pandas, matplotlib, sklearn, tensorflow, and more

specifically keras.

Numpy and pandas are imported and used for initializing and processing the data and

making any necessary manipulations. Although preprocessing is done before reaching the

program, further data manipulation will be needed which the mentioned libraries can handle. The

matplotlib library is used for analysis purposes throughout the project to visualize results.

Another analysis library was sklearn, which is used for error metrics to compare approaches.

Sklearn can also be used to normalize the stock data values, and then reverted back to get

original prices. The deep learning models were imported from tensorflow’s keras library. With

the library, a neural network can be set up with only a few lines of code to specify the layers

within the network. This allows fast configuration of specific models, like LSTM, which can

then be trained with input data to build the model up. Both numpy and tensorflow libraries use a
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random seed for certain functions, and to ensure the same result the seed is hardcoded for both

numpy and tensorflow.

1. Google Research Colaboratory

Originally, the local machine was used in the initial phase, but then Google Colab was

utilized to advance the project further.  Google Colab is a service that allows individuals to

essentially borrow and use resources over the cloud. In this case, data processing and training

machine learning models was the use case for using Google Colab. Colab allows

programmers/researchers to utilize stronger hardware for faster processing over the cloud that

their local machines may not otherwise be able to process as quickly, and it is a great tool for

machine learning. Since machine learning and data intensive processes are often done with this

tool, the Google Colab service instances also come initialized with all of the mentioned libraries

pre-downloaded so the code only needs to import the specified libraries. Working with a

notebook on Google Colab also allows parallelism between working on multiple machines like

switching from desktop to laptop without having to set up the environment for both machines.
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IV. APPROACH AND IMPLEMENTATION

The proposed objective takes advantage of two artificial intelligence techniques. A deep

RNN that uses LSTM has been found to be highly accurate. Furthermore, a generative

adversarial network will be able to further improve the accuracy by tuning the LSTM optimally

over time as it trains.

A. Data Preparation

After raw, cleaned data is loaded, the data needs to be prepared further for training the

model. The section will discuss the data preparation and approach for training. The data set being

used to train the model is from Starbucks (SBUX) with 1260 days worth of entries, which is

about 3.5 years.

Studies like [32] and [33] have shown that consecutive price action of a stock can be used

to extrapolate future price movements.

Figure 16. Example of Candlestick Patterns
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Figure 16 has a few examples of candlestick patterns that are used to forecast how the

next prices will move. Bullish patterns show that the sentiment towards the stock is positive and

prices may move higher. On the other hand, bearish patterns are the opposite and investors

should expect prices to drop further. The named patterns in Figure 16 also show that there are no

set amount of candlesticks used for predicting prices. The bearish harami pattern only uses two

candlesticks while the bullish stairs use three followed by the bullish and bearish kickers using

four candles.

The data set up for the following LSTM and GAN implementations simplifies the

candlestick diagram, and would only be using the closing prices. Furthermore, the experiment

uses 5 consecutive prices instead of the 2 to 4 candlesticks used in Figure 16. Since 2 to 4

candlesticks are commonly used in analysis, there may possibly be patterns that can be extracted

from 5 candlesticks. With a small set of prices to be learned, it may also prevent overfitting with

the dataset used to train the model. For example, using 20 closing prices to predict the stock may

cause the prediction model to only accurately predict one set of data and other stock data passed

in for forecasting.

In the dataset used, data is accessed and the closing prices extracted during runtime with

the pandas library.

Figure 17. Sample Scaled Data
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For the input data, 5 close prices are stored in an array while the 6th closing price is

stored separately as the label. The previous 5 closing prices will be used to predict the 6th price

in the timestep. Each set of 5 closing price values are stored in a numpy array for training the

model. Furthermore, the train and test split of the data is 80% train and 20% test. As shown in

Figure 17, the data was also scaled before training. Since different stocks have different prices,

one may trade in a $100-$200 range while another could be $5-$10, scaling data allows the

model to learn within a normalized range. When ready, different datasets can then be scaled to

the same range and passed in for prediction.

B. Long Short Term Memory Implementation

The LSTM model was imported from Keras within the Tensorflow library. The

implementation uses two layers of LSTM that are stacked on top of each other and one dropout

layer. Each LSTM layer utilizes 5 LSTM units before outputting to the next layer. The dropout

layer is used to control overfitting too much of the data used to train the model.

Figure 18. Stacked LSTM

The standalone LSTM RNN model is shown in Figure 18. With Keras, a variable can

simply be set for the model and specific layers added using the Keras API to match the

specifications of Figure 18. Dropout layers are also added by simply adding the dropout layer
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from the Keras API. The discussed hyper parameters are also set at this time. The model is then

compiled with the Adam optimizer, a learning rate of 0.0001, and mean squared error as the loss

function. The hyperparameters were chosen through trial and error. The model is then trained

with 80% training data.

The rest of the data is reserved for testing and validation. 400 epochs were used to train

the standalone stacked LSTM model for testing, but varying epoch values were tested when the

stacked LSTM was implemented within the GAN system. The LSTM will take in 5 consecutive

closing prices and learn to predict the 6th closing price of the stock. A small drop out layer will

be used after the second LSTM to prevent overfitting of the price action.

C. Generative Adversarial Search Implementation

The basic GAN architecture can be seen from Figure 11. Similarly, the GAN

implementation follows this architecture, but uses the previously discussed stacked LSTM

structure, with 2 stacked LSTM layers with 5 units each as the generator. On the other hand, the

discriminator is a simple multilayer perceptron (MLP) that uses 4 layers using the ReLU

activation function in each layer and compiled with the Adam optimizer. Additionally, the GAN

will have 400 epochs to train the both generator and discriminator models, and there will also be

dropout layers that will keep the model from being overfitted. The epoch was decided through

narrowing down and choosing the max epoch possible where the system would yield better

performance. Although it was not exact, between 200, 400, 800, and 1000 epochs, 400 yielded

the best performance while any higher would only affect time to train and not performance.
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Figures 19: GAN Final Layout

The Figure 19 above shows a more detailed view of the GAN architecture with the

stacked LSTM and MLP layers as the generator and discriminator, respectively. Implementing

the GAN system used Keras to build the specified models in Figure 19 by simply setting

variables for the respective models and adding the necessary layers provided by the Keras API.

The specific layers are provided, and just the hyper parameters need to be set when initializing

these layers

Training the GAN consists of initializing and training both the discriminator and the

generator with real data and fake data. With GAN, simply calling the training method and

passing the number of epochs like many machine learning models is not sufficient. The training

in GAN needs to be implemented where there is some control of how the GAN is trained. To do

this, when training, each epoch is looped through and will select a random batch of data from the

real data set using the numpy library. Fake data is also created with the numpy library’s random

function to create a (5, 5, 1) array of random fake data. The discriminator is trained with both
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known real and fake data for it to be able to discern between real and fake sequences of closing

price data. A target array filled with 1s is passed with the real data to train the discriminator to

classify real data. On the other hand, an array with 0s is trained with fake data for the

discriminator to classify the random data as fake. The generator is then trained by also using

randomly generated data to make predictions, and the discriminator will continuously classify

whether the data and predictions are falsely generated every epoch or not. The generator will

then be updated and re-trained until it can make predictions against the random data that the

discriminator passes as a real data and prediction combination.
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V. RESULTS

A. Metrics

As seen in many stock market forecasting work, for example [10] and [22], popular

evaluation metrics include: root-mean-square error (RMSE), mean absolute error (MAE), and

mean absolute percentage error (MAPE). These metrics are also evaluated here as well as

manual evaluation of the target versus prediction charts.

(1)

(2)

(3)

In the variables in (3), the observed values, y, are the known target values that are then

compared to the prediction values, ŷ, which are retrieved from the forecasting model, and n is the

number of samples being compared. These equations are given, but the calculations can be done

by using the sklearn library in python, and passing in the target and predicted values.

Since different stock datasets have different price ranges, as part of the data

preprocessing, all datasets used in the experiments have been normalized to allow for error

evaluating and comparing.

RMSE and MAE are both error metrics that measure the average error of a set of

predictions and true values. The difference is that with RMSE more weight is given to larger

errors, which will reflect on the RMSE value always being larger than the calculated MAE. If the

RMSE and MAE are the same, then there are no larger outlier errors that skew the RMSE higher.
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With both RMSE and MAE, lower values are more desired [34].

(4)

MAPE is a metric that measures, on average, the difference between the expected and

actual. MAPE values can be big if expected values are small. Although this metric is not ideal

for GAN systems, LSTM prediction models often use this metric in literature, so it will be

included. The dataset was normalized so the values fall within a small range which outputs a

large MAPE value.

B. Experimental Results

1. Standalone Stacked LSTM

As previously mentioned, the standalone stacked LSTM was trained with 80 epochs,

which seemed enough to optimize the loss of the prediction model. Different epochs were tested,

and higher values provided no significant improvements to the loss values.

Figure 20. Plotted Loss Per Iteration

Figure 20 shows a graph of the loss over the training iterations of the standalone stacked LSTM.

The loss starts off high in the early epochs, and then slowly lower and converges over time,
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which shows that the model is performing better over time. The loss of both training and

validation data sets stays between 0 and 0.05 after a few epochs, with some variations.  Next, the

test data set is used to verify and compare between the real 6th closing price and the predictions

made through the previous 5 prices.

Figure 21. Test Data Expected Target vs Prediction

Figure 21 shows the predictions when the test data set is passed onto the model plotted along

with the expected values, which are the target values. The graph shows similar price predictions

as targets, but not exact due to the model not being too overfitted, but there is some degree of

overfitting since some of the smaller peaks and troughs of price movement are similar to the

specific SBUX data. The trained stacked LSTM, or LSTM-based DRNN, model will then be

used as the generator within the GAN architecture.

2. LSTM with Generative Adversarial Search

After creating the stacked LSTM, the set up and initialization was carried over to the

GAN implementation for the generator. The GAN system was then trained with the prepared

SBUX dataset again at 400 epochs. The figure below is the loss chart of the discriminator loss,

the discriminator loss with fake data, and the GAN generator loss. This shows a stable GAN loss
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that converges around the 0 to 2 levels. As displayed on the chart, the plots for the losses

alternate over each other, which is expected. The expectation comes from the fact that the

adversarial network is opposing each other. If either the generator or discriminator performs

better in an instance,  this means that the opposing model must perform worse in that run.

Figure 22. GAN Training Loss

Another visualization of the adversary process is the training accuracy of the

discriminator classifying real and fake data. Figure 23 below shows two line plots that are

constantly crossing over each other back and forth. This means that the fake data from the

generator is catching up to the discriminator and vice versa. They are learning and updating from

one another.

Figure 23. Discriminator Accuracy Plot
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Furthermore, a separate dataset from Nike (NKE) stock from 2018 was input into the

GAN model for predictions and then plotted on a chart, shown in Figure 24. The prediction

follows closely near the target prices on a completely new dataset. This shows that the model is

not specific to the dataset (SBUX) that was used to train it. The model is able to capture the

market sentiment based on the 5 consecutive price movements, and make close predictions on a

separate dataset that it was not trained with. Price action of every 5 timesteps was trained in the

model which allowed it to be more generalized and not overfitted to the SBUX dataset only.

Figure 24. Prediction on NKE 2018 Dataset

With the GAN system having multiple components, there were different hyperparameters

that must be configured for optimal results.  It is important to correctly tune both the generator

and discriminator to get efficient results. If the discriminator learns too slowly, it will have a hard

time classifying fake data being passed to it. Consequently, this will negatively affect the

generator by not acting as a competitive enough adversary. Other components, like the dropout

layer, are also crucial in maintaining a generalization of the prediction and classifier and not

overfitting to the data being used to train these models. Below is a table for a few of the notable

results and hyperparameters experimented with during the tuning of the GAN.
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Manual
Tuning

Discriminator
Learning

Rate

Generator
Learning

Rate

Discriminator
Dropout
between
layers

Generator
Updates per

Epoch

RMSE MAE

A1 0.005 0.001 0.2 2 0.42138 0.31697

A2 0.005 0.001 0.2 4 0.43134 0.32564

B1 0.0005 0.0001 0.5 8 0.42402 0.31927

B2 0.0005 0.0001 0.1 8 0.54458 0.43681

C1 0.001 0.001 0.8 2 0.51455 0.40903

C2 0.0006 0.001 0.8 2 0.43486 0.34608

C3 0.01 0.001 0.8 2 0.39657 0.31232

C4 0.001 0.001 0.8 2 0.51455 0.40903

C5 0.004 0.001 0.8 2 0.33589 0.25421

Table 1. Hyperparameter Tuning

Table 1 shows some of the hyperparameter tuning that was performed on the GAN with

the RMSE and MAE of the resulting predictions used as a performance metric. The notable

tunings are grouped alphabetically on the table. In the A group, tuning was done to test the

generator update per epoch. In each epoch, the discriminator and generator are both updated

based on real and fake data. In this case, the generator was updated twice for every time the

discriminator was updated. This allows the generator to more adequately train itself to trick the

discriminator. The results showed that having more than two updates was not beneficial to the

model. Furthermore, in group B, the value for the dropout layer was tested in the discriminator’s

classifier. A higher dropout value, like 0.5, seems to be better than a lower, 0.1, value. For group

C, a high dropout value of 0.8 was used along with 2 updates per epoch for the generator. Group

C tested the learning rates to see which ratio of learning rates worked best. The table shows that

having a higher learning rate had better performance. From there, the learning rate between

0.0001 to 0.001 was tested and 0.004 performed the best.
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The following Figure 25 is the final tuned GAN along with the No GAN LSTM

implementation. Although the No GAN prediction looks pretty accurate from the prediction and

target line plot, with the addition of GAN, better performing predictions were made. An example

includes the high peaks, or outliers on the charts. In comparison, the stacked LSTM-GAN

predicts prices closer to those peaks as well as closer to the troughs.

Figure 25. LSTM vs. LSTM GAN

A previous study from Mehtab and Sen, concluded that LSTM based models outperformed

machine learning models as well as some other deep learning approaches [12].
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Figure 26. Study of Machine Learning and Deep Learning Models [12]

Figure 26 shows the results of the mentioned study, where LSTM’s metrics were better

than models like decision trees (DT), random forest (RF), support vector machine (SVM), and

others. This led to a follow up study with Mehtab, Sen, and Dutta that focused on using LSTM

for stock predictions [10]. Even with the worse tested case for LSTM, the model performed

better than the competition. With the study showing great results for LSTMs, LSTM was also

used in this study as a baseline to compare a GAN implementation that aims to improve on

LSTM predictions.

The final stacked LSTM-GAN is compared to the No GAN stacked LSTM in Table 2. In

the SBUX dataset used to train both prediction systems, the GAN is an improvement to the

stacked LSTM model. As mentioned from Figure 25, where the GAN implementation predicts

the outlier closing prices more accurately, the RMSE supports this observation. RMSE gives

more weight to larger error differences. Compared to the RMSE from the No GAN

implementation, LSTM-GAN’s RMSE is lower. The overall average error of the LSTM-GAN is

less, as reflected in the MAE. With the current metrics, the stacked LSTM-GAN has about a

22-25% better performance with the training dataset (SBUX), and about a 4-5% performance

increase for a non-trained dataset (NKE).
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RMSE MAE MAPE

LSTM (SBUX) 0.50522 0.40040 195.319

LSTM (NKE) 0.55571 0.43412 322.131

Stacked LSTM-GAN (SBUX) 0.39562 0.30253 213.377

Stacked LSTM-GAN (NKE) 0.54009 0.40697 139.925

Table 2. GAN versus No GAN comparison

Throughout literature, researchers have shown that LSTM implements have outperformed

traditional approaches as well as other machine learning approaches [12][17][20]. This study

builds upon LSTM and extends it with another deep learning approach, GAN. By transitive law,

since LSTM-GAN outperforms LSTM, and LSTM outperforms the other approaches shown in

Figure 26, the LSTM-GAN approach is better than the machine learning approaches such as DT,

RF, SVM, and others. With LSTM already outperforming others, GAN’s purpose is to further use

adversarial training to strengthen the generator used, which is the stacked LSTM. When

implementing a GAN system, it is critical to optimize the system by tuning the hyperparameters

to get better results.  Overall, implementing GAN to further optimize an LSTM model for stock

forecasting is effective.
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VI. CONCLUSION AND FUTURE WORK

The goal of this project was to explore a generative adversarial search system applied to

a long-short term memory prediction system for stocks. Specifically, a system that predicted

closing prices of stocks based on the previous timesteps’ prices and movement as a whole. The

experiment attempted to imitate how an individual trader would analyze candlesticks and predict

future stock prices. Using adversarial training, called GAN, an LSTM prediction model was

further tuned and expected to have an increase in performance. From the results, it can be

observed that the system can predict the future trend of the stock price based on the previous

price action. Previous cited research has shown that LSTM outperforms popular machine

learning approaches such as decision trees or random forests for stock predictions [12]. Since the

LSTM-GAN implementation was better than LSTM, it also means it can beat the machine

learning approaches that were tested in [12] as well. A few other cited literature sources also

showed that LSTM was superior than popular machine learning approaches for time series data

[17][20]. The stacked LSTM-GAN proposed model successfully demonstrated that it could

perform better, and was an improvement to the simple stacked LSTM model. With a 22-25%

increase in performance with the same data used to train both models, and 4-5% better

performance on untrained data.

Further manual tuning of the hyperparameters in GAN yielded significant varying results.

While the metrics are close to the no GAN implementation, finding the correct hyperparameters

for the GAN system may significantly improve the performance. Future works may include more

in depth analysis on the hyperparameters in GAN that will increase performance. Additionally,

extra features from the data set could be explored along with the closing price as input data to the

prediction system. For example, volume of the stock being traded is also often used in analysis of
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price action in a position. More datasets could also be added into the training data to further train

the model to be less overfitting to one dataset. Aside from this, datasets like $SPY or other

indexes that track multiple stocks as one may be a better option to use to train the prediction

model to predict based off of price actions and movements. Since indexes track multiple stocks,

the price movements may be a better generalization of market sentiment than the single company

stock used (SBUX). Also, with single company stock data, the high volatility of price action

specific to that company around earnings timesteps may skew the prediction model. As

discussed, there are a variety modifications possible for future work that may result in a more

successful LSTM-GAN prediction model.
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