
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2021

Dynamic Resource Management of Fog-Cloud Computing for IoT Dynamic Resource Management of Fog-Cloud Computing for IoT

Support Support

Mariia Surmenok
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Surmenok, Mariia, "Dynamic Resource Management of Fog-Cloud Computing for IoT Support" (2021).
Master's Projects. 1051.
DOI: https://doi.org/10.31979/etd.r6v6-e2g5
https://scholarworks.sjsu.edu/etd_projects/1051

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1051&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1051&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1051&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1051?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1051&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

Dynamic Resource Management of Fog-Cloud Computing

for IoT Support

A Project Report

Presented to

The Faculty of the Department of

Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Mariia Surmenok

December, 2021

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

i

© 2021

Mariia Surmenok

ALL RIGHTS RESERVED

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

ii

The Designated Project Committee Approves The Project Titled

Dynamic Resource Management of Fog-Cloud Computing

for IoT Support

By

Mariia Surmenok

Approved For The Department Of Computer Science

San José State University

Dec 2021

Dr. Teng Moh Department of Computer Science

Dr. Melody Moh Department of Computer Science

Dr. Kong Li Department of Computer Engineering

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

iii

ABSTRACT

The internet of things (IoT) is an integrated part of contemporary life. It includes wearable devices,

such as smart watches and cell phones, as well as sensors for Smart City. Fog computing can

improve the efficiency and battery life of IoT devices by offloading tasks to fog cloud. It is

important to have fog clusters near the IoT device for faster data offload. The goal of this project is

to develop dynamic resource allocation for on-demand fog computing cluster to efficiently deploy

tasks from IoT. This report studies the different research papers about the current state of resource

management in cloud environment. It overviews the main mechanisms, objectives, and the

evaluation criteria of the state-of-the art solutions. This report discusses the results of different

modifications of memetic algorithm. In our project, we try to minimize the task completion delay,

number of requests failed by deadline for all services and services with the high priority by finding

the closest to a user fog node that has enough available resource. In this project we will use Yet

Another Fog Simulator (YAFS) for simulating and testing the effectiveness of proposed memetic

algorithms modifications.

Keywords – IoT, Fog Computing, Resource Management, Mobile Cloud Computing

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

iv

TABLE OF CONTENTS

I. Introduction .. 1

II. Literature Review ... 3
A. Resource Management in Cloud Computing Environment .. 3

B. Resource Management in Fog and Peer-to-Peer environment .. 6

III. Architecture .. 11

IV. Problem Formulation .. 14

V. Algorithms .. 18
A. Baseline algorithms .. 18

B. Memetic Algorithm Modifications .. 21

C. Machine Learning Optimization ... 27

VI. Simulation ... 29

VII. Results and Analysis ... 35
A. Metrics. ... 35

B. Results and Discussion for Configuration with Average Network and Applications Settings36

C. Results and Discussion for Configuration with Different Requests Frequency 51

D. Results and Discussion for Configuration with Different Fog Devices’ Resources 55

E. Summary of the Best Memetic Modifications ... 58

VIII. Conclusion and Future Work ... 60

References ... 63

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

v

LIST OF TABLES

Table 1. Summary of Resource Management Methods in Cloud and Fog Computing. 4

Table 2. Comparison table of different combinations of modifications created for memetic

baseline algorithm. ... 22

Table 3. Experiment scenarios. ... 30

Table 4. Application settings. .. 31

Table 5. Fog devices and cloud settings. ... 32

Table 6. Application settings for configuration with requests frequency above average. 32

Table 7. Application settings for configuration with requests frequency below average. 33

Table 8. Fog devices settings for configuration with fog devices’ resources above average. 33

Table 9. Fog devices settings for configuration with fog devices’ resources below average. 33

Table 10. Results of 100 experiments for scenario with 20 fog devices and 50 services. 36

Table 11. Results for 100 experiments for scenario with 40 fog devices and 100 services. 37

Table 12. Comparison of results for Experimental 2 with baseline algorithms of 100 experiments

for scenario with 20 fog devices and 50 services. Average configuration. 41

Table 13. Comparison of results for Experimental 2 with baseline algorithms of 100 experiments

for scenario with 40 fog devices and 100 services. Average configuration. 42

Table 14. Comparison of results for Experimental 6 with baseline algorithms of 100 experiments

for scenario with 20 fog devices and 50 services. Average configuration. 43

Table 15. Comparison of results for Experimental 6 with baseline algorithms of 100 experiments

for scenario with 40 fog devices and 100 services. Average configuration. 44

Table 16. Comparison of results for Experimental 3 with baseline algorithms of 100 experiments

for scenario with 20 fog devices and 50 services. Average configuration. 44

Table 17. Comparison of results for Experimental 3 with baseline algorithms of 100 experiments

for scenario with 40 fog devices and 100 services. Average configuration. 44

Table 18. Comparison of results for Experimental 4 and Experimental 5 with baseline algorithms

of 100 experiments for scenario with 20 fog devices and 50 services. Average configuration. 45

Table 19. Comparison of results for Experimental 4 and Experimental 5 with baseline algorithms

of 100 experiments for scenario with 40 fog devices and 100 services. Average configuration. ... 45

Table 20. Comparison of results for Experimental 7 and Experimental 8 with baseline algorithms

of 100 experiments for scenario with 20 fog devices and 50 services. Average configuration. 46

Table 21. Comparison of results for Experimental 4 and Experimental 5 with baseline algorithms

of 100 experiments for scenario with 40 fog devices and 100 services. Average configuration. ... 47

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

vi

Table 22. Comparison of results for Experimental 9 with Experimental 8 and baseline algorithms

of 100 experiments for scenario with 20 fog devices and 50 services. Average configuration. 48

Table 23. Comparison of results for Experimental 9 with Experimental 8 and baseline algorithms

of 100 experiments for scenario with 40 fog devices and 100 services. Average configuration. ... 48

Table 24. Simulation results for traffic above average for scenario with 20 fog devices and 50

services. .. 52

Table 25. Simulation results for traffic above average for scenario with 40 fog devices and 100

services. .. 52

Table 26. Simulation results for traffic below average for scenario with 20 fog devices and 50

services. .. 53

Table 27. Simulation results for traffic below average for scenario with 40 fog devices and 100

services. .. 54

Table 28. Simulation results for settings with fog devices above average for scenario with 20 fog

devices and 50 services. ... 55

Table 29. Simulation results for settings with fog devices above average for scenario with 40 fog

devices and 100 services. ... 55

Table 30. Simulation results for settings with fog devices below average for scenario with 20 fog

devices and 50 services. ... 56

Table 31. Simulation results for settings with fog devices below average for scenario with 40 fog

devices and 100 services. ... 56

Table 32. Comparison of best performing modifications with Memetic baseline. 58

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD COMPUTING FOR IOT SUPPORT

vii

LIST OF FIGURES

Figure 1. Proposed three-layer architecture with volunteering fog devices. 13

Figure 2. Flow chart for Baseline Memetic algorithm. ... 21

Figure 3. Comparison of memetic algorithm modifications. Rectangles are placement algorithms.

An arrow shows what the base algorithm for each modification is. An ellipse shows the changes

introduced in the algorithms enclosed in the dashed box. ... 26

Figure 4. Average calculation time for modifications of memetic algorithm. 38

Figure 5. Average total response time. ... 38

Figure 6. Average percent of failed requests. ... 39

Figure 7. Average total response time for services with high priority. ... 39

Figure 8. Average percent of failed requests for services with high priority 40

Figure 9. Average number of active devices for scenario with 20 fog devices and 50 services. ... 40

Figure 10. Average number of active devices for scenario with 40 fog devices and 100 services. 41

Figure 11. Comparison of average calculation time for memetic baseline, memetic without local

search, and two memetic algorithms that perform local search every second generation. 50

Figure 12. Average total response time for settings with traffic above average. 52

Figure 13. Average percent of failed requests for settings with traffic above average................... 53

Figure 14. Average total response time for settings with traffic below average. 54

Figure 15. Average percent of failed requests for settings with traffic below average. 54

Figure 16. Average total response time for setting where fog devices’ resources above average.. 56

Figure 17. Average number of active fog devices for scenario with 20 fog devices and 50 services

where fog devices’ resources are below average. .. 57

Figure 18. Average number of active fog devices for scenario with 20 fog devices and 50 services

where fog devices’ resources below average. .. 57

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

1

I. INTRODUCTION

IoT devices are ubiquitous in contemporary life. According to [1], there will be 35 billion

devices by the end of 2021. IoT devices include wearable devices, mobile phones, Smart City

sensors, and others. These devices generate a lot of data which usually requires a lot of

processing capacity. However, sending the data to the remote data center or remote fog cloud can

take a lot of time, decreasing the quality of service and is not suitable for time-sensitive

applications. Moreover, sending the data to the remote host can drain the battery of the IoT

device. Having a fog cloud near the device can alleviate these challenges while providing

sufficient computational power for tasks generated by IoT devices.

Far away fog cluster may not be very beneficial for the efficient support of IoT devices.

Instead, we need a fog cluster near the IoT device. It can be achieved by creating a fog cluster

dynamically when there’s a need for it in a particular location. For example, Sami and Mourad

[2] proposed on-demand formation using volunteering devices as fog nodes. In such a setting,

resource allocation is the main challenge. The main goal of resource management in on-demand

fog formation is to identify the best host in terms of location, resource availability, and capability

to complete task in given deadline.

In this project we will use memetic algorithm proposed by Sami [2], and introduce our

own modifications. Memetic algorithm (MA) is a modified version of genetic algorithm (GA)

which is inspired by nature and simulate natural selection, and unlike GA, memetic al is not

prone to premature convergence because of local search.

This report is organized in the following way. Section 2 summarizes the related work of

resource management in cloud and fog computing. In section 3 the architecture and its main parts

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

2

are discussed. Section 4 describes problem formulation and objective functions. Section 5

explains baseline algorithms and the modification of memetic algorithm that are used for this

project. In section 6 we explain simulation setup and two simulation scenarios. In section 7 we

discuss experiment results. Finally, paper concludes with summary and related work in section 8.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

3

II. LITERATURE REVIEW

Several architectures can help to support IoT with additional computational power, such

as traditional cloud computing, standalone fog computing, fog computing with additional support

from the cloud, and architectures that use peer-to-peer technology. The summary of all the

approaches is presented in Table 1.

A. Resource Management in Cloud Computing Environment

Cloud computing represents traditional datacenters. It remains a popular choice to

support IoT devices. The introduction of containerized virtualization and the interest in energy

and cost optimization inspire recent research.

Zhong and Buyya [3] created a modified Kubernetes orchestrator to optimize the

heterogeneous cloud computing data center's cost. For dynamic resource management, they

employed live task migration via CRIU and task-packing using best fit decreasing. The authors

considered two types of jobs, long-running and batch jobs, and scheduled them based on task

kind and its completion time. The decision for migration is policy-based and triggered when

utilization of the host false below 50% threshold. The authors tested their approach on the

Australian National Cloud Infrastructure (Nectar). They used two types of synthetic applications

and four kinds of workload: stable, growing, cycle, on-and-off. They compared their approach

with Stratus and COCA and proved that their approach reduces the overall cost by 23-32%. Their

approach tries to reach the best QoS but does not prevent violation of QoS requirements for

applications.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

4

Table 1. Summary of Resource Management Methods in Cloud and Fog Computing.

ML machine learning, BF best fit, ARIMA autoregressive integrated moving average, TSMM

two-sided matching method, MCDM multi criteria decision matrix, ILP integer linear

programming, DDPG Deep Deterministic Policy Gradient, GA genetic algorithm, ACO ant

colony optimization, MA memetic algorithm, DNN deep neural network, FF first fit, DQL

Deep-Q-Learning, A3C-R2N2 Asynchronous-Advantage-Actor-Critic Residual Recurrent

Neural Network.

Publication Methods Used Objectives

 ML Metaheuristic Heuristic Energy Time Utilization
Dynamic

Changes

Cloud Type: Centralized Cloud

Zhong [3] BF ✓

Zhang [4] ARIMA

and TSMM
 ✓ ✓ ✓

HeporCloud [5] statistical ✓ ✓

Gholipour [6] MCDM ✓ ✓

Cloud Type: Fog

KEIDS [7] ILP ✓ ✓

Naha [8] ranking ✓ ✓

Ren [9] GA and ACO ✓ ✓ ✓

Sami [2] MA ✓ ✓

Wu [10] DNN ✓ ✓

Chen [11] DDPG ✓ ✓

RLSK [12] DQL ✓

Tuli [13] A3C-R2N2 ✓ ✓

Zhang et al. [4] proposed an energy-aware framework for two-tier virtualized

heterogeneous cloud data centers. In their work, authors consider only container migration. The

restriction for container placement is that only the containers belonging to the same job can be

hosted on the same virtual machine. This rule should provide an additional security level in case

some of the containers from other jobs are compromised. Authors used an energy model for

problem formulation, including the overhead of creating a virtual machine and the SLA metric.

The framework had to solve several tasks for the initial placement and dynamic consolidation at

runtime, detecting underloaded and overloaded VMs and hosts and making a decision for

container migration. To find the best hosts for VMs, the authors used the many-to-one two-sided

matching method where both VMs and hosts calculate the coefficient to find the subset of the

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

5

desired pair. For underloaded and overloaded host and VMs detection, the authors employed the

ARIMA algorithm to predict the resource usage in the nearest future to prevent unnecessary

container migration. The authors evaluated their framework using ContainerCloudSim

simulation and workload traces from PlanetLab. Their approach outperforms the combination of

classical algorithms and state-of-the-art methods in terms of energy consumption by at least

13.8%. However, the overall complexity of the authors' approach is O(n2) and may not be

suitable for time-sensitive real-time jobs.

Gholipour et al. [5] also used two-tier virtualization. Their joint VM and container

consolidation algorithm is optimized for energy-aware resource management. The algorithm

aims to place containers in the minimum number of virtual machines and the smallest number of

physical servers. Unlike other researchers, the authors considered the joint VM and container

consolidation policy to identify whether a virtual machine or a container should be migrated.

Resource correlation is calculated to find which virtual machine causes the overloading of the

server. To choose whether a virtual machine should be migrated, the multi-criteria decision

matrix is used. If the candidate VM is not selected for migration, the containers placed on this

virtual machine are migrated. To evaluate their approach, the authors run a simulation on

ContainerCloudSim with workload traces from PlanetLab. The experimental results showed that

their approach reduces the energy consumption, SLA violation, and a number of migrations

comparing to the state-of-the-art algorithms.

While previous authors [3] used containerization or two-tier technology where containers

are placed inside virtual machines [4][5], Khan et al. [6] proposed the combination of different

virtualization technologies inside the same framework. There are four types of platforms in their

framework simultaneously, such as bare-metal, containers over virtual machines, and others. The

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

6

authors explain that some jobs are running faster using particular virtualization technology. The

authors used the ERP metric (energy response time per product) for the problem formulation,

which expresses energy consumption and SLA metric. Orchestrator places jobs on a particular

platform based on statistical methods finding similar jobs from the past. The migration decision

for containers or virtual machines is policy-based and triggered when a specific threshold is

reached. However, the migration is not initiated if the predicted remaining runtime is too small.

The authors used CloudSim simulator and workload traces from Intel, Microsoft Azure, and

Google to evaluate their approach. They found out that their method can reduce energy

consumption by 14-37% compared to single virtualization technology.

The papers discussed above use a policy-based algorithm for initial placement and

statistical approaches for predicting future workload and similar jobs. Most of these papers prefer

containers over virtual machines because they are much lighter and easier to deploy. All the

authors consider container migration during runtime, although creating an overhead can

significantly improve resource utilization.

B. Resource Management in Fog and Peer-to-Peer environment

Fog computing was first introduced by CISCO in 2012. The main idea is to have some

processing power, fog nodes, closer to edge devices.

Kauk et al. [7] proposed a Kubernetes-based scheduler to provide an edge-cloud

ecosystem for industrial IoT devices. The goal is to reduce carbon footprint, optimize energy

consumption, and to improve performance by minimizing the inference among co-located

containers. To reduce the interference, the authors proposed to place similar containers into the

same hosts identifying jobs either as CPU or network intensive. The authors wanted to maximize

the use of available green energy resources and minimize the number of active hosts. The authors

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

7

expressed the problem as an integer linear programming problem and used Mosek solver to find

an optimal solution. For the experiments, they simulated four different clusters and used

workload traces from the Google dataset. The solution was tested against FCFS and some state-

of-the-art algorithms and showed better results in maximal use of green energy, minimization of

interference, and overall energy minimization. For constraints, the authors used CPU, memory,

and network availability but didn’t consider QoS. Also, it is unclear if they included the network

overhead or host location into their energy model.

Naha et al. [8] proposed an algorithm for resource allocation in a fog environment with

dynamic user requirements, such as changing deadlines. Their solution includes ranking

available resources in fog and cloud and rule-based provisioning. For their experiments, authors

used CloudSim and synthetic workload. Their solution outperforms the performance of resource-

aware and latency-aware algorithms for a given setup. Still, it is unclear if it is more efficient

against other approaches, such as meta-heuristic genetic algorithms.

Some recent research employs a genetic algorithm approach to solve the resource

allocation problem. Ren et al. [9] proposed a hybrid algorithm to reduce energy consumption in

the fog environment for IoT devices. They suggested the combination of Genetic (GA) and Ant

Colony Optimization (ACO) algorithms. These algorithms run in parallel and update each other

values after each iteration. Makespan, energy consumption, and cost are used for the fitness

function. Also, the dynamic requirements, where the user requests the decreasing deadline, are

considered. For the evaluation, the authors used the CloudSim toolkit with a synthetic dataset.

They run multiple scenarios where the number of VMs varies between 20 and 2000 and the

number of physical costs between 8 and 800. The authors verified the stability and convergence

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

8

of the proposed method. The hybrid algorithm outperforms GA and GA-CSO algorithms in

terms of energy, time, and cost.

Sami and Mourad [2] also employed the genetic algorithm for their framework. The

proposed on-demand fog formation using volunteering devices near the IoT device or user. The

cloud maintains a database with the recent information about volunteers, including available

resources, time availability, and location. The orchestrator is created on one of the volunteering

devices or, if the job is time-sensitive, the orchestrator is placed in the cloud for faster fog

deployment. For the proposed approach, the authors used kubeadm and Docker containers so that

any volunteer can download the required images from Docker Hub. The container placement

problem is solved using a memetic algorithm. The goal is to place services on devices with the

best time availability and proximity to the user while maintaining the best QoS. The authors

compared their container placement strategy with the first-fit on a long time and the first-fit on

short distance algorithms. The proposed approach shows a better response time with the

increasing number of requests. The authors evaluated the architecture, using AWS instance as a

cloud and computers in the lab for fog formation. They compared the response time for an

increasing number of requests and proved that dynamic fog formation outperforms the cloud,

static fog, and remote fog. Although the proposed approach showed the best response time and

scalability, security is the primary concern in this paper.

Wu et al. [10] used Deep Neural Network (DNN) for making the decision for task

offloading for the heterogeneous cloud. The goal is to minimize the task completion delay and

energy consumption. The framework consists of multiple DNN that share the same database, and

the best result updates the database. The experiments show that their approach outperforms the

traditional offloading schemes. However, they do not consider that the time for offloading tasks

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

9

into central and fog clouds differs in their experiments. Also, they assume that the cloud and fog

cloud has unlimited computational power, which is not always valid for fog.

[11], [12], and [13] use deep reinforcement learning for optimizing tasks placement.

Chen et al. [11] used Deep reinforcement learning for dynamic resource management of joint

power control and resources for Mobile Edge Computing (MEC). Assuming that IoT has limited

battery capacity, it is essential to considered transmission delay over a wireless network and

battery capacity. It is important to minimize the long-term processing delay. The authors

formulated the problem as a Markov decision problem and used Deep Deterministic Policy

Gradient (DDPG) to find the optimal offloading scheme. To evaluate their policy, the authors

simulated one MEC with 25 IIoT devices and a synthetic dataset. They compared their scheme

with A3C, URM, and RRM and proved their approach can improve the average transmission

delay by 4-17%.

Huang et al. [12] used Deep Reinforcement Learning to schedule jobs in federated

Kubernetes clusters. Their Deep Q-Learning model was trained to schedule batch jobs between

multiple homogeneous clusters. The goal is to balance the average utilization among clusters and

the average utilization of each resource within each cluster, preventing bottlenecks. For the

experiment, they used three homogeneous clusters and simulated workload. The authors

compared the result with traditional scheduling algorithms, such as First Fit, Round-Robin, and

Least Load. The proposed approach was evaluated with the following metrics: resource

utilization within a cluster, the utilization between different clusters, and maximum completion

time in each cluster. The result significantly outperforms the traditional algorithms in load

balancing and utilization with a slightly greater makespan. Their approach showed better

adaptability to changing workloads. However, they used very specific environments,

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

10

homogeneous hosts, and batch jobs only and compared them with very basic algorithms. Also, in

their approach, if the job cannot be scheduled at the current moment, they postpone it to some

random time in the future, which will not guarantee that it will be scheduled eventually.

Tuli et al. [13] also used Deep Reinforcement learning for scheduling tasks in a fog

environment. Tuli et al. included the mobility factor into their research and accounted for

changing resource and bandwidth requirements for the service. They utilize Policy gradient-

based Reinforcement learning method (A3C) to accelerate the learning. In their architecture, the

authors used multiple actor-agents at the same time. Each agent has its own neural network and

is responsible for its own set of fog nodes allowing it to train networks in parallel. The agents

update the shared global parameters, which accelerates the exploration of larger state-action

space—using a residual recurrent neural network allowed to approximate function from state to

action and find patterns in the data to predict the future workloads. The authors used energy

consumption, average response time, cost, and SLA violation to evaluate the efficiency of their

approach. They performed experiments using iFogSim and CloudSim using an open-source

Bitbrain dataset. Their results show that their approach was 14.4%, response time by 7.74%,

SLA violations by 31.9%, and cost by 4.64%. However, their architecture is designed for a fixed

number of edge nodes and tasks and needs future work to enable scalability.

Resource management in fog computing is concerned with effective offloading and

task scheduling for a dynamic heterogeneous environment. Two main approaches are to use

evolutionary algorithms, such as genetic algorithm and memetic algorithm, and deep

reinforcement learning approach. The introduction of A3C allows to train scheduler faster and

enable to find temporal patterns in workload.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

11

III. ARCHITECTURE

The dynamic on-demand fog formation using volunteering devices is an interesting

approach to help create fog near IoT devices. It is a peer-to-peer approach with a database in the

central cloud that keeps track of all peers involved in fog devices in a given location. The

architecture of the proposed environment consists of three layers. The first layer is users and

various IoT devices that produce request and send it via edge devices such as wi-fi routers. The

second layer has multiple fog devices. Fog devices are computers near the users that rent their

resources. The third layer is the centralized cloud with virtually unlimited resources but is placed

far away from users. The proposed architecture is depicted in Figure 1. The main parts of the

architecture are described below.

Fog devices. Fog devices are simple machines that individuals or third-party businesses

are willing to lend to create a fog cluster in a specific location. Participants who want to lend

their machines as fog devices apply to be volunteers and send the resource information about

their machines, including resource information, device location, and time availability, to the

cloud. Volunteering fog devices periodically send an update about their current state. All this

information is stored in a database on the cloud and used when a fog cluster needs to be created

in a particular location. We have information about instructions per time interval (IPS), memory

(RAM), disk storage, number of cores available, its x and y coordinates, and time availability for

each fog device.

Users. Users are the entities that create tasks that need to be processed. In this project, we

assume that our users are some IoT devices, for example, sensors and smartwatches, that create

computationally heavy tasks. These IoT devices want to process tasks remotely to save battery

and reduce computational time. Users are connected to gateway devices through which users

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

12

send requests with tasks. Multiple users can be connected to the same gateway device. These

gateway devices do not process requests themselves but send requests to fog devices or directly

to the centralized cloud.

Application. Application is software that has two services, client-side and server-side.

The Client-side is placed on an IoT device (user). Server-side service is placed either on fog-

device or in a centralized cloud. Each application has an id, resource requirements, priority, and

deadline. There may be multiple applications sent through the same gateway. The Client-side

periodically sends a request with tasks to the server-side. A request has information about the

number of instructions and number of bytes. Later in this report, we will refer to server-side

service as a service. For each service to be placed on fog, we have information about resource

requirements for memory (RAM), disk storage, number of cores, deadline, and this service

priority.

Orchestrator. Initially, there is no fog cluster in a particular location. When the need for

a fog cluster in a given location arise, an orchestrator is created on one of the volunteering fog

devices in this location. The replica of the orchestrator is placed on another volunteer device to

improve fault tolerance. If the fog device hosting the local orchestrator runs out of available

time, another fog device is chosen, and local orchestrator migration is performed. Cloud shares

information with the local orchestrator about all available volunteers at this location that can be

used as fog devices. This information includes volunteering fog devices’ physical location and

resource availability. Using information received from the cloud database, the local orchestrator

performs the placement of server-side services for all applications needed in this location.

Orchestrator does not know network topology. However, it has information about each fog

location and can estimate the physical distance from the user to each fog device. This project will

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

13

use various placement algorithms to perform the initial placement of all the services in all

available fog devices. If the placement algorithm cannot find a suitable fog device in the fog

cluster, it sends this service to the centralized cloud, so all requests for this application are

processed on the cloud.

Figure 1. Proposed three-layer architecture with volunteering fog devices.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

14

IV. PROBLEM FORMULATION

We use problem definition similar to [2] with our own addition of deadline, x and y

coordinates, and our own representation of placement as vector instead of matrix proposed by

Sami.

Problem definition. We have a set of services S = {s1, s2, …, sn) needed to be placed

close to usersand fog devices D = {d1, d2, …, dm} who can host services in a given location.

We have number of services n, and number of fog devices m. Services to be placed are

represented as a matrix where each row is one of the service characteristics. Each service has

the following characteristics:

Si = [Scpu, Smem, Sdisk, Spriority, Sdeadline, Sx, Sy]

where:

 Scpu : number of CPU required

 Smem : number of memory required

 Sdisk : amount of storage space required

 Sdeadline : deadline for tasks associated with this service

 Sx : x coordinate of a user for this service

 Sy : y coordinate of a user for this service

Each fog devices has the following characteristics:

 Dj = [Dcpu, Dmem, Ddisk, Dtime, Dx, Dy, DIPT]

where

 Dcpu : number of CPU available

 Dmem : number of memory available

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

15

 Ddisk : number of storage available

 Dtime : time when fog device available to host services

 Dx : x coordinate of fog device

 Dy : y coordinate of fog device

 DIPT : speed of processor

For speed of processor, DIPT, we assume that for the same fog device all processors

have the same speed.

We want to achieve the best placement of services on the available volunteering fog

devices to satisfy multiple objectives and without violating constraints such as resource

availability on fog devices. The solution is represented as a vector Ki with length n where

Ki∈(0, m] indicating the id of fog device for each service.

Constraints. For our placement algorithms, the following constraints should not be

violated. First, the resource requirements of all services placed on a fog device, should not

exceed the resource capacity of this fog device.

Service should be placed maximum on one device. It is naturally preserved by

representing solution as a vector instead of matrix used in [2].

Objective functions. We use the five objective functions introduced in [2] with

modification for objective 4, host distance minimization. We also introduce two more

objective functions and test their performance in separate modifications of the memetic

algorithm.

Objective 1, F1: maximize the number of services on fog devices. We count all the

services placed on the fog cluster in the current location. If service was not placed on any fog

devices in the fog cluster, we assume that service was sent to the cloud.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

16

Objective 2, F2: maximize the number of services with maximum priority on fog

devices. We count all the services with the high priority placed on fog.

Objective 3, F3: maximize the total time availability by choosing fog devices with the

biggest time available. For all services placed on fog, we sum the time availability of fog

device that host each service.

Objective 4, F4: minimize distance between user and service by choosing the closest

fog device. The original paper used a single distance value to characterize the distance

between fog device and all users. However, in real life settings users are spread across

location. Thus, instead of using a single value, we have x and y coordinates for both, users,

and fog devices. At the beginning of placement algorithm, we calculate Euclidian distance

between each user with each fog device and then store all the distances in hastable for fast

access. For Objective 4 we have two modifications. One only calculates the sum of all

distances for services placed on fog and ignores services that went to cloud. In another

modification, we include distance to cloud and, as shown in experiment results, it produces

much better results. It is unclear if baseline memetic algorithm account for distance to cloud.

In this project, we assume that authors did include distance to cloud in Objective 4.

Objective 5, F5: minimize number of active fog devices. We count all fog devices that

host at least one service.

Objective 6, F6: maximize the number of services with small deadline on fog devices.

For this objective, we normalize deadlines for all services and create an inverse of 1. Thus,

the smallest deadline value will be close to 1 and the biggest deadline value will be close to 0.

We sum all the normalized reversed deadlines for all services that were placed on fog devices.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

17

If service were not placed on fog and instead hosted by cloud, we do not include such

deadline in our calculation effectively setting it to 0.

Objective 7, F7: maximize the number of fog devices with fastest processor. For this

objective for all services in fog we sum the processor speed of fog devices where each service

is hosted; thus, prioritizing the processors with fastest speed.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

18

V. ALGORITHMS

A. Baseline algorithms

This section gives an overview of two baseline algorithms. First algorithm used as a

baseline is First Fit by RAM, and the second algorithm is Memetic Algorithm with pareto

approximation proposed by [2].

First Fit RAM. First-fit by RAM is used as the first baseline algorithm. For this

algorithm, we order fog devices by their memory (RAM) availability in ascending order. We

iterate through each service, trying to place it on one of the fog devices. This algorithm starts

with the fog device with the smallest available memory (RAM) resource availability by

checking if all resources, memory (RAM), disk, and core, satisfy the service requirements.

This algorithm increases resource utilization by memory since we place service on the fog

devices with minimal memory.

First Fit by RAM algorithm

1: sorted fog devices = sorted by memory fog devices

2: for service in services

3: for fog device in sorted fog devices

4: if fog devices(resources) >= service requirements

5: place service on this fog device

6: update fog device resource availability

7: break

8: end

9: end for

 10: if service not placed on fog:

 11: place service on cloud

 12: end

 13: end for

Memetic baseline. The memetic algorithm belongs to evolutionary algorithms which

are inspired by nature. The idea is to generate a population of creatures where each creature is

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

19

a possible solution. Each generation selects the best creatures based on the fitness function,

which consists of multiple objective functions, and the new population is generated. The

traditional genetic algorithm is prone to premature convergence leading to the suboptimal

final solution. The memetic algorithm introduces a local search step that optimizes each

population and prevents premature algorithm convergence.

In their work, Sami [2] uses the memetic algorithm with Pareto set approximation. In

each generation, for all creatures, dominant sorting is performed. One solution is dominant

over another if all objective function values of the first solutions are at least as good as all

objective function values of the second solution, and at least one objective function value

improves the solution. This algorithm allows determining the Pareto front, the most promising

solutions. For each generation, all promising solutions are stored. At the end of the algorithm,

dominant sorting is performed for the last time to find the final Pareto front and choose the

best solution of the algorithm. The baseline algorithm uses five objective functions described

in the previous section with equal weights. The flow chart is shown on Figure 2 and pseudo

code for memetic baseline algorithm shown below.

Memetic baseline algorithm

1: Check if the problem has a solution

2: Initialize set of solutions P0

3: P0’ = repair infeasible solutions of P0

4: P0’’ = apply local search to solutions of P0’

5: Update set of non-dominated solutions Pknown from P0’’

6: t = 0

7: Pt = P0’’

8: while (stopping criterion is not met), do

9: Qt = selection of solutions from Pt ∪ Pknown

 10: Qt’ = crossover and mutation of solutions of Qt

 11: Qt’’ = repair infeasible solutions of Qt’

 12: Qt’’’ = apply local search to solutions of Qt’’

 13: increment t

 14: Update set of non-dominated solutions Pknown from Qt’’’

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

20

 15: Pt = fitness selection from Pt ∪ Qt’’’

 16: end while

 17: return Pareto set approximation Pknown

Baseline Local Search

1: Probability: Random value between zero and one

2: while there are solutions not verified do

3: if Probability < 0.5 then

4: We remove services placed on Hj and run them on Hj’ if resources available

are enough, and then assign any unselected service on Hj if resources are available after

sorting them with priority level

5: else

6: We assign all services Si needed to available Hj devices depending on

resources requirement, and then we discard all Hj and assign all services Si to new set of

volunteers Hj’ that can host them

7: end

8: end while

9: return Set of Optimized Solutions Pt”

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

21

Figure 2. Flow chart for Baseline Memetic algorithm.

B. Memetic Algorithm Modifications

The following modifications were created and added together in different

combinations summarized in Table 2.

Distance from user to fog device. In our architecture, the orchestrator is not

topology-aware and only can estimate network propagation based on the distance between

user and fog device. The distance to fog devices was set to the same value in [2], which is

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

22

used as a baseline algorithm. The authors did not take into consideration that users can be in a

different location relative to fog devices. We introduce x and y coordinates to express the

physical location of fog devices and users. At the beginning of the algorithm, we calculate the

Euclidian distance between each user and fog device and store this information in Hashable

for efficient runtime access. We also assign x and y coordinates for the centralized cloud to

use this distance in objective calculations. Based on the distance between fog devices, the

network propagation delay is assigned in a given range. The x and y coordinates are used for

all algorithms, including the baseline memetic.

Table 2. Comparison table of different combinations of modifications created for memetic

baseline algorithm.

Algorithm Local search,

maximize

number of

services

algorithms

Local

search,

minimize

number of

fog devices

algorithm

Local search

frequency,

(local search

happen every

N generation)

Fitness

function

includes

distance to

cloud

Using

new

objectives

F6 and

F7

Using ML

model to

choose the

best solution

from pareto

optimal

Memetic

Baseline
old old 1 ✓

Memetic without

Local Search
- - - ✓

Experimental 1 old old 2 ✓

Experimental 2 new old 1 ✓

Experimental 3 new - 1 ✓

Experimental 4 old old 1

Experimental 5 new old 1

Experimental 6 new old 2 ✓

Experimental 7 new old 1 ✓ ✓

Experimental 8 old old 1 ✓ ✓

Experimental 9 old old 1 ✓ ✓ ✓

Local search frequency adjustment. The baseline memetic algorithm is relatively

slow. The profiling of python code for baseline memetic algorithm was performed using

cProfile to indicate the most inefficient parts of code. The result shows that the main factor

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

23

affecting time in baseline memetic is the local search performed on every creature in every

generation. We created a memetic algorithm without local search to estimate how much time

it would take and how it would affect the metrics. Additionally, we introduce a variable that

regulates the frequency of how often the local search is performed. For example, by assigning

the frequency variable to 2, we perform the local search only every second generation. In

experiment analysis, we discuss how it affects the calculation time of the placement

algorithm.

New heuristic for local search. The local search consists of two parts – minimization

of the number of active fog devices and maximization of services placed on fog. Both parts of

local search are applied to all creatures in the population. With the probability of 0.5, the

order of applied parts differs. For example, if the generated probability is less than 0.5, firstly,

minimization of the number of active fog devices performed first and then maximization of

services placed on fog. If the probability is greater than 0.5, maximization of services

performed first and then the minimization of fog devices. To improve the algorithm's

performance, we proposed our own algorithm for the maximization of services on fog.

In the original maximization of services, the algorithm iterates over services that

already have placement on fog devices, trying to place unassigned service to the same fog

device. This approach does not consider the distance between the user of the service and the

fog device and does not consider idle fog devices.

In our proposed heuristic for maximization of services in fog, we first create a Hash

table where the key is a service, and the value is the list of all the fog devices sorted by the

distance in ascending order. Since the distance between users and fog devices does not change

over time in our architecture, this Hash table is calculated only once at the beginning of the

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

24

memetic algorithm. When the maximization of services is performed, the algorithm fetches

the list of all fog devices from Hash table sorted by distance relative to the user of this

service. Algorithm iterates over this list of fog devices starting from closest to the user fog

device until it finds one that has enough resources to host this service. The pseudo-code for

this heuristic is shown below.

Local search heuristic to maximize the number of services in fog

1: service_to_fog_devices = hashtable where key is service id, value is a sorted by

distance fog devices

2: for service in services

3: if service not assigned to any fog device then

4: list_of_fog_devices = service_to_fog_devices.get(service id)

5: for fog_device in list_of_fog_devices

6: if fog_device resources >= service resource requirements then

7: assign service to this fog_device

8: break

9: end

 10: end for

 11: end

 12: end for

Introduction of two new objective functions. Since requests cannot wait forever to

be processed in the real-world scenario, we introduced a deadline for each service's requests.

To make the memetic algorithm aware of deadlines, we add a new objective to the fitness

function to tune the population for this objective. This objective function is described in

Section 4. It calculates the sum of the normalized inversed deadlines for services placed on

fog where the services with the smallest deadlines contribute the most to this objective.

The second new objective function was introduced to improve the total response time.

The total response time is when the user's request was emitted until the request was

successfully processed. The total response time includes the network latency, the time taken

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

25

to deliver the request from a user to the fog device, and the time it took to finish the

calculation on the fog device. Since we have a heterogeneous environment and each fog

device may have the different processing power, we want to account for it as well. For our

placement algorithm, we want to choose the fog devices that satisfy resource requirements

and have the fastest processors. For each service placed on fog, the objective function will

sum the processor instruction per time interval (IPT) value, and our algorithm will try to

maximize this value.

The described modifications for different memetic algorithm configurations are

summarized in Table 2. The differences and similarities between algorithms are shown on

Figure 3.

The memetic baseline is a parent algorithm and other algorithms are modification of

the memetic baselisne. We add Memetic without local search, which only differs from

baseline, by not performing the local search to compare how it affects the calculation time

and how much it worsens the placement results.

The modification Experimental 1 is similar to memetic baseline but performs local

search only for every second generation. For this modification, we again want to compare

how skipping local search every second generation will affect the calculation time and how

much the placement results will be affected.

The modification Experimental 2 is very similar to baseline but uses the new greedy

heuristic to find fog devices with the smallest distance for unassigned service. The

modification Experimental 6 is a copy of Experimental 2 but performs local search with the

new heuristic only for every second generation.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

26

For modification Experimental 3, we use only the new heuristic, ignoring the

minimization of active fog devices.

Figure 3. Comparison of memetic algorithm modifications. Rectangles are placement

algorithms. An arrow shows what the base algorithm for each modification is. An ellipse shows

the changes introduced in the algorithms enclosed in the dashed box.

Modifications Experimental 4 and Experimental 5 are similar to Memetic Baseline

and Experimental 2 with the new heuristic. In these two modifications, we want to explore the

importance of adding distance to the cloud for the objective that calculates the distances

between user and fog device where the user’s service is placed. For all other modifications,

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

27

if service were not placed on fog device and instead goes to the cloud, we add a distance to

the cloud as a punishment. Since the first objective, F1, already calculates the number of

services placed on fog, this punishment may seem redundant. With Experimental 4 and

Experimental 5, we do not add distance to the cloud and only try to minimize the distances

between users and fog devices inside the fog cluster.

With modification Experimental 7 and Experimental 8, we want to test how the two

new objective functions affect the placement algorithms and if they help to reduce the number

of requests filed by the deadline. Experimental 7 is similar to Experimental 2, but while

Experimental 2 has five objective functions, Experimental 7 has seven objective functions.

Experimental 8 is similar to Memetic baseline but has two more objective functions than

baseline.

Finally, with modification Experimental 9, we will test the machine learning approach

(described below) on the final placement results. Experimental 9 is an extension of

Experimental 8, using seven objectives. In addition, for Experimental 9, we use machine

learning at the final step of the algorithm to predict which of the solutions from the set Pareto

optimal solutions will produce the best result for total response time.

C. Machine Learning Optimization

At the final stage of the memetic algorithm, we have a set of solutions that are Pareto

optimal. Since there are multiple solutions, we have to choose one to perform service

placement. The straightforward approach is to perform normalization for each objective

function. After that, add all objectives that we want to maximize and subtract all objectives

that we want to minimize. Finally, compare the final value for each solution picking the

solution with the biggest value.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

28

However, this approach may not be the best since the objectives often contradict each

other or overshadow each other. One way to overcome it is to tune the weights for each

objective function to indicate which objectives are of the most importance. However, we have

to adjust it manually, and the dependency between different objectives may not be

straightforward. Alternatively, we can use machine learning to learn which values of the

objective functions are most desirable to optimize a particular metric. Thus, we will train a

machine-learning algorithm to predict the value for the metric that we want to optimize.

The inputs for the prediction will be values for each objective function, the number of

services in the fog cluster, and a number of fog devices. The output is the predicted metric

value that we want to optimize.

In this work, we optimize the average total response time, the time that takes a request

to be sent over the network and processed in a fog device. Based on the prediction from the

machine learning model, we can choose the final solution among Pareto optimal solutions.

This project uses a machine learning approach with seven objective functions. We use

Experimental 8 to generate a dataset for different values of seven objective functions.

Additionally, the dataset will include the basic architecture information, such as the number

of fog devices and the number of services to be placed. The output is calculated from

simulation results, removing the outliers. We use a neural network with five hidden layers for

the machine-learning model.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

29

VI. SIMULATION

The baseline memetic algorithm and its modifications were implemented using Python

3.6 and the NumPy library. The placement calculation and simulation were parallelized using

the python multiprocessing library. It allowed using all cores to run experiments which helped

to obtain results in a reasonable time.

For placement calculations and simulations, we use AWS EC2 c6i.32xlarge with 256

GiB memory, 200 GiB storage, and 128 CPUs. This instance allowed to calculate of 128

experiments at the same time.

All source code available on GitHub https://github.com/msurmenok/master-project.

Simulator framework. We use Yet Another Fog Simulator (YAFS) to simulate the

fog environment and calculate the efficiency of the proposed algorithms. YAFS is a discrete-

event simulator using complex network theory. It is written in python and has good

documentation. YAFS simulator allows simulating initial and dynamic placement and

dynamic events in the system, such as user movement. For each simulation run, the simulator

logs all simulation results to two CSV files; one file describes the lifespan for each request,

including the time when the request was emitted, when the fog device accepted it, and when

the request was processed. Another file describes the transmission events between network

links. As the authors say, “there are no magic hidden variables” [14]. All data is fine-grained

and gives the flexibility to create custom metrics.

Experiment setup. A single experiment generates a single network setup, set of

applications with all the requirements, user distribution, and placement for each algorithm for

a given network and applications. It allows testing placement on the same network settings.

All this data is saved as a JSON file and loaded to simulate each placement.

https://github.com/msurmenok/master-project

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

30

In this project, we do 100 experiments for two scenarios. The first scenario has 20 fog

devices and 50 services, and the second scenario has 40 fog devices and 100 services to be

placed. These scenarios are described in Table 3. The same scenarios are used for baseline

memetic [2]. We run simulation with the same network size but different network and

application configurations 100 times for each experiment configuration.

For memetic algorithms, we use 1000 generations with a population of 100 creatures

similar to [2].

Table 3. Experiment scenarios.

 Number of fog devices Number of services Number of gateways Number of experiments

configuration 1 20 50 5 100

configuration 2 40 100 10 100

We generate network and application configurations randomly, using values similarly

to [15]. In this paper, the authors test their rank-based placement algorithm for fog using the

YAFS simulator. The value ranges are shown in Table 4 and Table 5. The network is

generated using python library networkx that can produce realistic networks. To obtain x and

y coordinates, we map network representation to the 2d plane using networkx library tools. To

determine which nodes on the network should be gateway devices, we perform network

centrality calculations. It finds the most popular paths and assigns a rank to each node. The

network nodes with the lowest rank are considered edge devices, so we assign them to be

gateway devices that cannot host services but emit requests on behalf of users. The network

node with the highest centrality rank is considered the one with the highest traffic. We assume

that this is the gateway for a centralized cloud. To emulate a centralized cloud, we create one

more node in the network and set all values following the Table 5 values for the cloud.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

31

We consider five network and application settings. For all five configurations we

perform the same number of simulations described in Table 3. List of five network and

application settings configurations:

• Average network and applications configuration

• Configuration with requests above average

• Configuration with requests below average

• Configuration with fog devices’ resources above average

• Configuration with fog devices’ resources below average

Table 4 and Table 5 shows network and application settings for average network and

applications configuration. The next four are slightly differs from the average settings.

Table 4. Application settings.

Parameter Value (min – max)

memory (units) 1 – 5

storage (units) 10 – 50

processor (units) 0.1 – 0.5

deadline (ms) 2000 – 20,000

execution (instr/req) 20000 – 60000

message size (bytes) 1500000 – 4500000

priority 0 – 1

user request ratio 1/1000 – 1/200

Configurations for requests above and below average are shown on Table 6 and Table

7 respectively. The only difference from average configuration is the user request ratio.

Configurations for fog devices’ resources above and below average have the same

applications settings as average configuration. These two configurations only differs from the

average configuration by minimum and maximum values for memory, storage, processor, and

IPT. The changes are shown in Table 8 and Table 9.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

32

For the configuration with average network and applications setting we perform

experiments with all algorithms described in Table 2. For the last four configurations, we use

only memetic baseline algorithm and three best performing algorithms from average

configuration, Experimental 2, Experimental 6, Experimental 8, and Experimental 9.

Table 5. Fog devices and cloud settings.

Parameter Fog devices, value

(min -max)

Cloud, value

memory (units) 10 – 25 99999999999

storage (units) 20 – 200 99999999999

processor (units) 0.2 – 2.0 99999999999

IPT (instr / ms) 500 – 1000 10000

bandwidth (bytes/ ms) 75000 125000

propagation delay (ms) 2 – 10 500

x (meters) 0 – 1000 18200

y (meters) 0 – 1000 18200

time availability (ms) 100000 – 2000000 99999999999

Table 6. Application settings for configuration with requests frequency above average.

Parameter Value (min – max)

memory (units) 1 - 5

storage (units) 10 - 50

processor (units) 0.1 - 0.5

deadline (ms) 2000 - 20,000

execution (instr/req) 20000 - 60000

message size (bytes) 1500000 - 4500000

priority 0 - 1

user request ratio 1/600 - 1/200

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

33

Table 7. Application settings for configuration with requests frequency below average.

Parameter Value (min - max)

memory (units) 1 - 5

storage (units) 10 - 50

processor (units) 0.1 - 0.5

deadline (ms) 2000 - 20,000

execution (instr/req) 20000 - 60000

message size (bytes) 1500000 - 4500000

priority 0 - 1

user request ratio 1/1000 - 1/600

Table 8. Fog devices settings for configuration with fog devices’ resources above average.

Parameter Fog devices, value

(min -max)

memory (units) 17.5 - 25

storage (units) 110 - 200

processor (units) 1.1 - 2.0

IPT (instr / ms) 750 - 1000

bandwidth (bytes/ ms) 75000

propagation delay (ms) 2 - 10

x (meters) 0 - 1000

y (meters) 0 - 1000

time availability (ms) 100000 - 2000000

Table 9. Fog devices settings for configuration with fog devices’ resources below average.

Parameter

Fog devices, value

(min -max)

memory (units) 10 - 17.5

storage (units) 20 - 110

processor (units) 0.2 - 1.1

IPT (instr / ms) 500 - 750

bandwidth (bytes/ ms) 75000

propagation delay (ms) 2 - 10

x (meters) 0 - 1000

y (meters) 0 - 1000

time availability (ms) 100000 – 2000000

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

34

Machine learning model. We use the scikit-learn library to create a neural network

consisting of five fully connected hidden layers. We use a dataset with approximately

110,000 records from simulation results generated for memetic algorithm Experimental 8. For

data generation, we use both placements from Pareto optimal and placements not included in

Pareto optimal to have variety in the dataset.

We use the following values as features:

• number of fog devices (either 20 or 40)

• number of services to be placed (either 50 or 100)

• the values for seven objective functions

The average total response time calculated by the YAFS simulator is used as output.

75% of the dataset is used for training, and 25% is used for testing. We use a scikit-

learn standard scaler for normalization that subtracts mean and then scales to unit variants,

thus centering data around 0.

To measure the accuracy of the trained model, we use the built-in R2 score provided

by the scikit-learn library, which shows the coefficient of determination. For our settings, we

achieved a score of 0.9448, where 1.0 is the maximum possible value.

To use the trained model in simulation, we serialized the machine learning pipeline,

including the standard scaler, and then loaded it for Experimental 9 during placement

calculation.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

35

VII. RESULTS AND ANALYSIS

In this section, we will discuss the metrics used for algorithm comparison and discuss

simulation results. For each simulation run, YAFS produces a CSV file with information

about each request. We use python with NumPy and pandas libraries to calculate metrics and

save the results on disk.

A. Metrics.

In this project we aim to optimize:

• Minimize the average total response time – time when request was emitted from user

until the request was successfully processed, calculated for all requests that finished

within a deadline.

• Minimize the average total response time for important services – time when request

for service with maximum priority was send from the user until it was successfully

processed, calculated for all requests for important services that finished within a

deadline.

• Minimize the average percentage of failed requests – calculated as number of failed

requests divided by the total number of requests. The average of all experiments for

the same placement is taken and multiplied by 100%.

• Minimize the average percentage of failed requests for important services – similar to

the above, but calculate the number of failed requests for important services divided

by the total number of requests for important services. The average of all experiments

for the same placement algorithm is taken and converted to percent.

• Minimize number of fog devices used – to minimize the cost and energy consumption,

we want to minimize the number of fog devices that host at least one service.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

36

• Minimize calculation time – memetic algorithms take a lot of time to complete, we

want to find how much optimizations such as skipping local search every second

generation affect the calculation time.

B. Results and Discussion for Configuration with Average Network and Applications Settings

All the calculated metrics are shown in Table 10 for scenario with 20 fog devices and

50 services and in Table 11 for scenario with 40 fog devices and 100 services.

Table 10. Results of 100 experiments for scenario with 20 fog devices and 50 services.

Algorithm Average

total

response

Average

% of

failed

requests

Average

total

response

for

services

with high

priority

Average %

of failed

requests

for

services

with high

priority

Number

of fog

devices

used

Average

calculation

time

Average

number of

services

placed on

fog devices

FirstFitRAM 82.9206 0.5987 350.1489 0.6432 18.7600 0.0013 48.3400

Memetic Baseline 76.2812 0.2696 130.6646 0.1528 16.5900 2490.6920 49.4600

Without LC 78.3456 0.3590 150.5299 0.2018 17.7200 1443.0573 49.2400

Experimental 1 76.6408 0.2418 115.2661 0.1217 16.6800 2378.2789 49.4700

Experimental 2 75.9738 0.2861 145.7647 0.2334 15.7800 2794.9338 49.5000

Experimental 3 76.1980 0.2886 146.2898 0.1861 16.6500 3007.4164 49.3200

Experimental 4 83.6501 0.4940 154.1095 0.2002 16.4400 4854.0869 48.7900

Experimental 5 76.8831 0.3433 172.2013 0.2749 15.9400 4424.7323 49.2200

Experimental 6 74.6390 0.2577 144.8497 0.2119 15.9300 1803.0935 49.4600

Experimental 7 83.8878 0.6021 337.8629 0.6678 18.3700 4803.6266 48.5400

Experimental 8 73.5828 0.1681 130.0655 0.1425 16.8700 4751.9233 49.6000

Experimental 9 72.8178 0.1719 133.4792 0.1743 18.9700 5025.9895 49.6000

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

37

Table 11. Results for 100 experiments for scenario with 40 fog devices and 100 services.

Algorithm Average

total

response

Average

% of

failed

requests

Average

total

response

for

services

with high

priority

Average %

of failed

requests for

services

with high

priority

Number

of fog

devices

used

Average

calculation

time

Average

number of

services

placed on

fog devices

FirstFitRAM 76.5162 0.3447 251.1665 0.3961 38.5300 0.0033 97.4200

Memetic Baseline 75.8480 0.1713 120.3254 0.1219 35.7100 7443.5925 99.1800

Without LC 76.8407 0.2436 148.4836 0.1906 37.3800 1698.2685 98.6900

Experimental 1 76.2805 0.1740 134.2103 0.1541 35.6900 5132.9300 99.0300

Experimental 2 75.3157 0.1526 123.3200 0.1218 34.6500 8340.1114 99.2100

Experimental 3 77.7016 0.2434 157.0078 0.2106 35.7000 8195.3604 98.6600

Experimental 4 79.1110 0.2850 160.0949 0.2058 35.4700 12071.6703 98.3700

Experimental 5 76.4428 0.2159 153.9512 0.1831 34.7000 11361.9545 98.7100

Experimental 6 75.2248 0.1535 148.1194 0.1866 34.6800 4987.6597 99.2400

Experimental 7 78.3993 0.3904 234.2334 0.3815 37.7500 10690.2836 97.6800

Experimental 8 75.9687 0.1461 116.7000 0.1023 36.0000 10697.3509 99.3200

Experimental 9 73.9590 0.1086 134.8411 0.1514 37.3400 10128.9817 99.4200

The average calculation time for all memetic algorithms for both scenarios is shown on

Figure 4. The comparison of average total response time shown on Figure 5. The comparison of

percentage of failed requests are shown in Figure 6. For services with the highest priority, the

average total response time and percentage of failed requests are shown in Figure 7 and

Figure 8 respectively. Figure 9 and Figure 10 show the average number of fog devices that host

at least one service.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

38

Figure 4. Average calculation time for modifications of memetic algorithm.

Figure 5. Average total response time.

0

2000

4000

6000

8000

10000

12000
P

la
ce

m
en

t
C

al
cu

la
ti

o
n

 T
im

e,
 s

20 fog devices, 50 services 40 fog devices, 100 services

66

68

70

72

74

76

78

80

82

84

86

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e,
 m

s

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

39

Figure 6. Average percent of failed requests.

Figure 7. Average total response time for services with high priority.

0.0

0.1

0.2

0.3

0.4

0.5

0.6
P

er
ce

n
t

o
f

R
e

q
u

es
ts

 F
ai

le
d

, %

20 fog devices, 50 services 40 fog devices, 100 services

0

50

100

150

200

250

300

350

A
ve

ra
ge

 R
e

so
p

n
se

 T
im

e,
 H

ig
h

 P
ri

o
ri

ty
,

m
s

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

40

Figure 8. Average percent of failed requests for services with high priority

Figure 9. Average number of active devices for scenario with 20 fog devices and 50 services.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

er
ce

n
t

o
f

R
e

q
u

es
ts

 F
ai

le
d

, H
ig

h
 P

ri
o

ri
ty

, %

20 fog devices, 50 services 40 fog devices, 100 services

15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5

N
u

m
b

er
 o

f
A

ct
iv

e
Fo

g
D

ev
ic

es

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

41

Figure 10. Average number of active devices for scenario with 40 fog devices and 100 services.

Memetic modification Experimental 2 uses a combination of a new heuristic with

minimization of a number of fog devices from old local search. The subset of results for

Experimental 2 and baseline algorithms is shown on Table 12 and Table 13.

Table 12. Comparison of results for Experimental 2 with baseline algorithms of 100

experiments for scenario with 20 fog devices and 50 services. Average configuration.
Algorithm Average

total

response

Average %

of failed

requests

Average

total

response for

services with

high priority

Average %

of failed

requests for

services with

high priority

Number of

fog devices

used

Average

number of

services

placed on

fog devices

FirstFitRAM 82.9206 0.5987 350.1489 0.6432 18.7600 48.3400

Memetic Baseline 76.2812 0.2696 130.6646 0.1528 16.5900 49.4600

Experimental 2 75.9738 0.2861 145.7647 0.2334 15.7800 49.5000

The results show that Experimental 2 improves the average total response time

compared to Memetic Baseline [2]. It can be explained by the number of services placed on

fog devices where Experimental 2 could place more services on average, thus reducing the

number of requests sent to the cloud for processing.

34.0
34.5
35.0
35.5
36.0
36.5
37.0
37.5
38.0
38.5
39.0

N
u

m
b

er
 o

f
A

ct
iv

e
Fo

g
D

ev
ic

es

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

42

Table 13. Comparison of results for Experimental 2 with baseline algorithms of 100

experiments for scenario with 40 fog devices and 100 services. Average configuration.
Algorithm Average

total

response

Average % of

failed

requests

Average total

response for

services with

high priority

Average % of

failed

requests for

services with

high priority

Number of

fog devices

used

Average

number of

services

placed on

fog devices

FirstFitRAM 76.5162 0.3447 251.1665 0.3961 38.5300 97.4200

Memetic Baseline 75.8480 0.1713 120.3254 0.1219 35.7100 99.1800

Experimental 2 75.3157 0.1526 123.3200 0.1218 34.6500 99.2100

Although Experimental 2 uses a greedy heuristic, it could employ fewer fog devices for

placement. The network setup can explain this—all users are connected to a small number of

gateways that send requests on the users' behalf. When we calculate the distance between fog

devices and users, we use the coordinates of users' gateway devices. Thus, for users

connected to the same gateway, the closest fog devices will be in the same order. Therefore,

Experimental 2 will explore the closest fog devices in the same order for multiple users

allowing for packing services more tightly.

Even though Experimental 2 has more services placed on fog devices, it performs

worse for services with high priority. This can be explained by using all objective functions

with equal weight when the improvement in one objective overshadows other objective

functions. The difference in performance is greater in a small network setup with 20 fog

devices and 50 services. In our simulation, we use only the described devices for network

communication. Therefore, fewer fog devices lead to fewer paths to send requests and

consequently to increased network congestion.

Overall, from Table 12 and Table 13, we can see the difference in performance between

First Fit and both memetics. Thus, although First Fit placement is calculated quickly

compared to the memetic algorithm, it cannot achieve the same performance. For services

with high priority, baseline memetic algorithm outperforms First Fit percentage of failed

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

43

requests by up to 76.56% and average total response time by up to 62.17%. Thus, using

memetic algorithms can be justified when we expect extended time usage of services and the

number of failed requests and total response time for services with high priority is more

important than initial placement time.

Experimental 6 differs from Experimental 2 only by performing a local search for every

second generation, reducing the overall calculation time. The subset of results for

Experimental 6 and baseline algorithms is shown in Table 14 and Table 15. We can see that

Experimental 6 has similar or slightly worse results compared to its parent algorithm,

Experimental 2 and Memetic Baseline. Since Experimental 6 performs local search only

every second generation, which is shown by profiler bottleneck for memetic algorithms,

Experimental 6 has a shorter calculation time. The experiments show that Experimental 6

reduces calculation time by up to 33% compared to Memetic Baseline and up to 40%

compared to Experimental 2. Experimental 6 can be a feasible solution for settings where we

need to calculate placement while still having near-optimal performance.

Table 14. Comparison of results for Experimental 6 with baseline algorithms of 100

experiments for scenario with 20 fog devices and 50 services. Average configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services with

high priority

Average

calculation

time

FirstFitRAM 82.9206 0.5987 350.1489 0.6432 0.0013

Memetic Baseline 76.2812 0.2696 130.6646 0.1528 2490.6920

Experimental 2 75.9738 0.2861 145.7647 0.2334 2794.9338

Experimental 6 74.6390 0.2577 144.8497 0.2119 1803.0935

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

44

Table 15. Comparison of results for Experimental 6 with baseline algorithms of 100

experiments for scenario with 40 fog devices and 100 services. Average configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services with

high priority

Average

calculation

time

FirstFitRAM 76.5162 0.3447 251.1665 0.3961 0.0033

Memetic Baseline 75.8480 0.1713 120.3254 0.1219 7443.5925

Experimental 2 75.3157 0.1526 123.3200 0.1218 8340.1114

Experimental 6 75.2248 0.1535 148.1194 0.1866 4987.6597

The memetic modification Experimental 3 uses only a new greedy heuristic searching

for fog devices nearby without minimizing the number of fog devices in its local search. The

subset of results for Experimental 6 and baseline algorithms is shown on Table 16 and Table

17. Compared to baseline

Table 16. Comparison of results for Experimental 3 with baseline algorithms of 100

experiments for scenario with 20 fog devices and 50 services. Average configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 82.9206 0.5987 350.1489 0.6432

Memetic Baseline 76.2812 0.2696 130.6646 0.1528

Experimental 3 76.1980 0.2886 146.2898 0.1861

Table 17. Comparison of results for Experimental 3 with baseline algorithms of 100

experiments for scenario with 40 fog devices and 100 services. Average configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 76.5162 0.3447 251.1665 0.3961

Memetic Baseline 75.8480 0.1713 120.3254 0.1219

Experimental 3 77.7016 0.2434 157.0078 0.2106

Memetic, Experimental 3 does not show any improvements comparing to Memetic Baseline

from [2] while still producing better results comparing to First Fit. The failure to outperform

the baseline Memetic can be explained by not minimizing the number of fog devices during

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

45

the local search. In such a case, only the maximization of placed services is performed using

the new greedy algorithm. Without an attempt to pack services tightly to the same fog

devices, the maximization algorithm makes an inefficient placement on fogs near the user and

reducing utilization efficiency.

The memetic modifications Experimental 4 and Experimental 5 are similar to baseline

Memetic and Experimental 2. The only difference is that Experimental 4 and Experimental 5

do not use distance to cloud when calculating objectives that minimize the distance. The

subset of results for Experimental 4, Experimental 5 and baseline algorithms is shown on

Table 18 and Table 19.

Table 18. Comparison of results for Experimental 4 and Experimental 5 with baseline

algorithms of 100 experiments for scenario with 20 fog devices and 50 services. Average

configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 82.9206 0.5987 350.1489 0.6432

Memetic Baseline 76.2812 0.2696 130.6646 0.1528

Experimental 4 83.6501 0.4940 154.1095 0.2002

Experimental 5 76.8831 0.3433 172.2013 0.2749

Table 19. Comparison of results for Experimental 4 and Experimental 5 with baseline

algorithms of 100 experiments for scenario with 40 fog devices and 100 services. Average

configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 76.5162 0.3447 251.1665 0.3961

Memetic Baseline 75.8480 0.1713 120.3254 0.1219

Experimental 4 79.1110 0.2850 160.0949 0.2058

Experimental 5 76.4428 0.2159 153.9512 0.1831

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

46

Experimental 4 and Experimental 5 show worse performance than baseline Memetic.

Although using the distance to the cloud may seem redundant, since we already maximize the

number of services in fog in the first objective, algorithms Experimental 4 and Experimental

5, prove that we should consider network latency related to the significant distance to the

cloud in another objective function. This demonstrates that the algorithm performs better

when it is not only aware of the number of services sent to the centralized cloud but also how

far away requests need to be sent. Since we use distance as an approximation of network

latency, calculating distance to the cloud can help the algorithm learn how such placement to

the cloud may negatively affect network latency.

Memetic modification Experimental 7 is similar to Experimental 2, and Experimental

8 is similar to baseline Memetic. Experimental 7 and Experimental 8 have two newly created

objective functions that prioritize services by the deadline and prioritize fog devices with the

fastest processors. Thus, both Experimental 7 and Experimental 8 have seven objective

functions, while the rest of the modifications have five objective functions. The subset of

results for Experimental 7, Experimental 8 and baseline algorithms is shown on Table 20 and

Table 21.

Table 20. Comparison of results for Experimental 7 and Experimental 8 with baseline

algorithms of 100 experiments for scenario with 20 fog devices and 50 services. Average

configuration.
Algorithm Average

total

response

Average %

of failed

requests

Average total

response for

services with

high priority

Average % of

failed requests

for services with

high priority

Number of

fog devices

used

Average

number of

services

placed on

fog devices

FirstFitRAM 82.9206 0.5987 350.1489 0.6432 18.7600 48.3400

Memetic Baseline 76.2812 0.2696 130.6646 0.1528 16.5900 49.4600

Experimental 2 75.9738 0.2861 145.7647 0.2334 15.7800 49.5000

Experimental 7 83.8878 0.6021 337.8629 0.6678 18.3700 48.5400

Experimental 8 73.5828 0.1681 130.0655 0.1425 16.8700 49.6000

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

47

Table 21. Comparison of results for Experimental 4 and Experimental 5 with baseline

algorithms of 100 experiments for scenario with 40 fog devices and 100 services. Average

configuration.
Algorithm Average

total

response

Average %

of failed

requests

Average total

response for

services with

high priority

Average % of

failed requests

for services with

high priority

Number

of fog

devices

used

Average

number of

services

placed on

fog devices

FirstFitRAM 76.5162 0.3447 251.1665 0.3961 38.5300 97.4200

Memetic Baseline 75.8480 0.1713 120.3254 0.1219 35.7100 99.1800

Experimental 2 75.3157 0.1526 123.3200 0.1218 34.6500 99.2100

Experimental 7 78.3993 0.3904 234.2334 0.3815 37.7500 97.6800

Experimental 8 75.9687 0.1461 116.7000 0.1023 36.0000 99.3200

Experimental 7 shows the worst performance among all the memetic algorithms,

including baseline. It has one of the highest averages for the average number of active fog

devices and one of the lowest number of services placed on fog devices. The combination of

local search looking for fog devices nearby with objective function trying to put the services

with the smallest deadline converges to a suboptimal solution.

Experimental 8, on the other hand, is one of the best performing algorithms reducing

the number of failed requests for all requests and for requests with higher priority due to

prioritizing services with the smallest deadlines. Compared with Memetic Baseline,

Experimental 8 improves the percentage of failed requests by up to 37.66% and the

percentage of failed requests for services with the highest priority by up to 16.08%. The

introduction of two new objectives positively affected the memetic algorithm with local

search inherited from baseline Memetic. However, it increases the number of fog devices

used for placement to provide enough resources for services with the smallest deadlines.

The subset of results for Experimental 9, its parent algorithm Experimental 9 and

baseline algorithms is shown on Table 22 and Table 23.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

48

Table 22. Comparison of results for Experimental 9 with Experimental 8 and baseline

algorithms of 100 experiments for scenario with 20 fog devices and 50 services. Average

configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 82.9206 0.5987 350.1489 0.6432

Memetic Baseline 76.2812 0.2696 130.6646 0.1528

Experimental 8 73.5828 0.1681 130.0655 0.1425

Experimental 9 72.8178 0.1719 133.4792 0.1743

Table 23. Comparison of results for Experimental 9 with Experimental 8 and baseline

algorithms of 100 experiments for scenario with 40 fog devices and 100 services. Average

configuration.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with high

priority

Average % of

failed requests for

services with high

priority

FirstFitRAM 76.5162 0.3447 251.1665 0.3961

Memetic Baseline 75.8480 0.1713 120.3254 0.1219

Experimental 8 75.9687 0.1461 116.7000 0.1023

Experimental 9 73.9590 0.1086 134.8411 0.1514

Experimental 9 is an extension of Experimental 8 and only differs by using a machine

learning model to choose the solution from Pareto optimal instead of combining results for all

objective functions with the same weights. For Experimental 9, we use the ml model to

predict the average total response time for all Pareto set solutions, picking the solution with

the smallest predicted value. This approach improves the average total response time

compared to parent algorithm Experimental 8 by up to 2.65% and comparing to Memetic

Baseline by up to 4.54%. Since this algorithm mainly focuses on optimizing the average total

response time, the rest of the metrics show worse results than Memetic Baseline but are still

acceptable compared to First-Fit. This approach helps optimize and prioritize an average total

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

49

response time choosing the best solution among Pareto optimal and can be applied to other

metrics.

To compare the effect of local search on computational time, we performed

experiments with Memetic without local search altogether and two modifications,

Experimental 1 and Experimental 6, that perform a local search only every second time. From

Figure 11, we can see the comparison of time to calculate placement for different

modifications of the memetic algorithm. It illustrates that baseline memetic without local

search was calculated almost three times faster than the original local search for both

scenarios. However, it severely degrades the average total response time and other metrics.

On the other hand, skipping the local search for every second generation shows a 31.04%

improvement for Experimental 1 compared to the Memetic Baseline for the scenario with 40

fog devices and 100 services. Experimental 6 differs from Experimental 2 only by performing

a local search for every second generation. The scenario with 20 fog devices and 50 services

shows the calculation speed up by 35.49% and 40.19% for 40 fog devices and 100 services.

While omitting local search altogether has a significant negative effect on other metrics, such

as average total response time, Experimental 1 and Experimental 6 produce results close to

their versions with local search for every second generation. Thus, algorithms with the local

search performed only every second generation may be a viable solution to reduce calculation

time while providing optimal or near-optimal placement.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

50

Figure 11. Comparison of average calculation time for memetic baseline, memetic without local

search, and two memetic algorithms that perform local search every second generation.

To sum, up Experimental 2, Experimental 6, Experimental 8, and Experimental 9

show the best performance among other placement algorithms. Experimental 9 is the best by

average total response time. Experimental 8 is good in average total response and percent of

failed requests for all serviced and services with the highest priority. However, Experimental

8 uses more fog devices on average compared to Experimental 2 and Experimental 6. It also

has one of the longest calculations, exceeding even baseline Memetic. If the calculation could

be parallelized or the prolonged usage of placed services is assumed, Experimental 8 and

Experimental 9 are the best algorithm to choose. Experimental 2 has a good performance in

terms of total response time and percent of failed requests. It can also place services on the

smallest number of fog devices compared to other algorithms. This memetic modification

may be helpful if the energy consumption and cost of renting fog devices are important.

Finally, Experimental 6 has a very good performance as well. It has one of the smallest

average number of fog devices used. This algorithm takes approximately 30% less time to

0

1000

2000

3000

4000

5000

6000

7000

8000

Memetic Baseline Without LC Experimental 1 Experimental 6P
la

ce
m

en
t

C
al

cu
la

ti
o

n
 T

im
e,

 s

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

51

calculate placement than other memetic algorithms while producing excellent results for

services with the highest priority.

C. Results and Discussion for Configuration with Different Requests Frequency

This subsection will discuss results for two simulation variations, traffic above

average and traffic below average.

Simulation result for traffic above average when the frequency of the requests is

greater than the average shown in Table 24 and Table 25. Experimental 9 shows the

improvement for average total response time by up to 6.77% and improvement for the

percentage of failed requests by up to 39.15%. However, to achieve this, Experimental 9 uses

the maximum number of fog devices and neglect services with the highest priority.

We also can see that the percentage of failed requests is higher for a network with 20

fog devices and 50 services. As discussed above, this happens due to increased network

congestion where the requests are transmitted only between fog devices. It severely affects

Experimental 2 and Experimental 6 since they use the smallest amount of fog devices;

therefore, more requests go to the same devices creating more network congestions and dying

by deadline compared to Experimental 8, Experimental 9. It does not produce such an effect

for a network with 40 fog devices. It allows Experimental 2 to process more requests, thus,

improving the average total time and percentage of failed requests while using the smallest

amount of fog devices.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

52

Table 24. Simulation results for traffic above average for scenario with 20 fog devices and 50

services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 77.8752 0.3234 119.1661 0.1475 16.8700

Experimental 2 78.7585 0.3366 130.4889 0.1466 15.8700

Experimental 6 78.7608 0.3036 133.2673 0.1584 16.1800

Experimental 8 80.2502 0.2540 131.9221 0.1607 17.2900

Experimental 9 72.5989 0.2416 144.5519 0.1836 19.0100

Table 25. Simulation results for traffic above average for scenario with 40 fog devices and 100

services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 74.7604 0.1419 109.0995 0.0874 35.3900

Experimental 2 74.5608 0.1096 97.7878 0.0619 34.5500

Experimental 6 75.4876 0.1325 111.5557 0.0946 34.7300

Experimental 8 74.7115 0.1001 97.9507 0.0517 35.8100

Experimental 9 71.8213 0.0864 105.8453 0.0887 37.3900

Figure 12. Average total response time for settings with traffic above average.

66

68

70

72

74

76

78

80

82

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e,
 m

s

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

53

Figure 13. Average percent of failed requests for settings with traffic above average.

Simulation result for traffic below average when the frequency of the requests is

smaller than the average shown in Table 26 and Table 27. The results for simulation with

traffic below average show that modified memetic algorithms improve average total response

time and percentage of failed requests up to 2.2% and 36.3%, respectively. Experimental 8

shows the best performance in the percentage of failed requests for all services and services

with the highest priority, which can be explained by the new objective function that

prioritizes services with the smallest deadlines allowing to complete more requests on time.

Table 26. Simulation results for traffic below average for scenario with 20 fog devices and 50

services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 81.0521 0.2741 139.5765 0.1528 16.8000

Experimental 2 78.6062 0.2642 134.3264 0.1377 15.8100

Experimental 6 78.5710 0.2651 144.3016 0.1805 16.0600

Experimental 8 76.8907 0.2353 126.5442 0.1431 17.0800

Experimental 9 74.2194 0.2248 182.0745 0.2522 19.1600

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9P
er

ce
n

t
o

f
R

e
q

u
es

ts
 F

ai
le

d
, %

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

54

Table 27. Simulation results for traffic below average for scenario with 40 fog devices and 100

services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 74.4531 0.0973 99.2440 0.0562 35.3200

Experimental 2 73.9519 0.0995 102.0413 0.0782 34.4200

Experimental 6 75.5606 0.0816 84.7969 0.0364 34.5600

Experimental 8 72.8130 0.0808 89.6922 0.0442 35.7000

Experimental 9 71.2393 0.0762 107.6741 0.1045 37.0300

Figure 14. Average total response time for settings with traffic below average.

Figure 15. Average percent of failed requests for settings with traffic below average.

66

68

70

72

74

76

78

80

82

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e,
 m

s

20 fog devices, 50 services 40 fog devices, 100 services

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

P
er

ce
n

t
o

f
R

e
q

u
es

ts
 F

ai
le

d
, %

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

55

D. Results and Discussion for Configuration with Different Fog Devices’ Resources

This subsection will discuss results for two simulation variations where we have fog

devices with resources above average and fog devices with resources below average.

In the configuration with fog devices above average, fog devices have CPU, memory,

IPT, and storage above average. The results of 100 simulations are shown in Table 28 and

Table 29.

Table 28. Simulation results for settings with fog devices above average for scenario with 20

fog devices and 50 services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 59.7574 0.0000 60.1254 0.0000 14.8800

Experimental 2 59.7286 0.0000 60.0102 0.0000 14.8900

Experimental 6 59.9291 0.0000 60.2530 0.0000 14.9000

Experimental 8 58.9428 0.0000 59.5193 0.0000 14.9000

Experimental 9 58.3504 0.0000 58.4734 0.0000 18.2100

Table 29. Simulation results for settings with fog devices above average for scenario with 40

fog devices and 100 services.
Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 60.1415 0.0000 60.1889 0.0000 32.3800

Experimental 2 60.1408 0.0000 60.1751 0.0000 32.5600

Experimental 6 59.8024 0.0000 59.8579 0.0000 32.2800

Experimental 8 59.2356 0.0000 59.3991 0.0000 32.4900

Experimental 9 59.0778 0.0000 59.0622 0.0000 36.1900

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

56

Figure 16. Average total response time for setting where fog devices’ resources above average.

The results of 100 simulations for configuration with fog devices where CPI, memory,

IPT, and storage are below average are shown in Table 30 and Table 31.

Table 30. Simulation results for settings with fog devices below average for scenario with 20 fog

devices and 50 services.

Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services with

high priority

Number of fog

devices used

Memetic Baseline 104.5501 2.2050 992.0109 1.7518 19.2100

Experimental 2 105.3920 2.1717 966.3998 1.7028 17.0100

Experimental 6 105.8532 2.1873 1034.8908 1.8191 17.0300

Experimental 8 107.3960 2.1330 1015.4137 1.7832 19.6100

Experimental 9 106.1820 2.1536 1183.0816 2.1143 19.9300

Table 31. Simulation results for settings with fog devices below average for scenario with 40 fog

devices and 100 services.

Algorithm Average total

response

Average % of

failed requests

Average total

response for

services with

high priority

Average % of

failed requests

for services

with high

priority

Number of fog

devices used

Memetic Baseline 93.8274 1.1548 607.4873 0.9671 38.3500

Experimental 2 93.7423 1.1562 626.5234 1.0053 36.2400

Experimental 6 93.5901 1.1552 633.1475 1.0254 36.3400

Experimental 8 94.3539 1.1355 621.4042 0.9861 39.1100

Experimental 9 93.9570 1.1352 661.3474 1.0691 39.6100

57

58

58

59

59

60

60

61

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e,
 m

s

20 fog devices, 50 services 40 fog devices, 100 services

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

57

Figure 17. Average number of active fog devices for scenario with 20 fog devices and 50

services where fog devices’ resources are below average.

Figure 18. Average number of active fog devices for scenario with 20 fog devices and 50

services where fog devices’ resources below average.

With the abundance of resources on fog devices, all algorithms perform well. Since

Experimental 9 is focused mainly on average response time, it may choose the solution with

more active fog devices striving to improve a single metric. In this setting, Experimental 9

improves average total response time by up to 2.35% compared to Memetic Baseline. As the

fog device capacity grows, all algorithms can place all services on fog devices, making it

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

N
u

m
b

er
 o

f
A

ct
iv

e
Fo

g
D

ev
ic

es

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

Memetic Baseline Experimental 2 Experimental 6 Experimental 8 Experimental 9

N
u

m
b

er
 o

f
A

ct
iv

e
Fo

g
D

ev
ic

es

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

58

possible to complete all the requests on time, reaching 0 in the percentage of failed requests

for all services.

For settings where fog devices’ resources are below average, Memetic Baseline

performs the same or better than its modifications. Experimental 9 failed to improve the

average total response time compared to Memetic Baseline but still found a better solution

than its parent, Experimental 8. Experimental 2 performs similarly to Memetic Baseline, but

choosing the same fogs nearby for users connected to the same gateway improves the number

of hosts used due to the new heuristic. Thus, for settings with fog devices below average,

Experimental 2 may be preferred to improve utilization and reduce the cost by allocating

fewer fog devices.

E. Summary of the Best Memetic Modifications

In section we summarize the best performing modifications of Memetic algorithm and

will discuss their strength and weaknesses. The comparison of best algorithms with Memetic

baseline is shown in Table 32.

Table 32. Comparison of best performing modifications with Memetic baseline.

Algorithm Average total

response for

all services

Average total

response for

services with

high priority

Percentage of

failed requests

for all services

Percentage of

failed requests

for services

with high

priority

Number of fog

devices used

Calculation

time

Memetic Baseline low low good good medium good

Experimental 2 medium medium low low best medium

Experimental 6 medium medium medium medium best best

Experimental 8 good good best best good low

Experimental 9 best best good good low low

Experimental 8 is different from Memetic Baseline by having two new objective

functions. We can see that it affects all metrics except calculation time. This algorithm can be

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

59

useful when we need well balanced performance in all metrics but can afford to wait for

placement calculation.

Experimental 9 is similar to Experimental 8. It also has two new objective function. In

addition, it use machine learning model to optimize total response time as its final step. This

algorithm shows the best results in total response time and percentage of failed requests for

all services while providing good results for services with the highest priority. This algorithm

is most applicable when small total response time and minimum number of failed requests is

more important than number of fog devices used.

Experimental 6 shows near optimal performance in total response time and percentage

of failed request. Its strength is the small number of fog devices used and the shortest

calculation time. This algorithm is useful in case we need to calculate placement fast while

keeping all the metrics satisfying.

Both Experimental 2 and Experimental 6 shows the best results in minimization of

number of active fog devices. However, Experimental 6 outperforms Experimental 2. Thus, if

the number of active fog devices is important, preference should be given to Experimental 6.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

60

VIII. CONCLUSION AND FUTURE WORK

Fog cloud computing can provide additional computational resources for IoT devices,

helping save batteries and improve services quality. The optimal placement of services on fog

devices is essential. It affects the response time and the number of requests filed by the

deadline.

In this project, we proposed multiple modifications of the memetic algorithm to

improve speed and total response time and decrease the percentage of failed by deadline

requests. We consider a more realistic approach, accounting for different users' locations and

request deadlines. We investigated the importance of including distance to the cloud in the

objective function that minimizes the distance between user and service. The results show that

the algorithm performs better when it is aware not only of the number of services sent to the

centralized cloud but also how far away requests need to be sent, thus foreseeing network

latency for such a placement.

The best performing algorithms are Experimental 2, Experimental 6, Experimental 8,

and Experimental 9.

Experimental 2 and Experimental 6 uses a new heuristic in local search. In addition,

Experimental 6 performs a local search only every second generation. These algorithms were

able to use the minimum number of fog devices while keeping the optimal or near-optimal

performance in other metrics. In addition, Experimental 6 improved calculation time by 30%

compared to the Memetic baseline. Thus, Experimental 6 can be a good choice when we need

placement as soon as possible while having satisfying performance and a minimum number

of active fog devices, for example, to keep cost at a minimum.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

61

Experimental 8 uses two new objective functions. It improves the percentage of failed

requests for all services and services with the highest priority by up to 37.66% and 16.08%,

respectively. It shows overall very good performance in all metrics and can be used when the

calculation time is not very important, for example, if we have a long-term placement.

Experimental 9 also uses two new objective functions and machine learning

optimization to find placement with the best average total response time. This approach helps

to make the algorithm more flexible instead of using equal weight for all objective functions.

Experimental 9 improves average total response time by 4.54%. However, it uses more fog

devices and shows only near-optimal performance for services with the highest priority. This

algorithm can be used when services do not have different priority levels and can allow using

more fog devices to maintain a good average total response time.

Possible further research directions include finding optimal settings for a number of

generations, population size, and the frequency value to how often to skip local search. Since

local search is the bottleneck of the algorithm, some new heuristic or approximation can be

considered to improve the speed. In our simulation, we were not able to turn off fog devices

when their time was over. In our experiments, we only performed the initial allocation. The

extension of this work may be enabling a migration during runtime for both services and the

local orchestrator. Simulator capabilities may restrict such experiments. Thus, simulation on a

real testbed may be helpful to explore the performance of architecture with volunteering

devices.

Finally, for machine learning approach optimization, online learning may be

introduced. It will update the ml model with results from new placement to improve the

accuracy of predicted value and make the model aware of different network configurations.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

62

This approach may be further enhanced to optimize other metrics, explore more architectures

and feature engineering to make predictions more accurate.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

63

REFERENCES

[1] "How Many IoT Devices Are There in 2021? [All You Need To Know]," Techjury.

[Online]. Available: https://techjury.net/blog/how-many-iot-devices-are-there.

[Accessed: July 31, 2021].

[2] H. Sami and A. Mourad, "Dynamic on-demand fog formation offering on-the-fly IoT

service deployment," IEEE Transactions on Network and Service Management, 2020

[3] Z. Zhong and R. Buyya, “A Cost-Efficient Container Orchestration Strategy in

Kubernetes-Based Cloud Computing Infrastructures with Heterogeneous

Resources,” ACM Transactions on Internet Technology, 2020.

[4] C. Zhang, et al, "An Energy-aware Host Resource Management Framework for Two-

tier Virtualized Cloud Data Centers," IEEE Access, 2020.

[5] N. Gholipour, E. Arianyan, and R. Buyya, "A novel energy-aware resource

management technique using joint VM and container consolidation approach for green

computing in cloud data centers." Simulation Modelling Practice and Theory 104,

2020.

[6] A. Khan, et al "HeporCloud: An energy and performance efficient resource

orchestrator for hybrid heterogeneous cloud computing environments," Journal of

Network and Computer Applications, 2021.

[7] K. Kaur, et al, “KEIDS: Kubernetes-Based Energy and Interference Driven Scheduler

for Industrial IoT in Edge-Cloud Ecosystem”, IEEE Internet of Things Journal, 2020.

[8] Naha R. et al, "Deadline-based dynamic resource allocation and provisioning

algorithms in fog-cloud environment," Future Generation Computer Systems 104,

2020.

[9] X. Ren, Z. Zhang, and S. Arefzadeh, "An energy‐aware approach for resource

managing in the fog‐based Internet of Things using a hybrid algorithm," International

Journal of Communication Systems, 2021.

DYNAMIC RESOURCE MANAGEMENT OF FOG-CLOUD

COMPUTING FOR IOT SUPPORT

64

[10] H. Wu, et al, "Collaborate edge and cloud computing with distributed deep learning

for smart city internet of things," IEEE Internet of Things Journal 7, no. 9, 2020.

[11] Y. Chen, et al, "Deep Reinforcement Learning based Dynamic Resource Management

for Mobile Edge Computing in Industrial Internet of Things," in IEEE Transactions

on Industrial Informatics, 2020.

[12] J. Huang, C. Xiao, and W. Wu, “RLSK: A Job Scheduler for Federated Kubernetes

Clusters based on Reinforcement Learning,” 2020 IEEE International Conference on

Cloud Engineering, 2020.

[13] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic scheduling for

stochastic edge-cloud computing environments using a3c learning and residual

recurrent neural networks,” IEEE Transactions on Mobile Computing, 2020.

[14] I. Lera, C. Guerrero, and C. Juiz, “YAFS: A simulator for IoT scenarios in fog

computing,” IEEE Access 7, 2019

[15] K. Velasquez, et al, “A rank-based mechanism for service placement in the fog,”

IFIP Networking Conference (Networking), 2020.

	Dynamic Resource Management of Fog-Cloud Computing for IoT Support
	Recommended Citation

	© 2021
	ALL RIGHTS RESERVED
	Abstract
	I. Introduction
	II. Literature Review
	A. Resource Management in Cloud Computing Environment
	B. Resource Management in Fog and Peer-to-Peer environment

	III. Architecture
	IV. Problem Formulation
	V. Algorithms
	A. Baseline algorithms
	B. Memetic Algorithm Modifications
	C. Machine Learning Optimization

	VI. Simulation
	VII. Results and Analysis
	A. Metrics.
	B. Results and Discussion for Configuration with Average Network and Applications Settings
	C. Results and Discussion for Configuration with Different Requests Frequency
	D. Results and Discussion for Configuration with Different Fog Devices’ Resources
	E. Summary of the Best Memetic Modifications

	VIII. Conclusion and Future Work
	References

