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ABSTRACT 

EFFECTIVE CANCER DETECTION USING HIGHER-ORDER  

GENOME ARCHITECTURE AND CHROMATIN INTERACTIONS 

 

By My Xuan Chung 

 

Cancer is a complex disease which requires interactions between cell-intrinsic alterations and tumor 

microenvironment. The connection between epigenetics and genomic structure plays a key role in 

chromatin interaction which promotes enhancer-promoter interactions for transcriptional activities. 

Alterations of chromatin states in oncogenic signaling pathway potentially cause cancer cell-intrinsic 

changes and inappropriate instructions to normal cell cycles, leading to abnormal cell growth. 

Resulting phenotypic changes are correlated to underlying changes in higher-order chromatin structure 

such as topologically associating domains (TADs) and compartments. In cancer cells, TAD structure is 

usually altered to facilitate the communication between enhancers and promoters in addition to higher 

density of histone modification level, thus increasing transcriptional super-enhancer activities within 

certain boundary strengths. Strong insulation scores and boundaries indicate high boundary strength 

(boundary IV) which allows more intra-TAD interactions. High level of histone activating mark 

H3K27ac positioning near promoters increases transcriptional activity and gene expression. Therefore, 

spatial chromosomal structures by TADs and epigenetic markers are the key regulators of chromatin 

interactions in oncogenic activities from carcinogenesis to metastasis. The result indicates that 

XGBoost multi-class classifier has achieved the highest accuracy of 81.13% in classifying normal and 

cancer cell lines based on chromatin interactions, followed by Random Forest at 73.76% and TabNet 

classifier at 73.50%. The detection model could be further improved with high quality data sources and 

meaningful features for clinical applications in early-stage cancer detection and prognosis. 
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I. Introduction 
 

Chromosome structures at different developmental stages allow certain genes to be expressed 

by altering the accessibility of DNA segments for transcription. Chromatins fold into 3D organization 

of higher-order and primary order by organizing linear DNA with protein histones to pack the genome 

and fits it into the cell 

nucleus. Epigenetic 

alterations such as histone 

modification and changes in 

chromatin structures can 

upregulate or downregulate 

gene expressions. In the higher-order section, AB compartments consist of topologically associating 

domains (TADs) as active and inactive regions. Active TADs are rich in genes, open chromatin marks 

and transcription factors while inactive TADs contain few genes. TADs also consist of intra-

chromosomal (cis) interactions with functional domains such as regulatory regions including enhancers 

and promoters (Fig. 1) [1]. Because gene expression and biological functions rely on the chromatin 

interactions between the higher-order and primary order, disruptions in TADs could lead to improper 

gene regulation and thus disease formation. 

TADs are formed by loop extrusion in which cohesin rings made up of RAD21, SMC1, and 

SMC3 load onto DNA segment to 

generate a loop(s) and stop loading 

at CCCTC-binding factor (CTCF) 

anchor (Fig. 2). CTCF is a highly 

conserved zinc finger protein 

which serves as an insulator in 

locus control region to allow for 
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more intra-TAD interactions. CTCF loop loss is caused by the depletion of either CTCF, cohesin, or 

both. TAD boundaries are created at the point where cohesin is blocked by CTCF anchor, and within 

each TAD. There could be one or more sub-TADs identified as loops, part of active and inactive 

compartmental domains. More enhancer-promoter interactions and increased gene expression are 

usually found in CTCF loop domains [2,3]. While CTCF protein is found to be stable in different 

developmental cycles or regulatory events, loops are more dynamic under those cycles or treatment 

conditions. According to Rao et al. (2017), loops were lost when HCT-116 cells were being treated 

with auxin, and loops were reformed after auxin removal, indicating their flexibility within genome 

structure. Loop domains are formed in the presence of cohesin, thus being categorized as cohesin-

associated loops (CA-loop) whereas inter-chromosomal links are only detected at cohesin-independent 

loops (CI-loop). CTCF binding level is at 90% for CA-loops but much lower at 20% for CI-loop. CA-

loops increase promoter activation by distal enhancers, and loss of loop causes super-enhancer 

colocalization to form links. Super-enhancers which are found within CA-loops plus high density of 

H3K27 acetylation tend to upregulate gene expression, but super-enhancers found at inter-

chromosomal links tend to downregulate the expression of nearby genes at the strengthening event of 

links after cohesin loss [4].   

Structures of TADs are made up of compartments, CTCF anchors, and loops. While it is basic 

to include CTCF and loops to define TADs, compartments play important role in the understanding of 

TAD interactions in a larger scale. Besides, contact domains, sub-TADs are classified into CTCF loop 

domains in which CTCF anchors halt the loop extrusion and ordinary domains which are not bound by 

CTCF proteins but specified by certain histone marks. There are two proposed models in the 

interrelation between compartments and TADs (Fig. 3). In the current model (left image), there are 

multiple sub-TADs with higher interaction frequencies (darker red triangles) resided within 

compartments. A few CTCF loops presented at the TAD boundaries while others presented along the 

sub-TADs, indicating strong interactions between CTCF sites. The new model expands the chromatin 

structure to identify TADs using compartmental domains in addition to cohesion-CTCF anchors and 
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loop extrusion events. The overall triangle in the right image corresponds to the tiny domain marked 

by the black arrow in the left image using high-resolution binning size of 1-5kb of Hi-C contact map. 

The directions of CTCF sites are more abundant in this model and define CTCF loop domains from 

ordinary domains with different orientations of colored arrowheads. Furthermore, the structure of 

TADs is varied by CTCF loop domains spanning or encompassing active and inactive compartmental 

domains as shown in the right image [3].  

 

 

CTCF and cohesin ring have different effects on TADs structure in conjunction with 

compartmental domains. In the presence of both CTCF and cohesin, loop extrusion occurs and halted 

by CTCF to contain active and inactive domains, thus increasing intra-compartmental interactions (Fig. 

4a). Loop extrusion continues even in the absence of CTCF protein, and the cohesin ring holds both 

compartmental domains and thus interaction frequencies remain intact (Fig. 4b). The absence of 

cohesin ring allows compartmental domains to be segregated so that they can anticipate more 

interaction with neighboring compartments in the presence of CTCF (Fig. 4c) [3]. 
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While the triangular heat map facilitates the visualization of loops, sub-TADs, and 

compartmental domains corresponding to CTCF tracks, histone tracks, or other quantitative tracks for 

boundary strength, insulation scores, and directionality index, the square plots of contact matrices 

provide broader and extended views of contact domains and sub-compartments in interested 

chromosomal regions. Hi-C contact maps from in situ Hi-C experiment exhibited the maps in three 

resolutions - 500kb, 50kb, and 5kb, in which 5kb binning size gives the best resolution while the lower 

resolution map is binned to larger size such as 500kb, 800kb, 1Mb, etc. In other words, contact maps 

could be binned from 1Mb (lower resolving power) down to 5kb or 1kb (higher resolving power) to 

improve resolution of contact domains along the axis. The 5kb heat map revealed some CTCF loop 

domains with tiny dots positioning away from the diagonal. However, types of contact domains 

became harder to distinguish at lower resolution (50kb and 500kb), but sub-compartments were 

visually detected in the background of the low-resolution maps. The squares along the diagonal axis 
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are enriched as contact domains (enrichment) which can be classified into CTCF loop domains and 

ordinary domains, as shown the drawing version of the heat map (right image) (Fig. 5). Contact 

depletion occurs at the TAD 

boundaries or intersections between 

contact enrichments. Sharp valley at 

the depletion between contact 

domains suggests strong TAD 

border whereas gradual valley with 

successive tiny triangles in between 

domains indicates weak TAD 

border. Loops are presented as dots, 

and squares with dots are loop 

domains while squares without dots 

are ordinary domains [5].  

 

Two basic modes of enhancer-promoter interactions from TAD structures – classical and hubs. 

In classical communication, CTCF-cohesin loop brings an enhancer closer to a promoter for interacting 

outside of the loop adjacent to the TAD boundary. Another mode is hub formation within the TAD 

boundary where both promoters and enhancers communicate inside the loop domain [6]. Besides, 

strong TAD boundaries allow more intra-TAD interactions while weak boundaries allow more inter-

TAD interactions. It has been found that strong insulation of TADs is correlated with high CTCF 

binding. In addition, a strong TAD boundary insulates super-enhancers in both upstream and 

downstream directions. In cancer, both strong boundaries and super-enhancers tend to be co-duplicated 

but strong TAD boundaries have low deletion frequency, probably to protect essential components 

needed for cancer growth [7].  
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In addition to bringing an enhancer and a promoter in a close proximity by loop extrusion and 

CTCF anchor, histone marks are vital for characterizing chromatin states and affecting chromatin 

accessibility for transcriptional activity. Trimethylation of H3K27 (H3K27me3) is a repression marker, 

and a region with the presence of H3K27me3 is marked as repressed chromatin region and has less or 

no transcriptional activities. Acetylated H3K27 (H3K27ac) is a marker of active enhancer, and 

remarkably high level of H3K27ac marker indicates super-enhancer (Table 1). The presence of 

enhancers at a gene region 

activates gene transcription, and 

super-enhancers increase more 

transcriptional products than 

normal enhancers within CTCF 

loops [8,9,10]. Therefore, 

alterations in histone 

modification or structural components such as TADs and loop domains could destabilize chromatin 

structures, making them susceptible to aberrant gene expression. Oncogenic signaling pathway are 

connected to a remarkably high density of histone mark modification which signified the presence of 

super-enhancers at oncogenes, leading to an abnormally high gene expression in cancer [11].  

The correlation diagram shows the summary of the relationship between different components 

in genome structure and epigenetics (Fig. 6). As mentioned earlier, CTCF anchors are found in 

cohesin-associated loops to support intra-TAD interactions while insulating loop domains from 

interacting with neighboring TADs. Also, the presence of both CTCF loop and cohesin ring shield 

compartmental domains for intra-compartmental interactions. TAD formation brings enhancers and 

promoters closer communication, with activating histone marks H3K27ac to promote gene expression 

and repressing marks H3K27me3 to reduce transcriptional activity. CTCF presence is lower at 

cohesin-independent loops which allow for more inter-chromosomal interactions and super-enhancer 

colocalization, thus down-regulating the expression of nearby genes. 
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Chromosome conformation can be captured by different techniques. In this project, high-

throughput chromosome conformation capture Hi-C technique will be utilized to probe all genomic 

interactions, both intra- and inter-chromatin contacts in an unbiased “all versus all” approach. This 

technique starts with formaldehyde crosslinking of DNA, digestion with restriction enzyme, 

biotinylation for proximity ligation, and library amplification for deep sequencing. A variety of tools 

will be implemented to obtain and visualize features of 3D chromatin architecture. FAN-C is a 

comprehensive tool which converts raw sequencing reads from Hi-C experiment to normalized 

matrices for correcting biases (technical and biological variations) and performs quantitative feature 

analysis including AB compartments, insulation scores and boundaries, directionality index, and loop 

domains for TADs [12]. Coolbox generates Hi-C contact matrices at different binning resolutions and 

with different shapes [13]. JuicerTools analyzes features of TADs such as contact domains and loop 

domains [5]. 



 8 

To identify cancer from normal cells in a mixed population such as a diagnostic test, a tissue or 

blood biopsy, or simply a blood test, some signals emitted by cancer cells are potentially important 

sources to capture cancer happening early in time. Cancer cells acquire super-enhancers which are 

signified by high density of histone activating markers to cause abnormal changes in oncogenes and 

thus influencing oncogenic signaling pathway [14]. This is one of important oncogenesis signals for 

detecting the presence of tumors in body environment. The main goal of this project is to detect cancer 

signals early for effective treatments and increased survival rate using chromatin architecture and 

interactions. The first goal of this project is to build a pipeline for understanding higher-order 

chromatin architecture through Hi-C contact matrices and quantitative features of TADs such as 

insulation scores, boundaries, and directionality index. Additional features including contact domains, 

loop domains, cohesin component RAD21, CTCF anchor, and histone marks are collected to support a 

comprehensive view of chromatin interactions. The additional features plus quantitative features from 

the first goal provide extensive data sources for the second goal of this project which is to build a 

machine learning model for classifying normal from cancerous human cell lines. The performance of 

this model will be evaluated as guided by a conceptual question: How do higher-order genomic 

structures and epigenetic regulation influence the chromatin interactions in normal and cancerous cell 

lines? This multi-class classifier with comprehensive features potentially improves prognosis and early 

detecting cancer for appropriate treatments. 

 

II. Methods 

1. Cell lines and in situ Hi-C experiment to obtain chromatin contacts 

The four cell lines in this project were normal lung fibroblast IMR90, lung adenocarcinoma 

A549, lymphoblastoid GM12878, and chronic myeloid leukemia K562. Raw FASTQ data of IMR90, 

GM12878 and K562 were obtained from Rao et al. (2014) [5], and FASTQ data of A549 was from 

D’Ippolito A. et al. (2018) [15]. Both experiment used in situ Hi-C technique to capture chromatin 

structure. In situ Hi-C experiment started with cross-linking DNA and cutting it with a restriction 
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enzyme. To create DNA-DNA proximity ligation, fragmented loci were ligated with biotin to create 

chimeric junctions between adjacent segments. Biotin was then purified, and ligated sequences were 

undergoing paired end sequencing using high-throughput sequencing from Illumina (Fig. 7). This 

technique generated both intra- and inter-chromosomal contacts to detect loop domains across the 

entire genome for 

3D chromosome 

conformation [5]. 

Raw data were 

obtained from SRA 

Run Selector and 

can be found in 

Table 2. 

 

Table 2: SRA accession IDs for experimental samples 

Total: 34 samples 

A549 GM12878 IMR90 K562 

SRR5129660 SRR1658577 SRR1658672 SRR1658693 

SRR5129661 SRR1658580 SRR1658673 SRR1658694 

SRR5129662 SRR1658581 SRR1658674 SRR1658695 

SRR5129663 SRR1658583 SRR1658675 SRR1658696 

SRR5129664 SRR1658586 SRR1658676 SRR1658697 

SRR5129665 SRR1658597 SRR1658677 SRR1658698 

SRR5129666 SRR1658599 SRR1658678 SRR1658699 

SRR5129667 SRR1658647 SRR1658679 SRR1658700 

X X X SRR1658701 

X X X SRR1658702 
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2. Hi-C data preprocessing 

2.1 From raw FASTQ data to Hi-C contact matrices 

Hi-C data was preprocessed using FAN-C version 0.9.17, visualized using Coolbox and 

analyzed using JuicerTools version 1.22.01 (Fig. 8) [5, 12, 13]. Raw FASTQ datasets were retrieved 

from SRA website and downloaded as fastq.gzip files. Paired-end reads were split at ligation junctions 

by HindIII or MboI restriction enzyme and then mapped independently to human reference genome 

hg19 using Bowtie2 to generate mapped reads in SAM format [16]. Unmapped reads were further 

mapped by iterative mapping function in FAN-C. Aligned reads were then filtered to keep only 

uniquely aligned reads with a mapping quality of 30 and with the step size of 10 to extend number of 

base pairs at each round. SAM files were then sorted for the next pairing step such that reads were 

paired based on read names and assigned to restriction fragments of hg19 reference genome. 

Unmappable and multimapping read pairs, and PCR duplicates were filtered. Distance filters was 

applied for filtering self-ligated fragments < 25 kb, and reads mapping more than 1000 bp from a 

restriction site were removed as well. For strand filters, inward (un-ligated) and outward (self-ligated) 

read pairs separated less than 1kb were filter because they mostly came from the same fragment and 

were invalid. Valid read pairs were then binned at different resolutions 100kb and 10kb and 

normalized using Knight Ruiz (KR) [5]. The entire process from mapping and filtering to binning and 

normalization was performed using individual fanc commands run with bash scripts on HPC SLURM 

cluster with allocated memory, ntasks, ntasks-per-node, and cpus-per-task. 
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2.2 Processing statistics for filtering and valid pairs 

Table 3 summarized the processing statistics and showed the percent of valid read pairs 

generated from mapping and filtering processes in Hi-C processing pipeline. Types of read pairs 

including inward, outward, self-ligation, PCR duplicates, restriction site distances, multimapping, and 

ummapable reads were filtered to valid read pairs. The average percent of valid pairs was around 85%.  

Table 3: Processing statistics for filtered and valid pairs from total raw reads 
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2.3 Matrix Balancing 

Knight Ruiz normalization was used to overcome non-uniformities in coverage due to 

experimental noises - technical variations such as DNA crosslinking, the number of restriction sites at 

a locus, or the accessibility to target sites, as well as biological variations such as true loop domains 

which have both cohesin and CTCF anchors, ordinary domains which contain no cohesin-CTCF 

anchor, cohesin-independent loops, or sub-TADs spanning one or both compartments. Table 4 

demonstrated the underlying formula for KR and ICE normalization. 

Table 4: Normalization for balancing of Hi-C contact matrices 

Knight-Ruiz 

Product of non-negative matrix and diagonal 

matrices D1 and D2 to obtain singular value P 

                           

                            

ICE 

Expected contact frequency from biases and 

relative contact probabilities 
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3. Hi-C contact maps visualized in different chromosome regions using CoolBox 

 Contact maps for different chromosome regions were visualized using Coolbox [13]. 

Chromosome regions of interest were selected for each of the four cell lines to generate high-resolution 

images. This tool is easy to use and obtain high quality images.  

 

4. FANC revealed quantitative features of TADs and compartments 

TAD boundaries, insulation scores, and directionality index were calculated for all 

chromosomes of each cell line using commands provided in FANC [12]. For making Hi-C contact 

matrices, triangular-shaped images showing the binning size of 10-kb and 100kb KR-normalized maps 

were assigned using parameter –p triangle. Contact intensity was adjusted by minimum and maximum 

saturation through –vmin and –vmax parameters, and color scale was tuned from linear to log for more 

visibly defined loop domains using –l parameter. Enrichment profiles of AB compartments was used 

for visualizing interactions between A and B compartments. They were generated from the average 

O/E values between regions separated by percentile bins with increment of 10 using compartment 

eigenvector oriented by GC content from the reference genome hg19.  

 

5. Feature analysis using JuicerTools - Arrowhead and HICCUPS 

Contact domains were identified using Arrowhead algorithm, and peak loci as loop domains 

were called by HICCUPS algorithm from JuicerTools [5]. Arrowhead transformation is a matrix 

transformation to annotate domains and is defined as: 

𝐴𝑖,𝑖+𝑑 =  
𝑀𝑖,𝑖−𝑑

∗ −  𝑀𝑖,𝑖+𝑑
∗

𝑀𝑖,𝑖−𝑑
∗ + 𝑀𝑖,𝑖+𝑑

∗  

where 𝑀∗ denotes the normalized contact matrix, 𝐴𝑖,𝑖+𝑑  is the measurement of the 

directionality preference of locus i. 𝐴𝑖,𝑖+𝑑 is close to zero if both locus i+d and locus i-d are both 

inside or outside a domain. 𝐴𝑖,𝑖+𝑑  is positive if locus i+d is outside and locus i-d is inside a domain, 
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and vice versa. Arrowhead was implemented using dynamic programming for efficient calculation. 

HICCUPS was used for annotating peaks by identifying enriched pixels 𝑀𝑖,𝑗
∗  in which contact 

frequency is higher than expected when number of contacts in a pixel was compared to number of 

contacts in the surrounding area [5]. 

 

6. CTCF, RAD21, and histone tracks using ChIP-Seq data from ENCODE 

Contact domains called by Arrowhead were then determined if they are CTCF loop domains or 

ordinary domains using CTCF, cohesin RAD21 and histone marker information. Processed datasets as 

ChIP-Seq data of these components were retrieved from ENCODE and accession IDs were provided in 

Table 5. Histone data were selected based on appropriate false discovery rate FDR less than 1% or 5%, 

depending on the size of processed datasets. 

Table 5: ENCODE processed data for histone markers, CTCF anchor, and RAD21 cohesin  

 A549 GM12878 IMR90 K562 

CTCF ENCFF335GSE ENCFF833FTF ENCFF453XKM ENCFF002CEL 

RAD21 ENCFF958VNQ ENCFF002CPK ENCFF195CYT ENCFF002CXU 

H3K27ac ENCFF282VMF ENCFF411MHX ENCFF899APS ENCFF931VAQ 

H3K27me3 ENCFF046XDC ENCFF523KGZ ENCFF741WIY ENCFF908KJV 

 

 

7. Data engineering and organization 

7.1 Feature engineering 

Data engineering was performed to combine all features obtained from the analysis in the first 

pipeline and from ENCODE project site based on scientific background introduced in the Introduction 

section of this report. The purpose is to generate comprehensive features of genomic structures and 

epigenetic regulations to represent chromatin interactions which potentially distinguish cell lines 

through a machine learning model. Different datasets had been converted to .csv files and then read 

using pandas library. Chromosome locations from ChIP-Seq experiment were trimmed based on FDR 

less then 1%, and chromosome locations from all datasets were sorted prior to processing. Criteria for 

engineering feature columns were summarized in the flowchart (Fig. 9). Orange rectangular boxes 
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represented features of genomic structures and histone marks; orange hexagonal boxes indicated 

structure effects from CTCF and cohesin ring statuses at TAD boundaries or contact domains. Blue 

diamond-shaped boxes exhibited the representative datasets of genomic architecture and histone 

modification. Green boxes referred to TADs and loop domains which are the main contributors in 3D 

chromatin structures.  

 

 

7.2 CTCF presence at TAD boundaries 

The first feature combination was to identify if CTCF anchor presented at TAD boundaries 

using TAD locations from Arrowhead and CTCF ChIP-Seq data from ENCODE. Both datasets 

consisted of columns - chromosomes, start and end locations on chromosome. However, TAD dataset 

also contained variance of upper and lower triangles and the sign of the entries in those triangles 

whereas CTCF dataset included p-values and false discovery rate (FDR) as q-values to reduce false 

positives from multiple testing problem. Then, CTCF data was queried with TAD data in which CTCF 

start and end locations positioning within TAD start and end windows, respectively, would be 
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classified as ‘both boundaries’, ‘start boundary’, and ‘end boundary’. Besides, mean distance was 

computed from the distance between CTCF start and TAD start locations, and from the distance 

between CTCF end and TAD end locations. 

7.3 Quantitative features for TAD boundaries 

The second feature combination aimed to incorporate quantitative features including insulation 

scores, insulating boundaries, and directionality index corresponding to TAD boundaries from 

Arrowhead and to assign histone modification status to those boundaries. The intention was to support 

for the identification of the strength and histone activities around the boundaries. When loop extrusion 

happens, cohesin ring loops through gene sequence, regulatory elements (enhancers, promoters, 

repressors), and histone marks, leading to extruding a segment of gene. These factors should have been 

in close proximity with each other after extrusion event. Scores of insulating boundaries were assigned 

to each of the start and end TAD locations if they matched criteria of a TAD window. Several 

insulation scores within each TAD start and end positions were summed to generate the sum of 

insulation scores with respect to all TAD boundaries. Directionality index was also captured 

corresponding to the exact TAD start and end locations, creating features of start and end directionality 

index. For histone mark datasets, activator H3K27ac and repressor H3K27me3 were incorporated 

along with TAD boundaries, within which the number (count) of histone mark occurrences and 

distance mean values of those marks were determined. 

7.4 Loop domains and RAD21 cohesin protein 

The third feature combination incoroporated whether a loop domain from HICCUPS was 

cohesin-associated or cohesin-independent using the cohesin RAD21 ChIP-Seq data from ENCODE. 

RAD21 data was queried with the loop domain data, and the RAD21 positions corresponding to loop 

start and end locations were identified. RAD21 cohesin presented within a loop start or end window 

would be categorized as cohesin-associated loop (‘CA_loop’) whereas others outside the loop window 

would be assigned as cohesin-independent loop (‘CI_loop’). For cohesin-associated loop, mean 
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distance RAD21 located from its respective start or end loop position was calculated and assigned to 

RAD21 from loop location as a feature.  

7.5 Structure effect of CTCF and cohesin 

Lastly, processed loop features were incorporated with processed TAD features to create a 

complete data source for building a classification model. Loop start locations were checked for their 

presence within a TAD window based on four conditions: (1) both start and end locations of loops 

were within an examined TAD window, (2) either loop start or loop end position was within the 

window, (3) either start or end position was in between TAD windows, and (4) switching occurred 

such that loop start location was within TAD end window or loop end location was within TAD start 

window (Table 6). Once loop start locations satisfied a TAD checking criteria, additional features were 

investigated. For those loop-start locations that satisfied condition 1, the feature structure effect 

exhibited the effect of CTCF anchor and cohesin ring onto 3D chromatin organization. As mentioned 

in the Introduction section of this project report, CTCF loop domains were resulted from the presence 

of both CTCF and cohesin ring at TAD boundaries spanning both active and inactive compartmental 

domains, and this was a signature of ‘CTCF-loop’ sub-category. Next, the presence of CTCF and the 

absence of cohesin at a contact domain caused the loss of CTCF loop and extrusion while segregating 

those compartmental domains, leading to ‘extrusion-loss’. Another case involved CTCF absent and 

cohesin ring presented near TAD boundaries, causing CTCF loop domain loss but continuing loop 

extrusion, and the structure effect was assigned as ‘loop-extrusion’. If both CTCF and cohesin ring 

were absent at a contact domain, it was more likely to be ‘ordinary-domain’ as the structure effect. For 

loop locations meeting condition 2, ‘CTCF-loop-loss’ was a sub-category of the structure effect if 

either CTCF or cohesin ring occurred at a contact domain. If a loop was upstream of the TAD end 

location, there was no loop found at that current domain causing CTCF loop loss. ‘Latent’ chromatin 

state represented cases in which both activators and repressors presented at high density in a contact 

domain.  
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Table 6: Structure effects of CTCF anchor and cohesin ring on loop and contact domains 

Condition CTCF status Loop type Structure effect 

Both loop start and end 

locations were presented 

within a TAD domains 

CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

CA loop CTCF loop domain 

CI loop Extrusion loss 

No CTCF  CA loop Loop extrusion  

CI loop Ordinary domain 

Either loop start or end 

location occurred within a 
TAD domain 

CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

CA loop CTCF loop domain 

CI loop CTCF loop loss 

No CTCF  CA loop CTCF loop loss 

CI loop Ordinary domain 

Either loop start or end 

location occurred outside a 

TAD or contact domain 

CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop  

or 

CI loop 

 

Loops were outside TAD 

domain 

Switching occurred – loop 
start location was in the TAD 

start window, or loop end 
location was in the TAD end 

window 

CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop  

or 

CI loop 

 

Inversed loop 

Loop start location was 

upstream of TAD end 

location 

CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop  

or 

CI loop 

 

CTCF loop loss 

 

7.6 Boundary strength stratification 

 As mentioned in the Introduction, insulation scores have been proved to be a good feature to 

stratify TAD boundaries [7]. Four different boundaries in which Boundary I as the weakest and 

Boundary IV as the strongest were assigned to each TAD or contact domain. They were classified 

based on the quantile ranking of summed insulation score (Table 7). 

Table 7: Stratification of TAD boundary strengths 

Boundary strength Insulation score (percent quantile) 

Boundary I Lower than 25% quantile 

Boundary II Between 25% and 50% quantile 

Boundary III Between 50% and 75% quantile 

Boundary IV Higher than 75% quantile 
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7.7 Chromatin states categorization 

Chromatin interactions tend to occur within a TAD domain. Loop extrusion of cohesin ring and 

CTCF anchor bring enhancers closer to promoters for communication. Histone activating marker 

H3K27ac and repressing marker H3K27me3 regulate gene expression. Therefore, chromatin states 

should not be limited with histone modification; it is a combination of spatial genome organization and 

epigenetic regulators. Table 8 described multiple features involved in classifying chromatin states in a 

concise but comprehensive aspect. 

 

Table 8: Chromatin states dynamics were classified based on histone marks and chromatin 

structure 

H3K27ac 

(percent quantile) 

H3K27me3 

(percent quantile) 

CTCF anchor Loop category Chromatin 

states 

[0, 25] [0, 50] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

CA loop 

CI loop 

Loop loss 

Insulator  

[0, 25] [0, 50] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop 

CI loop 

Weak enhancer 

[75, 100] [0, 50] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

CA loop Positive SE 

[0, 50] [75, 100] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CI loop 

Loop loss 

Negative SE 

[50, 75) [0, 50] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop 

CI loop 

Loop loss 

Strong enhancer 

[0, 50] [50, 100] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop 

CI loop 

Loop loss 

Repressor 

[50, 100] [0, 50] CTCF at both TAD ends 

CTCF at TAD start 

CTCF at TAD end 

No CTCF 

CA loop 

CI loop 

Loop loss 

Active promoter 

Remaining cases Remaining cases Remaining cases Remaining cases Latent 
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The entire chromosomes in each cell line underwent the above combinatorial processes, and the 

processing happened for each chromosome per cell line at a time. The product of this data engineering 

work was an organized, processed dataset which showed the relationship between the features of 

genomic structures and epigenetic regulations in chromatin interactions and was ready to be used as 

feature columns for building a multi-class classifier. 

 

8. Building machine learning detection model 

8.1 Data splitting and transformation 

Processed data from feature engineering task were divided into training and testing sets for 

Random Forest and XGBoost models and additional validating set for TabNet classifier. Data 

transformation using KNN imputer was applied for datasets used in Random Forest and TabNet while 

datasets for XGBoost remained intact as one of model requirements. 

8.2 Training Classifiers 

A. Random Forest Classifier 

Originally introduced in 1995, Random Forest has been one of the best machine learning 

models for classification tasks [17]. Decision Trees are sensitive to dataset and prone to overfitting, 

and Random Forest is an ensemble model consisting of numerous decision trees. By having many 

independent decision trees where bootstrap aggregating allows trees to subsample different subsets of 

the dataset, Random Forest are more resistant to overfitting. Random forest works based on random 

sampling of data points and splitting nodes based on slightly different subsets of features. It is 

computationally efficient and can handle large datasets.  

In this project, Random Forest is implemented using Sci-kit Learn to classify cell lines. The 

number of decision trees in the forest, the minimum number of samples at a leaf node, and the 

maximum depth of the trees were the key parameters affecting model accuracy after several trials (Fig. 

10). As a result, leaving out maximum depth gave the highest accuracy since it is best to allow 

decisions trees to grow unlimitedly for this dataset. For the number of estimators, tuning results 
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showed that model accuracy was using 150 or more decision trees. For the Random Forest model, final 

parameter values include 200 estimators, “gini” criterion, random state of 42, and each tree only 

sampled 85% samples of the dataset.  

 

B. XGBoost Classifier 

XGBoost is a novel tree boosting system introduced in 2014 and published in 2016 by Tianqi 

Chen and Carlos Guestrin with support from the community [18]. XGBoost is scalable, highly efficient 

when compared to similar machine learning models such as Random Forest and AdaBoost. One 

notable feature of XGBoost is its awareness for sparsity, and this is particularly helpful in this project. 

The processed dataset of chromatin interactions undergoes extensive feature engineering, and the 

dataset has sparse columns resulting from one-hot-encoding and missing values from merging 

processed TAD and loop datasets. XGBoost can handle sparse columns and missing values natively, 

which is absent in the Sci-kit Learn implementation of Random Forest. Missing values remain 

unchanged for running XGBoost to better represent the TAD and loop relationship while in other 

machine learning algorithms, missing values needs imputation.  

Hyperparameter tuning of the final XGBoost classifier suggests the best settings such as 8 for 

maximum depth of the tree, 0.7 for learning rate, 300 tree estimators, 80% subsample ratio (Table 9). 

The highest accuracy achieved is 81.13%. Different from Random Forest model, XGBoost benefits 

from a larger number of trees and limiting the layers of individual trees (Fig. 11). Other regularization 
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parameters were examined including sub-sampling columns when constructing each tree and 

regularization lambda, but did not help with accuracy, which indicates that the model is not overfitting. 

Table 9: Hyperparameter tuning for XGBoost classifier 

Maximum depth Learning rate Number of estimators Subsample Accuracy (%) 

8 0.4 180 0.5 79.70 

8 0.1 100 0.7 76.52 

8 0.2 150 0.7 79.93 

8 0.3 150 0.7 80.33 

8 0.5 150 0.7 80.58 

8 0.6 150 0.7 80.18 

8 0.7 300 0.8 81.13 
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C. TabNet Classifier 

Dataset engineered for this project is tabular in nature. Conventionally, classification tasks with 

tabular data are best handled by machine learning models such as Random Forest. Deep learning 

models can hardly achieve similar performance despite their excellent performance with image 

datasets. That was true until Google researchers introduced TabNet in 2019. TabNet is a complex 

neural network architecture. Users can control the “deepness” of the network by adjusting the number 

of steps, where each can be viewed as a block of feature transformer, attentive transformer and mask 

that contain fully connected layers and normalization layers (Fig. 12). TabNet model is capable of 

selecting different features important for each transformation, mask, and even row in the dataset [19]. 

As with other neural networks, training and optimization are time consuming and not a 

straightforward process. After testing different hyperparameters, the default parameter values 

recommended in the original publication generally produced good results. The final TabNet model 

parameters include the width of the prediction layer and the width of the attention embedding both at 

64, number of steps at 5, gamma coefficient for feature usage at 1.5, number of independent Gated 

Linear Units at 2, number of shared Gated Linear Units at 2, and the highest validation accuracy is 

73.5%. 
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III. Results 

1. Higher resolution images reveal loop domains of chromatin contacts 

Contact matrices from chromosome 1 of A549 are exhibited with various resolutions to reveal 

intricate structure of loop and ordinary domains (Fig. 13). Starting from a lower resolution, 

chromosome region 20-80Mb (60Mb in distance), small squares were clumped together and made it 

hard to view the internal structure of TADs, but sub-compartmental domains were visible on either 

side of the diagonal axis such as the top-right and the bottom-left triangles (Fig. 13a). Projected to the 

higher resolutions (blue squares), chromosome regions of 60-80Mb and 60-70Mb (20Mb and 10 Mb in 

distance, respectively) showed the number of contact domains in certain pairs of loci as various sized 

squares along the axis. Peak pixels as dots located away from the diagonal axis represent loops, and 

contact domains with these dots are loop domains. Domains without dots are ordinary domains. At the 

latter resolution 10Mb in distance, loops started to be observable on the map, and squares started to be 

distinguishable. Squares with stronger intensity (darker color) and multi-layer locations suggest higher 

number of domains congregated at prime locations on a chromosome (Fig. 13b and Fig. 13c). Due to 

limitations in processing Hi-C data to 5kb or 1kb resolution, the matrix could be binned down to 3-

5Mb in distance to maintain a clear, high-resolution image, further zooming in to less than 3Mb in 

chromosome distance caused blurred images with indistinguishable points. At 5Mb-distance contact 
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matrix (62-67Mb), higher number of loops become distinctly visible in the smaller chromosome region 

as indicated in the green squares.  

 

2. Dynamics in chromatin contacts of the four cell lines are captured on Hi-C contact maps 

 

Although TAD boundaries are invariant across different cell types [7], number of chromatin 

contacts are varied in certain genomic regions to distinguish one cell line from other cell lines. In other 

words, there are some unique genomic regions that make A549 differentiate from IMR90 or make 

cancer cells distinguishable from healthy cells (Fig. 14). The chosen region 20-80Mb on chromosome 
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1 suggested structural similarity of all four cell lines (Fig. 14a). The clarity of sub-compartmental 

domains in the background were slightly varied potentially due to technical variations or different 

number of contact domains being called in each cell line. Besides, numbers of chromatin contacts are 

visibly varied among these cell lines. Normal lung fibroblast cells IMR90 is expected to have genomic 

regions with different transcription activities from lung adenocarcinoma A549, and this could be 

observed in certain contact domains in chromosome 8, 10, and 13 (Fig. 14b,c,d). The center of each 

contact maps of these chromosomes suggested a large difference in the number of chromatin contacts 

and peak pixels as loops in the chosen chromatin regions between these cell lines, specifically A549 

and IMR90. The differences could become more profound if they occur in loop domains as in the 

region 80-83Mb in chromosome 8 since this would interfere with transcription and gene expression 

activities. It is more likely to observe ordinary domains in chromosome 10 and 13 as the absence of 

dots, and thus structural differences in these areas might have lower impacts on genomic activities or 

subtly alter histone modification status.  

 

3. CTCF and histone marks describe chromatin contact characteristics in A549 and IMR90 

CTCF, cohesin ring and histone marks have significant effects on contact domains in which the 

presence of CTCF and cohesin ring make them loop domains. Ordinary domains are those not bound 

by CTCF or cohesin but have specific histone modifications. CTCF anchors signify some locations 

with peak loci as dots present along the diagonal axis. A549 cancer cell line seems to have slightly 

higher density of CTCF at its contact domains in the 80-83Mb region of chromosome 8 than it is in 

IMR90 normal cell line (Fig. 15). Both A549 and IMR90 have high repressing markers H3K27me3 

and low activating marker H3K27ac at this chromosome region. However, histone profiles for 

H3K27ac and H3K27me3 are vastly different in both cell lines. For instance, higher level of H3K27ac 

was expressed at TAD domains in A549 whereas only a few activating marks were present at contact 

domains in IMR90. The distribution of H3K27me3 was high in the region chr8: 81-81.7Mb in A549 

and elevated in the larger range in IMR90 (chr8: 80-81Mb and chr8: 81.2-81.7Mb). These factors 
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support distinct chromatin profiles of domain structure and histone modification in these two cell lines 

to make them unique and distinguished for classification and detection. 

 

 

4. Triangular Hi-C contact matrices and compressed matrices viewed at different resolutions. 

Hi-C contact matrices could be visualized as triangular shape or compressed triangular shape, 

and they were created with normalized matrix data. The top two plots of 10-kb resolution matrices and 

the bottom plot of 100-kb resolution matrix exhibited the flexibility of Hi-C data in visualizing 

chromosome 1 in K562 cell line (Fig. 16). The middle matrix with 1.0-mb region showed zoom-in 

resolution with saturated, bigger dots dispersed throughout the triangular plot whereas the top plot 
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revealed an overall picture of multiple loop distribution with various dot intensities in which the small 

pyramids as loops had higher intensity 

than regions lacking loops. It was the 

same trend for the bottom matrix with the 

lower resolution of 100-kb where 

individual loops were clearly expressed 

with bigger squares and more color-

defined than 10-kb resolution matrices. 

This discrepancy indicated FAN-C tool 

versatile for different matrix binning 

resolutions. When image saturation for 

10-kb data was tuned to higher saturations 

with –vmax, the colored dots were toned 

down and blurred, and the lower the 

saturation (-vmax = 0.05) was tuned, the 

more defined the image was.  

 

5. Enrichment profiles revealed interactions between active and inactive compartments.  

The aggregate compartment plot known as saddle plot was created from eigenvector (EV) and 

the average O/E values to show enriched ‘A’ (active and high GC region) and ‘B’ (inactive and low 

GC content) compartments. The enrichment profile lacked the negative EV percentile cutoffs, thus 

only the positive cutoffs were shown as lighter to darker red regions on the plot (Fig. 17). The absence 

of negative EV entries potentially resulted in the lack of ‘B’ compartments or low GC content while 
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only ‘A’ compartments as high GC 

content were presented on the enrichment 

profile and shown as positive EV entries. 

The deficiency of negative EV entries 

could be due to missing eigenvector in 

correlation matrix of the normalized 100-

kb Hi-C contact matrix.    

 

6. Contact domains along the matrix 

diagonal were analyzed with insulating scores, boundaries, and directionality index.  

 Chromatin structure is created 

from multiple contact domains and 

expressed in the matrices as pyramids 

(in triangular heatmap) or squares (in 

square heatmap) with various sizes 

along an axis. Although ‘peak’ pixels 

could be observed in the square 

heatmap, triangular map reshapes 

contact domains so that ‘peak’ pixels 

are better annotated on the top of 

pyramids to differentiate loop domains 

from ordinary domains. The top image 

showed the triangular heat map of K562 at 100kb bin size and chromosome region from 163Mb to 

173Mb (Fig. 18). Local maxima present contact domain enrichments (both intra-TAD and ordinary 

domain) in which smaller contact domains or regions between domains have lower insulating scores 

while larger domains suggest strong domains with high insulating scores. Insulation scores were 
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presented at a line graph with the window size of 1mb and have multiple local maxima. Local minima 

in the line plot corresponding to vertical sticks of different heights in the bar plot show regions 

between TADs as self-interacting domains or boundaries where one contact domain transitions to the 

next domain. The last line plot shows multiple sliding window sizes of 1mb, 1.5mb and 2mb with very 

similar trend of local maxima and local minima. 

 

7. Insulation scores and boundaries are direct features to quantify TAD boundary strength  

 

The three triangular contact maps present contact enrichments with sub-TADs at 10kb bin size 

and KR normalization for GM12878, K562, and IMR90 cell lines. Contact depletions also occur at 

transitioning points between domains as TAD boundaries. The corresponding insulation scores and 

boundaries showed local maxima and local minima, respectively. Each cell line has trivial differences 

in TAD quantitative feature profiles due to invariant characteristics of TAD boundaries across cell 

types. However, cancer causes changes in chromatin structures to some extents depending on the 

strong or weak TAD boundaries in which the latter is more prone to mutational events, and thus easily 

disrupting the structure. Figure 19 showed minor differences between the three cell lines, and this 

indicates the chosen chromosome region does not have much variations among cell lines. There were a 

few strong boundaries at this chromosome region in each cell line, and these strong boundaries could 

preserve and protect TAD domains from being changed in cancer events. Since there were no 
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significant differences between the profile of these cell lines at this chromosome region (163Mb - 

173Mb), this region might not be affected and not the best choice for distinguish the cell lines. 

 

8. Uniform distribution of chromatin states across boundary strengths in all chromosomes of the 

four cell lines 

Histone modification and TAD boundary strength are one of the main contributors in chromatin 

state characterization, and state dynamics are consistent among different cell lines as TAD boundaries 

are invariant across cell lines. However, different boundary strengths and the level of histone mark 

modification constitute to maintain or alter chromatin states. Super-enhancer and strong enhancer 

chromatin states are the representatives of the activating mark H3K27ac, thus explanation in this 

section will focus on these two states as PSE (super-enhancers with upregulated gene expression) and 

SE (strong enhancer). In particular, the distributions of positive super-enhancers PSE and the 

distribution means were varied across boundary strengths I to IV in all four cell lines GM12878, K562, 

IMR90, and A549 (Fig. 20 top plots). PSE distribution and means were exhibited evenly across all 

boundary strengths in A549 and higher than the other three cell lines. The only exception is that it was 

unexpected to see IMR90 (normal lung cell line) had higher PSE distribution and mean value in 

boundary I than A549 (lung carcinoma line). This might be due to technical variations between 

experimental datasets – TAD domains from JuicerTools and processed histone ChIP-Seq from 

ENCODE. In addition, the number of chromatin contacts or TAD domains were varied across cell 

lines, which contributed more data and wider distribution in IMR90 compared to the other cell lines. 

GM12878 had lower PSE distribution in all boundary strengths than the other three cell lines. This 

could be due to the lower number of TAD domains or variations between datasets with different 

processing techniques. PSE distribution was significantly low in boundary I of GM12878, probably 

because it had lower number of contact domains and thus less associated features being processed 

compare to the remaining cell lines, or it could be due to biological variations among boundary 

strengths of GM12878. Strong enhancers were consistently distributed among cell lines and at lower 
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density than other chromatin states. Level of negative super-enhancers NSE (super-enhancers with 

downregulated gene expression) was varied across cell lines and remarkably low due to a few counts 

of H3K27ac marks around cohesin-independent loops or inter-chromosomal links. 

 

Trimethylation of H3K27 (H3K27me3) suggests repressing chromatin marks, and the 

chromatin state profile with respect to boundary strengths was changed in the opposite direction (Fig. 

20 bottom plots). Negative super-enhancer NSE (super-enhancers with downregulated gene 

expression) and repressor chromatin states are the representatives of the repressor mark H3K27me3. 

All chromatin states were observed in K562 and IMR90 cell lines whereas only three states of NSE, 

repressor and latent were predominantly exhibited in GM12878 and A549. The repressor mark 

H3K27me3 causes NSE and repressor distributions to be high across boundary strengths and varied 

among the four cell lines. In lung cell line, IMR90 exhibited higher NSE in all boundary strengths but 

lower repressor distribution in boundary I compared to A549. For the other two cell lines, GM12878 

showed lower NSE and repressor distributions than K562. The distributions and means of NSE across 

boundary strengths in all cell lines were higher than PSE distributions and means. Strong enhancers 
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and PSE were at a minimal level in all boundary strengths in the context of H3K27me3 because this 

histone mark represses a chromatin region to downregulate its gene expression.  

 To sum up, PSE and strong enhancers were present at high density in the context of H3K27ac 

activator while they were lower in the context of H3K27me3 repressor. The opposite trend is applied 

to NSE and repressors. 

 

9. Variations in chromatin states of chromosome 1, 13 and 21 

 

Different chromosomes in each cell line exhibited a unique chromatin profile corresponding to 

number of activator H3K27ac and repressor H3K27me3 present at specific loci. PSE distributions from 

the increasing H3K27ac occurrence were higher in chromosome 13 and 21 of A549 whereas IMR90 

exhibited higher NSE distributions when H3K27me3 accumulated near certain gene regions in the 

three chromosomes (Fig. 21). This difference suggests that certain loci in chromosome 1, 13 and 21 

potentially expressed more in A549 cancer line than in IMR90 normal line, and the expression level of 

these chromosomes in IMR90 is halted by downregulation from NSE. In K562 leukemia line, 

chromosome 13 and 21 had zero PSE distribution but a remarkable presence of repressors, thus 
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indicating these chromosomes as more likely to be repressed compared to chromosome 1 and other cell 

lines. All three chromosomes in GM12878 showed PSE distributions but low level of NSE, suggesting 

that these chromosomes tended to be more active than passive in this cell line. In general, the four cell 

lines had various level of chromatin states distributed across chromosome 1, 13 and 21. All three 

chromosomes of IMR90 maintained high NSE state distribution while the remaining cell lines 

contained a limited number of NSE in the context of trimethylated H3K27. PSE state was mainly 

absent in K562 but consistently present in chromosome 1, 13, and 21 of the other cell lines in the 

presence of acetylated H3K27.    

 

10. Histone marks of enhancers accumulate at strong TAD boundary across three chromosomes 

 

Boundary strengths exhibited differently for three chromosomes in the four cell lines (Fig. 22). 

In this case, boundary IV, the strongest boundary, predominantly existed in chromosome 1, 13, and 21 

of A549 when examining boundary strength in the presence of H3K27ac. It became less intense when 

H3K27me3 occurred at contact domains. TAD boundary strength was less significant in chromosome 

13 of K562 with respect to the number of H3K27ac while chromosome 21 in GM12878 had the lowest 
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intensity corresponding to H3K27me3 count. This phenomenon further supports super-enhancers tend 

to localize and co-duplicated with strong TAD boundaries for protection from deletion while 

repressors are more likely to occupy/spread across different boundary strengths. 

 

11. XGBoost Classifier performs better than Random Forest and TabNet for this tabular dataset 

For Random Forest model, mean accuracy after 10-fold cross validation was 73.76%. This was 

achieved with by having 200 decision trees and allowing each tree to sample 85% of the entire dataset. 

These two parameters were selected after performance optimization, as other parameters are best to 

remain at default values. Feature importance plot only provided insights to numerical features, as 

categorical features were converted to many columns after one-hot-encoding (Fig. 23). Normalized 

confusion matrix showed K562 were best classified at 83% using this model, followed by IMR90 at 

79%, A549 at 77%, and GM12878 at 54% (Fig. 24).  

              

 



 36 

                             
 

 

XGBoost model was implemented and has been found to perform better than Random Forest as 

expected. The highest model accuracy was recorded at 81.13%, achieved by hyperparameter tuning of 

max depth, number of trees, learning rate, and subsampling. After optimization, model accuracy was 

highest when number of tree depth was limited to 10, which was the opposite of Random Forest where 

unrestrained tree depth was assigned. XGB also benefits from higher number of trees than Random 

Forest; for XGB diminishing returns were not observed at 300 trees or higher. Since this model 

consists of both shrinkage from AdaBoost and column subsampling from Random Forest to handle 

overfitting, its improved generalization enhances classification accuracy in each cell line. Normalized 

confusion matrix indicated K562 and IMR90 were best classified at 83%, followed by A549 at 82% 

and GM12878 at 69% (Fig. 25).     
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The third model, TabNet classifier also produces promising results, given that deep neural 

networks typically do not perform well with tabular data. The highest validation accuracy was 73.50%, 

achieved with prediction layer width 64, mask width 64, and number of steps 5. These values were 

close to the default or recommended values in the original publication. All other parameters were 

included in optimization, but they should be left at default values for the best model accuracy. 

Normalized confusion matrix indicated IMR90 were best classified at 74%, followed by A549 at 73%, 

K562 at 72%, and GM12878 at 52% (Fig. 26).     
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IV. Discussion 
 

Chromatin interactions are captured on contact matrices. Important components such as CTCF, 

cohesin, and histone marks provide better insights to gain the awareness of important roles of genomic 

structure and epigenetic regulation in sustaining and supporting cell growth, development, and 

proliferation. Be thankful to the invention of Hi-C technique to capture chromatin structures and better 

visibility resulted from high-resolution maps. In addition to the key diagonal axis, multiple square 

patterns in the background of the matrices reflect the intervals of subcompartments in which 

compartment A harbors activating chromatin marks and is enriched for euchromatin while 

compartment B harbors inactivating marks and is enriched for heterochromatin. This allows contact 

maps to contain other information about the surrounding of TADs or contact domains.  

Hi-C maps reveal various structures at certain loci on specific chromosomes, and loop domains 

become visible at higher resolution maps. However, some discrepancies occur between contact maps 

of different chromosome regions among cell lines. This could be due to biological variations such as 

dynamics in gene folding, the presence/absence of loop domains in the same regions, or different 
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expression profiles. Technical variations include experimental biases (different reagents, timing, 

protocols), or artifacts in capturing images, processing errors, and the use of multiple tools on the same 

dataset. These variations potentially contribute to the differences in the same genomic regions. 

Why were chromatin state distributions, PSE vs. NSE or enhancer vs. repressor, varied at each 

boundary strength? Histone marks and TAD features such as locations, insulation scores, and 

boundaries are explored for all chromosomes within a cell. From developmental perspective, different 

regulatory regions turn on or off certain genes to determine cell fate; in other words, active expression 

of relevant genes is required for a ‘general’ cell to be differentiated into a heart cell or skin cell. In this 

project, each chromosome has different boundary strengths, and certain loci hold more enhancers (high 

H3K27ac level) or more repressors than other regions so that certain genes would be highly expressed 

while others would be repressed. Although TAD boundaries are invariant across cell types, the 

modification of histone marks could be varied depending on gene locations at different cell stages. 

Number of H3K27ac and H3K27me3 marks are observed across all boundary strengths, and each cell 

line has a different profile of histone mark distributions. When looking at chromatin state distribution 

per chromosome, PSE distribution is high in the presence of activators and low in the presence of 

repressor.  

Overall, the differences in chromatin state distributions among cell lines could be due to both 

biological and technical variations. In term of biological variations, lung cancer cells A549 have vastly 

different distributions of both PSE and NSE from normal lung cell IMR90, and it is expected to have 

some genes abnormally upregulated or suppressed compared to normal lung cell line IMR90. Thus, the 

difference in PSE and NSE distributions might be an indicator of what has gone wrong in cell growth 

and proliferation. It would be helpful to look at corresponding gene expression level and relevant 

chromosomes to narrow down the scope of investigation. The results from the chromatin state 

variations in chromosome 1, 13, and 21 suggest that super-enhancers tend to upregulate instead of 

downregulate transcriptional activities or gene expression based on the frequent presence of PSE 

instead of NSE. In other words, transcriptional activation through high PSE and strong enhancers could 
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be the dominant scheme compared to downregulation from repressors or moderate NSE within the 

scope of the chosen three chromosomes in this project. 

There is low number of state distributions in K562 and GM12878 in certain chromosomes. This 

might be due to technical errors during Hi-C experiments or processing Hi-C data. Some contact 

domains might have been lost during TAD calling, causing noticeably low distribution. 

Some limitations in processing Hi-C data include out-of-memory error, difference in tools for 

generating normalized maps and analyzing features, and utilizing processed data from other labs. 

Besides, the approximation of TAD window to create checking criteria when combining of different 

features to build tabular dataset contribution to variation or estimation of how all features organized in 

every single row. Model accuracies around 70% to 85% are potentially indicators of how well data 

were engineered and organized for classification.  
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Appendix for feature engineering and corresponding data sources 

 

Feature Data or Feature 

Source 

Note 

Chromosomes All datasets Chromosomal locations 

TAD locations JuicerTools - 

Arrowhead 

Start and end locations of TADs 

Loop locations JuicerTools - 

HICCUPS 

Start and end locations of loop domains/peak 

loci 

CTCF status ENCODE ChIP-Seq 

(processed) 

Query using TAD window. 

CTCF occurs at both ends or one end, and no 

CTCF presence 

Sum of insulation 

scores 

FANC insulation Summation of all insulation scores within a 

contact domains 

Insulating boundaries 

at TAD start location 

FANC boundaries Insulating boundary scores at TAD start 

locations 

Query using TAD window. 

Insulating boundaries 

at TAD end location 

FANC boundaries Insulating boundary scores at TAD end 

locations 

Query using TAD window. 

Directionality index at 

TAD start location 

FANC directionality 

index 

Directionality index score at TAD start 

location 

Query using TAD window. 

Directionality index at 

TAD end location 

FANC directionality 

index 

Directionality index score at TAD end location 

Query using TAD window. 

Mean location of 

H3K27ac 

ENCODE ChIP-Seq 

(processed) 

Mean location of the activator within a TAD or 

contact domain 
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Number of H3K27ac ENCODE ChIP-Seq 

(processed) 

Number of the activator presence within a 

TAD or contact domain 

Mean location of 

H3K27me3 

ENCODE ChIP-Seq 

(processed) 

Mean location of the repressor within a TAD 

or contact domain. Query TAD window. 

Number of H3K27me3 ENCODE ChIP-Seq 

(processed) 

Number of the repressor presence within a 

TAD or contact domain. Query TAD window. 

Loop category/type RAD21 from 

ENCODE ChIP-Seq 

(processed) 

Types: cohesin-associated (CA) and cohesin-

independent (CI) loops 

Query using loop domain window from 

HICCUPS). 

RAD21 distance from 

loop start and end 

locations 

RAD21 from 

ENCODE ChIP-Seq 

(processed) 

Mean distance between RAD21 position and 

loop start or end location. 

Query using loop domain window from 

HICCUPS). 

Structural effect Multiple features above Query loop locations with TAD locations. 

Classified based on CTCF status and loop 

types. 

More details are under Method section 

Boundary strength Summation of 

insulation scores 

High insulation score indicates strong 

boundaries and vice versa 

Chromatin states Multiple features above Classified based on CTCF status, loop types, 

and the number of H3K27ac and H3K27me3 

presence. 

More details are under Method section 
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