
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2022

Contextualized Vector Embeddings for Malware Detection Contextualized Vector Embeddings for Malware Detection

Vinay Pandya
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Pandya, Vinay, "Contextualized Vector Embeddings for Malware Detection" (2022). Master's Projects.
1083.
DOI: https://doi.org/10.31979/etd.rjra-9c8m
https://scholarworks.sjsu.edu/etd_projects/1083

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1083?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1083&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Contextualized Vector Embeddings for Malware Detection

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Vinay Pandya

May 2022

© 2022

Vinay Pandya

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Contextualized Vector Embeddings for Malware Detection

by

Vinay Pandya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2022

Professor Fabio Di Troia Department of Computer Science

Professor Mark Stamp Department of Computer Science

Professor Katerina Potika Department of Computer Science

ABSTRACT

Contextualized Vector Embeddings for Malware Detection

by Vinay Pandya

Malware classification is a technique to classify different types of malware which

form an integral part of system security. The aim of this project is to use context

dependant word embeddings to classify malware. Tansformers is a novel architecture

which utilizes self attention to handle long range dependencies. They are particularly

effective in many complex natural language processing tasks such as Masked Lan-

guage Modelling(MLM) and Next Sentence Prediction(NSP). Different transfomer

architectures such as BERT, DistilBert, Albert, and Roberta are used to generate

context dependant word embeddings. These embeddings would help in classifying

different malware samples based on their similarity and context.

Apart from using transformer models we also experimented with different bidi-

rectional language models sunch as ELMo which can generate contextualized opcode

embeddings.This project also discusses algorithms for generating embeddings for byte

level N-grams. We utilize Word2vec, Glove and Fasttext algorithms to generate

context free embeddings. The classification algorithms employed in this project consist

of Resnet-101 CNN, Random forest,Support Vector Machines (SVM), and 𝑘 nearest

neighbours. Transformer models sometimes act as black boxes which makes it difficult

to understand their decisions.Various intrepretable models are utilized to explain their

inner workings and improve our understanding of the model to explain their results.

Index terms - Contextualized Embeddings,Transformer models, BERT,

Bidirectional Language Models, ELMo, Glove, Word2vec, Fasttext, Optuna

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Fabio Di Troia for his constant guid-

ance,support and motivation throughout this project. His advice and encouragement

helped in trying out new ventures and perspective in this project.

I would also like to express my gratitude towards my committee members Prof.

Katerina Potika and Prof. Mark Stamp for their feedback and support. I have learned

a lot through this project expecially the importance of explainability and building

simpler tools.

Finally I would like to thank my family for always encouraging me and helping

me in my tough times.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Related Work . 4

3 Background . 7

3.1 Transformer models . 7

3.1.1 BERT . 13

3.1.2 DistilBERT . 15

3.1.3 Roberta . 17

3.1.4 Albert . 18

3.2 ELMo architecture . 19

3.3 Classifiers . 20

3.3.1 Random Forest Classifiers 20

3.3.2 K-Nearest Neighbours . 21

3.3.3 SVM . 22

3.3.4 CNN . 24

3.4 N-grams embeddings . 25

3.4.1 Word2Vec . 26

3.4.2 Fasttext . 27

4 Datasets and Experiments . 29

4.1 Experiments . 30

4.1.1 BERT-based-experiments 30

vi

vii

4.1.2 distilBERT based Experiments 31

4.1.3 Roberta based Experiments 33

4.1.4 Albert based Experiments 34

4.2 ELMo based Experiments . 36

4.3 Byte-Level N-gram experiments 37

4.3.1 Word2Vec . 38

4.3.2 FastText Based Experiments 41

5 Explainable AI and Interpretability of BERT Models 44

5.1 Model Agnostic methods for interpreting BERT model 45

5.1.1 SHAP values for Explanation 45

5.1.2 Interpreting with LIME 50

6 Conclusions and Future Work . 53

6.1 Future work . 53

6.1.1 Quantization of models 53

6.1.2 Graph Neural Networks for API call sequences 55

6.1.3 Fourier Neural Networks 55

6.1.4 More Explainability tools 55

6.1.5 Different Transformer model 56

LIST OF REFERENCES . 57

APPENDIX

LIST OF TABLES

1 Comparison of different architecture of BERT models 19

2 Optimal Hyper-Parameters for classifiers for BERT 31

3 Optimal Hyper-Parameters for classifiers for distilBERT 34

4 Optimal Hyper-Parameters for classifiers for Roberta 34

5 Optimal Hyper-Parameters for classifiers for Albert 37

6 Optimal Hyper-Parameters for classifiers for ELMo 37

7 Optimal Hyper-Parameters for classifiers for Word2Vec 40

8 Optimal Hyper-Parameters for classifiers for Word2Vec 43

viii

LIST OF FIGURES

1 General Layout of the Experiments 3

2 Attention network . 8

3 Multi headed Attention . 11

4 Transformer architecture . 12

5 Decoder architecture . 13

6 BERT Format . 14

7 BERT Sentence Format . 14

8 DistilBERT comparison . 16

9 Knowledge Distillation . 17

10 Parameter Sharing Albert . 18

11 Matrix factorization . 19

12 ELMo architecture . 20

13 Random forest . 21

14 SVM Hyperplane . 23

15 3D Hyperplane . 23

16 Resnet18 Architecture . 24

17 Residual connection introduced in [1] 25

18 CBOW and Skip Gram Word2Vec 27

19 Skip Gram Fasttext . 28

20 Last four layers Concatenated . 30

21 BERT-based experiments . 32

ix

x

22 distilBERT-based experiments . 33

23 Roberta-based experiments . 35

24 Albert-based experiments . 36

25 ELMo experiments . 38

26 Accuracies for various classifers for BERT model 39

27 Accuracy Comparison . 39

28 Word2Vec-based experiments . 41

29 FastText-based experiments . 42

30 AI vs XAI . 45

31 Shapely values for getting the payout 46

32 SHAP plot for a CeeInject Instance 47

33 SHAP values for FakeRean . 48

34 Bar plot for instance of "CeeInject" 49

35 Waterfall plot for comparing feature contributions 49

36 Shap values for CNN images . 49

37 Importance of an instance of CeeInject class with Lime 52

38 Quantization Process . 54

39 FNet . 56

CHAPTER 1

Introduction

Malware is a software created with the intent to disrupt or damage a computer

systems. Malware developers try to hide malicious code in benign programs making

them difficult to detect. Malware developers are constantly looking for new ways

to exploit security breaches in order to extract money or gain access to personal

information. A malware could encrypt critical information with a ransomware program

by masquerading itself as a legitimate program. According to Symantec report more

than 669 million new malware variants were created and detected in the last five years

[1]. Sophos states that malware attacks consist of 34% of all the data breaches on

cloud and remote based infrastructures.According to McAfee around 60 million new

malware samples were created in 2019 [2]. In 2017 WannaCry and its variants caused

great disturbance nearly costing four billion dollars [3]. With the ever increasing

variety of malware attacks, the problem of malware classification becomes critical for

information and system security.

Majority of commercial antivirus software use signature-based detection system.

They compute the hash of the file and compare it with the hash of known malware

files. While this approach works well for detecting known malware, they fails to detect

unknown families and even variants of known families. Detection of malware and

their variants is not trivial as many attackers use metamorphic and polymorphic code

which can generate a vast number of variants. While these techniques are capable of

detecting specific malware families it fails to detect new types and new variants of

known malware families. Metamorphic malware can morph itself by inserting dead or

benign code within their structure. Polymorphic malware pairs a mutation engine with

self-propagating code to continually change its “appearance,” and it uses encryption

(or other methods) to hide its code. They are adapting and mutating software which

1

hackers use to infiltrate the system. Metamorphic malware such as Evol and zist can

change their signature after each new infraction thus rendering the system ineffective.

Detecting these malware samples is challenging as they can morph themselves using a

combination of substitution,insertion,deletion and transposition [4].

These variants can easily bypass standard signature-based detection systems.

Hence the ability of the system to identify these variants can help in creating many risk

mitigation strategies for a whole class of programs. Each malware and their variants

share certain common characteristics which can be exploited for their classification.

Opcode embeddings can be used to generate contextual vector space representation

of the malware files [2]. The embeddings can be generated using many transfomer

models(BERT-Based models) and ELMo. These representations are dynamically

informed by the surrounding opcodes. The embeddings created will then be fed to

various multi-class classification models . The overall classification depends upon the

ability of the embeddings to recognise the latent features in the opcodes and exploit

them accordingly.

Apart from using opcode sequences, N-grams of byte level sequences are one of

the most common feature types used in static analysis. We treat a file as a sequence of

bytes which are then converted into embeddings using algorithms like Word2Vec,and

Fasttext. The N-gram byte level embeddings are easy to generate since they do not

require any domain knowledge about the executable.

Many of the transformer models discussed in this report are huge and contain

a large number of parameters. Because of their size and attention constraints they

often act as black box models which makes it difficult to trust their predictions.

Interpretable machine learning techniques can help us in understanding the prediction

of these Language models.

The remainder of this report is organized as described in Figure 1. The dataset

2

Figure 1: General Layout of the Experiments

is first preprocessed and opcodes are extracted from it using objdump. Section 2

discusses previous literature and paradigms used for malware classification and also

discusses the drawbacks and limitations of these approaches. Section 3 delves into the

background of the architectures mentioned in this research followed by the results

of the experiments in Section 4. Section 5 introduces the concept of Explainability

where the model agnostic approaches are discussed to interpret the complex CNN and

BERT-based models. Section 6 discusses future work and other paradigms which can

be applied for malware classification.

3

CHAPTER 2

Related Work

Malware is a program which is designed with the intention to disrupt or damage the

computer systems.Malware developers try to hide malicious code in benign programs

making them difficult to detect. A lot of malware based recognition techniques involve

signature and behavioural based analysis.

Malware analysis can be broken down into two categories- Static analysis and

Dynamic analysis.Static analysis involves disassembling the malware file and extracting

important attributes such as opcode sequences and API call graph. Dynamic analysis

is used to analyze a software’s behavior while executing it in a virtualized environment.

Most common dynamic analysis’ features include API calls, register changes and

intrusion traces and more [4].

In [5], API call sequences from malware files were extracted and experiments with

different machine learning algorithms were observed. They achieved 98% accuracy.

However,they only focused on separating the malware files from the benign files and

failed to classify various variants of other malware.

Authors in [6] discuss various data mining approaches for selecting features from

PE files.The features selected are then fed to classification clustering models such as

𝑘NN and Naive Bayes classifier for detecting distinct features.

In [7], the authors introduce various data augmentation techniques for better

generalization of Convolutional Neural networks.They use a self embedding architec-

ture which uses the networks own opcode embedding layer to apply additive data

augmentation which can help in generating more data for the model. The embedding

layer learns the semantic relationships between opcodes which can help in generating

realistically augmented inputs for training a malware classifier.

In [8], the authors use a genetic algorithm for the selection of optimized feature

4

subset for training machine learning models.They claim that this feature selection can

reduce the model complexity while maintaining good accuracy.However they do not

discuss the fitness and crossover criteria for different variants and also do not explain

the mutation function for generating new features.

Inspired by genetic biology, Yihang Chen et al introduces the concept of software

gene which can be mapped to a feature vector using machine learning.The vectors are

then fed to various classification models and are evaluated using AUC-ROC metrics.

They claim that the gene extraction approach achieves better accuracy and is more

robust than N-gram based detector [9].

Using static and dynamic data sequences in sequential models is discussed in [4],

where the features from both static and dynamic analysis are fed into a recurrent

neural network, specifically LSTM. A similar approach is followed by [10], where

they use stacked LSTM blocks on API system calls extracted using natural language

processing.

Word embeddings are learned representations of text where words which have

same meaning appear closer together. They provide a dense representation of a word

which can be fed to neural network for further analysis. This dense representation

can capture semantic relationships between words.

Developed by Tomas Mikolov and other researchers at Google in 2013, Word2Vec

is a word embedding technique for solving advanced NLP problems [11]. Its embeddings

learn association and dependencies among words which are then compared using

cosine similarity. Glove i.e global vectors is another algorithm which generates word

embeddings. It uses a large co-occurence matrix which is then reduced using matrix

factorization methods such as LSA and skip gram.

These embedding techniques however present a context free representation of the

corpus. They do not account for the context in which the word occurs. For example

5

the word "apple" in the sentence "I ate an apple." and in "I like apple products."

have different meanings. Since algorithms such as Word2vec and Glove cannot model

long term dependencies among tokens in a temporal sequence, they cannot represent

contextual representation of the opcodes [12].

Transformer architectures have proven very effective in various language process-

ing tasks such as text classification, named entity recognition and question answering

problem. With the help of self attention mechanism they can encode contextual

information to generate contextualized word embeddings [12]. Apart from transformer

models ELMo(Embeddings for Language model) can also generate context-aware

opcode embeddings. ELMo creates deep contextualized word representations using

BiLM model. In BiLM the forward LM is trained to predict the next word whereas

Backward LM is trained to predict the past words [13].

This project also focuses on creating embeddings for byte level N-grams and

evaluates their overall accuracy. The byte N-gram embeddings are then classified

using various multi class classifiers.

The experiments conducted in this research consist of testing out various tech-

niques of embedding generation using various transformer models and assessing their

overall performance on the accuracy [14]. In order to better interpret these models,

various explainable methods are explored which gives us insights into what these large

models are predicting.

6

CHAPTER 3

Background

This Section goes into the details of the transformer models and the classifiers

used in this research. It briefly describes the transformer architecture and the models

used in this project. The transformer models discussed here are BERT, DistilBERT,

Roberta, and Albert while the classifiers discussed are SVM, Random forest, CNN,

and 𝑘NN. The experiments verifying the results will be discussed in the next Section.

3.1 Transformer models

Prior to the advent of transformers many language processing tasks were handled

by complex recurrent neural networks which could integrate well with large scale

sequential data like text. One limitation is that it encodes the internal sequence to

a fixed length internal vector which degrades its performance while handling long

temporal sequences. Attention mechanism introduced by Bahdanau et al. alleviates

these limitations to certain extent [15].

As seen in Figure 2 the attention mechanism provides an intuitive way to inspect

the alignment within words in a sequence. This helps in identifying words which are

important during prediction.

𝑐𝑖 =
𝑇𝑥∑︁
𝑗=𝑖

𝛼𝑖𝑗ℎ𝑗 (1)

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)∑︀𝑇𝑥

𝑘=1 exp 𝑒𝑖𝑘
(2)

𝑒𝑖𝑗 = 𝐿𝑆𝑇𝑀(𝑠𝑖−1, ℎ𝑗) (3)

ℎ𝑗 is the hidden layer of the encoder

here 𝑐𝑖 represnts context vector

𝛼𝑖𝑗 is the weight vector of the hidden states of the decoder

𝑒𝑖𝑗 represents the output from previous timestep.

7

Figure 2: Attention network architecture with encoder decoder model [15]

Going from bottom to top equation 3 calculates the hidden states for the decoder

which is the LSTM output at timestep 𝑖. Equation 2 calculates the probability

softmax for each word in the sentence(encoder sentence) and equation 1 calculates the

attention weights for each word at the timestep 𝑖. Although the mechanism introduces

additional computation overhead (𝛼 and 𝑐𝑖 context vectors) it is able to outperform

vanilla encoder decoder models on various NLP tasks. The context vector helps the

decoder in attending every hidden state from the encoder and helps in identifying

tokens which give more information at a particular timestep.

Even with the help of attention mechanism the sequential RNN models are unable

to handle long term dependencies among the tokens.Since the traditional sequence-

to sequence models access the tokens sequentially it precludes parallelization and

ultimately cannot handle longer sequences as memory constraints catch limit the batch

size across samples.The researches in [16] introduced the concept of self attention

8

which is the central theme of transformer architecture. Self attention sometimes called

as intra attention can create a sequence representation by relating different positions

in the same sequence. The advantage of self attention is that it can handle larger

temporal sequences and also create a contextualized representations of them.

The components of transformers are as follows

𝑞 = 𝑋 *𝑊𝑞 (4)

𝑘 = 𝑋 *𝑊𝑘 (5)

𝑣 = 𝑋 *𝑊𝑣 (6)

𝑋 is the Input token(or word)

𝑞 is a query vector

𝑊𝑞 is the weight of q

𝑘 is key vector

𝑊𝑘 is the matrix representation of 𝑘

𝑣 is value vector

𝑊𝑣 is the matrix representation of 𝑣

The equation for self attention is given as follows

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞, 𝑘, 𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑡

√
𝑑𝑘

)𝑣

We can consider the attention function as using the query 𝑞 to find the most similar

key 𝑘. The closer key value product will have value towards 1 (softmax). The scaling

factor 1√
𝑑𝑘

helps in preventing the dot products between 𝑞 and 𝑘 to grow exponentially

large and thereby preventing the vanishing gradient problem.

So the generalised procedure for computing attention is as follows

9

1. Compute alignment scores by multiplying queries 𝑞 with keys 𝑘

𝑞𝑘𝑡 =

⎡⎢⎢⎢⎣
𝑒11 𝑒12 . . . 𝑒1𝑛
𝑒21 𝑒22 . . . 𝑒2𝑛
...

...
𝑒𝑚1 𝑒𝑚2 . . . 𝑒𝑚𝑛

⎤⎥⎥⎥⎦
2. Scale the alignment scores

𝑞𝑘𝑡

√
𝑑𝑘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒11√
𝑑𝑘

𝑒12√
𝑑𝑘

. . . 𝑒1𝑛√
𝑑𝑘

𝑒21√
𝑑𝑘

𝑒22√
𝑑𝑘

. . . 𝑒2𝑛√
𝑑𝑘

...
...

𝑒𝑚1√
𝑑𝑘

𝑒𝑚2√
𝑑𝑘

. . . 𝑒𝑚𝑛√
𝑑𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3. Apply softmax

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑡

√
𝑑𝑘

) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒11√
𝑑𝑘
) 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒12√

𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒1𝑛√

𝑑𝑘
)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒21√
𝑑𝑘
) 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒22√

𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒2𝑛√

𝑑𝑘
)

...
...

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑚1√
𝑑𝑘
) 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑚2√

𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑚𝑛√

𝑑𝑘
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
this gives the weight of different words

4. multiply the resulting weights to values in matrix

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑘𝑡

√
𝑑𝑘

).𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒11√
𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒1𝑛√

𝑑𝑘
)

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒21√
𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒2𝑛√

𝑑𝑘
)

...

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑚1√
𝑑𝑘
) . . . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑚𝑛√

𝑑𝑘
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝑣11 . . . 𝑣1𝑑𝑣
𝑣21 . . . 𝑣2𝑑𝑣
...

𝑣𝑚1 . . . 𝑣𝑛𝑑𝑣

⎤⎥⎥⎥⎦

Building on this intuition the researchers in [16] introduce the concept of multi-headed

attention.

10

Figure 3: Multi headed attention introduced in "Attention is all you need" [15]

The multi headed attention projects the queries,keys and values ℎ times (Figure

3). The single attention is then applied parallel to produce ℎ outputs which are then

concatenated to produce the final result. The multi headed attention mechanism

allows the model to focus on different positions. For example if we consider the

sentence "Apple products have an issue with memory.They need to fix it." we would

like to know what "they" refers to. It also helps in extracting information from

multiple representation subspace which would not be possible with a single attention

head [17]

The complete encoder decoder architecture is described in fig 4. Since the encoder

cannot inherently capture information about the relative positioning of the input

sequence a positional encoding vector is added along to the input embeddings. These

embeddings inject the necessary positional information for each token in the input

sequence.

11

Figure 4: Transformer architecture [18]

According to Figure 4 outputs of the self-attention layer are fed to a feed-forward

neural network. The exact same feed-forward network is independently applied to each

position. The residual connection between the encoder and the layer normalization

step helps in preventing vanishing gradient problem and also helps in stabilizing the

network.

The decoder part of the transformer works in the same way as the decoder part

of vanilla RNN as the output from the previous timestep is fed back to decoder in

the next timestep.The output from the encoder stack are used for encoder-decoder

attention as mentioned in Figure 4.

The decoder receives previous output from decoder stack and implements self

attention over the tokens.The attention part in decoder is modified to only attend

to preceding words. It achieves this with the help of mask attention mechanism. It

12

works as follows

𝑚𝑎𝑠𝑘(𝑞𝑘𝑡) =

⎡⎢⎢⎢⎣
𝑒11 𝑒12 . . . 𝑒1𝑛
𝑒21 𝑒22 . . . 𝑒2𝑛
...

...
𝑒𝑚1 𝑒𝑚2 . . . 𝑒𝑚𝑛

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑒11 −∞ . . . −∞
𝑒21 𝑒22 . . . −∞
...

...
𝑒𝑚1 𝑒𝑚2 . . . 𝑒𝑚𝑛

⎤⎥⎥⎥⎦
the decoder masks over the values obtained by the scalar multiplication of the

matrices 𝑞 and 𝑣. This is done by suppressing the values that occur in the future

timestep.The complete architecture of the decoder attention is given in Figure 5

Figure 5: Decoder Network [18]

This ensures that decoder only access words from the preceding timesteps.

3.1.1 BERT

BERT (Bidirectional Encoder Representations for Transformers) was introduced

in [12] which is a stack of 12 encoder models of transformer. BERT achieves state

of the art in 11 language processing tasks like GLUE, SQuAD v1.1 etc. The BERT

model is trained on jointly conditioning the left and right context in all layers which

helps in generating context-aware embeddings. Instead of training to predict next

13

word Bert uses masked language model which masks 15% of all the words in the

corpus.The objective is then to predict the masked word based solely on the context of

the surrounding words. This objective helps in fusing both the left and right context

of the sequence and also helps in creating a contextual representation of the input

sequence.

Figure 6: Bert Pre-training [12]

Another task BERT is trained on is NSP(Next Sentence Prediction) where given

a pair of sentences the model has to predict whether the sentences come after one

another. With this pre-training the model is able to understand the sentence level

relationships and give a more coherent understanding of the corpus.

The input structure for pretraining is given in Figure 7

Figure 7: Input sequence for BERT [12]

The contents for the input sequence include

• CLS: This is the first token of every sequence. Normally combined with a

softmax layer for classification.

14

• SEP: This is a sequence delimiter for next sentence prediction task. For a

sequence prediction it is just appended at the end.

• MASK: For masking the tokens. Only considered while Pretraining.

• Token Embeddings: Pre-trained embeddings for different words

• Wordpiece Tokenizer: Subword segmentation algorithm for example word

"playing" is tokenized as "play" and "###ing" in the Figure 7

• Segment Embedding: Segment embeddings are basically the sentence number

that is encoded into a vector. This is important for next sentence prediction

where we want to predict the sequence of the next sentence.

• Positional Embedding: These embeddings describe the position of the word

within a sentence.

3.1.2 DistilBERT

Researchers in [19] introduced a smaller,cheaper and faster version of BERT model

called DistilBERT which uses knowledge distillation to reduce the BERT architecture

by 40% while retaining 97% of its language understanding capabilities. It is 60%

faster in inference and is cheaper to train because of its lightweight architecture.As

mentioned in 8 a good language model need not be ridiculously huge to achieve state

of the art in language processing tasks.

Knowledge distillation is a compression technique in which a smaller

model(student model) is trained to produce the same results as that of teacher

model [20]. The student is trained with the distillation loss on the soft targets of the

teacher model. The distillation loss can be computed as follows

𝑦𝑖 =
exp(𝑣𝑖/𝑇)∑︀

𝑗(𝑣𝑗/𝑇)
(7)

𝑦𝑗 =
exp(𝑧𝑖/𝑇)∑︀

𝑗(𝑧𝑗/𝑇)
(8)

15

Figure 8: DistilBERT model parameters [19]

𝐿1 =
1

𝑁
*
∑︁
𝑗

𝑦𝑗 * log(𝑦𝑗) (9)

𝐿2 =
1

𝑁
*
∑︁
𝑗

𝑝𝑗 * log(𝑝𝑗) (10)

𝐷𝑖𝑠𝑡𝑖𝑙𝐿𝑜𝑠𝑠 = 𝛼 * 𝐿1 + (1− 𝛼) * 𝐿2 (11)

The 𝑇 is the temperature parameter which is used to reduce difference between

class likelihood values. Whole process can be understood from the Figure 9

While training the DistilBERT model the authors combined the distillation

loss (equation 11) with MLM(masked language modelling)loss to achieve comparable

accuracy while pre-training for masked language modelling. While pre-training they

remove the segmented tokens which is present in BERT as DistilBERT is not used

for NSP(Next Sentence Prediction) and initialized the parameters from any one of

BERT’s encoder parameters(BERT contains 13 encoders DistilBERT contains 6) [19].

16

Figure 9: Knowledge distillation model [20]

3.1.3 Roberta

Robustly optimised BERT pre-training approach was introduce by Liu Y. et al.

which explores how different hyper-parameters and different pre-training objectives

coupled with significantly more data can affect the robustness of the model [21].They

argue that the BERT model is largely under-trained and therefore not robust or

optimal. They train the models for different objectives like

• Segment-Pair+NSP: This is the original NSP pre-training objective for BERT

where the models needs to predict whether the segments follow each other.

• Sentence-Pair+NSP: This objective trains the model to predict whether two

sentences follow each other.

• Full Sentences: The input consists of full sentences. When the end of document

is reached the sentences from the next document are sampled.

The batch size used for pre-training is significantly larger that that of BERT (2𝐾).

Since WordPiece embedding require larger space to incorporate rules for subword

generation changes depending on the data, the authors used Byte-Pair Encoding which

17

can handle these changes and give better representation for input sentences. The

dataset used for Roberta is significantly larger than BERT consisting of BookCorpus,

CommanCRAWL news dataset, OPENWEBtext and STORIES.

3.1.4 Albert

A Lite BERT model for self supervised learning for language representations

(Albert) was introduced by Lan Z et al. in [22].They argue that because of the

huge size(around 300 million) it is harder to converge and train because of memory

limitations. On top of being memory intensive the model also degraded while training

for longer time.

The Albert model uses Cross-Layer parameter sharing as shown in 10 where the

weights and parameters of the first block are reused for the remaining blocks. This

helps in reducing the number of parameters to be learned and achieved comparable

accuracy with respect to BERT.

Figure 10: Parameter sharing in the Albert model

In order to reduce the actual number of parameters the authors in [22] utilize

matrix factorization. In BERT model the output of the intermediate layers are the

18

Figure 11: Matrix Factorization technique for reducing the number of parameters [22]

same as that of the vocabulary(768 hidden dimensions) whereas the albert model

reduces the embedding size by multiplying the embedding with the matrix which

blows up the vector to the same size as that of hidden layers (Figure 11).They claim

that helps in reducing the number of BERT parameters by 89%.

Model Encoder Type

Number
of

Parameters
(In Millions) Corpus trained

BERT Transformer 340 BookCorpus

Roberta Transformer 340

BookCorpus
CC-News

OpenWebText
Stories

DistilBert Transformer 110 BookCorpus
Albert Transformer 110 BookCorpus

Table 1: Comparison of different architecture of BERT models

3.2 ELMo architecture

ELMo(Embeddings for Language Model) was first introduced in [13]. The embed-

dings generated by ELMo capture both the semantics and the syntax of the language

and is able to generate a contextualized vector for a particular word. In other words

same words will have different embeddings depending on the context.

The forward LM layer of ELMo model is trained on task of next word prediction

19

Figure 12: ELMo architecture as described in [13]

and the backward LM layer is trained on the task of Previous Word prediction. The

internal states of forward LM and backward LM are concatenated and multiplied with

a normalized weight vector which helps in scaling these embeddings. The concatenated

layers are then added up to create a deep representation if the sequence. According

to Peters .M et al. the lower layers of model learn the syntax while the upper

layers learn the context of the word. The ELMo model utilizes a character level

CNN(Convolutional Neural Network) to generate the character level embedding to

handle out of vocabulary words.

3.3 Classifiers

Classification is predictive modelling problem where the model predicts class for

a given sample of input data.The input data is mapped to desired class based on its

features. The models which enable this facility are called classifiers. This section will

cover the background on different types of classifiers.

3.3.1 Random Forest Classifiers

Random forest does classification using an ensemble of decision trees. The decision

trees classify the data and the prediction with the highest number of votes is selected

as the class of data [23]. The reason for choosing a large number of decision trees is

because individually a single decision tree tends to overfit however, when working as

20

an ensemble these errors are minimized and the model generalizes better for the input

dataset.

Figure 13: Random forest Trees [23]

Random forest algorithm uses a bootstrapping mechanism to generate a large

number of decision trees for ensemble learning (algorithm 1). The model will draw

a large number of samples from the subset and train a new classifier on each of the

samples (Figure 13). The samples are not exclusive which means samples can be

replaced while drawing. Using Bootstrapping with decision trees is called bagging.

Bagging prevents random forests from over-fitting since the model now has a holistic

view of the subset.

3.3.2 K-Nearest Neighbours

K- nearest neighbhours is a supervised machine learning algorithms which uses

information of the neighbouring data points to predict a class label. There is no

explicit training phase in this model and while testing the prediction is decided based

on the nearest neighbors in the dataset. Small values of K result in unstable values

21

Algorithm 1 Random Forest Algorithm
Require: A training set :=(𝑥1, 𝑦1),(𝑥𝑛, 𝑦𝑛),features 𝐹 and number of trees in the

forest 𝐵
1: function RandomForest(𝑆,𝐹)
2: 𝐻 ← 𝜑
3: for 𝑖 ∈ 1...𝐵 do
4: 𝑆(𝑖) ← A bootstrap sample from 𝑆
5: ℎ𝑖 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑𝑇𝑟𝑒𝑒𝐿𝑒𝑎𝑟𝑛(𝑆(𝑖), 𝐹)
6: 𝐻 ← 𝐻∪ {ℎ𝑖}
7: end for
8: return 𝐻
9: end function

10: function RandomizedTreeLearn(𝑆,𝐹)
11: At each node
12: 𝑓 ← very small subset of 𝐹
13: Split on the best feature in 𝑓
14: return the learned tree
15: end function

and tend to overfit quickly. Increasing the K values can result in imporving the

accuracy upto a certain point but after that the performance degrades.

3.3.3 SVM

Support Vector Machines(SVM) are a class of supervised machine learning algo-

rithms which use the concept of seperating hyperplane to carry out classification. The

Goal of SVM is to create a hyperplane which maximizes the distance between classes.

SVM also utlilizes a kernel trick which adds nonlinearity with little computational

overhead.

From Figure 14 the hyperplane which causes the maximum separation is chosen.

This utility of separating hyperplane can be used to identify subtle changes between

the malware families as discussed in [25]. The mathematical proof can be found in [26]

Even if the dataset is not linearly separable SVM can map it to a higher dimensional

subspace where it is possible to separate the classes.From Figure 15 the nonlinear data

is separated into a higher dimension space where it is possible to find a separating

22

Figure 14: SVM hyperplane separating Green boxes from red circles [24]

Figure 15: 3D seperating Hyperplane [27]

hyperplane.While training an SVM classifier we need to tune the hyper-paramter C

which is a cost or regularization parameter.Thus parameter allows certain classes into

23

Figure 16: Resnet18 architecture [29]

the separating boundary and thereby preventing overfitting. Several popular nonlinear

kernels like RBF and polynomial kernal can be used to deal with nonlinearity.

Algorithm 2 Support Vector Machine Algorithm
Require: 𝑋 and 𝑦 loaded with training labeled data,𝛼 ← 0 or 𝛼 partially trained

SVM
1: 𝐶 ← some value
2: repeat
3: for {𝑥𝑖, 𝑦𝑖},{𝑥𝑗, 𝑦𝑗} do
4: Optimize 𝛼𝑖 and 𝛼𝑗

5: end for
6: until no changes in 𝛼 or other resource criteria is met

Ensure: Retain only the support vectors (𝛼𝑖> 0)

3.3.4 CNN

Deep neural networks are a class of neural network algorithms which are loosely

modeled on the structure of the human brain. Even though CNN’s are heavily used for

image analysis, they can be used for malware classification as seen in [28]. The CNN

architecture used in this research is Resnet18 which was introduced by researchers of

Microsoft in [1]. The general architecture of resnet18 is described in the Figure 16.

Resnet18 architecure uses residual connection which helps in mitigating the vanishing

gradient problem.The residual operation is described in the Figure 17.The Identity

mapping in the residual connection (figure 17 helps in backpropogation to reach from

24

Figure 17: Residual connection introduced in [1]

the last layer of the network to the first layer.

𝐻(𝑥) = 𝐹 (𝑥) + 𝑥

This helps in approximating the residual function 𝐹 (𝑥) while training our deep

convolutional network.Even if 𝐹 (𝑥) becomes zero it will at least learn 𝑥 which will

prevent the gradient from vanishing. The model also does not add any additional

parameters which need to be trained as the identity function is always present in the

network.This helps in stacking more convolutional layers while still be less complex

and train better than VGG [1].

3.4 N-grams embeddings

Byte N-grams are one of the most readily available features for static analysis of

malware. By treating a file as a sequence of bytes one can extract unique combination

of N-gram bytes as a sequence of features. They are particularly attractive since they

25

require no domain knowledge of virus or malware and anyone can easily convert them

into features. These embeddings can then be converted into features using various

embeddings techniques like Fasttext and Word2vec. In this research we explore using

word2vec and fasttext for embedding generation of the byte-level Ngram combinations.

We only consider top 40 bi-grams for this research because of the memory and

computational constraints for Converting them into features.

3.4.1 Word2Vec

Word2Vec introduced by Mikolov et.al in [11] is an algorithm that can efficiently

create word embeddings. Prior to Word2Vec the embeddings were represented using

one hot encodings which were computationally inefficient and require a lot of space

resuting in "curse of dimensionality". Other than being extremely complex to train

these embeddings will be closely coupled with their applications and adding or removing

words from the vocabulary would require re-training of the whole model. Word2Vec

can be used to map the words in the input sequence into vectors of higher dimension.

Given enough data, usage and contexts the algorithm can make highly accurate guesses

about its meaning based on its frequency and its association with neighboring words.

This helps in creating intuitive word embeddings that can capture distributional

semantics of the word.

Word2Vec trains two algorithms for creating the embeddings for the words

• CBOW or Common Bag Of Words: In this algorithm model the distributed

representations i.e context are combined to predict the word in the middle(often

called focus word). For e.g we want to predict what word comes in the blank

"The sat on his throne" (answer king).

• Skip N-gram: In this algorithm the model takes the focus word and tries to

predict what are the neighboring words which can be associated with it. The

26

Figure 18: CBOW and Skip gram model [11]

equation for skip gram algorithm is given as follows

log(𝑝(𝑐 | 𝑤 ; 𝜃)) =
exp(𝑣𝑐 · 𝑣𝑤)∑︀
𝑐′∈𝐶 exp(𝑣𝑐′ .𝑣𝑤)

(12)

Context word word
Context vector

Word Vector
Since the vocabulary can be quite large running the skip gram model for large

number of task increases the complexity exponentially. In order to overcome

this issue the authores proposed subsampling frequent words to reduce training

samples and using negative sampling which only reduces small part of the

network while training.

3.4.2 Fasttext

While Word2Vec provides semantic representation of words, it cannot incorporate

words which are out the training vocabulary. For e.g it there is no word like "tennis"

in the vocabulary it will assign a random vector representation and cannot incorporate

its complete meaning. Fattext circumvents this problem by using a bag of character

level N-grams where each word is represented by sum oof its N-grams [30]. This helps

in modelling dataset which is morphologically rich for e.g the word "tichtennis" in

German and table tennis have same meaning and are represented close to each other

using fasttext. Since creating and storing N-gram representation for each word is

memory intensive the authors in [31] use a hashtable to store these vectors.Using a

27

Figure 19: Skip gram model for fasttest [31]

quantization technique they further optimize the model using softmax approximation

and keeping only the important N-grams in the hashtable [32].

28

CHAPTER 4

Datasets and Experiments

The dataset used in the experiments consist of seven types of malware families.

The description of each type of malware families are as follows:

1. CeeInject : is a malware which can evade detection and hence various families

use it for concealing their identities.For e.g It can install a spyware on your

system by concealing itself as a program from the internet [33]

2. BHO: A Browser Helper Object which can redirect the victim to perform

malicious actions as intented by the attacker

3. FakeRean: Generate and creates alerts for viruses that do not exist in the

system and asks user to pay for removing the viruses.

4. OnlineGames: Tracks login activity and monitors keystroke activity of online

games without consent.

5. Winwebsec: Is a trojan malware which masquerades as a legitimate antivirus

program and scares the user by creating misleading messages about the system.

It then demands money to clean the system.

6. Renos: Informs user about fake security warnings by claiming that the system

has spyware and then claim payments for removing the nonexistent spyware

7. Vobfus: Downloads other malware into the computer and then makes changes

to the system which can’t be resolved by removing the downloaded malware.

The dataset consists of exe files from which we extract mnemonic opcodes using

Objdump. A bash script was run for all the files to convert it into asm format from

which we extract opcodes.The opcodes used in this research are in the intel-86 format

29

for compatibility. For each file first 400 tokens of opcodes are extracted and fed to

transformer(BERT models) and embeddings are generated from them. The embedding

size for all BERT models is 768. Although BERT can handle only upto 512 tokens

the accuracy of the model was not impacted at all. From figure 20 we can see that

summing up last 4 layers gives us maximum accuracy for text classification. We stack

Figure 20: Concatenating Last four Layers of Bert Architecture [17]

the tuple and extract the 512x768 embeddings(512 tokens,768 hidden layer size) from

each of the layer. Then out of all the layers the token embeddings of last 4 layers

are summed up and considered as the representation of all the tokens in the opcode

sequence.

4.1 Experiments

This section describes the results of the experiments conduucted on the embeddings

generated by different models.

4.1.1 BERT-based-experiments

As discussed in section 3.1.1 BERT is a transformer based encoder model which

can generate contextual word embeddings owing to its self attention mechanism.

30

We use BERT base architecture which contains 110 million parameters. The hyper-

parameters utilized for training of BERT are as follows:

• AdamW Optimizer with learning rate of 2(𝑒−5) to optimize the training.

• get_linear_schedule_with_warmup which reduces the learning rate to reduce

the impact of new data pont on the model. Then the learning rate rate increases

slowly if the minima is not found in order to reach convergence

Table 2: Optimal Hyper-Parameters for classifiers for BERT

classifier Parameter Values

Random Forest 𝑛-estimators 536
max_depth 50

SVM
𝐶 45572384.436680615
𝛾 Auto

kernel RBF
𝑘NN 𝑘 25

The BERT model was trained for 20 epochs and the embeddings for the last 4 layers

were extracted as shown in 20. The results of the experiments are shown in Figure

21 These experiments suggest BERT-SVM gives the maximum accuracy of all the

models.The worst performance is By 𝑘NN which gives about 92% accuracy.

4.1.2 distilBERT based Experiments

As mentioned in section 3.1.2 distilBERT is a distilled or smaller version of

BERT architecture which uses know distillation to shrink down the BERT model.

As in section 4.1.1 we train the model on the opcodes for 20 epochs with same

hyperparameters we used for BERT model and extract the embeddings by summing

up the last 4 layers of the model.

The embeddings are then fed to the classifiers and the results are displayed in

figure 22. The distilBERT random forest classifier shows the highest accuracy while

the 𝑘NN one shows the lowest accuracy.A random forest model uses an ensemble of

31

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.96 0.044

0.94 0.017 0.011 0.056 0.028

0.017 0.93 0.011 0.006 0.039

0.022 0.039 0.92 0.006 0.011

0.011 0.022 0.011 0.95 0.006

1

0.006 0.039 0.011 0.011 0.93

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.977 0.003 0.013 0.003 0.003

0.003 0.97 0.01 0.01 0.007

0.01 0.949 0.01 0.01 0.006 0.016

0.003 0.013 0.007 0.953 0.013 0.01

0.017 0.007 0.003 0.959 0.014

0.003 0.003 0.007 0.986

0.003 0.007 0.007 0.007 0.037 0.94

0

0.2

0.4

0.6

0.8

1

(a)BERT-RandomForest Matrix (b) Bert-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.93 0.044

0.92 0.028 0.017 0.006 0.028

0.028 0.92 0.011 0.006 0.011

0.022 0.044 0.92 0.006 0.011

0.017 0.028 0.011 0.94 0.006

1

0.011 0.044 0.006 0.028 0.91

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.96 0.015 0.005 0.01 0.01

0.012 0.99

0.011 0.011 0.97 0.006

0.012 0.012 0.006 0.95 0.018

1

0.027 0.005 0.016 0.95

0

0.2

0.4

0.6

0.8

1

(c) BERT-𝑘NN confusion matrix (d) BERT-CNN confusion matrix

Figure 21: BERT-based experiments

decision tress and uses a voting classifier to predict the class of the input. Because of its

bootstrapping mechanism it is able to generalize well to the embeddings generated from

the model. SVM classifier gives the best output when the C parameter is 6.8 which

means the model tries to regularize simpler weights in the model. Hyperparameters

for distilBERT-based classifiers are shown in Figure 3.

32

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.95 0.011 0.006 0.017 0.017

0.033 0.96 0.006 0.006

0.017 0.039 0.93 0.011

0.011 0.028 0.006 0.95 0.017

1

0.011 0.044 0.011 0.93

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.95 0.006 0.017 0.011 0.017

0.028 0.96 0.006 0.006

0.028 0.033 0.93 0.011

0.022 0.017 0.95 0.017

1

0.011 0.044 0.011 0.006 0.93

0

0.2

0.4

0.6

0.8

1

(a)distilBERT-RandomForest Matrix (b) distilBert-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.96 0.44

0.94 0.006 0.017 0.017 0.017

0.028 0.96 0.011

0.011 0.044 0.93 0.017

0.011 0.033 0.94 0.017

1

0.011 0.056 0.011 0.022 0.9

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.97 0.005 0.021

0.012 0.96 0.018 0.012

0.023 0.017 0.96

0.018 0.98 0.006

1

0.005 0.005 0.99

0

0.2

0.4

0.6

0.8

1

(c)distilBERT-𝑘NN confusion matrix (d)distilBERT-CNN confusion matrix

Figure 22: distilBERT-based experiments

4.1.3 Roberta based Experiments

As mentioned in section 4.1.3 Roberta is more robust BERT model which is

trained on significantly large dataset and uses a byte level tokenization in order to

incorporate words which are not part of the input vocabulary. It also utilizes a large

corpus of text to finetune its parameters and achieve state of the art in almost 11

(natural language processing challenges) [21].

33

Table 3: Optimal Hyper-Parameters for classifiers for distilBERT

classifier Parameter Values

Random Forest 𝑛-estimators 266
max_depth 32

SVM
𝐶 2021198652.6540103
𝛾 Auto

kernel RBF
𝑘NN 𝑘 25

As with the previous section a Roberta model is trained for 20 epochs and the

embeddings are fed to the classifiers. The results of Roberta model are shown in figure

23

The optimal hyperparameters for Roberta based classifiers are as follows

Table 4: Optimal Hyper-Parameters for classifiers for Roberta

classifier Parameter Values

Random Forest 𝑛-estimators 292
max_depth 42

SVM
𝐶 4.430007444654968

𝛾 scale
kernel RBF

𝑘NN 𝑘 25

4.1.4 Albert based Experiments

Authors in [22] stated that the albert model has considerably less parameters than

BERT(almost 89% parameter reduction) and therefore takes less time for fine-tuning.

However even training for smaller batches on the malware dataset takes considerable

amount of time and the model actually performs worst among all the BERT based

models.

As with the previous section the Albert model is trained for 20 epochs and the

embeddings are fed to the classifiers. The results of Albert model are shown in figure

24. Each encoder in the Albert model shares the parameter where the first encoder

34

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.95 0.011 0.006 0.017 0.017

0.033 0.97 0.022

0.039 0.022 0.92 0.056 0.017

0.022 0.017 0.011 0.94 0.006

1

0.017 0.033 0.011 0.011 0.93

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.94 0.028 0.006 0.011 0.017

0.006 0.96 0.011 0.022

0.039 0.022 0.92 0.006 0.017

0.017 0.017 0.011 0.94 0.011

1

0.017 0.033 0.011 0.011 0.93

0

0.2

0.4

0.6

0.8

1

(a)Roberta-RandomForest Matrix (b) Roberta-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.95 0.006 0.017 0.011 0.017

0.028 0.96 0.006 0.006

0.028 0.033 0.93 0.011

0.022 0.017 0.95 0.017

1

0.011 0.044 0.011 0.006 0.93

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

1

0.96 0.015 0.015 0.01

0.018 0.97 0.006 0.006

0.017 0.017 0.94 0.011 0.011

0.012 0.006 0.98

1

0.011 0.016 0.005 0.97

0

0.2

0.4

0.6

0.8

1

(c)Roberta-𝑘NN confusion matrix (d)Roberta-CNN confusion matrix

Figure 23: Roberta-based experiments

has its weights repeated 12 times which degrades the model performance as compared

to BERT. The hyperparameters for Albert-based classifiers are shown in table ?? It is

unclear whether embedding factorization in Albert model actually reduces parameters

as from the inference on the model it took longer as compared to other BERT models.

35

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.98 0.022

0.91 0.022 0.017 0.022 0.033

0.022 0.91 0.028 0.011 0.028

0.033 0.006 0.92 0.039

0.017 0.011 0.006 0.94 0.022

1

0.017 0.028 0.028 0.011 0.92

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.91 0.089

0.89 0.033 0.011 0.017 0.044

0.011 0.92 0.033 0.011 0.022

0.028 0.011 0.92 0.039

0.017 0.017 0.94 0.028

1

0.017 0.028 0.033 0.006 0.93

0

0.2

0.4

0.6

0.8

1

(a)Albert-RandomForest Matrix (b) Albert-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.91 0.089

0.89 0.033 0.022 0.017 0.033

0.017 0.93 0.022 0.011 0.022

0.028 0.011 0.93 0.022

0.017 0.017 0.94 0.003

1

0.011 0.028 0.056 0.91

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.98 0.02

0.95 0.015 0.021

0.018 0.95 0.006 0.018 0.006

0.017 0.006 0.97 0.006 0.006

0.006 0.006 0.006 0.98

1

0.016 0.005 0.022 0.96

0

0.2

0.4

0.6

0.8

1

(c)Albert-𝑘NN confusion matrix (d)Albert-CNN confusion matrix

Figure 24: Albert-based experiments

4.2 ELMo based Experiments

As seen in section 3.2 ELmo uses a biLM model which constructs a context aware

representation of input Sequence. The model used in this research is provided by

Allennlp which are the main maintainers of this architecture.

We extract only the first 64 tokens from each file because of the computational

overhead (64*256) and concatenate each tensor to get the embedding representation of

36

Table 5: Optimal Hyper-Parameters for classifiers for Albert

classifier Parameter Values

Random Forest 𝑛-estimators 346
max_depth 17

SVM
𝐶 5.815004360060932
𝛾 Auto

kernel RBF
𝑘NN 𝑘 25

length 256 for each file. The embeddings are then fed to the classifiers and results can

be seen in Figure 25. The hyperparameters for the experiments are given in Figure 6

Table 6: Optimal Hyper-Parameters for classifiers for ELMo

classifier Parameter Values

Random Forest 𝑛-estimators 26.9
max_depth 20

SVM
𝐶 194.45
𝛾 Scale

kernel RBF
𝑘NN 𝑘 90

The combined accuracies for all the bert models and their classifiers is described

in Figure 26

From Figure 27 we can see that the BERT based embeddings consistently

outperform the WOrd2Vec and HMM2Vec based embeddings.

4.3 Byte-Level N-gram experiments

Byte-level N-grams are one of the most common features for static analysis since

they require no domain knowledge and are easiest to extract and process. In this

research we generate an embedding of byte level N-grams by using Word2vec and

fasttext and compare their accuracy (Section 3.4.2).

37

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.93 0.03 0.03 0.015

0.9 0.078 0.004 0.007 0.011

0.004 0.93 0.015 0.019 0.03

0.004 0.044 0.94 0.004 0.002

0.004 0.027 0.015 0.93 0.015

0.003 0.006 0.99

0.07 0.011 0.015 0.9

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.93 0.03 0.03 0.015

0.9 0.078 0.004 0.007 0.011

0.004 0.93 0.015 0.019 0.03

0.004 0.044 0.94 0.004 0.002

0.004 0.027 0.015 0.93 0.015

0.003 0.006 0.99

0.07 0.011 0.015 0.9

0

0.2

0.4

0.6

0.8

1

(a)ELMo-RandomForest Matrix (b) ELMo-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.78 0.06 0.03 0.075 0.06

0.004 0.82 0.089 0.019 0.019 0.048

0.019 0.72 0.096 0.044 0.12

0.004 0.081 0.86 0.004 0.007 0.044

0.063 0.033 0.87 0.037

0.003 0.003 0.009 0.97 0.12

0.004 0.11 0.011 0.011 0.026 0.85

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.98 0.02

0.92 0.041 0.041

0.036 0.89 0.006 0.012 0.055

0.017 0.94 0.023 0.017

0.006 0.99 0.006

0.005 1

0.011 0.027 0.005 0.016 0.94

0

0.2

0.4

0.6

0.8

1

(c) ELMo-𝑘NN confusion matrix (d) ELMo-CNN confusion matrix

Figure 25: ELMo-based experiments

4.3.1 Word2Vec

The byte level sequences are extracted from the malware files and are treated as

strings. These sequences are then fed to Word2Vec model with a context window of

10 to generate the byte level embeddings. These embeddings are then fed to various

classifiers as mentioned in section 3.3.

The general algorithm is as follows (algorithm 3. We feed the byte level N-grams

38

Figure 26: Accuracies for various classifers for BERT model

Figure 27: Comparing Transformer based models accuracies with other models

39

to the word2vec algorithm which generates the embeddings for the malware file. Since

there can be a large number N-gram combination of bytes, we only take top 20 most

common N-grams and runa Word2Vec algorithm over it . Each byte N-gram will have

a vector of size 5 making the vector size of (100) for each malware file.The details of

the algorithm are given in the algorithm 3. The embeddings are fed to classifiers and

their results are shown in Figure 28

Algorithm 3 Word2Vec Algorithm
Require: Byte-Level N-grams for the malware files. Data-Structure Embeddings for

storing embeddings for malware files
1:
2: function Word2VecEmbeddings(File)
3: 𝑉𝑐 ← Word2Vec(file,(𝑉 𝑒𝑐𝑡𝑜𝑟_𝑠𝑖𝑧𝑒) = 5,𝑤𝑖𝑛𝑑𝑜𝑤 = 10,𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 = 5)
4: 𝑉𝑐′ ← top 20 most common features in 𝑉𝑐

5: return 𝑉𝑐′

6: end function
7: for File ∈ Malware files do
8: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← Word2VecEmbeddings(File)
9: end for

10: Feed the Embeddings to the classifiers

The hyperparamters tuning for all the classifiers is done using optuna and their

values are mentioned in the table 7. From the confusion matrix we can see that the

random forest performs best as compared to other classifiers.

Table 7: Optimal Hyper-Parameters for classifiers for Word2Vec

classifier Parameter Values

Random Forest 𝑛-estimators 726
max_depth 20

SVM
𝐶 1181.45
𝛾 Auto

kernel RBF
𝑘NN 𝑘 90

40

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.96 0.023 0.005 0.009

0.006 0.89 0.024 0.006 0.018 0.055

0.013 0.76 0.027 0.08 0.12

0.021 0.92 0.013 0.004 0.038

0.009 0.013 0.94 0.013 0.021

0.012 0.036 0.95 0.006

0.028 0.017 0.014 0.003 0.017 0.003 0.94

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.95 0.019 0.005 0.023

0.8 0.036 0.03 0.048 0.085

0.007 0.047 0.69 0.02 0.11 0.13

0.009 0.034 0.013 0.82 0.064 0.056

0.021 0.009 0.013 0.91 0.009 0.043

0.024 0.036 0.018 0.92

0.003 0.014 0.014 0.011 0.054 0.011 0.89

0

0.2

0.4

0.6

0.8

1

(a)Word2Vec-RandomForest Matrix (b) Word2Vec-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.88 0.009 0.014 0.005 0.093

0.042 0.52 0.024 0.13 0.012 0.042 0.24

0.1 0.027 0.45 0.073 0.053 0.007 0.29

0.13 0.013 0.034 0.85 0.021 0.021 0.06

0.026 0.013 0.068 0.8 0.026 0.064

0.006 0.036 0.86 0.024

0.037 0.023 0.025 0.031 0.011 0.003 0.87

0

0.2

0.4

0.6

0.8

1

(c) Word2Vec-𝑘NN confusion matrix

Figure 28: Word2Vec-based experiments

4.3.2 FastText Based Experiments

In this set of experiments we consider the same top 20 combinations of Word2Vec

N-grams are fed to an fasttext model. Since FastText os considerably quicker than

Word2vec [32] we use the vector size of 400 to represent a file. The embeddings

generated are then fed to classifiers and their results are shown as below

On comparing confusion matrices for Word2Vec (Figure 28) and FastText hybrid

41

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.96 0.028 0.005 0.005

0.006 0.87 0.03 0.018 0.024 0.006 0.005

0.027 0.73 0.067 0.017

0.004 0.017 0.89 0.017 0.017 0.006

0.013 0.004 0.017 0.93 0.009 0.026

0.012 0.006 0.006 0.95 0.024

0.028 0.017 0.014 0.003 0.017 0.003 0.94

0

0.2

0.4

0.6

0.8

1

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.95 0.023 0.023

0.006 0.83 0.03 0.018 0.024 0.006 0.005

0.013 0.02 0.63 0.007 0.06 0.027

0.026 0.009 0.86 0.017 0.009 0.077

0.013 0.017 0.013 0.026 0.9 0.03

0.006 0.053 0.006 0.93 0.006

0.006 0.011 0.011 0.014 0.037 0.003 0.92

0

0.2

0.4

0.6

0.8

1

(a)FastText-RandomForest Matrix (b) FastText-SVM confusion matrix

BH
O

O
nL

in
eG

am
es

Re
no

s
Ce

eI
nj

ec
t

Fa
ke

Re
an

V
ob

fu
s

W
in

we
bs

ec

BHO

OnLineGames

Renos

CeeInject

FakeRean

Vobfus

Winwebsec

0.94 0.005 0.005 0.009 0.004

0.012 0.74 0.036 0.061 0.03 0.042 0.079

0.073 0.65 0.047 0.047 0.007 0.018

0.013 0.013 0.017 0.85 0.021 0.021 0.06

0.026 0.013 0.068 0.8 0.026 0.064

0.006 0.036 0.93 0.024

0.011 0.034 0.011 0.031 0.025 0.028 0.86

0

0.2

0.4

0.6

0.8

1

(c) Fasttext-𝑘NN confusion matrix

Figure 29: FastText-based experiments

classification (Figure 29) FastText is more robust, accurate and generalizes better.

42

Table 8: Optimal Hyper-Parameters for classifiers for Word2Vec

classifier Parameter Values

Random Forest 𝑛-estimators 186
max_depth 42

SVM
𝐶 170685.38129805663
𝛾 Auto

kernel RBF
𝑘NN 𝑘 20

43

CHAPTER 5

Explainable AI and Interpretability of BERT Models

In recent years, machine learning applications have found wide spread use in

almost all aspects of life. AI based algorithms have been successfully applied to

almost all types of data (sound,image,tabular,forecasting,speech,text) and have become

ubiquitous in every kind of industry [34]. A large factor for its progress is the emergence

of deep learning algorithms. With the help of these algorithms data can be used in

more creative ways to gain analytical insights,recommend movies, facial recognition.

With more advances in deep learning, the models have become increasingly complex

and hard to interpret. For example the Large Langauge Model (LLM) released by

google called Gopher consists of 280 Billion parameters [35]. With their large size and

increasingly complex architecture understanding how and what the model predicts has

become incomprehensible. Because of their complexity, many AI models are treated

as "black boxes" without elaborating how the prediction was obtained.

Since machine learning models are being deployed in various high risk applications,

an explanation of how the model predicted an outcome is crucial for ensuring trust

and reliability. For example consider a model which predicts pneumonia based on

the CT scan and features of the patient, we need to be 100% sure what the model

has predicted is correct and how it came to a conclusion. Machine learning models

are not perfect and often pick up biases from the training data. This can severely

affect machine learning models and discriminate against under-represented groups.

Interpreting how models predict can help in detecting and debugging such biases and

also help in creating trust in the AI model [36]. If the model is more interpretable it is

easier for humans to understand why and how certain decisions are made (Figure 30).

The easiest way of explaining models is using models that are already interpretable

such as decision tree, linear regression and random forest [36]. Since the inner workings

44

Figure 30: AI vs XAI [34]

and the math behind these models are known and rigorous proofs are given, it is easy

to comprehend them. For e.g an increase in size for a property mostly results in

increase in increase in price value if we are using linear regression. Thus we can say

that interpretability for such models is intrinsic since it has mechanisms which are

built-in for interpretability. The tools required for interpreting such models always

depend on the type of model used [36] and hence they are model specific. Model

agnostic methods allow us to interpret any kind of machine learning model after the

model has been trained(post-hoc).

5.1 Model Agnostic methods for interpreting BERT model

This section will introduce some model agnostic methods for interpreting BERT

models and give some explanations for its predictions.

5.1.1 SHAP values for Explanation

SHAP values or SHapely Additive exPlanations is a method to explain individual

predictions [36]. Consider a team taking part in a Kaggle competiton and they get

certain payout for their achieved result. For instance they get 10,000 dollars if they win

45

Figure 31: Shapely values for getting the payout

the first prize. The dilemma here is how to distribute money so that the distribution

is fair. Since each player contributes differently distributing the money equally doesn’t

seem fair. The main goal of SHAP is to explain a prediction based on the contribution

of features. Each feature can be assumed as a player in the game where the prediction

is the payoff. Shapley values introduced in [37] is a method of assigning payouts

depending on each player’s contribution. Player’s operate in coalition and receive

some profit from this coalition. A shapely values describes average contribution of

the player to the payout.

While explaining machine learning models using shapely values, the features are

considered as players and the prediction as payout. Each shapely value of a feature

describe its contribution for the prediction.SHAP(shapely additive explanations) use

shapely values to explain a particular prediction [38]. The equation for shapely values

is given in equation 13.

𝜑
𝑖
(𝑓 , 𝑥) =

∑︁
𝑧′ ⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!

𝑀 !
· [𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧

′𝑖)] (13)

Black Box model

Feature value
Subset

Without the feature score

46

Figure 32: SHAP plot for a CeeInject Instance

The values for which we consider the feature to be absent are filled with random values

as they do not contribute to the overall marginal accuracy of the payoff [36]. From

13, there are 2𝑛 possible combinations of subsets which can take up a lot of memory

.In order to prevent this and make the calculations somewhat manageable, [38] uses

Kernel SHAP that uses a special weighted linear regression to compute the importance

of each feature.

Consider an example of CeeInject virus. It would be beneficial to know what

features the BERT transformer model considers important. This would not only help in

visualizing the importance of each opcode but also help in detecting any defects within

the model. Figure 32 indicates what features are important for a BERT based classifier

when predicting the instance as CeeInject. It is clear that combinations of opcodes

like (mov,mov) and (mov,mov,sub) contribute towards positive direction in the model

predicting CeeInject whereas opcode combinations like (sbb,add,adc,add,adc,mov)

pull the prediction in opposite direction. Since the number of combinations can be

extremely large it becomes difficult and infeasible to calculate shapely values for all

possible combinations. In order to counter this situation we only consider 20 unique

opcodes in each instance and try to find combinations within them. The Owen values

which are based on SHAP values use the concept of coalition and unions in order to

make the calculations tractable. The base value of the instance is the average value of

47

the model over the training set. Consider the same instance but for different label for

e.g ""FakeRean" the opcode combination of (add,mov,mov,mov,add..) significantly

push the model to not predict "FakeRean" while (push,xor,or) push the prediction

in the opposite direction (Figure 33). They net result is the prediction of the model.

The bar plot in Figure 34 shows the importance of each feature in the malware file. It

Figure 33: SHAP values for FakeRean

represents the mean absolute contribution of each feature(or combination of opcodes)

in the prediction and is sorted from lowest to highest. The idea behind this is simple,

the opcodes with largest absolute values are important since they tilt the prediction in

either direction. The bar plot is useful since it helps in identifying important features

for a prediction but beyond that they do not provide any further information.

The Waterfall plot shown in Figure 35a shows how features of single instance are

added up to give the prediction of CeeInject. For the same instance but this time

for different class ("BHO") the opcodes which influence the prediction are shown in

Figure 35b. The plot reflects the same intuition which was observed from the bar

plot(Figure 34) but it represents in a more elegant manner displaying how each feature

was added up and their contribution towards their prediction. Shapely values can

also be used for visualizing images . In Figure 36 consider an example of CeeInject

malware which has been transformed into an image using BERT (Section 4.1.1). The

model assigns high scores in the middle-left and slightly higher in the bottom half of

48

Figure 34: Bar plot for instance of "CeeInject"

(a) CeeInject features (b) Same instance but plot for different class

Figure 35: Waterfall plot for comparing feature contributions

the image.

Figure 36: Shap values for CNN images

49

5.1.1.1 Advantages and disadvantages of Shapely values

Advantages of shapely values are as follows.

• Shapely values provide a uniform methodology to decompose a model’s prediction

into contributions that can be assigned to different features.

• They provide contrastive explanations which provide details on how the predic-

tion is made.

• They can provide interpretation for almost any kind of model and provide

consistent local explanations.

Disadvantages of Shapely plot

• Shap values take considerable amount of time if there are many features and

computing feature importance for many instances requires significant computing

power

• It is possible to generate misleading plots in order to hide the biases using

shapely plots [36]

• When computing feature importance if the model used for prediction is not

additive the values can be misleading.

5.1.2 Interpreting with LIME

Local Interpretable Model Agnostic Explanation (LIME) is a model agnostic

post-hoc method which computes a local approximates of a complex model to explain

the prediction of a particular instance. The key idea behind LIME is to use simpler

interpretable models like linear regression to approximate the output of complex

models like BERT. It works on almost any kind of inputs like text,tabular or images.

LIME aims to explain any complex black box model by creating local approximatioins

for a single instance of the dataset. Thus the algorithm creates a local surrogate

50

models to approximate an instance [39].

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = arg min
𝑔∈ 𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (14)

Instance of dataset

Interpretable models

Local Approximation

The equation in 14 is a minimizing equation where the goal is to find the find a

function 𝑔 which can provide good approximation of the model 𝑓 while also staying

as simple. Here "simple" means that which can be interpreted by a human. The

proximity measure 𝜋𝑥 is added to consider how far and wide the neighborhood around

instance 𝑥 should be while considering the model’s prediction. The model complexity

parameter Ω(𝑔) is kept low so as to reduce the complexity of the model so that its

remains intrinsically interpretable [36]. The general steps for using a surrogate model

to explain a black box model are as follows

1. Select an instance from the dataset for explanation

2. Get perturbations for that instance and get black box predictions for the partic-

ular instance

3. Weight the models according to their proximity and points of interest

4. Train an interpretable model with its variations

5. Explain the predictions using the local simpler model

The perturbations for the text data are created by randomly removing certain words

from the original text data. From the Figure 37 the features which are important and

move towards positive direction for CeeInject are highlighted in yellow whereas the

features which tilt the model away from predicting CeeInject are shown in green. The

presence of opcodes like "sub","pop" and "or" are more prominent in CeeInject which

gives an indication on how the model will predict given an unseen data.

51

Figure 37: Importance of an instance of CeeInject class with Lime

52

CHAPTER 6

Conclusions and Future Work

As part of the experiments conducted in this research, the distilBERT-CNN gave

the maximum accuracy of 97.24%. It was observed that both Roberta and distilBERT

generate much better representation of opcodes than malware. The reasons for Roberta

performing much better can attributed to the fact that it was trained or significantly

large amounts of data and its pre-training tasks like SEGMENT-PAIR NSP helps in

generating more robust embeddings. The performance of distilBERT was surprising

because even though being much smaller than BERT and Roberta it was able to

capture much of the information about the malware file and create good embeddings

for them. It was observed that almost all transformer models gave good results when

coupled with Resnet18 CNN classifier. The explanatory analysis introduced in chapter

5 explores various explanatory techniques to interpret the complex BERT model.

6.1 Future work

Since all the BERT models are trained on natural language, it will be more

interesting if the pre-training of BERT is applied to malware samples such as MLM

for masking and predicting opcodes and next opcode prediction. Other research which

can be applied is discussed in the following sections.

6.1.1 Quantization of models

Section 3.1.2 introduced the concept of knowledge distillation where a smaller

student model was taught to handle the tasks under the supervision of a larger

teacher(BERT) model. This methodology helped in creating a much smaller model

without affecting the accuracy of the original model. Another approach to downsize

a large complex network is to use quantization where a approximate a large neural

network which use floating point number by using a simpler smaller network of low

bit width numbers. There are 2 approaches while applying quantization of neural

53

Figure 38: Quantization aware Training [40]

network.

1. Applying quantization on pre-trained models: In this approach, parame-

ters of a large pre-trained model such as Resnet18 are converted to int8. This

reduces the size of the model but also reduces the accuracy of the model. There

are two types of "Post -Training Quantization" techniques which can be applied

for quantizing a pre-trained model

• Weight Quantization: Since weights of the model are not dependent on

input, they can be quantized during training. When batch processing is

used, it is important to quantize per channel or else the loss will explode [40]

2. Quantization Aware Training: In this method all the activations and weights

are "fake quantized" i.e floating point values are rounded to mimic int8 values

but the computations are done with floating point numbers. The forward pass

of the neural network uses a scheme for rounding float-precision parameters to

discrete levels, and in the backwards pass, the float-precision parameters are

updated using gradients calculated during the forward pass .

54

6.1.2 Graph Neural Networks for API call sequences

API call sequences can be extracted from malware files using dynamic analysis.

As these types of data are unstructured,complex neural networks may not be able to

handle these representations. Graph neural networks provide a unified view of these

data types ranging from images,text to unstructured graphs [41]. Representations like

Node2vec and other paradigms like Grpah transformer networks can be explored to

provide a holistic and intuitive represntation of API call sequences.

6.1.3 Fourier Neural Networks

As observed in Section 4.1.1 BERT based embeddings provide a good represen-

tations of opcodes. Since the transformer architecture used in BERT(Section 3.1.1

is computationally expensive, researchers in [42] introduced the idea of using fourier

transforms mixed with input tokens as an encoder part of BERT. Since the parameters

of fourier transform remain constant, the computational overhead during inference

can be reduced significantly although it may slightly reduce the accuracy. From the

Figure 39 it can be observed that only the transformer part of the encoder is changed.

6.1.4 More Explainability tools

Chapter 5 introduces tools and techniques for interpreting machine learning models

like BERT. However both techniques do not explain the attention layers of BERT

and the influential examples which help in prediction of BERT model. Techniques

like Integrated gradients can help in looking inside the architecture of these complex

models and help us in visualizing the attention mechanism for the malware instance.

Other paradigms such as adversarial learning and and the perspective of counterfactual

examples can also be explored.

55

Figure 39: Fourier Encoder Block in FNet [42]

6.1.5 Different Transformer model

The transformers used in this project consist of only encoder based models. It

would be interesting to see if decoder based transformers like GPT could match

the accuracy of BERT based models. Other encodr based models like Xlnet can

overcome the limitations of BERT based models by incorporating more tokens and

using MLM(masked language modelling) on the opcodes itself.

56

LIST OF REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image recogni-
tion,’’ in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770--778.

[2] J. L. Alvares, ‘‘Malware classification with bert,’’ 2021.

[3] F. Leder, B. Steinbock, and P. Martini, ‘‘Classification and detection of meta-
morphic malware using value set analysis,’’ in 2009 4th International Conference
on Malicious and Unwanted Software (MALWARE). IEEE, 2009, pp. 39--46.

[4] W. B. Andreopoulos, Malware Detection with Sequence-Based Machine Learning
and Deep Learning, M. Stamp, M. Alazab, and A. Shalaginov, Eds. Springer
International Publishing, 2021.

[5] M. Goyal and R. Kumar, ‘‘Machine learning for malware detection on balanced
and imbalanced datasets,’’ in 2020 International Conference on Decision Aid
Sciences and Application (DASA), 2020, pp. 867--871.

[6] M. Siddiqui, M. C. Wang, and J. Lee, ‘‘A survey of data mining techniques
for malware detection using file features,’’ in Proceedings of the 46th Annual
Southeast Regional Conference on XX, ser. ACM-SE 46. New York, NY, USA:
Association for Computing Machinery, 2008, p. 509–510. [Online]. Available:
https://doi-org.libaccess.sjlibrary.org/10.1145/1593105.1593239

[7] N. McLaughlin and J. M. del Rincon, ‘‘Data augmentation for opcode
sequence based malware detection,’’ 2021. [Online]. Available: https:
//arxiv.org/abs/2106.11821

[8] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, ‘‘Android malware
detection using genetic algorithm based optimized feature selection and machine
learning,’’ in 2019 42nd International Conference on Telecommunications and
Signal Processing (TSP), 2019, pp. 220--223.

[9] Y. Chen, Z. Shan, F. Liu, G. Liang, B. Zhao, X. Li, and M. Qiao, ‘‘A
gene-inspired malware detection approach,’’ Journal of Physics: Conference
Series, vol. 1168, no. 6, p. 062004, feb 2019. [Online]. Available:
https://doi.org/10.1088/1742-6596/1168/6/062004

[10] M. A. Mathew, J.and Ajay Kumara, ‘‘Api call based malware detection approach
using recurrent neural network---lstm,’’ A. Abraham, A. K. Cherukuri, P. Melin,
and N. Gandhi, Eds. Cham: Springer International Publishing, 2020, pp. 87--99.

57

https://doi-org.libaccess.sjlibrary.org/10.1145/1593105.1593239
https://arxiv.org/abs/2106.11821
https://arxiv.org/abs/2106.11821
https://doi.org/10.1088/1742-6596/1168/6/062004

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Advances
in Neural Information Processing Systems, C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Weinberger, Eds., vol. 26. Curran Associates,
Inc., 2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training of deep
bidirectional transformers for language understanding,’’ 2018. [Online]. Available:
https://arxiv.org/abs/1810.04805

[13] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018. [Online].
Available: https://arxiv.org/abs/1802.05365

[14] A. S. Kale, V. Pandya, F. Di Troia, and M. Stamp, ‘‘Malware classification with
word2vec, hmm2vec, bert, and elmo,’’ Journal of Computer Virology and Hacking
Techniques, pp. 1--16, 2022.

[15] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation
by jointly learning to align and translate,’’ 2014. [Online]. Available:
https://arxiv.org/abs/1409.0473

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017. [Online].
Available: https://arxiv.org/abs/1706.03762

[17] J. Alammar. ‘‘The illustrated transformer.’’ [Online]. Available: https:
//jalammar.github.io/illustrated-transformer/

[18] C.Stefania. ‘‘The transformer model.’’ 2021. [Online]. Available: https:
//machinelearningmastery.com/the-transformer-model/

[19] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,’’ 2019. [Online]. Available:
https://arxiv.org/abs/1910.01108

[20] C. Buciluundefined, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression.’’
New York, NY, USA: Association for Computing Machinery, 2006. [Online].
Available: https://doi.org/10.1145/1150402.1150464

[21] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘Roberta: A robustly optimized bert pretraining
approach,’’ 2019. [Online]. Available: https://arxiv.org/abs/1907.11692

58

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://machinelearningmastery.com/the-transformer-model/
https://machinelearningmastery.com/the-transformer-model/
https://arxiv.org/abs/1910.01108
https://doi.org/10.1145/1150402.1150464
https://arxiv.org/abs/1907.11692

[22] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, ‘‘Albert:
A lite bert for self-supervised learning of language representations,’’ 2019.
[Online]. Available: https://arxiv.org/abs/1909.11942

[23] T.You. ‘‘Understanding random forest.’’ 2019. [Online]. Available: https:
//towardsdatascience.com/understanding-random-forest-58381e0602d2

[24] R. Misra. ‘‘Support vector machines — soft margin formulation and kernel
trick.’’ 2019. [Online]. Available: https://towardsdatascience.com/support-
vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe

[25] M. Wadkar, F. Di Troia, and M. Stamp, ‘‘Detecting malware evolution using
support vector machines,’’ Expert Systems with Applications, vol. 143, p. 113022,
10 2019.

[26] M. Stamp, A Reassuring Introduction to Support Vector Machines, 09 2017, pp.
95--132.

[27] S. Sharma. ‘‘Svm: What makes it superior to the maximal-
margin and support vector classifiers.’’ 2021. [Online]. Avail-
able: https://towardsdatascience.com/support-vector-machines-soft-margin-
formulation-and-kernel-trick-4c9729dc8efe

[28] W. W. Lo, X. Yang, and Y. Wang, ‘‘An xception convolutional neural network
for malware classification with transfer learning,’’ in 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 2019, pp. 1--5.

[29] F. Ramzan, M. U. Khan, A. Rehmat, S. Iqbal, T. Saba, A. Rehman, and
Z. Mehmood, ‘‘A deep learning approach for automated diagnosis and multi-class
classification of alzheimer’s disease stages using resting-state fmri and residual
neural networks,’’ Journal of Medical Systems, vol. 44, 12 2019.

[30] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word vectors
with subword information,’’ Transactions of the Association for Computational
Linguistics, vol. 5, pp. 135--146, 2017.

[31] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, ‘‘Bag of tricks for efficient
text classification,’’ in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2, Short
Papers. Association for Computational Linguistics, April 2017, pp. 427--431.

[32] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
‘‘Fasttext.zip: Compressing text classification models,’’ 2016. [Online]. Available:
https://arxiv.org/abs/1612.03651

59

https://arxiv.org/abs/1909.11942
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://towardsdatascience.com/support-vector-machines-soft-margin-formulation-and-kernel-trick-4c9729dc8efe
https://arxiv.org/abs/1612.03651

[33] ‘‘Microsoft security intelligence. virtool:win32/ceeinject,’’ 2007. [Online]. Avail-
able: https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=VirTool%3AWin32%2FCeeInject

[34] P. Gohel, P. Singh, and M. Mohanty, ‘‘Explainable ai: current status and future
directions,’’ 2021. [Online]. Available: https://arxiv.org/abs/2107.07045

[35] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides,
S. Henderson, R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick,
A. Cassirer, R. Powell, G. v. d. Driessche, L. A. Hendricks, M. Rauh, P.-S.
Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang, J. Uesato, J. Mellor,
I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen, S. Jayakumar,
E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan, M. Paganini, L. Sifre,
L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato,
A. Lazaridou, A. Mensch, J.-B. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz,
T. Sottiaux, M. Pajarskas, T. Pohlen, Z. Gong, D. Toyama, C. d. M. d’Autume,
Y. Li, T. Terzi, V. Mikulik, I. Babuschkin, A. Clark, D. d. L. Casas, A. Guy,
C. Jones, J. Bradbury, M. Johnson, B. Hechtman, L. Weidinger, I. Gabriel,
W. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. Ayoub,
J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving, ‘‘Scaling
language models: Methods, analysis amp; insights from training gopher,’’ 2021.
[Online]. Available: https://arxiv.org/abs/2112.11446

[36] C. Molnar, Interpretable Machine Learning, 2nd ed., 2022. [Online]. Available:
https://christophm.github.io/interpretable-ml-book

[37] L. Shapley, ‘‘Quota solutions op n-person games1,’’ Edited by Emil Artin and
Marston Morse, p. 343, 1953.

[38] S. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ 2017. [Online]. Available: https://arxiv.org/abs/1705.07874

[39] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘" why should i trust you?" explaining
the predictions of any classifier,’’ in Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, 2016, pp.
1135--1144.

[40] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, ‘‘A survey
of quantization methods for efficient neural network inference,’’ in Low-Power
Computer Vision. Chapman and Hall/CRC, pp. 291--326.

[41] I. R. Ward, J. Joyner, C. Lickfold, Y. Guo, and M. Bennamoun, ‘‘A
practical tutorial on graph neural networks,’’ 2020. [Online]. Available:
https://arxiv.org/abs/2010.05234

60

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject
https://arxiv.org/abs/2107.07045
https://arxiv.org/abs/2112.11446
https://christophm.github.io/interpretable-ml-book
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/2010.05234

[42] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon, ‘‘Fnet: Mixing tokens with
fourier transforms,’’ 2021. [Online]. Available: https://arxiv.org/abs/2105.03824

61

https://arxiv.org/abs/2105.03824

	Contextualized Vector Embeddings for Malware Detection
	Recommended Citation

	Introduction
	Related Work
	Background
	Transformer models
	BERT
	DistilBERT
	Roberta
	Albert

	ELMo architecture
	Classifiers
	Random Forest Classifiers
	K-Nearest Neighbours
	SVM
	CNN

	N-grams embeddings
	Word2Vec
	Fasttext

	Datasets and Experiments
	Experiments
	BERT-based-experiments
	distilBERT based Experiments
	Roberta based Experiments
	Albert based Experiments

	ELMo based Experiments
	Byte-Level N-gram experiments
	Word2Vec
	FastText Based Experiments

	Explainable AI and Interpretability of BERT Models
	Model Agnostic methods for interpreting BERT model
	SHAP values for Explanation
	Interpreting with LIME

	Conclusions and Future Work
	Future work
	Quantization of models
	Graph Neural Networks for API call sequences
	Fourier Neural Networks
	More Explainability tools
	Different Transformer model

	LIST OF REFERENCES

