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ABSTRACT

Generative Adversarial Networks for Image-Based Malware Classification

by Huy Nguyen

Malware detection and analysis are important topics in cybersecurity. For efficient

malware removal, determination of malware threat levels, and damage estimation,

malware family classification plays a critical role. With the rise in computing power

and the advent of cloud computing, deep learning models for malware analysis has

gained in popularity. In this paper, we extract features from malware executable files

and represent them as images using various approaches. We then focus on Generative

Adversarial Networks (GAN) for multiclass classification and compare our GAN results

to other popular machine learning techniques, including Support Vector Machine

(SVM), XGBoost, and Restricted Boltzmann Machines (RBM). We also evaluate the

utility of the GANs generative models for adversarial attacks on image-based malware

detection. We find that the AC-GAN discriminator is competitive with other machine

learning techniques.
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CHAPTER 1

Introduction

The Covid-19 pandemic, which has run amok worldwide for two years, has

drastically increased the trend of working from home. The remote work environment

has also pushed another trend: increasing cyber attacks, including phishing, data

breaches, and malware. According to CSO [1], in the second quarter of 2020, as

compared to the same period a year earlier, cloud security incidents increased by 188%,

ransomware attacks grew by over 40%, and email malware attacks were up by 600%.

Malware, short for "malicious software", consists of computer programs that

are written to cause harm to computer and Internet users [2]. The most common

types of malware are botnet, rootkit, spyware, Trojan, worm and spyware. Malware

can be used to steal information, utilize hardware, cause disruption for financial or

reputational gain, or other unauthorized activity. Malware defense is an ongoing

battle with multiple layers: preventing malware from entering, alerting users that a

system is compromised, removal of malware from compromised systems, and so on.

There has been considerable research into malware detection and classification. In

recent years, malware classification based on machine learning has become a primary

focus of such research. With more computing power from graphic processing units

(GPU) and Google tensor processing units (TPU), which are specialized for machine

learning techniques and simple feature extraction, costly deep learning image-based

malware detection techniques have become viable options.

An image can be derived directly from the byte sequence of an executable file

without executing (or emulating) or otherwise pre-processing the data to extract

features. Powerful image-based techniques, including Convolutional Neural Networks

(CNN) and Generative Adversarial Networks (GAN) have been used to classify malware

samples with impressive results.
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Malware detection is an arms race between detectors and malware writers, where

each side tries to develop new and innovative ways to defeat the other side. According

to the TV series Criminal Minds: "To catch a criminal, you have to think like one. The

way to a criminal is through his mind." Following this logic, malware analysts must

consider future attack strategies of malware developers. In one type of adversarial

attack, a malware writer attempts to contaminate the training data, so that the

resulting model is less effective. A possible approach to such an adversarial attack

is to generate "deep fake" malware images to pollute the training dataset. From

this perspective, we consider ways to make our models more robust at detecting fake

malware images and thereby prevent possible future attacks.

GANs have been used to generate realistic fake images. Karras et. al. ,researchers

at Nvidia, developed StyleGAN, a style-based architecture for GAN and the StyleGAN

generator was 20% better than the traditional generator [3]. StyleGAN was also used

to create the trending website "thispersondoesnotexist.com". Thus, we consider the

utility of GANs for adversarial attacks on image-based malware analysis. MalGAN is

a GAN technique that is designed specifically to deal with malware images [4, 5].

In addition to malware detection, malware classification is important, as it enables

us to estimate the damage, determine the threat level, and to provide protection specific

to the malware family. In this research, we employ auxiliary classifier GAN (AC-GAN)

for multi-class classification of malware families and compare with other machine

learning models, including Support Vector Machine (SVM), K-Nearest Neighbors

(K-NN), multilayer perceptron (MLP), Random Forest (RF), Restricted Boltzmann

Machines (RBM), XGBoost, and the deep residual network Resnet152 [6, 7, 8, 9, 10, 11].

We also develop SVM model to test the quality of fake images generated by AC-GAN

generative model. The dataset that we use consists of more than 26,000 malware

executables from 20 different families [12].
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The remainder of this paper is organized as follows. In Chapter 2, we discuss

related work and introduce the machine learning models used in our research. For

Chapter 3, we analyze our dataset and discuss our evaluation criteria. Next, in

Chapter 4, we introduce multiple ways to extract images from malware executables

and our model implementations. In Chapter 5, we present our experimental results,

with graphs, tables and analysis. Chapter 6 concludes the report and we discuss future

work.
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CHAPTER 2

Background

There are more and more malware families being developed everyday and they

are developed by professional groups with tremendous resources. It was not too

long ago that the SolarWinds zero day attack caused damage to several government

agencies [13]. The attack was caused by a state-sponsored group and put the whole

cyber security industry on high alert. The SolarWinds attack reminded everyone

of the importance of malware defense and malware detection in particular. There

are two types of malware detection: signature-based and anomaly-based. Signature-

based malware detection keeps certain characteristics of previously-seen malware in a

dictionary and prevents future attacks. There are three main disadvantages for this

approach: the size of the dictionary is not scalable, new malware or zero day attacks

cannot be detected, signatures can be changed using obfuscation to avoid detection.

Anomaly-based detection sets the bar which softwares are normal and detect abnormal

behaviors. Machine learning techniques are a subset of anomaly-based detection. The

main disadvantage of anomaly-based detection is the training dataset can be polluted,

making anomaly features become normal overtime. Our research’s purpose is also

based on this technique, generate fake malware images to trick sophisticated machine

learning techniques.

The following section explains what others have done related to image-based

malware analysis and machine learning techniques.

2.1 Related Work

As a first step into the topic of image-based analysis, Jain and Stamp [14] did

a thorough analysis with different image sizes and used CNN and ELM to classify

malware. The paper has a lot of details about project background, implementation

and results. ELM was also experimented with different hyperparameters. Jain and
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Stamp advised to look deeper into one type of malware, and try different techniques

for image extraction such as zero padding and GIST descriptors of images for future

work.

In another paper, Nagaraju and Stamp [15] worked on image-based malware

analysis on a GAN architecture called Auxiliary-Classifier GAN(AC-GAN). They

experimented with different image sizes from 32 × 32, 64 × 64 to as big as 512 × 512,

and grayscale images were extracted and truncated from executable files to the desired

sizes. Other than AC-GAN, CNN and Extreme Learning Machine (ELM) were used

and CNN achieved impressive results in detecting fake images. For future work, they

advised researchers to work on novel techniques like VG-199 or ResNet152.

Xiao et. al. [16] introduced a novel framework called MalCVS (Malware Classifi-

cation using Colab image generation, VGG16 and Support Vector Machine (SVM)).

The images were generated using Colab image generation, similar to grayscale images

with thick colored lines to identify each section in the executable files. The images

then were passed through VGG16 for feature extraction and fed to multi-class SVM

for classification. The MalCVS framework achieved impressive results with 98.94%

accuracy and F1-score at 97.91%. The MalCVS framework started to depart from

grayscale images and enter the border of colored image representation of malware.

More data, more computing power, more layers seem like the trend for deep

learning techniques recently. Let us say goodbye to the black and white images, and

take a tour to the colorful world of colored images extracted from malware. Both

Vasan et.al. [17] and Singh et. al. [18] generated a color map and used byte sequence

from the executable files to represent colored images. Both papers also use similar

techniques like CNN and Residual Neural Network (ResNet-50). Singh et. al. achieved

impressive results with MalImg dataset: accuracy of 98.10% using ResNet-50, while

Vasan et. al. scored 98.82% accuracy using Fine-tuned Convolutional Neural Network
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Architecture. They concluded that red, blue and green (RGB) representation captured

more pattern information, therefore achieving better results with the same dataset.

The idea of generating fake features of malware is not new. Hu et. al. and

Kawai [4, 5] proposed MalGAN to bypass black-box machine learning based detection

models. MalGAN took the output of the black-box models and used GAN to generate

binary features based on the mixes of samples labeled as 1 and samples labeled as 0.

MalGAN was able to decrease the detection rate to nearly 0. The process of training

MalGAN was fast and efficient, made it hard for the black-box models to prevent

future attacks.

In the area of multiclass classification, Fu et. al. [19] achieved impressive results

with the accuracy score at 97.47% and F-measure at 96.85% in categorizing 15

different malware families. They focused heavily in extracting features from malware

executables and combined global and local features. Color features were extracted

using Portable Executable (PE) format parser and the colored images were built using

RGB layers. The executable files were divided into sections and each section data

such as entropy values, byte sequences and relative size were put together to represent

each layer of RGB channels. The resulting images were colorful and we could see the

shapes of data and code sections in the malware files. For future work, they suggested

that deep learning models such as CNN would be developed for malware classification

as CNN is excellent working with images.

Farhat and Rammouz [20] experimented with several pretrained Deep Convolu-

tional Models and all of the pretrained models such as: VGG16, Resnet50, Resnet152

and mobilenet scored an accuracy score of 94% after just one training epoch for

9-class malware classification problem. The pretrained models’ results are impressive

considering we can customize input size and class labels to take advantage of powerful

image-based models. We can use the pretrained models for most computer vision
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problems and save a lot of training time.

We experimented with multiple machine learning techniques: SVM, K-NN, MLP,

RBMs, two ensemble techniques: RF and XGBoost, and three deep learning models:

DC-GAN, AC-GAN and Resnet152. In the next section, each technique’s advantages

and disadvantages are discussed and we will decide which technique is worth the

tradeoff for image-based malware classification.

2.2 Machine Learning Models

K-Nearest Neighbors Classifier uses 𝐾 nearest neighbors from the training set

to classify new data. K-NN is simple, easy to understand and perform relatively

well. However with high resolution images like 128 × 128 × 3, the feature vector is

49152 byte long, making K-NN slower to compute distance. Support Vector Machine

(SVM) or Support Vector Classifier (SVC) uses a hyperplane to separate and classify

data. Figure 1 shows the 2D version of SVM hyperplane: a straight line separating

two classes of data. SVM performs well, scored 93.20% on a 25-class classification

problem [17]. However, similar to K-NN, when the feature space is large, SVM is quite

slow to train and evaluate. RBMs can extract non-linear features from images and

combine with a linear model like Logistic Regression can perform well: such as 94%

accuracy for digit classification problem [21]. Both RBMs and Logistic Regression are

simple and take a short time to train. We also have two ensembles: Random Forest

and XGBoost. An ensemble is a group of models that combine together and function

as a whole. The usual problem of ensemble is overfitting, XGBoost also requires large

memory as the dataset needs to be preprocessing into proper form before training.

2.3 Deep Learning Models

There are a lot of GAN variations such as ProGAN, StyleGAN, and so on. We

experiment with two basic GANs: DC-GAN for unsupervised generative model and

7



Figure 1: SVM Hyperplane [22]

AC-GAN for multi-class discriminator. GANs or Generative Adversarial Networks are

a set of two models: the generator and the discriminator. The two models compete

with each other and improve together when training. Another deep learning model

we want to experiment with is Resnet152. Resnet152 is a pretrained deep residual

network. Resnet152 can be customized to receive different input size, class labels and

requires a few epochs to get good results.
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CHAPTER 3

Methodology

The goal of this research is to examine both the discriminator and the generator

models of GANs and compare them with various machine learning techniques. The

discriminator can be used for a multiclass classification of malware families and binary

classification of fake/real images. The generator of different GANs’ architectures are

compared against each other using evaluation models.

3.1 Dataset

Our dataset MalExe consists of 26,412 malware executable files from 20 different

families. Each family has between 842 files to 3651 files. Figure 2 shows the exact

number of files each family has. We have more samples from three families: Vundo,

Winwebsec, and Zeroaccess while other families have similar amounts of samples.

Table 1 shows the overview descriptions of the 20 malware families.

Figure 2: MalExe Dataset Overview

Let us take a look at the file sizes. Figure 3 shows the histogram of file sizes for
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Table 1: Malware Families

Family Type Description
Adload Adware Shows ads, poses high threat [23]
Agent General Performs malicious actions [24]

Alureon Trojan Steals information [25]
Bho Trojan Steals information, redirects web sites [26]

Ceeinject Virtool Obfuscates itself to hide purposes [27]
Cycbot Backdoor/Trojan Provides backdoor access [28]

Delfinject PWS Steals passwords [29]
Fakerean Rogue Raises false alarms to make money [30]
Hotbar Adware Displays advertisements [31]
Lolyda PWS Monitors network activities [32]

Obfuscator Virtool Obfuscates itself to hide purposes [33]
Onlinegames PWS/Trojan Injects malicious files, steals information [34]

Rbot Backdoor/Trojan Provides backdoor access[35]
Renos Trojan Downloads unwanted softwares [36]

Startpage Trojan Changes internet browser homepage [37]
Vobfus Worm Downloads and spreads malwares [38]
Vundo Trojan Downloader Uses advanced defensive and stealth techniques [39]

Winwebsec Rogue Raises false alarms for money [40]
Zbot Trojan Steals information, gives access to hackers [41]

Zeroaccess Trojan Disables security features [42]

the whole dataset. We can see that the majority of files are smaller than 200KB while

we have a fair amount of files between 200-500KB and a small number of big files with

larger than 500KB size. Most image-based analysis choose an image size of 256 × 256

or 224 × 224, that would equal to 64KB or 49KB respectively. We can see that most

of our files have enough data to extract and transform into the desired images.

Looking at each family in Figure 4, the average file size can help us see the

difference. Based on the file size alone, we can easily distinguish Lolyda from other

big-size families. Lolyda has an average file size of 35KB, while the average file size of

adload is 602KB and startpage has the biggest average size at 1042KB. For machine

learning techniques, we need fixed size input. With that much difference in size, there

10



Figure 3: MalExe File Size Histogram

are multiple ways we can engineer to preprocess the data. One reasonable approach

is to extract a fixed amount of bytes and filter out smaller files [14, 15]. However,

we would not have enough files for the Lolyda family to experiment with. Another

interesting way is to have variable sizes based on image size, then resize to the desired

width and height.

In the next section, we discuss image extraction from executable files and experi-

ment with different file sizes, grayscale and colored images.

3.2 Deep Convolutional GAN (DC-GAN)

As an unsupervised architecture, DC-GAN has an advantage over other archi-

tectures with unlabelled data. The resulting models from DC-GAN can be used to

compare performance with other GAN architectures in binary classification of real/fake

images. DC-GAN was first introduced by Radford A. and Metz L. [43] in 2015 as a

way of unsupervised representation learning. Figure 5 visualizes convolutional layers

11



Figure 4: MalExe Average Size Per Family

of DC-GAN with no fully connected or pooling layers. A noise vector consists of 100

random numbers fed into the model and generate images based on training data. The

basic architecture of DCGAN has four convolutional layers and the output is expected

to be 64 × 64 × 3. We can twist the settings in the convolutional layers to work with

our grayscale 128 × 128 × 1, 256 × 256 × 1 or even RGB images 128 × 128 × 3.

3.3 Auxiliary-Classifier GAN (AC-GAN)

There are multiple researches showing that AC-GAN performs well with multiclass

data [15, 44, 45]. The intuition is clear as we have the class labels and we did not

use them in DC-GAN as we just feed multiple images from different families into

the models in an unsupervised representation. Using the extra data, the class labels,

would also help us to generate the desired family when needed. The discriminator can

also be used to solve the multiclass classification problems which is our main focus of

this research. As we can see in Figure 6, input C representing class labels is fed into

both the generator and the discriminator. There are two outputs for the discriminator:

12



Figure 5: DC-GAN Generator [43]

validity of the image and the class label and the discriminator is trained based on the

two outputs with two loss functions.

Figure 6: AC-GAN Architecture [46]
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3.4 RBM

For RBM, we use BernoulliRBM, the implementation details can be found in

[47]. The RBM acts as a layer to extract meaningful smaller images from malware

images then the resulting images are fed into a Logistic Regression layer for multiclass

classification. We also add a layer of AutoEncoder in front of the RBM layer to reduce

noises in images. Figure 7 shows the RBM overview architecture.

Figure 7: RBM Architecture

3.5 Resnet152

We use Tensorflow and Keras package: Resnet152v2, the pretrained weight is

"ImageNet". To change the input size and class label, we add one Dense layer after

the base Resnet output, freeze all the base model’s weight and train the extra layer.

After that, we unfreeze half of the layers of the pretrained models and train for several

epochs.

3.6 Evaluation Plans

For the multiclass classification problem, to distinguish each malware family we

use the AC-GAN discriminator model. We compare the performance of AC-GAN

discriminator with other machine learning models like SVM, RBM and XGBoost. The

14



evaluation metrics are accuracy score, precision, recall and f1-score calculated based

on True Positive (TP), False Positive (FP), True Negative (TN), False Negative (FN)

as:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 =
2 × Precision × Recall

Precision + Recall
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

The Receiver Operating Characteristic (ROC) curve is a good way to of visualizing

a classifier’s performance; the area under the ROC curve(AUC) should be used as

a single point of measurement to compare performance of various classifiers [49].

Figure 8 shows examples of the ROC curve and how to measure performance. After

training DC-GAN and AC-GAN, we generate some fake malware images from the

two architectures and use CNN, SVM to compare them with the performance of the

generative models. The metrics that we use are accuracy score and AUC score.

15



Figure 8: ROC Curve and Area Under ROC Curve [48]
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CHAPTER 4

Implementation

The implementation can be divided into four sections: dataset overview, images

and features extraction, data processing, and model architectures. We use Google

Colab Pro+ to utilize Google’s computing power to train multiple models using large

datasets. Table 2 shows the runtime and memory settings for each model. XGBoost

requires a lot of memory and we ran into issues using 35GB memory setup therefore

we changed the runtime to GPU, increased memory limit to 51GB and changed our

code to utilize GPU for faster training time.

Table 2: Runtime Environment Specifications

Models Runtime Memory
AC-GAN TPU 35GB
DC-GAN TPU 35GB

RBM TPU 35GB
XGBoost GPU 51GB

SVM CPU 51GB
RF CPU 51GB

KNN CPU 51GB
MLP CPU 51GB

Resnet152 TPU/CPU 35GB

4.1 Image Extraction

As the sizes of the executable files are different, we divide the files into bins and

set corresponding image width for each bin. Each bin of files has fixed width and

variable heights based on the size of the files [17]. Table 3 shows the details of bins

and width setup.

After extracting images with different heights, we then resize them into 128× 128

for experiments; we call this the Resizing method. Another method is to truncate

the malware files into desired size and add some 0 paddings for smaller files. For

17



Table 3: Image Width Based on File Size

File Size Image Width File Size Image Width
0 - 10KB 32 100KB - 200KB 384

10KB - 30KB 64 200KB - 500KB 512
30KB - 60KB 128 500KB - 1000KB 768
60KB - 100KB 256 >1000KB 1024

128 × 128 images, we only take the first 16,384 bytes of the executable files; this is

the Truncating method.

4.1.1 Grayscale Images

Grayscale images are simple to extract from executable files. We can read the

files and use 8-bit vectors to represent a pixel in the image [14, 15, 16]. The range of

a grayscale pixel is from 0-255 which is the same range a byte in executable files can

represent. Only the byte sequence of the files is used in this case and the process is

fast as no calculation is needed.

Figure 9: Adload - 256x256

Figure 10: Startpage - 128x128
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4.1.2 Colored Images Using Color Map

In this section, we discuss how to extract colored images from executable files

using color map [18, 17]. First, we need to generate a 2D color map, which should

be a 16 × 16 2D array where each element corresponds to a RGB value. There are a

total 256 colors in this palette so we extract from the byte sequence a byte or 8-bit

vector. We then split the byte into two parts, the first half of the byte represents the

y-coordinate and the second half is the x-coordinate. Then we can use the coordinates

to get the RGB value from the color map. We use ’plasma’ colormap, Figure 11 - a

sequential color map, because the ordering in executable files is important, when the

entropies of the files are big or there are big changes in the local data then we can

see the difference in the colors [50]. This colormap also emphasizes the differences

between the data representing the images.

After we extract the images using the color map, the images now have different

sizes based on the file sizes. We then resize all images to the fixed 128 × 128 size like

Figure 12. Each sample is now represented by an array of (128,128,3). The data is

ready to feed into machine learning models for training. We refer to this method as

the Colormap method.

4.1.3 Colored Images Using 3 Consecutive Bytes

This method is called 3-grams for future reference. We can extract more data

from the executable files and represent each layer of RGB images. For 3 consecutive

byte values, we use them as R, G and B layers. The resulting colored images were not

as colorful as we expected. Therefore we keep Red, Grreen layers and replace Blue

layer with the following formula: BlueLayer = 255 - ByteValue The 3-grams images

have a blue background so we can distinguish them with grayscale images as shown

in Figure 13.
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Figure 11: Plasma Colormap

(a) Adload (b) Startpage

(c) Ceeinject

Figure 12: Colormap Images of Different Families
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(a) Rbot (b) Startpage

(c) Ceeinject

Figure 13: 3-grams Images of Different Families

4.1.4 Colored Images Using PE Format

Fu et. al. [19] proposed to transform the malware files into PE files then used a

PE reader to divide the files into meaningful sections. For each section, the entropy

value was calculated once and used for the whole section. The B layer was represented

using the section’s relative size to total file size. The G layer was kept the same

with byte values. We experimented with this method to extract colorful images from

malware files. Entropy values and size ratios are calculated and scaled to 0-255 range.

The formulas for red and blue layers are

RedLayer = Entropy × 255

8

BlueLayer =
SectionSize

FileSize
× 255

Figure 14 shows the PE images of three families: Adload, Startpage, and Ceeinject.

Ceeinject malwares obfuscate to hide their purpose, so the images from Ceeinject

family are different. Therefore, Obfuscator, Ceeinject and Agent are the three types

of families that are harder to classify as the images are not similar.
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(a) Adload (b) Startpage

(c) Ceeinject

Figure 14: PE Images of Different Families

4.2 Data Processing

GANs require the data in 3-dimension array format, while other techniques like

SVM, XGBoost require 1-dimension array input. Therefore the data needs to be

flatten and fed to a scaling function such as Equation 1 for SVM where 𝑢 is the mean

and 𝑠 is the standard deviation:
�̄� =

𝑥− 𝑢

𝑠
(1)

Data is scaled to 0-1 range for faster and simpler computation before feeding into

XGBoost or RBMs.

4.3 Models Tuning

Figure 15 and Figure 16 show the details of AC-GAN discriminator and generator

implementation for colored images with size 128×128 [51]. For the generator, Manisha

et. al. [52] showed that for colored images with big sizes such as 64 × 64 and above,

increasing the noise dimension would significantly have a positive impact on the

generative images, therefore both discriminator and generator models would gain

benefits. We choose noise dimension vectors that are fed into the generator to be size

(1000,1) instead of the regular (100,1) vectors for images size 28× 28 [52]. After doing

hyperparameter tunings for various models by using grid search, we choose the param-
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eters as follows. Table 4 shows the parameters for Random Forest: 600 estimators,

using entropy function, and having max depth of 6. For K-Nearest Neighbors, Table 5

lists 20 neighbors, using distance as weight as our final choice. Multilayer Perceptron

has 4 hidden layers with sizes of 100,100,100,20, relu as activation function and 0.0001

penalty as shown in Table 6. SVM training and prediction takes a long time, therefore

we can only experiment grid search with a few variables: rbf kernel and 𝐶 = 1 are our

final choice as in Table 7. Table 8 lists out all experimented parameters for XGBoost

and the best parameters.

Table 4: Random Forest Parameters Search

Parameters Description All Values Chosen Value
nestimators Number of Estimators 100,200,400,600 600

criterion Function to measure quality gini, entropy entropy
maxdepth Max depth 3,4,5,6 6

Table 5: K-NN Parameters Search

Parameters Description All Values Chosen Value
nneighbors Number of Neighbors 5,10,20,40 20

weights Function used in prediction uniform, distance distance

Table 6: MLP Parameters Search

Parameters Description All Values Chosen Value
hiddenlayer Size (100,100,20), (100,100,100,20) (100,100,100,20)
activation Activation Function Logistic, tanh, relu relu

alpha L2 Penalty 0.0001, 0.001, 0.01 0.0001
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Table 7: SVM Parameters Search

Parameters Description All Values Chosen Value
Kernel Kernel Function rbf, linear, poly rbf

C Regularization parameter 1,10,100 1

Table 8: XGB Parameters Search

Parameters Description All Values Chosen Value
maxdepth Max Depth 4,5,6,7 6

learningrate Learning Rate 0.01, 0.02, 0.03 0.02
nestimators Number of Estimators 200,400,600 600
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Figure 15: AC-GAN Discriminator Implementation
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Figure 16: AC-GAN Generator Implementation
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CHAPTER 5

Results and Analysis
5.1 Multiclass Classification

First we want to compare the performance of GANs vs RBMs on various image

extraction methods. Then we pick one best method to compare GANs with other

popular machine learning models.

5.1.1 Image Extraction Comparison

Figure 17 shows the comparison between different types of image extraction. The

PE and 3-grams methods which contain more meaningful data did not perform as

well as the ColorMap method overall. XGBoost, an ensemble technique, outperforms

in all cases. In the next section, we use truncated Colormap method to extract images

from executables, then compare the results with multiple machine learning models.

To deal with the difference in file sizes, we only take the first 128 × 128 bytes of the

executables, if the file size is smaller, we use 0 to for padding to the desired size.

5.1.2 Machine Learning Models Comparison

Figure 18 shows the comparison between training and test metrics for AC-GAN

discriminator. After 30 epochs, there are not much improvement for the discriminator

therefore we train AC-GAN discriminator for 30 epochs. AC-GAN discriminator

performs well in image-based malware classification and the results are competitive

against other models as shown in Table 9. Figure 19 compares the models’ performance

with training time. MLP and XGBoost perform exceptional well considering the

training time is less than other deep learning models like AC-GAN. Resnet152 is our

best model, as Resnet152 is a pretrained model, it also takes a short amount of time to

customize for new class labels and input. AC-GAN takes approximately 500 seconds

per epoch, or around 4 hours to finish training; SVM takes 3 hours for training and 2

hours for prediction. Other models are fast and take less than an hour to complete
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Figure 17: Accuracy score for malware families classification

Figure 18: AC-GAN Discriminator Loss and Accuracy

training.

As Resnet152 is our best performer, we want to analyze its confusion matrix as in

Figure 20. We can see that the three families that are causing classification problems

for our models are Obfuscator, Rbot, and Agent. Obfuscator and Ceeinject obfuscate

the code and hide their specific purposes therefore their images are different from

each other in the same family, making the classification problem harder. Agent is a
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Figure 19: Accuracy and Training Time Comparison

Table 9: Results on various models using truncating colormap

Models Type Accuracy Precision Recall F1-Score
K-NN Maching Learning 76.94% 87% 77% 79%
SVM Machine Learning 85.22% 88% 86% 86%
MLP Machine Learning 86.97% 86% 86% 86%
RF Ensemble 72.56% 80% 69% 70%

XGBoost Ensemble 89.44% 90% 89% 89%
AC-GAN Deep Learning 84.00% 86% 86% 85%
Resnet152 Deep Residual Network 91.39% 91% 91% 91%

general type family that include malwares with multiple purposes, and it makes sense

for machine learning models to have a problem classifying general types.

Figure 21 confirms our conclusion that some general or obfuscated families are hard

to classify such as Agent, Ceeinject, Obfuscator, and Rbot. Resnet152 outperforms

on most of the families. K-NN classifier even though does not perform well on most
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Figure 20: Confusion Matrix for Resnet152 using Colormap Method

families but scores high on a hard family: Agent.

5.1.3 The Ensemble Classifiers

As we want to improve accuracy score for "difficult" families such as Agent

or Rbot, the idea is that we should take advantage of K-NN’s strength to classify

Agent and others for the "easy" families. For the first ensemble classifier, we just use

majority voting. With our set of 7 classifiers: AC-GAN, K-NN, MLP, Resnet, RF,
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Figure 21: F1-score for each family

SVM and XGBoost, we choose the final prediction based on the prediction with the

most occurrence. The ensemble improved a bit with 91.60% accuracy score. For the

second experiment, we generate feature vectors using the 7 models we have. AC-GAN

and Resnet generate 20 × 1 vectors while others generate 1 × 1 vectors. The feature

vectors are concatenated and used to train a Random Forest model. The RF Final

Ensemble scores 92.09% with improvements on "difficult" families and perform worse

than Resnet with "easy" families such as Cycbot, Adload, Alureon because of the

noises from other models as shown in Figure 22.

5.2 Generative Image Performance

As DC-GAN is an unsupervised architecture, we do not have accuracy scores for

the discriminator. We use DC-GAN to compare with the generative power of AC-GAN

generators. Figure 23 shows a comparison between real and generative images using

DC-GAN. To analyze the performance of our generators, we experiment with binary
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Figure 22: Confusion Matrix for RF Final Ensemble

classification: malware or benign. We use our dataset of 704 benign executables,

extract images from them using the Colormap method then use SVM and CNN to

classify them with our malware dataset. After that, we mix the benign samples with

fake malware images from AC-GAN, DC-GAN and compare the detection performance.

AC-GAN with an advantage of a multiclass GAN, can use a class label to generate

images. Figure 24 and Figure 25 show real and generated images from Ceeinject and
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(a) Real vs Generated Images (b) Real vs Generated Images

Figure 23: Real Images and Fake Images Generated by DC-GAN

(a) Real Images (b) Fake Images

Figure 24: Real and Fake Images of Ceeinject Family

Adload family.

5.2.1 Binary Classification Results

Our dataset consists of 10,000 malware samples from 20 families and 704 benign

samples. We use SVM for the detection experiment. SVM with 5-fold cross validation

scores 99%-100% in accuracy and AUC scores. After mixing in 10,000 fake malware

images, our SVM model still scores 99-100% in accuracy and AUC, with 5-fold cross

validation. Our generative images are easy to detect and not good enough to trick

popular machine learning models. We also tried to generate fake images from other

(a) Real Images (b) Fake Images

Figure 25: Real and Fake Colored Images of Adload Family
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variations of GANs such as DC-GAN and Wasserstein GANs with gradient penalty

(WGAN-GP). As WGAN-GP requires intensive computation power and training time,

we can manage to train it for 100 epochs, and 300 epochs for DC-GAN. The results

are still 99-100% for accuracy and AUC scores. The robustness of the colormap

method may cause problems for the generated images because we only have 16 × 16

available colors in the colormap, so we experiment with another method: 3-grams using

AC-GAN. The same result happens with 3-grams and AC-GAN: 99-100% accuracy

and AUC scores.

5.3 Discussion

Intuitively, GANs with two set of models: the generator and the discriminator

should compete with each other and improve together. However, with our experiments,

AC-GAN discriminator performs best with 30 epochs of training while AC-GAN

generator requires 200 epochs or more for better image generation. Odena et. al. [44]

shows that AC-GAN generator can be trained for 50,000 mini batches or approximately

300 epochs. Figure 26 shows the comparison between a real image and generated

images with different epochs. At 200 epochs, AC-GAN generator performs better

however AC-GAN discriminator shows signs of overfitting and the accuracy score

decreases to 65%.

As with malware classification, Resnet152 outperforms in accuracy score, f1-score

and training time with the advantage of being a pretrained model. Image-based

malware classification should be experimented more with pretrained models such as

Resnet152 or VGG19. AC-GAN can be used as a classifier with competitive however

considering AC-GAN long training time and not much of improvement over MLP,

MLP and Resnet should be prioritized.
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(a) Real Image (b) Generated Image After 30
Epochs

(c) Generated Image After 200
Epochs

Figure 26: Real and Fake Colored Images of Adload Family
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CHAPTER 6

Conclusion and Future Works

After trying three different ways of extracting images from malware executables

:Grayscale, Colormap, 3-grams and PE, we conclude that with the same amount of

data, Colormap method improves the overall results for all models and AC-GAN gains

the most improvement for the malware families classification problem. XGBoost and

RBM take less training time than SVM and GANs, however for the XGBoost memory

requirement is high. We can change the runtime environments based on each model

to reduce training time.

Based on the confusion matrices, our models are not doing well with malware

that are general or obfuscated. For future work, experiments with a transformer

or long short term memory (LSTM) are interesting to deal with obfuscated codes.

The PE method extracts the most data from the executables and the images are

colorful, however all of our models perform worse using PE data than Colormap

images. Combining PE images with global, local features can help to achieve better

results. Modern and advanced images based models such as CNN can be used to help

with multiclass classification. There are many GAN’s variations such as StyleGAN,

MalGAN so future experiments are needed with different GAN architectures for

malware classification as well as malware image generation. Designing new GAN

architectures or changing AC-GAN loss function to speed up the training process of the

AC-GAN generator are interesting to explore. We have tried multiple ways to extract

images from malware executables, however there are still more novel efficient methods

to extract images from both executable files and opcode sequences. Combining efficient

feature engineering and model optimization would boost performance of GANs and

other machine learning models.
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APPENDIX A

Malware Images

(a) Zeroaccess

(b) Vobfus

(c) Renos

(d) Onlinegames

(e) Vundo

(f) Hotbar

Figure A.27: Image Representation of Different Families
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APPENDIX B

Confusion Matrices

Figure B.28: Confusion Matrix for AC-GAN using RGB Layers Method
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Figure B.29: Confusion Matrix for AC-GAN using Colormap Method
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Figure B.30: Confusion Matrix for AC-GAN using Truncating Colormap Method
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Figure B.31: Confusion Matrix for SVM using Truncating Colormap Method
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Figure B.32: Confusion Matrix for XGB using Colormap Method
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Figure B.33: Confusion Matrix for XGB using Truncating Colormap Method
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Figure B.34: Confusion Matrix for KNN using Truncating Colormap Method
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Figure B.35: Confusion Matrix for RF using Truncating Colormap Method
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Figure B.36: Confusion Matrix for MLP using Truncating Colormap Method
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