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ABSTRACT 

Spaceflight consists of many dangers which adversely affects the health of astronauts through 

hazards such as microgravity and cosmic radiation. One area that is still poorly understood is 

how spaceflight impacts human reproductive health. This study aims to shed insight into how 

microgravity may impact the development of embryos. Differential gene expression analysis was 

performed via Jupyter Notebook and SLURM scripts and run on SJSU’s HPC server as a method 

of implementing NASA GeneLab’s RNA-Seq Consensus Pipeline. Data for this project utilized 

RNA-Seq files for early-stage embryonic zebrafish (Danio rerio), stored under GLDS-373. Gene 

Set Enrichment Analysis was performed to gain a clearer understanding of which types of genes 

are impacted by microgravity, and to provide greater statistical significance to the differential 

gene expression results. The findings in this study found that there was a relationship between 

microgravity and upregulation in genes related to cell proliferation, differentiation, and 

development. However more studies are required before a mechanism can be identified to 

explain these observations and risks mitigated for future astronauts and their children. 

Keywords: Differential gene expression, gene enrichment analysis, microgravity, embryogenesis 
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I. INTRODUCTION 

A. Human Interest in Space Exploration and the Challenges Involved 

 Humans have always had a desire to explore the unknown, but it is only until recently 

that humanity gained the technology required to send humans out into the vastness of space. 

Only in the last century have we seen a surge in technical innovation that allowed the first man to 

set foot onto the moon, and probes out to each of our neighboring planets. Today, the US’s 

endeavors in space exploration are focused on first returning humans to the moon with the 

Artemis Project, and the establishment of a moon base which will allow for future missions to 

other celestial bodies including Mars[1]. The Artemis Project was first announced in March of 

2019 by then Vice President Mike Pence with the goal to send the first woman to the moon by 

2024. Broadly, the program will consist of two phases. Phase one will utilize existing as well as 

brand new technologies to allow a crewed space craft to make a landing on the lunar south pole. 

In phase two more humans will be sent to the moon to develop a stronger presence, allowing for 

the development of additional lunar projects and preparation for future missions to Mars and 

beyond. 

 Space itself poses numerous hazards that astronauts become exposed to during 

spaceflight, which consist of: space radiation, altered gravity (or lack thereof), 

isolation/confinement, distance from Earth, and hostile/closed environments [2]. Outside of 

Earth’s protective magnetosphere, astronauts are constantly bombarded with galactic cosmic rays 

and high charge, high energy ions. Damage from these types of radiation can result in DNA 

damage, development of cancerous tumors, and degeneration of various tissues. The small size 

of space crafts, small crews, and large distance from Earth result in small, closed environments 
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and long months spent in isolation. These can have negative behavioral impacts such as an 

increase in stress and decreases in performance.  

 As announced by then Vice President Mike Pence, one of the goals of the Artemis Project 

is to send the first woman to the moon [1]. This signals the inclusion of more female astronauts, 

and protecting their health includes protecting their reproductive health. As humans set their 

sights on Mars and other long-distance celestial bodies in space, they will inevitably spend more 

and more time exposed to the hazards of space. We must therefore consider not only the 

immediate damage to astronauts but also study how these environments may affect our ability to 

reproduce outside of Earth. Understanding how our reproductive functions are disrupted by 

hazards such as microgravity and radiation exposure will be especially important as humans seek 

to colonize new space frontiers [3]. Without this knowledge, it will be difficult to mitigate space-

related health risks to both potential mothers and their children. 

 The research presented here aims to shed light on astronaut reproductive health by 

examining how microgravity may change the expression of genes in early embryos. It will do so 

by examining mRNA data collected from early-stage zebrafish (Danio rerio) embryos exposed 

to either normal gravity or simulated microgravity via a rotary system (explained in more detail 

in section C). By analyzing which genes are significantly upregulated or downregulated, a few 

target genes may be identified for future research and some early conclusions can be made on the 

effects of microgravity on early-stage embryos. 

B. A Brief Review of Early Embryogenesis 

 Starting with fertilization, an embryo (called a zygote at this stage) begins with a series of 

cleavages which double the number of cells that make up the early embryo [3,4]. After the third 
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cleavage, the cells begin to compact tightly together, a process mediated by maternal E-cadherin 

[3,5]. At this stage, the cells that make up the embryo (now called a morula) undergo the first 

fate decision where the cells in the outer layer commit to giving rise to trophectoderm epithelium 

and the inner cells form the inner cell mass [3,6]. The next major change is called cavitation, 

where a fluid cavity forms in the inner region and the inner cells undergo a second fate decision. 

Here the embryo is called a blastocyst and cells in contact with the cavity give rise to the 

primitive endoderm while the cells not in contact form the epiblast [3]. 

 

Figure 1. Diagram of the Stages of Early Embryogenesis from [3] 

C. Effects of Microgravity on Early Embryogenesis 

 Microgravity seems to have detrimental effects upon early embryos, with the severity of 

the effects varying with time of exposure. It has been observed that mouse and zebrafish (Danio 

rerio) zygotes exposed early to microgravity conditions tend to have high mortality rates, failing 

to produce viable offspring [7,8]. Zygotes exposed to microgravity conditions later in 

development seem to adapt more easily, shown in lower mortality rates among later stage 
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zebrafish zygotes and middle and late-stage pregnant mice producing viable offspring. Mouse 

and Zebrafish zygotes also exhibited slower growth rates and longer development time between 

stages in microgravity conditions [7,9-11]. Furthermore, many surviving embryos exhibited 

many growth deformities [7,10]. Mouse blastocysts exposed to microgravity early in 

development were observed to contain fewer cells than control blastocysts, and many blastocyst 

cells failed to differentiate into the proper cell lines [10]. Zebrafish embryos also exhibited 

several deformities in the circulatory system, otolith, and brain beam structures [7]. These 

observations would suggest that embryos are sensitive to microgravity soon after fertilization. 

Underlying molecular mechanisms are still poorly understood, though many studies have offered 

suggestions for what has been observed. 

D. NASA Genelab RNA-Seq Consensus Pipeline 

 The NASA Genelab is a public database where omics data from spaceflight-related 

experiments can be hosted and accessed by other scientists [12]. The database was created as part 

of a project to integrate the wide variety in spaceflight experimental conditions such that it can 

be presented to the public in a fully standardized format. A second goal is to create a 

standardized procedure by which RNA-Seq data (data generated by sequencing an organism’s 

mRNA) can be processed. A standardized data processing pipeline has several benefits, 

including consistency in the processing methods and in final processed data, which allows easier 

cross-analysis of future studies. Another benefit of fully standardized data with a standardized 

method of analysis is that it can lead to bulk analysis, where multiple data sets can be analyzed in 

a single run. Doing so will save time and computational resources, as well as giving the results 

increased statistical strength. The RNA-Seq Consensus Pipeline (RCP) consists of three main 

steps: Data Preprocessing, Read Mapping and Sample Quantification, and Differential Gene 
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Expression Analysis (Figure 3). These will be explained in more detail in the Methods section of 

this report. 

E. GLDS-373 

 This project utilizes data from an immunological study, and is stored in the NASA 

Genelab database under Genelab Dataset 373 (GLDS-373) [13]. In the study, wild-type AB 

Zebrafish (Danio rerio) 3-12 months of age were kept in standard laboratory conditions and 

allowed to breed. Of the resulting embryos, one-cell stage embryos were selected and split into 

four groups. Two groups each were microinjected with either 2 nL poly I:C (a double-stranded 

RNA analog designed to mimic viral RNA and stimulate an immunological response) or 

microinjection buffer (mock buffer control). Then one poly I:C group and one mock buffer group 

was then subjected to either normal gravity (1G) in a standard cell culture dish or simulated 

microgravity (uG) in a rotary cell culture system. The resulting groups consist of the following 

conditions: normal gravity and mock buffer controls, simulated microgravity condition and mock 

buffer control, normal gravity control and poly I:C condition, and simulated microgravity and 

poly I:C conditions. These groups are described in Table I. Each group consists of three samples 

(biological replicates). Microgravity was simulated by rotating samples at 12 rpm (rotations per 

minute) to accelerate the samples to 4 × 10−3 to 7.2 × 10−3 g. 12 hours after fertilization, RNA 

was collected from each sample using TRIzol reagent and quantified via a NanoDrop ND-1000 

instrument and agarose gel electrophoresis. RNA libraries were prepared using a KAPA 

Stranded RNA-Seq Library Prep Kit. An Illumina HiSeq 4000 instrument was then used to 

sequence the RNA libraries, producing paired end 150 bp reads. These raw reads are utilized in 

this project, and can be found within the NASA Genelab Data Repository under the label GLDS-

373. 
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Figure 2. Illustration of the Experimental Procedure from [13] 

II. METHODS 

A. High Performance Computing Cluster 

 This project was run on San Jose State University’s College of Science High 

Performance Computing (HPC) server. An HPC is a computing system consisting of strong 

multi-core servers and high amounts of memory (124GB RAM per compute node) enabling 

many computationally demanding tasks to be run efficiently [14, 15]. Many of the programs used 

in the RCP are computationally intensive and require large amounts of memory, making the HPC 

vital for completion of the tasks within the RCP. The College of Science’s HPC is Linux-based, 

requiring jobs be written in a bash script and submitted via a SLURM job scheduler. 

  This project also utilizes JupyterHub to access the HPC servers and document the code 

written for the RCP in python notebooks. This method of implementation allows for the 

introduction of the RCP to new users without burdening them with prior installation of other 

managing programs [16]. JupyterHub also supports other coding languages enabling users to 

work with programs in other environments such as RStudio. Written code utilized in this project 

can be found at: https://github.com/NL-95/GLDS-373_Differential_Analysis_Files 

https://github.com/NL-95/GLDS-373_Differential_Analysis_Files


14 

 

 

 

B. RNA-Seq Consensus Pipeline 

 

Figure 3. Diagram of the NASA RNA-Seq Consensus Pipeline from [12] 
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 1) Data Preprocessing: 

  a) Obtaining Raw RNA-Seq Data: The first step in the RCP is to download FastQ 

files for GLDS-373 from the GeneLab data repository at https://genelab-

data.ndc.nasa.gov/genelab/accession/GLDS-373/. GLDS-373 contains forward and reverse reads 

for all 12 samples (4 groups in total). Within the dataset, this results in a total of 24 fastq.gz files, 

with a forward read (suffix _1) and a reverse read (suffix _2) for each sample, listed in Table I. 

This project did not analyze the poly I:C condition, so only data related to the six samples 

corresponding to mock buffer were utilized. For the samples utilized in this project, they 

correspond to samples 15-17 (normal gravity and mock buffer controls) and samples 21-23 

(simulated microgravity condition and mock buffer control). In total, 12 fastq.gz files were 

downloaded corresponding to forward and reverse reads for samples 15-17 and 21-23. These 

files are: SRR11185415_1 - SRR11185417_2, and SRR11185421_1 - SRR11185423_2. 

Table I 

Sample Groups and Treatment Conditions 

Sample Associated Files Microgravity 

Simulation 

Treatment 

Condition 

Ng-1 GLDS-373_rna-seq_SRR11185415_1.fastq.gz 

GLDS-373_rna-seq_SRR11185415_2.fastq.gz 

1G Mock 

buffer 

Ng-2 GLDS-373_rna-seq_SRR11185416_1.fastq.gz 

GLDS-373_rna-seq_SRR11185416_2.fastq.gz 

1G Mock 

buffer 

Ng-3 GLDS-373_rna-seq_SRR11185417_1.fastq.gz 

GLDS-373_rna-seq_SRR11185417_2.fastq.gz 

1G Mock 

buffer 

Ng-pIC-1 GLDS-373_rna-seq_SRR11185418_1.fastq.gz 

GLDS-373_rna-seq_SRR11185418_2.fastq.gz 

1G Poly I:C 

Ng-pIC-2 GLDS-373_rna-seq_SRR11185419_1.fastq.gz 

GLDS-373_rna-seq_SRR11185419_2.fastq.gz 

1G Poly I:C 

Ng-pIC-3 GLDS-373_rna-seq_SRR11185420_1.fastq.gz 

GLDS-373_rna-seq_SRR11185420_2.fastq.gz 

1G Poly I:C 

Smg-1 GLDS-373_rna-seq_SRR11185421_1.fastq.gz 

GLDS-373_rna-seq_SRR11185421_2.fastq.gz 

uG with rotary cell 

culture system 

Mock 

buffer 
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Smg-2 GLDS-373_rna-seq_SRR11185422_1.fastq.gz 

GLDS-373_rna-seq_SRR11185422_2.fastq.gz 

uG with rotary cell 

culture system 

Mock 

buffer 

Smg-3 GLDS-373_rna-seq_SRR11185423_1.fastq.gz 

GLDS-373_rna-seq_SRR11185423_2.fastq.gz 

uG with rotary cell 

culture system 

Mock 

buffer 

Smg-pIC-1 GLDS-373_rna-seq_SRR11185424_1.fastq.gz 

GLDS-373_rna-seq_SRR11185424_2.fastq.gz 

uG with rotary cell 

culture system 

Poly I:C 

Smg-pIC-2 GLDS-373_rna-seq_SRR11185425_1.fastq.gz 

GLDS-373_rna-seq_SRR11185425_2.fastq.gz 

uG with rotary cell 

culture system 

Poly I:C 

Smg-pIC-3 GLDS-373_rna-seq_SRR11185426_1.fastq.gz 

GLDS-373_rna-seq_SRR11185426_2.fastq.gz 

uG with rotary cell 

culture system 

Poly I:C 

 

  b) Quality Control: Quality of the raw reads was assessed using FastQC version 

0.11.9 which were then summarized into a single report by MultiQC version 1.11 [17, 18]. 

Removal of low-quality reads (identified as bases with a phred score 20 or below) and adapter 

sequences was performed using TrimGalore version 0.6.6 [19]. After their removal, the reads 

were again assessed and summarized using FastQC and MultiQC to check for improvement in 

quality scores and assess if further trimming is needed. 

 2) Read Mapping and Quantification: Next, the trimmed reads were aligned and mapped 

to the Danio rerio reference genome using the Spliced Transcripts Alignment to a Reference 

(STAR) tool, version 2.7.7 [20]. STAR requires a reference genome and an annotated Gene 

Transfer File (GTF), which were both obtained from the Ensembl database at 

https://ftp.ensembl.org/pub/, public release version 101. The reports for each STAR alignment 

were summarized using MultiQC. 

 To quantify the mapped reads by gene, the RNA-Seq by Expectation-Maximization 

(RSEM) tool version 1.3.1 was used [21]. RSEM produces a table of unnormalized read counts, 

organized by sample and by gene. To account for the stranded nature of the RNA-Seq, the “--

strandedness reverse” option was utilized as suggested in Illumina’s TruSeq Stranded protocols. 

https://ftp.ensembl.org/pub/
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 3) Differential Gene Expression: The final step in the RCP is to normalize the counts and 

calculate which genes are differentially expressed between samples. Unlike the previous steps 

which utilized Linux-based tools, the differential gene expression is done using R’s DESeq2 

version 1.34.0 R package on R version 4.1.1 [22]. 

  a) Count Normalization: The first step utilizes the estimateSizeFactors() 

function, which normalizes the differences in read depth. A size factor is calculated for each 

gene by dividing the median ratio of all gene counts of a specific gene by the geometric mean of 

that gene across all samples. Then the raw counts from each sample are divided by the sample-

specific size factor for each gene. 

 Next gene dispersions are calculated using the estimateDispersions() function. The 

variance of each gene’s expression across all samples is compared to the mean of that gene’s 

expression. This information can then be plotted in a scatter plot to examine if there is any large 

variation in the dataset. 

  b) Calculation and Ranking of Differential Gene Expression: Hypothesis testing 

is done using the nbinomWaldTest() function. The goal of hypothesis testing is to calculate how 

likely the expression of a gene is when compared across two conditions; in this dataset, normal 

gravity and simulated microgravity. This was done by fitting a negative binomial model to the 

gene expression data and performing a Wald test to calculate a p-value for each gene between the 

two conditions.  

The last step is to account for the multiple testing problem, which is the increasingly high 

rate of false positive results that arise from performing an increasingly large number of 

hypothesis tests using a set False Discovery Rate (FDR). P-values are adjusted using the 
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Benjamini and Hochberg (BH) method by ranking each gene by p-value, calculating the BH 

critical value, and comparing each p-value to the BH critical value [23]. The gene with the 

largest p-value within the threshold (in this case 0.05) that is also smaller than it’s BH critical 

value is set as an adjusted threshold, and all genes ranked higher (smaller p-values) are 

considered significant and differentially expressed. These normalized counts are then annotated 

using Ensembl IDs and gene names and saved as a .txt file and .csv file. 

C. Gene-Set Enrichment Analysis: 

 1) DAVID: The Database for Annotation, Visualization and Integrated Discovery 

(DAVID) version 6.8 was used to examine the relationship between genes of interest (those with 

adjusted p-values below 0.05) [24, 25]. The tool analyzes a given list of genes, for example as by 

Ensembl ID, and cluster them into gene sets based on the similarity of their functions. The 

purpose of this analysis is to gain insight into what types of genes are upregulated or 

downregulated and to look for possible patterns in expression between two experimental 

conditions. To use the DAVID tool, the annotated file containing the differential gene expression 

information was sorted by adjusted p-value, and filtered for only those genes with an adjusted p-

value within the 0.05 threshold. Then the Ensembl IDs from each gene was saved into a .txt file, 

and split so that each column had at most 3000 genes. In the DAVID tool, the multi-list file was 

uploaded with the “Multi-List File” option checked, the Identifier option set to 

“ENZEMBL_GENE_ID”, List Type option set to “Gene List”, and Species option set to “Danio 

rerio”. The “Functional Annotation Tool” was utilized to perform functional annotation 

clustering. Within the Functional Annotation Clustering window, all default settings were 

utilized but the display was modified to include the FDR values in addition to the Benjamini 

values. 
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 2) GSEA: Gene Set Enrichment Analysis (GSEA) version 4.2.3 was also used to analyze 

the genes that were differentially expressed and calculate which gene sets were statistically 

significant [26, 27].  

To utilize the GSEAPreranked tool, several files need to first be prepared: a rank list, and 

a gene set database. To make the rank list, the normalized differential expression data was first 

filtered to exclude all genes that did not fall within the 0.05 adjusted p-value significance 

threshold. Then the genes were ordered by decreasing fold change. The gene symbols in the 

Symbols column was capitalized using Microsoft Word, and the Symbols column and Log2fc 

column (representing the fold change) were saved in a .txt file. Finally, a copy was made with 

the file type changed to .rnk. For the gene set database, two gene sets were utilized in two 

separate gene analyses: the built-in [Hallmarks] gene set provided by GSEA, and a Danio rerio 

specific gene set found at http://ge-lab.org/gskb/. For tool settings, the “Collapse/Remap to gene 

symbols” setting was changed to “No_collapse” and the “Min size: exclude smaller sets” setting 

was changed to 5. All other options utilized the default settings. 

III. RESULTS 

A. Quality Control Metrics 

http://ge-lab.org/gskb/
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Figure 4. Mean Quality Score Comparison between Untrimmed Reads (a) and Trimmed Reads (b) 

 

Figure 5. Adapter Content Score of Untrimmed Reads 
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Figure 6. Sequence Length Distribution Plot for Trimmed Reads 

Three metrics are shown in Figures 4-6: the average phred score of each base pair for 

each read by position, the adapter content score, and the sequence length distribution plot. The 

untrimmed reads show that all base pairs have a phred score of 30 or higher. This indicates that 

the probability of an incorrect read at a specific base is 1 in 1000 (99.9% accuracy) [28]. In terms 

of the adapter content score, adapter content was detected in all read samples which will need to 

be removed. Based on the phred scores, because all reads in all samples scored above 30 the 

decision was made to only remove adapter sequences. After trimming, we can see in Figure 4. 

that there is a slight improvement to quality at the end of the read where the adapters were 

removed and no adapter sequences were detected in the trimmed reads. We can also see in 

Figure 6 that the removal of the adapter sequences resulted in the sequence length distribution 

changing from a uniform 150 bp before trimming, to varying lengths between 140-150 bp after 

trimming. 

B. STAR Alignment 
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Figure 7. STAR Alignment Scores for All Samples 

 In Figure 7, the alignment scores for each sample’s read against the Danio rerio reference 

genome is shown. Samples 15-17 correspond to the normal gravity control, and samples 21-23 

correspond to the simulated microgravity condition. Between 82%-91.2% of all reads were able 

to be aligned to a unique gene. 3.9%-7.4% of the reads were found to align to multiple loci in the 

genome, and 3.5%-12.2% of the reads were too short to be accurately aligned to the reference 

genome. Of the samples, sample 23 showed the worst mapping score, and sample 17 showed the 

best mapping score. 

C. Differential Gene Expression 
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Figure 8. PCA Plots for Unnormalized Counts (a) and Normalized Counts (b) 
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 Principal Analysis Component (PCA) plots simplify understanding of variance across 

samples and conditions. By employing dimension reduction, many different factors can be 

reduced into a 2D plot that is easy to grasp visually. In Figure 8, we can see that overall the 

variance of the samples before and after normalization show mostly the same patterns. The 

control sample (normal gravity) show little variance and tend to cluster together, shown in Figure 

8. in orange. With the simulated microgravity group, one of the three samples shows a large 

difference in variance compared to the other two. This is shown in Figure 8 where one cyan dot 

is separate from the other two, either as a very positive PC2 value (before normalization) or a 

very negative PC2 value (after normalization). The other two samples show little variance 

between the two, shown by how these two cyan dots cluster together. 

 

Figure 9. Normal Gravity Control Samples (Left) vs Simulated Microgravity Samples (Right) DEG Heatmap 
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 In Figure 9, a clustered heatmap illustrates the difference in expression between genes of 

the three samples in the normal gravity control group on the left and the three samples in the 

simulated microgravity group on the right. Blue represents less expression while red represents 

more expression. Looking at the heatmap, we can see that there are clear differences between the 

two groups: there are large clusters of low expression genes in the simulated microgravity group 

that is not present in the control group, and there are a few regions where genes are slightly more 

expressed in the simulated microgravity group compared to the control normal gravity group. 

D. Gene Set Enrichment Analysis 

 1) DAVID: 

TABLE II 

Top 5 DAVID Annotation Clusters for Normal Gravity vs. Simulated Microgravity 

Category Term FDR 

Cluster 1, Enrichment Score 31.29 

UP_KEYWORDS 

GOTERM_CC_DIRECT 

UP_KEYWORDS 

GOTERM_CC_DIRECT 

KEGG_PATHWAY 

GOTERM_BP_DIRECT 

GOTERM_MF_DIRECT 

GOTERM_CC_DIRECT 

GOTERM_CC_DIRECT 

 

Ribonucleoprotein 

Intracellular ribonucleoprotein complex 

Ribosomal protein 

Ribosome 

Ribosome 

Translation 

Structural constituent of ribosome 

Cytosolic large ribosomal subunit 

Cytosolic small ribosomal subunit 

 

4.65E-42 

7.44E-42 

3.59E-33 

7.43E-32 

8.16E-32 

7.43E-24 

1.46E-22 

4.20E-22 

1.12E-16 

Cluster 2, Enrichment Score 20.92 

INTERPRO 

INTERPRO 

SMART 

 

RNA recognition motif domain 

Nucleotide-binding, alpha-beta plait 

RNA Recognition Motif 

 

3.90E-19 

4.42E-18 

2.00E-18 
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Cluster 3, Enrichment Score 11.46 

GOTERM_MF_DIRECT 

UP_KEYWORDS 

INTERPRO 

GOTERM_CC_DIRECT 

SMART 

INTERPRO 

INTERPRO 

 

Structural molecule activity 

Intermediate filament 

Intermediate filament protein 

Intermediate filament 

SM01391 

Keratin, type I 

Intermediate filament protein, conserved 

site 

 

3.47E-11 

4.71E-12 

2.50E-10 

9.79E-11 

1.78E-10 

1.87E-08 

1.70E-05 

Cluster 4, Enrichment Score 10.48 

GOTERM_MF_DIRECT 

INTERPRO 

INTERPRO 

 

INTERPRO 

SMART 

GOTERM_MF_DIRECT 

 

Nucleic acid binding 

Zinc finger, C2H2-like 

Zinc finger C2H2-type/integrase DNA-

binding domain 

Zinc finger, C2H2 

ZnF_C2H2 

Metal ion binding 

 

9.24E-21 

9.94E-08 

1.06E-07 

 

1.06E-07 

2.27E-06 

0.394326253 

Cluster 5, Enrichment Score 10.41 

UP_KEYWORDS 

GOTERM_CC_DIRECT 

GOTERM_CC_DIRECT 

UP_KEYWORDS 

 

Viral nucleoprotein 

Viral nucleocapsid 

Virion 

Virion 

 

7.57E-10 

6.22E-10 

5.14E-09 

2.46E-08 

 

 In Table II, the top five DAVID annotation clusters are shown for the normal gravity 

control vs. the simulated microgravity condition, ordered by enrichment scores. The first cluster 

has an enrichment score of 31.29 and includes several ribosomal genes. Cluster two has an 

enrichment score of 20.92 and includes genes related to the recognition and binding of 

RNA/DNA. Cluster three has an enrichment score of 11.46 and includes genes related with 

filament proteins, components of the cytoskeleton. Cluster four has an enrichment score of 10.48 

and includes genes related to the zinc finger DNA-binding motif. Cluster five has an enrichment 

score of 10.41 and includes several genes related to viruses and the viral envelope. All genes in 

all five clusters show high enrichment scores and low FDR values (below 0.05) which suggest 
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that not only are these results of significant interest, but also that these results are likely not a 

false discovery. 

 2) GSEA: 

TABLE III 

GSEA Top 9 Upregulated Hallmark Genes 

Name ES NES Nom p-val FDR 

q-val 

HALLMARK_COAGULATION 0.5959 1.7589 0 0.0098 

HALLMARK_PANCREAS_BETA_CELLS 0.6155 1.6006 0.0106 0.0783 

HALLMARK_KRAS_SIGNALING_DN 0.5067 1.5523 0.0073 0.0960 

HALLMARK_ANGIOGENESIS 0.7693 1.5487 0.0137 0.0751 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.4826 1.5370 0.0051 0.0692 

HALLMARK_MYOGENESIS 0.4889 1.4908 0.0114 0.1048 

HALLMARK_NOTCH_SIGNALING 0.6294 1.4908 0.0528 0.1118 

HALLMARK_EPITHELIAL_MESENCHYMAL_

TRANSITION 

0.4655 1.4514 0.0124 0.1250 

HALLMARK_APICAL_SURFACE 0.6410 1.3857 0.0787 0.2200 

 

 For the hallmark gene set’s gene analysis, there were a total of 42 out of 50 gene sets that 

were upregulated in simulated microgravity compared to normal gravity. However only 9 of 

these gene sets fell within the chosen significance thresholds (nominal p-val below 0.05, FDR 

below 0.25), shown in Table III. Of the 8 gene sets that were downregulated, none fell below the 

FDR threshold of 0.25. The Danio rerio gene set’s gene analysis found 606 out of 840 gene sets 

that were upregulated in simulated microgravity compared to normal gravity. However only 158 

of these gene sets fell within the significance thresholds (nominal p-val below 0.05, FDR below 

0.25), shown in the Appendix section, Table IV. Of the 234 gene sets that were downregulated, 

none fell within the chosen FDR threshold of 0.25. 
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IV. DISCUSSION 

A. RCP Implementation 

 Implementation of the RCP via Jupyter Notebook is a good way to learn the tools and 

processes which make up the RCP, but several challenges call for a more streamlined approach. 

In the case for this project, the RCP was already developed in Jupyter notebook, and adapted to 

process the GLDS-373 dataset. One important factor to take note of is that the HPC at SJSU 

requires a SLURM script to properly allocate resources and efficiently perform computational 

tasks. This necessitates most jobs be written in a separate SLURM script that is not included 

within the Jupyter notebook; instead, the notebook only calls the script to run each step of the 

RCP. Care must be taken to ensure the pipeline is able to run smoothly, as several steps produce 

output files that are required as inputs to subsequent steps in the RCP. Additionally, the HPC will 

not alert the user to failed jobs, necessitating frequent manual checks for errors or unintended 

outputs. This requires significant user time and effort, which runs counter to the goal of a smooth 

automated pipeline. Future efforts might include background software processes that monitor for 

errors and alert the user in a timely manner via email or text message. They may even include a 

method of automation to run new scripts after a previous step has completed. 

B. Gene Enrichment Analysis 

 1) DAVID Annotated Gene Clusters: Cluster one is related to ribosomal functions, and 

clusters two and four are related to the binding of DNA/RNA. Ribosomes are vital to translation, 

where they synthesize new proteins from messenger RNA (mRNA). Once a ribosome complex 

binds to a strand of mRNA, small tRNAs containing complimentary anti-codons and a single 

amino acid bind to the mRNA and consecutive tRNAs chain amino acids together into a protein 
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chain [29]. Zinc finger proteins, and specifically the C2H2 finger proteins play important roles in 

the binding of DNA or RNA segments [30]. Together, clusters one, two, and four suggest that 

microgravity affects the binding of DNA/RNA and overall translation. 

 Cluster three involves genes related to intermediate filament proteins (IF-proteins). IF-

proteins are proteins that form many of the filaments that assemble into more complex 

cytoskeletal structures [31]. These proteins are also involved in organ development and tissue 

differentiation, suggesting that microgravity can affect the tissue differentiation of an early 

embryo. Cluster five was surprising since it involved many genes related to virions. This 

suggests that there may be some contamination in the RNA collected from the embryo samples. 

 2) GSEA: In the GSEA analysis, nine hallmark gene sets were found to be upregulated 

and of significant interest while still falling within the chosen 0.25 FDR threshold. These nine 

gene sets include genes related to coagulation, pancreas beta cells, angiogenesis, early estrogen 

response, kras signaling, myogenesis, notch signaling, apical surface and genes involved in 

epithelial and mesenchymal differentiation. None of these gene sets matches directly with the 

clusters found in the DAVID analysis. 

  a) Hallmark Gene Set Analysis: Kras, part of the Ras protein family, is a signaling 

protein that mediates nuclear transcription factors with extracellular signals [32]. When 

activated, Ras signaling can induce gene expression in genes related to cell proliferation, 

differentiation, and apoptosis. Angiogenesis genes are upregulated as well, which supports the 

idea that cells are rapidly proliferating. Angiogenesis refers to the process by which new blood 

vessels form from existing vessels [33]. As blood vessels provide the necessary nutrients for cell 

growth, if cells are rapidly proliferating new blood vessels would be needed to maintain cell 

development. Coagulation genes are also expressed early in development [34]. During 
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embryonic development, coagulation genes perform functions related to cellular proliferation 

and differentiation. For example, the absence of coagulation proteins tissue factor (TF), TF 

pathway inhibitor (TFPI), and prothrombin is lethal for developing mouse embryos. 

 Two of the results: notch signaling and epithelial-mesenchymal transition (EMT) are 

directly related to processes involving cell fate and differentiation. Notch signaling in embryos 

plays key roles in the development of embryos where embryonic stem cells differentiate into 

more specialized cell types [35]. For example, the knockout of the notch1 receptor in mouse 

embryos is embryonically lethal. In comparison, knockouts of the notch2 and notch3 receptors 

does not result in embryo death but several deformities do arise, indicating that notch signaling is 

a key factor in proper embryonic development. The epithelial-mesenchymal transition is a 

process by which epithelial cells transition into mesenchymal cells [36]. In embryogenesis, the 

EMT is activated in the gastrulation phase where it mediates the formation and differentiation of 

the mesoderm and endoderm layers from the mesendoderm layer. This is the first step in 

determining cell fate, where cells from each layer will undergo further differentiation into more 

specialized cell types and tissues. EMT is also responsible for the transition of epithelial cells in 

the neuroectoderm into migratory neural crest cells. These neural crest cells have been observed 

to migrate to other parts of the embryo, where they then undergo further differentiation to give 

rise to other embryonic structures. The upregulation of genes involved in notch signaling and 

EMT suggest that microgravity may stimulate genes associated to cell differentiation, which can 

affect the proper development of embryos. 

 Several of the results are related to the development of embryonic tissues and structures. 

Estrogen is a hormone that helps control the development of reproductive organs and sex 

differentiation in early embryos [37]. As genes related to responding to estrogen are upregulated 
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in stimulated microgravity, this could mean that the embryo is more sensitive to estrogen or that 

tissue and organ development is stimulated in low gravity conditions. Genes related to the 

development of pancreatic beta cells, myogenesis (the development of skeletal muscle), and 

those encoding proteins found on the apical surface of cells (responsible for cell polarity) are 

also upregulated, indicating that microgravity may stimulate early development of various 

structures. 

  b) Danio rerio Gene Set Analysis: Of the 129 gene sets that were found to be of 

significant interest and fell within the FDR threshold, most were found to be involved in cell 

differentiation and embryo development. Examples include gene sets involved in the 

development of key organs such as the liver and brain, gene sets involved in key stages of the 

embryonic development process such as mesoderm development, determination of cell fate and 

left/right parts of the body, and several important development-related receptor signaling 

pathways such as Wnt and G-protein signaling. While nothing abnormal stands out at first 

glance, it is interesting that so many development-related genes are upregulated in microgravity 

conditions. It is currently unknown what effects upregulation of so many embryonic 

developmental genes may have. Future studies may individually examine the specific 

morphological and physiological effects that may occur when one or a small number of these 

developmental genes are upregulated in early-stage embryos. 

V. CONCLUSION 

 This project aimed to provide an efficient implementation of the NASA Genelab RCP to 

analyze data from the GLDS-373 dataset, which could provide insight into how microgravity 

conditions may affect the development of early embryos. Overall, the use of Jupyter Notebook to 
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implement the pipeline provided a good start but there is room for a more streamlined approach 

to automate more of the process and save user time and effort. 

 This project utilized mRNA data collected from zebrafish embryos subjected to simulated 

microgravity via a rotary system. While this is not true microgravity, there was still a clear 

difference in expression patterns between the normal gravity control and the simulated gravity 

groups. This shows that the rotary system can simulate microgravity to some degree and an 

analysis of differentially expressed genes can provide profound insights into the role 

microgravity can play upon early-stage embryos. 

 In terms of the results gained, two gene enrichment analysis methods were used: DAVID 

and GSEA. What is disappointing is that there were no downregulated gene sets that passed both 

the significance threshold of 0.05 for p-values, and the FDR threshold of 0.25. For both DAVID 

and GSEA, in this project nearly all options utilized the default settings. For future analyses, 

these default settings can be changed to see if more results will fall within the significance and 

FDR thresholds. The thresholds themselves can also be changed to be less stringent, to allow 

more results through.  

From the results, it was found that microgravity does result in several changes to 

expression patterns. Of particular interest would be genes related to DNA transcription and 

translation, and genes that regulate early cell proliferation, cell differentiation, and early 

development of embryonic tissues and organs. These genes were found to be upregulated in 

embryos exposed to simulated microgravity. The exact impact that microgravity may have on 

embryonic development is still not well understood, and more research is still required before a 

mechanism to explain these observations can be identified. Hopefully the findings from this 
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study can provide some insight and help guide future studies. Most importantly, these findings 

may help in protecting the health of future astronauts and their children. 
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APPENDIX 

TABLE IV 

GSEA Top Danio rerio Upregulated Genes  

NAME ES NES NOM 

p-val 

FDR q-

val 

GO_BP_DR_ANTERIOR_POSTERIOR_PATTERN_SPECIFICATION 0.759

73463 

2.197

3498 

0 0 

GO_CC_DR_EXTRACELLULAR_SPACE 0.703

5055 

2.108

2506 

0 0 

GO_MF_DR_LIPID_BINDING 0.770

6552 

2.042

3787 

0 0 

GO_CC_DR_EXTRACELLULAR_REGION 0.613

14183 

2.034

4892 

0 0 

GO_BP_DR_FIN_REGENERATION 0.749

9587 

1.989

9322 

0 2.98E-

04 

GO_BP_DR_OTIC_PLACODE_FORMATION 0.820

1317 

1.995

718 

0 3.58E-

04 

GO_CC_DR_MYOSIN_FILAMENT 0.878

67767 

1.973

6123 

0 5.07E-

04 

GO_BP_DR_DETERMINATION_LEFT_RIGHT_SYMMETRY 0.648

9403 

1.911

9099 

0 0.0020

08484 

GO_CC_DR_INTERMEDIATE_FILAMENT 0.696

1885 

1.885

4526 

0 0.0028

20956 

GO_BP_DR_PHARYNGEAL_SYSTEM_DEVELOPMENT 0.885

54484 

1.892

4813 

0 0.0029

42649 

GO_BP_DR_HINDBRAIN_DEVELOPMENT 0.679

4562 

1.888

1744 

0 0.0030

77407 

GO_BP_DR_LIVER_DEVELOPMENT 0.682

1263 

1.892

543 

0 0.0032

6961 

GO_BP_DR_DORSAL_VENTRAL_PATTERN_FORMATION 0.607

0417 

1.867

3452 

0 0.0035

68135 

GO_BP_DR_FOREBRAIN_DEVELOPMENT 0.716

9812 

1.859

5748 

0.0011

52074 

0.0041

35086 

GO_BP_DR_MESODERM_DEVELOPMENT 0.789

2168 

1.851

3047 

0 0.0042

85076 

GO_BP_DR_SOMITOGENESIS 0.623

9047 

1.855

0582 

0 0.0043

349 

GO_CC_DR_COLLAGEN 0.662

14687 

1.839

3908 

0 0.0052

8497 

GO_MF_DR_STRUCTURAL_MOLECULE_ACTIVITY 0.582 1.833 0 0.0059
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972 0419 29986 

GO_MF_DR_CALCIUM-DEPENDENT_PHOSPHOLIPID_BINDING 0.781

3221 

1.821

8936 

0 0.0063

801 

GO_BP_DR_VASCULATURE_DEVELOPMENT 0.689

35317 

1.819

6349 

0.0011

45475 

0.0064

88467 

GO_MF_DR_TRANSMEMBRANE_SIGNALING_RECEPTOR_ACTIVITY 0.648

8264 

1.815

6592 

0 0.0065

14334 

GO_BP_DR_WNT_RECEPTOR_SIGNALING_PATHWAY 0.600

8597 

1.826

2619 

0 0.0065

47287 

GO_MF_DR_RECEPTOR_BINDING 0.619

8701 

1.822

2198 

0 0.0065

5804 

GO_MF_DR_WNT-PROTEIN_BINDING 0.712

53777 

1.807

7493 

0.0012

13592 

0.0066

87156 

GO_BP_DR_PANCREAS_DEVELOPMENT 0.697

0568 

1.809

3293 

0.0011

77856 

0.0067

01622 

GO_CC_DR_PROTEINACEOUS_EXTRACELLULAR_MATRIX 0.656

13216 

1.823

1791 

0.0011

12347 

0.0067

53042 

GO_MF_DR_OXIDOREDUCTASE_PAIRED_DONORS_MOLECULAR_O

XYGEN 

0.602

75257 

1.800

8167 

0 0.0068

11359 

GO_BP_DR_SURFACE_RECEPTOR_SIGNALING_PATHWAY 0.641

6935 

1.797

9599 

0.0022

19756 

0.0068

79141 

GO_MF_DR_PDZ_DOMAIN_BINDING 0.701

53075 

1.809

5677 

0 0.0069

34248 

GO_MF_DR_G-PROTEIN_COUPLED_RECEPTOR_ACTIVITY 0.573

02684 

1.800

9905 

0 0.0070

54621 

GO_BP_DR_RETINAL_GANGLION_AXON_GUIDANCE 0.670

7204 

1.789

0759 

0 0.0081

79555 

GO_MF_DR_WNT-ACTIVATED_RECEPTOR_ACTIVITY 0.712

53777 

1.780

3067 

0 0.0096

80965 

GO_BP_DR_MUSCLE_ORGAN_DEVELOPMENT 0.673

2071 

1.771

6115 

0.0011

75088 

0.0108

1164 

GO_BP_DR_TAIL_MORPHOGENESIS 0.780

35253 

1.772

3334 

0.0026

45503 

0.0109

78187 

GO_CC_DR_PLASMA_MEMBRANE 0.533

57583 

1.763

9987 

0 0.0122

3137 

GO_BP_DR_BRAIN_DEVELOPMENT 0.579

4218 

1.755

5712 

0 0.0139

04027 

GO_CC_DR_MYOSIN_COMPLEX 0.606

7722 

1.749

4786 

0.0010

9529 

0.0156

16017 

GO_BP_DR_MIGRATION_GASTRULATION 0.572

33596 

1.737

9303 

0 0.0168

38286 
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GO_BP_DR_STRIATED_MUSCLE_DEVELOPMENT 0.722

43863 

1.739

1322 

0.0038

51091 

0.0168

99023 

GO_BP_DR_POSITIVE_REGULATION_MIGRATION 0.907

6989 

1.740

235 

0 0.0170

28205 

GO_MF_DR_GROWTH_FACTOR_ACTIVITY 0.581

78264 

1.735

096 

0 0.0171

5248 

GO_MF_DR_IRON_ION_BINDING 0.545

74573 

1.740

7709 

0 0.0172

7967 

GO_BP_DR_NEGATIVE_REGULATION_PROLIFERATION 0.807

2625 

1.741

6197 

0.0013

6612 

0.0174

06179 

GO_BP_DR_HEART_MORPHOGENESIS 0.657

4302 

1.728

9448 

0.0023

8379 

0.0184

95917 

GO_BP_DR_NEGATIVE_REGULATION_CANONICAL_WNT_RECEPTO

R_SIGNALING_PATHWAY 

0.747

20675 

1.726

2726 

0.0025

64103 

0.0188

75003 

GO_BP_DR_MULTICELLULAR_ORGANISMAL_DEVELOPMENT 0.511

9817 

1.725

1107 

0 0.0189

5077 

GO_MF_DR_MOTOR_ACTIVITY 0.593

6541 

1.720

6435 

0.0032

43243 

0.0198

1835 

GO_BP_DR_GONAD_DEVELOPMENT 0.677

11747 

1.714
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