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ABSTRACT

Modeling Sequencing Artifacts for Next Generation Sequencing

by Yvonna Leung

Advancements in Next Generation Sequencing (NGS) have enabled detection of

genetic alterations at large scales with high throughputs. NGS offers advantages

over the established sequencing method, Sanger sequencing, by processing large

sections of the genome simultaneously at a lower cost with higher accuracy. How-

ever, recent research has shown that sequencing artifacts are introduced at various

steps in the NGS workflow. These artifacts are the result of an accumulation of

errors from multiple steps, such as library preparation and downstream processes,

and can result in variants being identified that aren’t actually present in the se-

quenced genome. Therefore, there is a need to accurately distinguish between true

variants and sequencing artifacts. This project included the building of a bioin-

formatics pipeline to process Whole Exome Sequencing (WES) datasets from the

Sequence Read Archive (SRA), as well as a high-scale machine learning models to

identify errors introduced in the genome sequencing process. Results showed that

the models had high classification accuracy, ranging from 98% to 100%, as well as

high precision and recall scores around 99% when positively identifying artifacts.

One feature, “Allele Frequency” or ‘AF’, was shown to have powerful predictive

power, with it alone able to accurately classify 99% of the training data. Since

‘AF’ is an important parameter in variant calling software, a further investiga-

tion was conducted, which found that values of ‘AF’ around 0.22 could correctly

differentiate most artifacts from non-artifacts. Finally, another investigation was

conducted into the predictive power of other features, and identified several other

features capable of differentiating artifacts.



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Wendy Lee, for her

invaluable technical advice, continuous support, and patience during the devel-

opment of this Master’s project. I would also like to extend my gratitude to my

committee members, Dr. Philip Heller and Dr. William Andreopoulos, for their

guidance and feedback. Their expertise and experience in the field have been of

tremendous benefit to studies at San José State University. I would also like to
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1 Introduction

1.1 Impact of DNA Sequencing on Genomics and Health

In recent decades, DNA sequencing has enabled a remarkable leap forward in

knowledge of the human genome and its medical applications [3]. Advances in

DNA sequencing enable more accurate disease diagnosis, as well as personalized

treatment strategies for patients. Previously unsolved medical mysteries arising

from numerous genetic factors are now diagnosable due to Next Generation Se-

quencing (NGS) [4]. Not only has increased access to genomic data improved the

characterization of genetic disease, it has also enabled gene-based therapies and

prevention [3].

Initial studies of the genome were inefficient, expensive, and technically chal-

lenging. Sequencing was a temperamental practice, and it would take several

years to sequence single genes [5]. To address these issues, the Human Genome

Project, started in 2003, began a massive scientific undertaking to sequence the

entire human genome. Not only did the completion of this project usher in a new

era in medicine and diagnostics, it also led to major advances in high-throughput

DNA sequencing technology. Today, automated Sanger sequencing is still in use,

primarily in clinical labs where it is acceptable to have low throughput, higher

per-sample costs, and shorter sequencing reads. However, the cost of automated

Sanger sequencing is too expensive for large-scale sequencing projects. In contrast,

today’s sequencing methods offer high speed, high scale, and low cost.

1.2 Next Generation Sequencing

Next generation sequencing (NGS), also known as “massively parallel sequencing”,

is capable of processing millions of reads in parallel. In contrast, Sanger sequenc-

ing, the previous fastest method, produces only one forward and reverse read per

sequence [6]. It is much more limited in terms of speed and scalability, and took

over a decade to decipher the human genome. Although NGS has mostly super-
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seded Sanger sequencing, it has not been translated into routine clinical practice

[7]. Sanger sequencing is still commonly used to validate variants, and is the gold

standard with its 99.99% accuracy rate [6].

Figure 1: Next Generation Sequencing Workflow adapted from [1]

Figure 1 demonstrates that the NGS workflow contains four main steps: DNA

extraction, library preparation, sequencing, and data analysis [8]. DNA extraction

is the process of pulling genetic material from a sample. Extraction methods are

generally designed to yield the largest possible quantity of nucleic acids from the

sample. Purity of a sample is determined using spectrophotometers [1]. Next,

the library preparation step makes DNA samples compatible with the sequencer

through fragmentation and adapter ligation [8]. After loading DNA fragments to

a flow cell, DNA fragments are clustered and amplified to generate millions of

individual DNA strands [8]. These copies of DNA are then sequenced in parallel.

After sequencing, the sequences are analyzed with various bioinformatics software

tools to investigate sequence alignment, variant calling, data visualization, and

much more.
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1.3 Genomic Variants and Sequencing Artifacts

Genomic variants are areas of a genome that differ from a reference genome.

A reference genome represents the genome of a single individual that has been

cross-checked against the genomes of several other donors to ensure accuracy [9].

GRCh38 is the current reference genome build [9]. These include “single nu-

cleotide polymorphisms” (SNPs), which are substitutions of single nucleotides,

and “indels”, which are insertions or deletions of one or more nucleotides. The

process of identifying variants is called “variant calling”. Most variants are SNPs,

and they occur about once every 1000 nucleotides, meaning an average person has

about four to five million SNPs in their genome [10]. Identifying variants can help

predict how an individual will respond to drug treatment, or help determine the

risk of developing certain diseases [10].

While variants occur naturally, sequencing artifacts are variations that are in-

troduced through non-biological processes. Examples include SNPs and indels

that are observed in the sequencing data but are not from the original biological

samples. These occurrences are the consequence of accumulated errors from NGS

workflow steps, such as library preparation kits and any downstream processes

[11]. Sequence artifacts are often difficult to distinguish from true variants. This

introduces a risk of false positive and false negative variant calls [12]. It is clinically

important to identify whether a variant truly exists in the genome or is simply an

artifact of the NGS process [12].

1.4 Causes of Artifacts

Sequencing artifacts from the NGS process can arise for a multitude of reasons.

Understanding the sources of sequencing artifacts can improve the detection of

true variants and help make better informed clinical decisions.

Because the NGS workflow has many steps, there are many opportunities where

errors can occur that lead to sequencing artifacts. S. Haile noted that sequencing

artifacts can also arise from DNA damage due to prior sample treatment and ex-
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traction techniques with formalin and paraffin [12]. DNA fragmentation may also

occur during longer storage time. These artifacts appear at a much higher rate

compared with NGS libraries that were not prepared with formalin [12]. Sequenc-

ing artifacts can also be created through chemical modification or DNA damage

through various molecular techniques. One source of artifacts arise from high

levels of oxidation product, 8-oxoG, which are derived from an oxidative mech-

anism during high-powered DNA shearing [13]. PCR cycles are another major

source of artifacts. PCR amplification bias can impact final sequence read counts,

which may lead to an accumulation of artifacts in sequence reads [14]. Library

sample preparation can also introduce artifacts. For example, N. Tanaka found

that HyperPlus library kits generated significantly more SNV and indel artifacts

compared with Agilent’s SureSelect kit [11].

1.5 Genome in a Bottle

Having a well-characterized reference human genome allows for distinguishing se-

quencing artifacts from true biological variants. The National Institute of Stan-

dards and Technology (NIST) hosts a consortium known as the Genome in a Bottle

(GIAB). This group develops reference materials and standards for benchmarking

and characterizing human genome sequences [15]. The group has created high

quality reference genomes, including the pilot genome NA12878, by utilizing mul-

tiple sequence datasets to correct for any systematic bias and to fill in sequence

gaps using pooled data [16] [17]. Various data sets, sequencing technologies, and

variant callers [16] were used to identify any high-confidence variant calls, which

are variants that has been tested rigorously and have been identified as true vari-

ants [15]. NA12878 is the best-characterized and most-used reference sample for

validating other human genome sequences, and was used as a reference genome in

this study.
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1.6 Sequence Read Archive

The Sequence Read Archive (SRA) is a database for housing publicly available

NGS data, hosted by the National Center for Biotechnology Information (NCBI).

For example, NA12878 can be found in SRA. Since its release in 2009, SRA has

accumulated 9 million records, with a broad variety of attributes [18]. Metadata

filters can also be used to find specific datasets for a researcher’s needs, such as

sample type, library layout, platform used, and experimental parameters [19].

1.7 Whole Genome Sequencing and Whole Exome Sequencing

Applications of NGS methods have skyrocketed with the advancement of targeted

sequencing techniques, such as Whole Genome Sequencing (WGS) and Whole

Exome Sequencing (WES). WGS determines the entire genome’s sequence whereas

WES only examines the exome regions of the genome, the coding regions that are

transcribed and translated into proteins. Exomes only compose of 2% of the entire

genome [20]. Although there are advantages to both approaches, the differences

between them are large enough to impact diagnostic decisions. These differences

remain a source of debate when determining which technique to use.

WGS provides uniform genome-wide coverage, but tends to be expensive and

has a low depth of read coverage. The depth of read coverage refers to the number

of sequencing reads aligned at a particular locus against the reference genome

[21]. A low depth of read coverage provides lower confidence in calling variants.

In contrast, WES is more cost-effective and provides higher depth of read coverage

[21]. The higher read depth allows for higher confidence [20]. Figure 2 highlights

the WES process of extracting exons from double-stranded DNA, also known as

target enrichment [22]. Once target enrichment is completed, sequencing of the

processed DNA occurs [22]. ClinVar is a publicly available database that reports

information on germline and somatic variants and their genomic location [23].

Barbitoff, et al. found that more than 80% of variants reported in ClinVar were

5



from the exons, protein coding regions of the genome [24] and that many genetic

mutations originate from these regions. Thus, WES was chosen for characterizing

variants in this project.

Figure 2: Whole Exome Sequencing Workflow adapted from [2]

1.8 Current Study

The primary goal of this project was to train machine learning models to identify

and distinguish between true variants and artifacts. NGS errors were evaluated by

using multiple Whole Exome Sequence datasets (WES) from the SRA database.

The project aimed to utilize bioinformatics tools to identify these NGS artifactual

variants, to train and test machine learning models for distinguishing between
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these artifactual variants, and to validate the accuracy of the models by comparing

the results with an NGS reference dataset. Additionally, this project aimed to

investigate the predictive power of various features produced by variant calling

software, to determine which sets of features are sufficient to identify artifacts in

practice.

2 Methods and Materials

2.1 Bioinformatics Pipeline

Whole Exome sequencing (WES) datasets from NCBI were analyzed using the

bioinformatics pipeline developed for this project as illustrated in Figure 3 to

identify single nucleotide variants (SNVs). These SNVs were compared against

the gold standard Genome in a Bottle (GIAB) truth set to determine false positive

and false negative SNV calls [25] in human sequences.

SRA 
Database

Quality Control and Trimming

Quality Check
FASTQC

Trim Adapters / Bad Reads
Trimmomatic 

2 

3

Quality Check
Post Trimming

FASTQC

4

SRA File Download

FastQ 
Pair 1

FastQ 
Pair 2

1 Pair 1
 filtered seq

Pair 2 
filtered seq

Alignment

Alignment
BWA

5

Paired Alignment 
SAM File

Conversion
SAMTools 6

BAM Sorting and 
Indexing

Remove Duplicates
Picard

SAM to BAM

Variant Calling

Variant Calling 
on Dataset

VarDict

7

Variant Preprocessing
BEDTools 8

Remove non-covered reference 
variants

BEDTools Intersect

Sort Dataset BED file 
BEDTools Sort

Use Target Exome BED file

VarDict Output
.vcf file
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Use Machine 
Learning Pipeline 

developed in Jupyter 
Notebook

9

Figure 3: Overview of Bioinformatics Pipeline
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2.1.1 Sequence Download and Conversion

The bioinformatics pipeline begins with downloading sequencing data from the

SRA database by using the ‘prefetch’ function from SRA toolkit [26]. Sequence

files were downloaded in the compressed SRA format, and then decompressed [19].

The raw sequencing data were then converted into the FASTQ file format using

the ‘fasterq-dump’ function from SRA toolkit [19]. FASTQ is a text-based format

for storing nucleotide sequences and their corresponding quality scores.

2.1.2 Quality Control

The per base sequence quality of the data were then evaluated using FASTQC to

highlight any potential problems in the reads [27]. Problems could either origi-

nate in the sequencer or in the starting genomic library materials. FASTQC is

a tool developed by Simon Andrews of Babraham Bioinformatics and commonly

used to provide an overview of quality control metrics for raw NGS data [27].

FASTQC’s final output is a summary report that highlights any areas where the

library appears unusual.

2.1.3 Adapter Trimming

Sequencing adapters were trimmed from the ends of sequencing reads using Trim-

momatic, a tool developed by A. Bolger [28]. During the NGS library preparation

step, adapter sequences are ligated to both ends of the DNA fragments of interest

in order for the DNA to bind to the flow cell [29]. To recover the target DNA

sequence, it is important to remove adapter sequences since they can interfere

with the downstream analysis, such as alignment to reads [30] [31].

FASTQC was run again to ensure base call quality was satisfactory and that

the adapters were removed.

An example of a per base sequence quality graph from a FASTQC report is

shown in Figure 4. This FASTQC report was generated after Trimmomatic was

run to remove adapter reads. The sequence quality report showed all good quality

8



base calls, except for a few base calls slightly dropping towards the end of the

read. However, this was expected as the majority of the base call quality on most

platforms degrade overtime as the run progresses.

Figure 4: FASTQC Report Per base sequence quality for SRR2106342

2.1.4 Mapping to Reference Genome

The alignment step indicates which regions of the genome the read likely originated

from [32]. This enables the reads to be assigned to a specific location in the

genome. Each dataset used the hg38 assembly, Homo sapiens (human) genome

assembly GRCh38, as the reference genome. During NGS runs, many short reads,

or DNA fragments, are generated. These sequencing reads were aligned using the

Burrows-Wheeler Aligner (BWA) [33] to hg38.

2.1.5 Removing Duplicates

After the alignment step, duplicate reads were removed using Picard’s MarkDu-

plicates tool [34]. This tool removes PCR duplicate reads, which results in a more

accurate read depth for the variants.

9



2.1.6 Variant Calling

Variant calling is the process of detecting locations where the reads differ from

the reference genome with high confidence [35]. Variant calling was done using

VardictJava [36], a versatile variant caller for DNA sequencing data. It compares

aligned reads against the human reference genome, hg38. VardictJava calls SNVs,

indels, and other complex variants and also detects differences in somatic and loss-

of-heterozygosity variants between paired samples [37]. Variants are stored in VCF

files. Any differences between the reference genome and the newly constructed

sequence are labeled as variants.

Allele frequency refers to the frequency of a gene variant in a population [38].

The allele frequency threshold passed to VarDictJava was 0.01. This low value

was chosen so that true variants and sequencing artifacts are included in the final

VCF output, which would be used for training models.

2.1.7 Variant Filtering

Several variant filtering steps were implemented to ensure that variants called

from VarDictJava referred to the appropriate high-confidence regions and exome

regions. The diagram in Figure 5 illustrates the overlapping regions between SNVs

identified from VarDictJava or GIAB high-confidence regions and the specific tar-

get exome capture region.

Many labs and universities use capture kits to perform whole exome sequencing.

Because these various capture kits all contain their own specifications, a BED file

is critical for specifying the region of interest. The BED file contains regions that

indicate where the alignments are expected based on the specific target capture kit

[39]. Using specific target exome BED files is essential as there are many different

types of exome sequencing solutions, which can range wildly in size and exclusion

of various regions. Using the correct exome bed file associated with each dataset

ensures that the compared variants from the dataset and GIAB come from the

same regions.

10



A package called BEDTools developed by A. Quinlan was used to identify

the intersection between variants identified by VarDict in the SRA data and the

target exome BED file, or GIAB high-confidence regions against the target exome

BED file. BEDTools incorporates the genome-binning algorithm used by UCSC

Genome Browser [40]. The genome-binning algorithm uses clustering approaches

to group reads or contigs into “bins” that will then be assigned to a genome [40].

This feature accelerates the search for overlapping features [41].

GIAB has identified a set of “high-confidence” variant calls and regions [42].

Outside the high-confidence regions, the accuracy of variant calling is likely to

be lower, so benchmarking against high-confidence calls will likely have higher

accuracy [42]. Variants from the SRA datasets and GIAB high-confidence variant

calls were compared against the target exome BED file to match the appropriate

exome regions.

VCF Files 
(derived from GIAB or 

SRA Dataset)

Target Exome Bed File

Variants 
from Targeted Regions

GIAB High-Confidence 
Regions

Reference

Figure 5: Identifying variants from targeted exome regions

Table 1 shows the appropriate target BED file was used for each SRA dataset.

Both SRA record and the target BED file are hyperlinked in the table.
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SRA Record ID Exome Bed File Type
SRR14724463 Illumina TruSeq DNA Exome
SRR14724473 IDT Exome Targets
SRR14724493 Illumina TruSeq DNA Exome
SRR14724503 IDT Exome Targets
ERR1905890 Agilent SureSelect Human All Exon Kit V5
ERR1905889 Agilent SureSelect Human All Exon Kit V5
SRR2106344 Illumina Nextera Rapid Capture Target
SRR2106342 Agilent SureSelectv5 + UTR Target Enrichment
SRR1611184 SeqCap EZ Exome Capture Targets
SRR1611183 SeqCap EZ Exome Capture Targets
SRR1611182 SeqCap EZ Exome Capture Targets
SRR1611181 SeqCap EZ Exome Capture Targets
SRR1611180 SeqCap EZ Exome Capture Targets
SRR1611179 SeqCap EZ Exome Capture Targets
SRR1611178 SeqCap EZ Exome Capture Targets
SRR504510 ARUP SeqCap EZ Exome

Table 1: SRA Record and their Exome Targeted Regions

2.2 Artifact Identification

2.2.1 Differentiating between Artifact Types

The resulting dataset with all the SRA datasets combined from Table 1 contains

the intersected variant calls from GIAB high-confidence variants, and the sequence

dataset from the SRA record. The pipeline for this project categorized the different

types of artifacts by merging the GIAB and SRA VCF files and indexing on

‘CHROM’, chromosome number, and ‘POS’, position. The sequencing artifacts

were categorized as follows:

1. Case 1: Matching variants called in both the SRA .vcf file and the GIAB .vcf
file at the same locus were considered a true variant and assumed to not be
artifacts.

2. Case 2: Different variants called in both the SRA .vcf file and the GIAB .vcf
file at the same locus were assumed to be artifacts.

3. Case 3: Variants in the GIAB .vcf file not called in SRA .vcf files were assumed
to be artifacts, but were not modeled in this project so far. The reason that
this group of artifacts are not modeled in this project will be discussed in the
discussion section of this report.

4. Case 4: SRA variant calls not present in the GIAB .vcf file were also assumed
to be artifacts.

The four types of artifacts are summarized in Table 2.
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Table 2: Description of Artifact Types
GIAB Sequence Dataset Label as:
Variant Present Variant Present FALSE (not an artifact)
Variant Present Different Variant Present in the same locus as GIAB TRUE (an artifact)
Variant Present Variant Not Present TRUE (an artifact)
Variant Not Present Variant Present TRUE (an artifact)

The counts of each artifact case type were reported in Table 3 below for each

of the SRA runs.

Artifacts Statistics for each SRA Run
Case 1 Case 2 Case 3 Case 4 Total No. of Artifacts

S
R

A
R

u
n

s

SRR14724463 24259 2 1601 102031 127893
SRR14724473 16129 0 1295 55813 73237
SRR14724493 24151 1 1740 89054 114946
SRR14724503 16093 1 1330 58612 76036
ERR1905890 17035 2 1124 37654 55815
ERR1905889 17087 0 1074 43938 62099
SRR2106344 24236 0 1626 240189 266051
SRR2106342 49106 1 2595 95916 147618
SRR1611184 38522 0 3031 46890 88443
SRR1611183 38834 1 2718 52682 94235
SRR1611182 38789 1 2763 55423 96976
SRR1611181 38794 1 2758 52300 93853
SRR1611180 38347 3 3203 48597 90150
SRR1611179 38831 1 2721 53396 94949
SRR1611178 38838 0 2715 53545 95098
SRR504510 16730 0 2067 38082 56879

Table 3: Counts for each Artifact Case Type

The average counts of each artifact type are displayed in Figure 6.
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Figure 6: Percentages of each type of variant in the training data
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2.2.2 Artifact Investigation

The heatmap shown in Figure 7 displays the number of SNV substitutions be-

tween ‘REF’, the nucleotide from the reference genome, and ‘ALT’, the variant

nucleotide, among the artifacts in the training data. It shows which bases are

most likely to be switched to other bases.

Figure 7: Frequencies of Sequencing Artifacts

2.3 Machine Learning Pipeline

Figure 8 contains an illustrated overview of the machine learning pipeline. After

artifacts were identified and filtered through the bioinformatics pipeline they were

imported into a Python notebook for data exploration. Following that, machine

learning models were built to classify between true variants and artifacts. Major

libraries used included Pandas [43] for data processing and exploration, Matplotlib

[44] and Seaborn [45] for visualization, and Scikit-Learn [46] for machine learning

and preprocessing.
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Figure 8: Overview of Machine Learning Pipeline

2.3.1 Feature Extraction

VCF files were parsed into a Pandas dataframe to be used in the machine learning

pipeline. This was done by reading each VCF file as a tab-delimited file. Because

VarDict contained extra data about each variant, it was necessary to split up the

‘INFO’ column into several sub-columns. Variant files associated with GIAB and

SRR respectively were parsed. After parsing was complete, each dataframe was

filtered to only include SNVs. Indels and other multi-nucleotide variants (MNVs)

were excluded.

2.3.2 Data Exploration and Feature Selection

Data exploration was performed to provide insights on the dataset, which could

then inspire subsequent feature selection for the model. Selecting good features is

critical for modeling the data. For instance, it could potentially reduce overfitting,

improve accuracy, and reduce training time.

All the categorical and numerical features were examined from the VarDict .vcf

file and are found in the Appendix, in Table 11.

Plots were also made to visualize the data. To determine which features should

be included, histograms and bar graphs were plotted to identify the data distribu-
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tion and other patterns. Some features, such as AF (allele frequency) and HIAF

(high quality bases allele frequency) appear to have good separation. Others did

not appear to obviously separate the data, some had no variance at all, or some

contained mostly null values.

Figure 9: Histograms of Selected Features

2.3.3 Preprocessing prior to Modeling

After feature selection was completed, these were the features used in the model.

Table 11 in the Appendix provides the descriptions of these features in more detail.

Table 4: Features Used in the Model
Type of Feature Names of Features
Categorical ALT, REF, BIAS, FORMAT, LongMSI, MSI12, NM5.25,

PASS, Q10, REFBIAS, VARBIAS, p8, pSTD
Numerical ADJAF, AF, DP, DUPRATE, HIAF, HICNT, HICOV, MQ, MSI,

MSILEN, NM, ODDRATIO, PMEAN, PSTD, QSTD, QUAL,
SBF, SHIFT3, SN, SPANPAIR, SPLITREAD, VD
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Many real world datasets contain missing values. However, most Machine

Learning libraries presume all values are present. To mitigate this, missing val-

ues were usually imputed. However, imputation was not needed for this dataset

because all features, except for ‘SVLEN’ and ‘SVTYPE’, had no missing values.

‘SVLEN’ and ‘SVTYPE’ were also discovered to have almost all missing data.

Therefore, those two features were dropped from the dataset.

One-hot encoding was also used to translate categorical features into a numeric

format compatible with the machine learning algorithms. For a categorical variable

of k categories, one-hot encoding assigns each example a length-k vector of mostly

zeroes, where a single element is set to one according to the category. This is

necessary because many machine learning algorithms are only capable of handling

numerical data.

StandardScaler was also applied to the numerical features. Standard scaling

is used to make features of different magnitudes and variances more comparable to

each other [47]. The data was transformed such that its distribution had a mean

value of 0 and standard deviation of 1.

Both numerical and categorical pipelines were then joined to create the X fea-

tures, and the artifact/no-artifact column was used as the y-labels.

2.3.4 Testing Machine Learning Methods

Decision Tree, Random forest, SGD classifier, and Logistic Regression models

were used to model the data. These were picked because they perform the best

on large-scale data [48]. Balanced class weighting was applied to all models in

order to reduce bias towards one prediction over another. Variants belonging to

Case 1 were given a label of ‘0’ and artifacts belonging to Case 2 and 4 were

given a label of ‘1’. Because artifacts were shown to be much more common than

non-artifacts, a model that always chose “ARTIFACT” would be right most of

the time. Therefore, it was necessary to weight artifacts lower than non-artifacts

when training models.
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All models were trained and evaluated using 3-fold cross-validation on the en-

tire dataset. Accuracy, precision, and recall were calculated from cross-validation

results.

3 Results

3.1 Data Exploration

Once all the dataframes from each SRA dataset were concatenated, the whole

dataset was further evaluated for optimal feature selection. As shown previously in

Figure 9, histograms were plotted to visually inspect which features were separable

for training.

Once those features were evaluated from visually inspecting the histograms, all

categorical and numerical features were also verified by compiling a list of the top

important features. 1000 times, 3 random features were selected, and a random

forest model was trained on the chosen features. The average accuracy of each

model containing that feature was reported in Figure 10. Accuracy was also shown

to decrease slightly each time a feature was removed. This figure informs us which

features or attributes are the most important for the model.

As shown in Figure 10, ‘AF’ or allele frequency was the most important at-

tribute. This could be verified since it was also the most separable feature from

the histogram analysis. The top 4 features with approximately 98%-99% are ‘AF’,

‘HIAF’, ‘HICNT’, ‘VARBIAS’, and ‘VD’. These results also corroborate with our

histograms, since ‘AF’ and ‘HICNT’ showed highly separable features.
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Figure 10: Relative Importance of Model Features
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3.2 Performance Evaluation of Modeling Artifacts

3-fold cross-validation was used for assessing the models [49]. K=3 was chosen

to ensure that each testing split had enough samples to accurately represent the

distribution of the whole dataset. In addition, a higher number of folds would

have led to unmanageably long computation time. Cross-validation was used to

detect overfitting and other variances [49].

Confusion matrices were built using Scikit-Learn’s packages. Classification met-

rics, such as precision and recall, and accuracy, can be calculated from a confusion

matrix plot [50].

Precision and recall are useful indicators of prediction success, especially when

classes are unbalanced. Precision measures the proportion of positive identifica-

tions that were actually correct. It is represented mathematically as the number

of true positives over the total positive test instances [51]. Recall evaluates the

proportion of actual positives that were identified correctly. It is represented math-

ematically as the number of true positives over the number of true positives plus

false negatives [51]. A perfect classifier has precision and recall equal to 1.0.

In the context of this project, precision and recall are defined as:

Precision :=
True, Predicted Artifacts

Predicted Artifacts
Recall :=

True, Predicted Artifacts

True Artifacts

Lastly, ROC curves, AUC scores, and precision-recall curves were calculated

and reported as well. The ROC curve is a probability curve and AUC represents

the degree of separability between classes [52]. A high AUC score is indicative of

how well the model can distinguish between classes. An AUC score of 1.0 means

that the model is able to distinguish between classes perfectly. The ROC curve is

plotted with the True Positive Rate (TPR) against the False Positive Rate (FPR).

TPR and FPR are defined as:

TPR :=
True Positives

True Positives + False Negatives
FPR :=

False Positives

True Negatives + False Positives
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3.2.1 Decision Tree Model

A Decision Tree model resembles a tree structure, in which the nodes represent

some threshold of an attribute and the branches represent the whether a given

sample satisfies this threshold [53].

The code to compile a decision tree model is shown in the Appendix in Figure

21. The decision tree model had an accuracy of 99.7%, with a precision score of

99.9%, and a recall score of 99.6%. The confusion matrix is shown in Figure 11,

along with the reported accuracy, precision, and recall scores in Table 5.
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Figure 11: Decision Tree Confusion Matrix

Metric Score

Cross-Validation Scores 99.7%
99.7%
99.7%

Accuracy 99.7%
Precision 99.9%
Recall 98.6%

Table 5: Decision Tree Classification Results

3.2.2 Random Forest Model

The Random Forest algorithm is composed of many small decision trees, each

containing its own prediction. The model then uses averaging to combine all the
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predictions from the decision trees into a more accurate prediction [54].

The code to compile a random forest model is shown in the Appendix in Figure

22. The random forest model had an accuracy of 98.7%, with a precision score of

99.8%, and a recall score of 98.8%. The confusion matrix is shown in Figure 12,

along with the reported accuracy, precision, and recall scores in Table 6.
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Figure 12: Random Forest Confusion Matrix

Metric Score

Cross-Validation Scores 98.9%
98.9%
98.2%

Accuracy 98.7%
Precision 99.8%
Recall 98.8%

Table 6: Random Forest Classification Results

3.2.3 Logistic Regression Model

The Logistic Regression algorithm is a binary classification algorithm that assigns

weights to features. The sigmoid function is used to convert predicted values to

probabilities [55].

The code to compile a logistic regression model is shown in the Appendix in

Figure 23. The logistic regression model had an accuracy of 99.8%, with a precision

score of 99.9% and a recall score of 99.8%. The confusion matrix is shown in Figure
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13, along with the reported accuracy, precision, and recall scores in Table 7.
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Figure 13: Logistic Regression Confusion Matrix

Metric Score

Cross-Validation Scores 99.8%
99.8%
99.8%

Accuracy 98.8%
Precision 99.9%
Recall 99.8%

Table 7: Logistic Regression Classification Results

3.2.4 SGD Classifier Model

The SGD Classifier is another classification algorithm that minimizes loss of func-

tion using a fixed number of iterations, which makes it very fast to compute. It is

known for operating on large datasets [56].

The code to compile an SGD classifier model is shown in the Appendix in Figure

24. The SGD Classifier model had an accuracy of 99.8%, with a precision score

of 99.9% and a recall score of 99.8%. The confusion matrix is shown in Figure 14,

along with the reported accuracy, precision, and recall scores in Table 8.
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Figure 14: SGD Classifier Confusion Matrix

Metric Score

Cross-Validation Scores 99.8%
99.8%
99.8%

Cross-Validation Mean Score 99.8%
Precision 99.9%
Recall 99.8%

Table 8: SGD Classifier Classification Results

3.2.5 Summary

A summary of each model’s results are listed in Table 9.

Classification Statistics for each Model
Precision Recall Accuracy

M
o
d

el

Decision Tree 99.7% 99.9% 99.6%
Random Forest 98.6% 99.8% 98.6%

Logistic Regression 99.8% 99.9% 99.8%
SGD Classifier 99.8% 99.9% 99.8%

Table 9: Classification Modeling Summary Results

3.2.6 ROC Curve and Precision-Recall Curve

The ROC curve comparison for logistic regression, random forest, and SGD clas-

sifier is shown in Figure 15. The ROC curve is a probability curve for binary

classification problems and plots True Positive Rate (TPR) against False Posi-
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tive Rate (FPR) [57]. The area under the curve (AUC) measures the ability of

a classifier to distinguish between classes [57]. The higher the AUC value, the

more robust the model is at predicting between classes. If the AUC value is 1, the

classifier is able to distinguish between classes perfectly.

The Precision-Recall curve shows the trade-off between precision and recall.

The closer the precision and recall values are to 1.0, the higher the accuracy is

[51]. High precision scores indicate that the classifier is returning more accurate

results and high recall scores indicate that the classifier is returning positive results

as a majority [51].

Figure 15: ROC Curve Comparison

All 4 curves have an AUC of 1.00, indicating that all 3 models are able to

accurately predict whether a variant is an artifact or a non-artifact.
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Figure 16: Precision-Recall Curve

The random forest model shows a high precision and a high recall value, indi-

cating that the results are highly accurate.

3.3 Experiments

3.3.1 Feature Removal

The high performance of the models prompted further investigation into feature

importance, to determine which features contributed the most predictive power.

To test the predictive ability of each feature, every feature was removed in se-

quence, in order of calculated feature importance, to see how well the random

forest model can predict between classes. As shown in Figure 17 and Table 10, ac-

curacy, precision, recall, still remain high and only decreases slightly, from 98.7%

to 96.7%. Removing the top five features do not have a significant impact on

the model performance. However, as more features are removed, accuracy and

recall decrease while precision remains high. This phenomenon is also reflected in

Figure 17. The curves of each model trend upward more than they trend to the

right. The results showed that a combination of less-predictive features can still
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differentiate artifacts with accuracy of 75% to 90%.

Figure 17: ROC Curve Comparison for Feature Removal

3.3.2 Correlation Among High Performing Features

Previous experiments led to the discovery that ‘AF’, ‘HIAF’, ‘VD’, and ‘HICNT’

are each able to separate artifacts with a high degree of accuracy. A correlation

was plotted for these four features in order to understand whether these features

all directly or indirectly coded for the same thing. Figure 18 is a pair plot that

contains two figures, the histogram and the scatter plot. The histogram on the
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Number Feature Set Accuracy Precision Recall

All Features 98.7% 99.7% 99.8%
Previous Row Minus ‘AF’ 98.8% 99.8% 99.6%
Previous Row Minus ‘HIAF’ 98.2% 99.7% 99.1%
Previous Row Minus ‘VD’ 96.7% 99.3% 94.9%
Previous Row Minus ‘HICNT’ 94.0% 99.3% 93.0%
Previous Row Minus ‘SN’ 89.9% 99.1% 86.2%
Previous Row Minus ‘ADJAF’ 86.8% 98.9% 83.0%
Previous Row Minus ‘PMEAN’ 82.6% 99.3% 82.3%
Previous Row Minus ‘QUAL’ 83.9% 98.9% 80.5%
Previous Row Minus ‘VARBIAS’ 79.8% 95.8% 76.5%
Previous Row Minus ‘NM’ 78.1% 98.6% 67.8%
Previous Row Minus ‘BIAS’ 78.1% 98.5% 65.2%
Previous Row Minus ‘HICOV’ 70.2% 97.9% 72.5%
Previous Row Minus ‘DP’ 74.8% 98.2% 62.8%
Previous Row Minus ‘REFBIAS’ 77.4% 98.1% 75.3%
Previous Row Minus ‘SBF’ 81.9% 97.4% 80.5%
Previous Row Minus ‘ALT’ 76.3% 96.9% 74.2%
Previous Row Minus ‘REF’ 77.1% 96.7% 73.5%
Previous Row Minus ‘PSTD’ 77.7% 96.4% 74.6%
Previous Row Minus ‘SHIFT3’ 77.8% 96.2% 75.4%
Previous Row Minus ‘SVTYPE’ 77.0% 96.3% 75.1%
Previous Row Minus ‘SPANPAIR’ 77.7% 96.2% 75.3%
Previous Row Minus ‘MQ’ 77.8% 96.2% 75.3%
Previous Row Minus ‘SPLITREAD’ 77.7% 96.2% 75.2%
Previous Row Minus ‘MSILEN’ 77.9% 96.1% 75.5%
Previous Row Minus ‘ODDRATIO’ 60.3% 98.7% 50.4%
Previous Row Minus ‘MSI12’ 60.3% 98.7% 50.4%
Previous Row Minus ‘QSTD’ 45.5% 98.2% 31.3%
Previous Row Minus ‘MSI’ 45.5% 98.2% 31.3%
Previous Row Minus ‘PASS’ 45.5% 98.2% 31.2%
Previous Row Minus ‘SVLEN’ 45.5% 98.2% 31.2%
Previous Row Minus ‘Q10’ 43.1% 99.7% 27.6%
Previous Row Minus ‘pSTD’ 24.8% 98.1% 3.9%
Previous Row Minus ‘FORMAT’ 24.8% 98.1% 3.9%
Previous Row Minus ‘p8’ 22.3% 93.8% 0.6%

Table 10: Feature Removal Statistics
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diagonal shows the distribution of a single variable, while the scatter plots show

the relationship between the two variables. Orange points are artifacts and blue

points are true variants.

It can be seen that ‘AF’ and ‘HIAF’ show a positive correlation, as seen in the

second graph on the top row, and the graph on the second row, in the far left

position. They are very similar since they almost align with each other. All the

false artifacts also cluster together in lower ‘AF’ value range, from 0 to approx-

imately 0.3. It can also be seen that ‘VD’ and ‘HICNT’ show a strong positive

correlation, as seen in the graph on the third row, far right, and the third graph

on the bottom row.

The other features do not show any obvious correlations. They do follow the

trend that false artifacts tend to be associated with low values of the feature.
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Figure 18: Correlation Plot between Features ‘AF’, ‘HIAF’, ‘VD’, and ‘HICNT’
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3.3.3 Determining Optimal AF Threshold

Because ‘AF’ was discovered to be the most predictive feature, and it is also

an important parameter for variant callers, graphs were plotted to determine an

optimal range of ‘AF’ values.

To determine optimal ‘AF’ values for distinguishing artifacts, the following rule

was used: “For a given threshold t, classify a variant as a non-artifact if it has

‘AF’ greater than t”. This rule produces a model where accuracy is determined

by the percentage of correctly-classified variants, and where the ‘positive’ outcome

in precision and recall calculations is a non-artifactual variant. It is worth noting

that this is the opposite of the terminology used in the main model-training task,

where artifacts are the positive class.

To identify regions of interest, the value of t was varied between 0 and 1, and

accuracy, precision, and recall were plotted as a function of t. These plots can be

seen in Figure 19 and Figure 20. The value of t that optimizes classification of

artifacts is 0.224 (shown with a dotted red line). The accuracy is at least 99% for

values of t between 0.1 and 0.35. It can also be seen that precision (the fraction

of non-artifacts in the output) is very low before t = 0.1, and that the recall (the

fraction of not artifacts that make it to the output) falls off sharply after t = 0.35.

There is also a plateau in recall for values of t between 06 and 0.95.
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Figure 19: Accuracy, Precision, and Recall Curves for AF
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Figure 20: Optimal AF Threshold
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4 Discussion

4.1 Summary and Conclusion

A total of 15 WES datasets were chosen from the SRA database as sources of

artifacts. Each dataset was processed with the bioinformatics pipeline to produce

sets of variants, some of which were artifacts introduced during the NGS process.

These variants files were compared against ground-truth variants from GIAB to

produce a labeled training set of true and artifactual variants. Machine learning

models were then trained to differentiate between true and artifactual variants.

All 4 models showed a high classification accuracy, averaging around 98%, as

well as high precision and recall scores around 99%. Further experiments were

conducted to analyze the impact of individual features on model accuracy. The

most impactful feature was ‘AF’ (Allele Frequency), with it alone being able to

correctly classify over 99% of the training set. Given that ‘AF’ is an important

parameter used in variant callers, an investigation was conducted to recommend

reasonable values. It was found that an ‘AF’ value of about 0.22 was best for

distinguishing artifacts directly in the variant caller.

4.2 Artifact Investigation

The number of SNV substitutions among the artifacts in the training data be-

tween ‘REF’, the nucleotide from the reference genome, and ‘ALT’, the variant

nucleotide, are shown in Figure 7. C>A and G>T base substitutions are the most

prevalent, ranging from approximately 230,000 to 310,000 substitutions. These

results follow similar findings as Costello, et al. [13]. Costello, et al. discovered

that C>A and G>T base substitutions are typically found in low allelic fractions

in targeted capture data [13]. These artifacts were possibly introduced through

DNA shearing protocols that are a result of oxidation in DNA [13].
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4.3 Model Selection

Supervised learning algorithms were chosen for this project since labels were cre-

ated to classify between artifacts and non-artifacts. The decision tree, random

forest, logistic regression, and SGD classifier models were selected since they fall

under the supervised learning category.

A decision tree uses a tree-like model that consists of nodes depicting the de-

cisions and each decision’s possible outcomes. Decision trees inherently performs

feature selection and can handle both numerical and categorical data [58]. They

also do not require much data preparation. However, decision trees have high

variance as any small variations in the data will result in a different tree being

generated [58]. At times, decision trees can create complex trees that do not

generalize the data well, which can lead to overfitting as well [58].

Similarly, the random forest algorithm consists of multiple decision trees that

work together to create a prediction [59]. Random forest often reduces overfitting

and has high accuracy. Despite these advantages, random forest has some draw-

backs. Random forest requires a lot of computational power since it is compiling

many trees’ outputs together [59]. Due to this larger amount of computational

power, training time will also be increased.

Logistic regression is a classification algorithm used to describe the relationship

between an independent variable and a binary dependent variable [55]. This model

is often considered to be fast and easy to implement. For simpler data sets, the

logistic regression algorithm performs well when the dataset is linearly separable

[55]. However, the model does not handle categorical variables as well it as it

handles continuous variables. The number of observations and features should

correlate, otherwise it can lead to overfitting.

Stochastic Gradient Descent (SGD) is another classification algorithm that is

similar to the gradient descent. Instead of calculating the loss of function from

all the data points, SGD calculates only the loss of function from one data point,

which makes the algorithm operate much faster [56]. SGD is good for applying to
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large-scale data, including training examples and features [56].

Due to the many advantages and disadvantages of each model, all 4 were se-

lected and tested for comparison.

Though all models had similar performance on the main modelling task, it

was decided that exploratory modelling would be done using the Random Forest

model. It was chosen because it can be parameterized to control bias and variance

[59]. It is also appropriate for modelling the relationships between features, as

well as handling categorical data gracefully [59]. In contrast, simpler models like

logistic regression may struggle to model the relationship between pairs of features

[55].

4.4 Modeling Results Analysis

Review of the results showed that the models were able to accurately classify

true and artifactual variants. All 4 models performed similarly, each achieving

accuracy, precision, and recall in the 98%-100% range.

Care was taken to ensure the generalizability of the models, and to avoid over-

fitting. Towards this end, 3-fold cross validation was used. 3-fold was chosen as

a trade-off between accuracy, computational power, and diversity in the testing

split. With the k-fold cross-validation technique, the training data is split into

k randomized subsets. For each of the k subsets, the model is trained on the

other k−1 subsets before being tested on this subset. The mean accuracy score is

considered more robust than that of a single train-test split [49], and the variance

in the accuracy scores can reveal problems with generalization and overfitting.

It was found that for each model, there was very little variance in accuracy

between each of the 3 cross-validation runs. This is evidence that the models

generalize well, and are not subject to overfitting on the training set.
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4.5 Feature Importance Survey

Given that the models were able to achieve high accuracy, an experiment was

conducted to determine the impact of a feature on a model’s ability to classify

variants. 1000 separate Random Forest models were trained on randomized, size-

3 subsets of the available features. Then, each feature was given an importance

score that was the average accuracy of models trained on that feature.

This method for determining feature importance can be seen as a type of fea-

ture ablation study [60], where most features are removed from the model. It

was known when designing this experiment that some features (such as ‘AF’ and

‘HIAF’) were highly correlated, and therefore removing just one of them was not

likely to change model performance. It was decided to use 3 features per run to

minimize the impact of these highly-correlated features.

4.6 High-Power Features

The results of the feature importance survey show that 4 of the features, ‘AF’,

‘HIAF’, ‘VD’, and ‘HICNT’ tend to increase the accuracy of any model training on

them to at least 99%. This raises the question of why these features have such high

predictive power, as well as whether these features are in some way correlated.

It can be explained that ‘AF’, ‘HIAF’, ‘VD’, and ‘HICNT’ have comparable

model performance metrics because the features themselves could be similar in

nature. Since they are similar, eliminating only one of them will not greatly affect

the performance of the model. For instance, ‘AF’ and ‘HIAF’ represent ‘allele

frequency’ and ‘AF using only high quality bases’. It can be deduced that these 2

features contain similar data and perhaps ‘HIAF’ contains a more filtered version

of ‘AF’. ‘VD’ and ‘HICNT’ represent ‘variant depth’ and ‘number of high-quality

reads with the variant’. Since both are related to read coverage and depth, it can

also be deduced that these 2 features contain similar data as well.

As seen in the results from Figure 17 and Table 10, ‘AF’, ‘HIAF’, ‘VD’, and

‘HICNT’ all display little to no decrease as each one of those features were sub-
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sequently removed. It was confirmed in Figure 18 that these features did indeed

have a strong correlation with each other. In the scatter plots of Figure 18,‘AF’

and ‘HIAF’ shows a positive correlation. ‘VD’ and ‘HICNT’ also show a strong

positive correlation. Other combinations of these features do not show any rela-

tionship. These results confirm the hypothesis that these metrics perform similarly

because they contain similar data.

Rare variants are classified as having an allele frequency of < 5% [61]. Since

the likelihood of a true variant found with such a low allele frequency is so rare,

it would make sense that the majority of false artifacts were found in Figure 18

fell in the lower spectrum of allele frequency.

4.7 Testing How Accuracy is Affected by Removing Features

The results of the feature importance survey showed that some features can greatly

increase the accuracy of models that include them. This then leads to a question

of whether a model is capable of identifying artifacts without these high-power

features. To answer this question, another ablation study was run where features

would be successively removed from the model in order of importance score.

Figure 10 shows which features had the most effect on the models. As discussed

previously, ‘AF’, ‘HIAF’, ‘VD’, ‘HICNT’, each have high predictive power. The

model accuracy only decreases slightly when they are removed, dropping from

98.7% to 96.7%. However, when all of them are removed, the accuracy drops to

94%. One interpretation of this is that the remaining features together have suffi-

cient predictive power to achieve over 90% without the most important features.

As more features are removed, the accuracy score does not decrease monoton-

ically. This may be attributed to the probabilistic nature of the Random Forest

classifier. It can also be seen that precision tends to stay high, above 96%, even

as many features are removed. However, it can also be seen that recall tends to

decrease as more features are removed. This phenomenon can also be seen in

Figure 17, where the ROC curves of each model tend to go upwards faster than
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they go right.

One possible interpretation is that there are two types of artifactual vari-

ant - those that are easily identified and those that are clustered with non-

artifactual variants. This situation would lead to high precision (due to the

easily-distinguished artifacts), but low recall (due to the mixing of the variant

types).

Finally, it can be seen that the models do not approach the accuracy of random

classification (about 22%) until nearly all features have been ablated. This means

that most features included in the model have some amount of predictive power.

4.8 AF Threshold Determination

The results of the feature importance survey suggest that ‘AF’ (Allele Frequency)

is the most predictive feature for distinguishing between true and artifactual vari-

ants. This feature is also an important parameter that can be passed directly to

variant callers such as Vardict-Java [36]. For that reason, an investigation was run

to determine optimal values for ‘AF’ for use in variant calling.

Alleles represent an alternative form, or variant, of the gene that is present on

the same genetic locus of the chromosome. Allele frequency refers to the frequency

of a gene variant in a population [38] and is calculated by counting the number of

times an allele is observed in the population and then dividing by the total number

of copies of all the alleles at that specific genetic locus [38]. Allele frequencies show

the genetic diversity of a population. Changes in allele frequency may indicate

that new mutations have been introduced into the population [38].

It was found that an ‘AF’ value of about 0.22 was best for distinguishing arti-

facts directly in the variant caller. The results also suggest a range of appropriate

threshold values for allele frequency, depending on the situation. For example, a

researcher with a low tolerance for artifacts may use a value around 0.4, while one

interested in catching every true variant may use a value around 0.1.
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4.9 Future Research

Future research with incorporating other variant callers in the machine learning

pipeline can be done. Currently, the machine learning pipeline in this project

is optimized for VarDict specifically. It would be beneficial to make this pipeline

robust to process VCF file formats from other variant callers as well. This could be

done to create different parsing functions for each variant caller type that extracts

the features of interest.

Currently, Case 3 artifacts were not included in the models since it is not

possible to train on the absence of data in a model. It would be impossible to

identify these from a VCF file. In order to identify these missing variants, models

would need to be trained directly on the aligned reads rather than on called

variants.

Another area worth exploring is investigating sequencing artifacts in other

species, provided that they have a robust reference genome, such as the one from

Genome in a Bottle.

To gain more confidence in the models’ generalization and real-world predictive

ability, several kinds of validation could be performed. For example, a series of

experiments investigating the optimal number of k in n-fold cross validation can

be performed to ensure higher confidence in accuracy results. Another validation

strategy would be to perform cross validation by reserving entire datasets for

testing.

Additionally, more research can be done in the curation of SRA datasets. This

project has discovered the importance of using the appropriate target exome BED

file for comparing expected regions of alignment between the reference dataset and

the sample dataset. Further application of natural language processing (NLP) can

be used for text classification in order to more easily find the correct text pertaining

to the appropriate target exome BED file.
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5 Appendix

Table 11: Feature Information
Feature Symbol Symbol Name Feature Type

ADJAF Adjusted AF for indels due to local realignment Numerical

AF Allele Frequency Numerical

ALT Alternate non-reference alleles Categorical

BIAS Strand Bias Information Categorical

DP Total depth of coverage Numerical

DUPRATE Duplication Rate Numerical

FORMAT Extensible list of fields describing the sample Categorical

HIAF AF using only high quality bases Numerical

HICNT High quality variant reads Numerical

HICOV High quality total reads Numerical

LongMSI The somatic variant is flanked by long A/T (>=14) Categorical

MQ Mean mapping quality Numerical

MSI Number of Microsatellite Repeats Numerical

MSI12 Variant in MSI region with 12 non-monomer MSI or
13 monomer MSI

Categorical

MSILEN The unit length of MSI in bp Numerical

NM Mean mismatches in reads Numerical

NM5.25 Mean mismatches in reads >= 5.25, thus likely false
positive

Categorical

ODDRATIO Strand bias odd ratio Numerical

p8 Mean Position in Reads Less than 8 Categorical

PASS Passed quality parameters Categorical

PMEAN Mean base position in the reads Numerical

PSTD Position STD in reads Numerical

pSTD Position in Reads has STD of 0 Categorical

Q10 Mean Mapping Quality Below 10 Categorical

QSTD Quality score STD in reads Numerical

QUAL Mean quality score in reads Numerical

REF Reference bases Categorical

REFBIAS Reference depth by strand Categorical

SBF Strand Bias Fisher p-value Numerical

SHIFT3 No. of bases to be shifted to 3’ for deletions due to
alt. alignment

Numerical

SN Signal to Noise. The ratio of high quality bases/low
quality bases

Numerical

SPANPAIR No. of pairs supporting structural variants (SV) Numerical

SPLITREAD No. of split reads supporting structural variants (SV) Numerical

SVLEN The length of SV in bp Numerical

SVTYPE SV type: INV DUP DEL INS FUS Categorical

VARBIAS Variant depth by strand Categorical

VD Variant Depth Numerical

45



from sklearn import tree
def build_decision_tree_classifier():

return tree.DecisionTreeClassifier(
max_depth=3,
class_weight='balanced'

)

Figure 21: Decision Tree Function

from sklearn.ensemble import RandomForestClassifier
def build_rf_classifier():

return RandomForestClassifier(
n_estimators=100,
max_depth=3,
random_state=0,
n_jobs=16,
class_weight='balanced'

)

Figure 22: Random Forest Function

from sklearn.linear_model import LogisticRegression
def build_lr_classifier():

return LogisticRegression(
solver='liblinear',
class_weight='balanced'

)

Figure 23: Logistic Regression Function

from sklearn.linear_model import SGDClassifier
def build_sgd_classifier():

return SGDClassifier(loss="log",
penalty="l2",
max_iter=1000,
tol=1e-5,
class_weight='balanced'

)

Figure 24: SGD Classifier Function
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