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ABSTRACT 

 Cryptography is important for data confidentiality, integrity, and authentication. Public key cryptosystems 

allow for the encryption and decryption of data using two different keys, one that is public and one that is private. 

This is beneficial because there is no need to securely distribute a secret key. However, the development of quantum 

computers implies that many public-key cryptosystems for which security depends on the hardness of solving math 

problems will no longer be secure. It is important to develop systems that have harder math problems which cannot 

be solved by a quantum computer.  

 In this project, two public-key cryptosystems which are candidates for quantum-resistance were 

implemented using Rust. The security of the McEliece system is based on the hardness of decoding a linear code 

which is an NP-hard problem, and the security of the Regev system is based off of the Learning with Errors problem 

which is as hard as several worst-case lattice problems [1], [2]. Tests were run to verify the correctness of the 

implemented systems and experiments were run to analyze the cost of replacing pre-quantum systems with post-

quantum systems. 

Index terms: Cryptography, Post-Quantum, Public-Key 
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1. INTRODUCTION 

 The communication of sensitive information has been an important task since before the digital age. 

Plaintext information that is sent from one party to another through an unsecured channel is easily subject to 

interception and is readable, manipulatable, and forgeable by any malicious party. Forms of cryptography have been 

used since the need first arose and provide a way to encode information so that malicious parties cannot read it, 

tamper with it, or forge it. Today, the need to secure information is even more prevalent and is present in everything 

from mundane applications such as text messaging to highly sensitive satellite communications. In particular, public 

key cryptography can be used for confidentiality by encrypting data with a public key and then sending it so that 

only the holder of the private key can decrypt it. The same system can also be used to verify integrity by sending a 

plaintext data along with a data encrypted with the private key or private key and having them compared at the 

receiving end. Authentication can be achieved by encrypting data with the private key so that anyone with the public 

key will know that only the holder of the private key could have sent it. 

 The security of a public-key cryptosystem depends on the difficulty of its underlying math problem. A 

harder math problem implies a more secure system. The development of quantum computers has meant that the 

difficulty of some of these math problems has become threatened by more powerful computers which can solve the 

problems easily. For example, Shor's algorithm is a quantum algorithm that can solve the factoring problem, which 

RSA is based on, in polynomial time. This will cause problems especially if quantum computers become 

mainstream. Therefore it has become important to develop cryptosystems which have security that holds even under 

attack from a quantum computer. The goal of this project was to investigate and implement some such systems. To 

achieve this, we used Rust to implement two public-key systems which are candidates for quantum-resistance. The 

first was the McEliece public key system in which security is based on the hardness of decoding a linear code which 

is NP-hard [1]. The second was the Regev public key system in which security is based off of the Learning with 

Errors problem which is as hard as several worst-case lattice problems [2]. We then ran experiments on these two 

systems and a library version of RSA, a non-quantum resistant public key system, to compare key size, key 

generation speed, encryption speed, decryption speed, and encrypted message size in pre-quantum versus post-

quantum public key systems. We made graphs and analyzed the cost of replacing current systems with systems 

equipped for the post-quantum future.  

 The report is organized as follows: in Chapter 2 we discuss some related work. In Chapter 3 we explain the 

preliminary work necessary to understand the importance of the project. In Chapter 4 we give the technical 

background of the project. In Chapter 5 we go over the cryptosystem steps. In Chapter 6 we explain our 

implementation of each system. In Chapter 7 we go over an example of each system. In Chapter 8 we show the tests 

we did to make sure each system was correct. In Chapter 9 we go over our experiments. In Chapter 10 we mention 

some challenges, in Chapter 11 we give ideas for future work, and in Chapter 12 we give our conclusion.  
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2. RELATED WORK 

 In [42] Valentijn provides a comprehensive overview of Goppa Codes and their use in the McEliece 

cryptosystem. She provides the mathematical background of linear codes and goes over the steps in creating and 

using the McEliece cryptosystem. She also gives explanations of the security of the system and names several 

attacks. In this project we use her partial examples of key generation, encryption, and decryption as a guideline. In 

[55] Berlekamp provides a summary of Valerii Denisovich Goppa's original work in which he introduces the new 

class of linear noncyclic error-correcting codes, Goppa codes, and proves four important properties about them. In 

[56] Patterson gives his algorithm for the algebraic decoding of Goppa Codes which we use in our McEliece 

decryption implementation. And in [57] Singh gives a thorough report of the mathematical background of linear 

codes, code-based cryptography, the McEliece cryptosystem, and the Niederreiter Cryptosystem, a variant of 

McEliece which can be used for digital signatures.  
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3. PRELIMINARY WORK 

 Before discussing our implementation we explain why our project is important. In this section we discuss 

symmetric keys, the brute-force search, public keys, quantum computers, and post-quantum cryptography. Many of 

our examples in this section come from [9]. 

 

3.1 Symmetric Keys: An Ancient History 

 Four thousand years ago in ancient Egypt, in a cemetery called Beni Hasan, a nobleman was buried by his 

family of powerful monarchs [3]. The tomb of Khnumhotep II drew the eye even in the midst of the magnificent 

necropolis; a courtyard and portico welcomed visitors, and once they were inside, an intricate ceiling curved 

gracefully [4]. Most spectacularly, a painting adorned the walls depicting Asiatic nomadic traders bringing offerings 

to the dead [4]. But the rock around the doorway possessed a unique feature-- its surface was smooth and flat, and it 

bore a fourteen-line inscription [4]. Some believe these hieroglyphs to be the earliest known example of a 

substitution cipher [5, 6, 7].  

 While an ancient tomb may be debatable as the first ever instance of cryptography, many more examples 

crop up throughout history that are less controversial. In 700 BC, over a thousand years after Khnumhotep II, 

Spartan generals used a tool called a scytalae to encrypt messages [5,7]. A strip of paper was wrapped around a 

cylinder and the message was written across the different strips [5,7]. When separated from the cylinder, the letters 

were scrambled, and only the general with an exact copy of the cylinder would be able to recover the message [5,7]. 

Five hundred years later, Polybius, another Greek, devised the Polybius checkerboard to represent a single letter 

with a pair of numbers [8]. Only a party who had the checkerboard could decode the message [8]. One hundred 

years after Polybius, Julius Caesar used the now well-known Caesar Cipher: every letter in a message was 

substituted by the letter some number of places ahead in the alphabet [6,8,9]. What do all of these systems have in 

common? A secret key. 

 The privacy of the covert activities of the Spartans, Polybius, and Julius Caesar depended on their secret 

keys staying secret. If an attacker discovered a secret key, the attacker would be able to read, tamper with, or forge 

any message the attacker desired. It makes sense that the invested parties would want to make discovering the secret 

key as difficult as possible. To accomplish this one might first consider how an attacker would try to find the secret 

key: assuming that all other aspects of the system were secure, such as implementation details and choice of honest 

individuals, the most obvious way to do so would be to guess one key at a time, try deciphering the message, and if 

the results made sense, the key was probably correct. Thus if the attacker is capable of trying all possible keys, the 

attacker is guaranteed to find the right one. This is called a brute-force attack or an exhaustive key search, and the 

number of all possible keys is called the keyspace [9]. The larger the keyspace, the more possibilities there are for 

the secret key, and the longer the attacker has to guess before they find it. Thus the larger the keyspace the higher 

the security of the system. In the case of Julius Caesar, a brute-force attacker would try shifting the letters of the 

message by one through twenty-six places in the alphabet; in the case of Polybius, a brute-force attacker would 

generate all possible checkerboards of numbers; and in the case of the Spartans, a brute-force attacker might go for a 

hike and collect as many different twigs and sticks as they could carry. If the forest was large, the last attacker may 

indeed face the largest keyspace and thus the hardest job. 
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 Forest notwithstanding, we will now take a moment to demonstrate the concept of a keyspace using a 

version of Caesar's cipher, the substitution cipher, as an example [9]. In the simple substitution cipher, each letter 

can be assigned a unique number of places to be shifted by. In other words, each letter of the alphabet can be 

assigned another letter of the alphabet, with each letter having only one letter that maps to it. This equates to a 

permutation of the alphabet: and since there are twenty-six letters available, and if we start at the beginning of the 

alphabet, the number of options for "a" to be mapped to is twenty-six, the number of options for "b" to be mapped to 

is twenty-three, the number of options for "c" to be mapped to is twenty-two, and so on until the number of options 

for "z" to be mapped to is one. This creates 26 ∙ 25 ∙ 24 ∙ … ∙ 1 = 26! ≈ 403291460000000000000000000 ≈ 288 

possible permutations of the alphabet, giving a keyspace of 288. Again assuming that no other attacks besides the 

brute-force search are possible, guessing the key in the time of Julius Caesar would certainly be a task. However, to 

bring the idea of the keyspace to the modern day, first assume that we have a modern 4.0 GHz computer as in [9]. 

Such a computer can test about 250 million≈ 228 keys per second [9]. If we divide 
288 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑘𝑒𝑦𝑠

228 𝑘𝑒𝑦𝑠

𝑠𝑒𝑐𝑜𝑛𝑑

 we get 288𝑘𝑒𝑦𝑠 ∙

1 𝑠𝑒𝑐𝑜𝑛𝑑

228𝑘𝑒𝑦𝑠
=

288

228 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 260𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ≈ 36534658200 years to perform an exhaustive key search over this 

keyspace of size 288. Since we can expect to find the key after searching half of the keyspace [9], using our personal 

computer we can expect to find the key in 18267329100 years, which is certainly infeasible. We will keep the ideas 

of keyspace and brute-force search in mind as we introduce symmetric key systems developed in less ancient 

history. 

 While we might never know whether the hiker ever found a suitable piece of detritus, we can bring our 

discussion into more relevant territory. Systems such as the Caesar Cipher, the Spartan Scytalae, and Polybius' 

Checkerboard continued to be developed into the modern era and are called symmetric ciphers or symmetric key 

cryptosystems because the same key is used for encrypting and decrypting. For example, the One-Time Pad, or OTP, 

was used by Soviet spies in the 1930s to send messages from the United States back to Moscow [9]. The OTP key 

was a random string of bits the same length as the message; encrypting and decrypting was accomplished by a 

simple XOR, meaning that the keyspace was exponential in the size of the message [9]. Another example is the 

codebook cipher, which involved a dictionary that mapped plaintext words to ciphertext words and was used in 

World War I. Only a party with the same codebook could decrypt the message, making the keyspace equal to all 

possible codebooks.  

 We must also start to consider other attacks on the systems besides the brute-force attack. All symmetric 

key systems employ either confusion or diffusion or both in order to work [9]. Confusion hides the relationship 

between the plaintext and the ciphertext, while diffusion distributes the plaintext statistics throughout the ciphertext 

[9]. The Caesar Cipher employed confusion, while the Spartans used diffusion. These two concepts are as relevant 

today as they were in the time of Julius Caesar; this is because other than the keyspace, the security of a symmetric 

key system depends on the effectiveness of the confusion and diffusion. We say that a cryptosystem is secure if the 

best-known attack requires as much work as an exhaustive key search [9]. So, if the confusion and diffusion 

mechanisms are not sufficient, their weaknesses may provide an easier way than the exhaustive key search to 

discover the plaintext, the key, or both [9]. This brings us to DES, which was a symmetric cipher standardized in 
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1977. DES is a block cipher, more specifically, a Feistel cipher, in which security depends on a function called a 

round function that is applied multiple times to a block of plaintext with the secret key and the previous output of the 

function as input. Most importantly, the round function in DES was so effective that no attack was developed that 

was faster than an exhaustive key search [9]. DES was retired in 2005 since it had a small keyspace that had become 

vulnerable to brute-force attacks by the increasing capabilities of commodity computers. Two more symmetric key 

systems that are still used today followed in the footsteps of DES: Triple DES was invented in 1981 and AES was 

invented in 1997, with key sizes of 112 and 128, 192, or 256 bits respectively [9]. Most importantly, the confusion 

and diffusion techniques of these ciphers are effective enough that no attack has been found that threatens their 

structure itself, leaving the best-known attack to be the brute force search. Recall that our simple substitution cipher 

had a keyspace of 288 which could be searched successfully in 18267329100 years by a modern computer; by 

contrast, a 256-bit AES key has a keyspace of  2256, which by similar computations could be searched successfully 

in about 1620393009164736827524337348641 years. Ronald Rivest, a famous cryptographer who will come up 

later in our story, has been heard to say that he believes a 256-bit AES key will be "secure forever" regardless of 

advancing technology [9].  

 So far we have established that Triple DES and AES have keyspaces of 2112 and 2256 respectively and 

their respective structures are strong enough that the fastest attack is still the exhaustive key search, meaning that the 

fastest attack would take well over 18267329100 years. The practical efficiency of 3DES and AES is respectable 

[9], and AES has the endorsement of an esteemed expert in the field. These ciphers seem too good to be true: what 

could be the problem? There is one so-called "achilles heel" of these ciphers, and that is how to securely distribute 

the symmetric key [9]. In the modern day, choosing a trustworthy individual to personally carry it is not an option.  

 

3.2 Public Keys: A Necessarily Recent History 

 Public key cryptography was proposed by Whitfield Diffie and Martin Hellman in 1976 when they 

proposed a key exchange algorithm that would solve the above problem [9]. In the common definition, a public-key 

cryptosystem has a public key, which is available to the public, that is used for encrypting, and a private key, which 

is kept secret, that is used for decrypting. Since the public key is public, there is no need for secure distribution. 

However, generally speaking, any system which involves some important information being available to the public 

is considered a public key system [9], as is the case with the Diffie-Hellman key exchange, which does not actually 

have encryption and decryption capabilities. The Diffie-Hellman Key Exchange works as follows. Choose a prime 𝑝 

and a generator 𝑔 that generates the prime field {1,2, … , 𝑝 − 1}. The public key is (𝑝, 𝑔). To exchange a private key, 

the first party chooses an integer 𝑎 and the second party chooses an integer 𝑏. The first party sends the quantity 

𝑔𝑎𝑚𝑜𝑑 𝑝 to the second party, and the second party sends the quantity 𝑔𝑏𝑚𝑜𝑑 𝑝 to the first party. Thanks to the 

exponent rules, the first party can compute (𝑔𝑏𝑚𝑜𝑑 𝑝)𝑎 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝 and the second party can compute 

(𝑔𝑎𝑚𝑜𝑑 𝑝)𝑏 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝. The value 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝 is the secret key. Consider how an attacker might try to obtain the 

secret key: Since 𝑔𝑎𝑚𝑜𝑑 𝑝 and 𝑔𝑏𝑚𝑜𝑑 𝑝 are sent in the clear, the attacker can easily compute 𝑔𝑎+𝑏𝑚𝑜𝑑 𝑝, but it 

does not equal 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝. Instead it appears that the attacker must find either 𝑎 or 𝑏 so as to compute  𝑔𝑎𝑏𝑚𝑜𝑑 𝑝. 

Given the quantitites 𝑔𝑎𝑚𝑜𝑑 𝑝 and 𝑔𝑏𝑚𝑜𝑑 𝑝, finding 𝑎 or 𝑏 is called the discrete logarithm problem, and as far as 
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people know it is a very difficult problem to solve. However, the difficulty of the discrete algorithm problem is not 

known to be NP-complete, a class of problems in which we suppose that the best attack would be brute-force, and so 

the security of the Diffie Hellman Key Exchange interestingly cannot be quantified in the way that say, the security 

of a 256-bit AES system can, in which the structural integrity of the cipher itself is so strong that it is assumable that 

the fastest attack is to exhaustively search the 2256 keys in the keyspace. The strength of the discrete logarithm 

problem is thus of a different nature than the strength of the structure of AES, which does not involve a math 

problem. This same peculiarity applies to the next system we will discuss.  

 In 1977, shortly after Diffie and Hellman's key exchange system, a public-key system was invented that 

could encrypt and decrypt data. It was called RSA, after its inventors Rivest, Shamir, and Adleman and it works as 

follows. Choose two large primes 𝑝 and 𝑞 and set 𝑁 = 𝑝𝑞. Then choose 𝑒 such that gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1 and 

find 𝑑 =  𝑒−1𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1). The public key is (𝑁, 𝑒) and the private key is 𝑑. Encryption of a message 𝑚 is 

accomplished by doing 𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑁 and decryption is accomplished by doing 𝑐𝑑𝑚𝑜𝑑 𝑁. How would an attacker 

try to get the private key of this system? Since the private key 𝑑 is computed using the factors of 𝑁, the attacker can 

obtain it by factoring 𝑁. Integer factorization, like the discrete logarithm problem, is known to be hard but is not 

proven to be NP-complete; this means that like the discrete logarithm problem, the security of the factoring problem 

is not mathematically proven and still depends on no faster solution than a brute-force private key search being 

found. Thus like the security of the Diffie-Hellman key exchange, the security of RSA cannot be quantified in the 

same way as AES. 

 Finally, we reiterate difference between symmetric and asymmetric keys. In the former, other than large 

keyspace, the security of the system rests on the effectiveness of the confusion and diffusion tactics. In the latter, 

other than large keyspace, the security of the system rests on the underlying math problem having no fast solution. 

In the case of the symmetric system, there is no apparent way in which the integrity of the structure would suddenly 

become compromised; in the case of the public key systems and their math problems which might have a fast 

solution, this is not necessarily so. This is important to keep in mind when we later explore quantum computers.  

 

3.3 Cryptography in Real Life: NIST Standards Today 

 Today, public key systems are used prolifically throughout digital security. While symmetric key systems 

are significantly more efficient than public key systems, public key systems are vital for symmetric key distribution 

and digital signatures [9]. The National Institute of Standards and Technology, or NIST, is a United States 

government agency that produces guidelines and standards that help federal agencies meet the requirements of the 

Federal Information Security Management Act, or FISMA [15]. FISMA is a United States federal law that requires 

federal agencies to meet certain security standards in order to protect national security interests [16]. In conjunction 

with FISMA, NIST develops Federal Information Processing Standards, or FIPS, which federal agencies must 

comply with, as well as the Special Publications 800-series, or (SP), which provides guidance and recommendations 

[15]. By looking at NIST standards we can understand how important public-key systems are today. For example, in 

FIPS 186-4 Digital Signature Standard, NIST specifies only three algorithms, DSA, RSA, and ECDSA [17]. DSA is 

a variant of the Schnorr and El Gamal signature schemes, which are based on the discrete logarithm problem; RSA 
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is the method we discussed above; and ECDSA is a variant of the DSA that uses elliptic curve cryptography [18, 19, 

20, 21]. Under pair-wise key establishment schemes, NIST lists SP 800-71, in which key establishment using 

symmetric block ciphers is discussed; SP 800-56A Revision 3, which recommends several variations of the Diffie-

Hellman scheme as well as the Menezes-Qu-Vanstone scheme which is based on Diffie-Hellman; and SP 800-56B 

Revision 2, which specifies key-establishment schemes using RSA [22, 23, 24, 25]. It is clear from these 

publications that digital signatures and key establishment today--and also national security--are dependent on public-

key systems.   

 

3.4 Quantum Computers: A Threat? 

 Contrary to what one might believe, the capabilities of quantum computers extend past just being "faster" 

computers. Quantum computers use atomic-scale units called qubits that can be simultaneously 0 and 1 [10]. This is 

in contrast to classical computers, in which a bit can be 0 or 1. The state of a quantum computers qubit being both 0 

and 1 is called superposition [10]. In this state, a single qubit can perform two computations in parallel, which 

means that computations are much more efficient than in a classical computer [10]. While the immediate threat 

presented by such a computer may seem like its capability of performing a faster key search, this is not the case: 

Bennet, Bernstein, Brassard and Vazirani showed that quantum computation cannot speed up a brute-force search by 

more than a quadratic factor [11]. This means that AES, as long as its best known attack remains such a search, 

remains safe [12]; according to ComputerWorld, a quantum computer would be able guess a 256-bit key in the same 

time it takes for a regular computer to guess a 128 bit key, about 1334781249790827240000 years [11]. For public 

key systems, this is not the case. In 1994 Peter Shor invented a special algorithm for quantum computers that could 

find the prime factors of an integer in polynomial time [13]. The algorithm, called Shor's algorithm, uses the 

quantum Fourier transform, a linear transformation on quantum bits, to accomplish this and can also be used to solve 

the discrete logarithm problem [13]. Recall that the security of the Diffie Hellman Key Exchange and RSA depends 

on the intractability of the discrete logarithm and integer factorization problems, which were only secure as long as 

no attack faster than brute-force attack was found. Well, the attack faster than brute force has been found. So is that 

it for public key systems? Will we have to manually deliver our symmetric keys like the ancient Romans? Will 

digital signatures become a thing of the past? Also not the case.  The largest number Shor's algorithm has been able 

to successfully factor is 21 in 2012: this is because as more qubits are added to a quantum system, it becomes more 

difficult to control and the number of errors accumulates [10, 13]. Breaking RSA would reportedly take a quantum 

computer with 20 million qubits 8 hours, and to give some context, Google's Sycamore processor, created by 

Google's Artificial Intelligence division, has 53 qubits [14].  According to an article written in 2020, researchers 

estimate it will take between a decade and two decades to create a quantum computer of the required size [14]. Thus, 

while we may sleep soundly tonight knowing RSA is safe, we cannot deny that there is an urgent need to develop 

quantum-resistant public key algorithms so that we may continue to distribute symmetric keys in a timely fashion 

and digitally sign important documents. 
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3.5 Post-Quantum Cryptography: Preparing for the Future 

 How can we prepare for the day when quantum computers are capable of breaking RSA and Diffie-

Hellman? The goal of post-quantum cryptography is to find cryptosystems in which security depends on math 

problems that quantum computers probably cannot solve. Currently there are six different approaches to post-

quantum cryptography: lattice-based cryptography, multivariate cryptography, hash-based cryptography, code-based 

cryptography, supersingular elliptic curve isogeny cryptography, and symmetric key quantum resistance [27]. How 

do we know if the underlying math problem is hard enough? We say that problem two reduces to problem one if 

problem one is at least as hard to solve as problem two [26]. A proof of this reduction shows that a solution to 

problem one would imply a solution to problem two [26]. To prove that a math problem is hard enough and that a 

system is secure, it is necessary show one of these reductions to prove the equivalence of the system’s problem with 

a problem that is already known to be hard [27]. These are called security reductions and they are used to classify 

the security of the system [27]. In particular, some math problems exist which are conjectured to be unsolvable in 

polynomial time by a quantum computer. For example, in Lattice-based cryptography the Shortest Vector Problem 

and the Closest Vector Problem are known to be NP-Hard and can be used to prove the security of some systems 

[27]. In code-based cryptography the Syndrome Decoding Problem is known to be NP-Hard [27]. Therefore by 

basing a cryptosystem's security on a problem that has a reduction from one of these problems, we can conjecture 

that that system is most likely secure even under attack from a quantum computer.  

 

3.6 Two Candidates, One Unlikely  

 Two candidates for post-quantum cryptography appear in the form of the McEliece public key system and 

the Regev public key system. The McEliece public key system was developed in 1978 by Robert McEliece, a 

researcher best known for his work in error-correcting coding and information theory [28]. At the time, the system 

was pioneering because it was the first asymmetric encryption scheme to use randomization in the encryption step as 

well as the first linear code-based asymmetric system [28, 29]. The attractiveness of the system was found in the fact 

that its security was based on the problem of decoding a general linear code, a known NP-hard problem, and thus the 

fastest known attack by a computer would most likely necessitate a brute-force search [1]. In his original paper, 

McEliece calls on this property to explain that if the code parameters are large enough, an attack that sought to 

decode the general linear code by recovering the plaintext from the codeword would indeed be infeasible: for 

example, in an 𝑛 = 210 = 1024, 𝑡 = 50 linear code, the dimension of the code would be at least 2𝑚 − 𝑚𝑡 =

1024 − 50 = 524, meaning that the brute-force attack of comparing the ciphertext to each possible codeword 

would have a work factor of about 2524 [1]. A positive result of this was that the brute-force attack work factor for 

the system was easy to increase quickly by turning up the parameters of the linear code slightly [1, 29, 30].  

 While innovative, there were some drawbacks to the system: the public key was inconveniently large, for 

the parameters mentioned reaching a size of 536576 bits or 67 Kilobytes, whereas today it is desirable to keep public 

keys under 1 KB; the encrypted message was much longer than the plaintext, which increased the chance of 

transmission errors; and the cryptosystem could not be used in reverse for authentication or signature, because of the 

randomness on the encryption side [31]. Because of these reasons, and despite remaining "remarkably stable" in its 
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resistance of cryptanalysis attempts over the last 40 years, the system never received acceptance in the cryptographic 

community [29, 30]. However, in 1978 when the system was invented, the field of quantum computing was still in 

its beginnings: current public-key systems did not come under threat until the early 1990s after several researchers 

including David Deutsch, Richard Jozsa, Dan Simon, and Peter Shor showed that quantum computers were capable 

of solving computational problems by using algorithms that regular computers could not [32]. The McEliece 

cryptosystem received new appreciation after 1995 when the United States Department of Defense organized the 

first workshop on quantum computing and quantum cryptography [32]. Despite not being intended as a quantum-

resistant system, and many years after its emergence, the security of McEliece's system happened to satisfy one of 

the very requirements that made a system supposedly "quantum-resistant": the Syndrome Decoding Problem on 

which the system's security depended was a proven NP-Hard problem, meaning that it was one in the class of 

problems that experts supposed did not have a polynomial-time quantum solution. In this way, the McEliece system 

happened to have one of the sought-after "security reductions" discussed above. Today, even with researchers 

actively searching for systems with security reductions in the search for prospective post-quantum cryptography, 

McEliece's system has its own place as one of only seven such systems listed on Wikipedia's Post-Quantum 

Cryptography page [27].  

 The Regev public key system is a somewhat more recent development. It is significant because it is the first 

"classical", or non-quantum, cryptosystem in which security is based on a quantum hardness assumption [2]. Some 

discussion follows. In 2005, Oded Regev introduced the Learning With Errors problem, or LWE, and showed a 

reduction from two worst-case lattice problems, GAVSVP and SIVP, to LWE, once again satisfying the security 

reduction that is so important in cryptographic applications [1]. Similarly to how McEliece's system was not 

intended for the quantum-cryptography, the LWE problem derives from an adjacent field in that it is a generalization 

of the parity learning problem, a problem originating in the field of machine learning [33, 34]. However, unlike 

McEliece's 1978 system which was introduced with no quantum intentions, Regev's work falls farther into the 

quantum realm. Specifically, Regev's reduction was a quantum reduction, as opposed to a classical reduction, 

meaning that a fast algorithm that solves the LWE problem would imply only a quantum algorithm, not a classical 

algorithm, that solves GAPSVP and SIVP [1]. Regev elaborates more on this, explaining that it is currently 

conjectured that there is no classical polynomial time algorithm that closely approximates a shortest vector; and that 

if we take it one step further, so to speak, we can even conjecture that there is also no quantum polynomial time 

algorithm that accomplishes the same feat [1]. What Regev is saying here is that the second conjecture is a 

somewhat weaker statement because, as we have seen, quantum computers are sometimes capable of carrying out 

algorithms that classical computers are not. Based on this weaker second conjecture, Regev claims, the LWE 

problem is hard; and if a solution was found that solved the LWE problem, it would imply a quantum solution, but 

not a classical solution, to the GAPSVP and SIVP problems. This is the meaning of quantum reduction. However, 

"weaker" conjecture may be an exaggeration since many experts believe that the conjecture is true, making the LWE 

problem a solid candidate for a post-quantum system.  

 Nevertheless, if the reduction were one day made classical, this would make LWE even stronger. This is 

because proving that a solution to LWE implies a classical solution to SIVP or GAPSVP would mean that quantum 
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computers cannot exploit any aspect of the problem that regular computers cannot, and must resort to solving the 

problem in the way that a classical computer would [35]. Finally, one more significant aspect of Regev's proof, 

mentioned briefly above, is that it can be used conversely to disprove the conjecture that no quantum algorithms 

exist that can solve lattice problems faster than classical algorithms; because if a solution to LWE is found, then a 

quantum algorithm for solving GAPSVP and SIVP will also be found. Thus, Regev's reduction proof was highly 

significant and in 2018 he won the Godel Prize for his work [33]. Along with the proof, he proposed the classical 

public-key cryptosystem in which security is based on the hardness of the LWE problem and by extension the worst-

case quantum hardness of GAPSVP and SIVP as discussed. He also provided a classical security proof. Security of 

the system is a result of the fact that the list of equations with error is computationally indistinguishable from a list 

of equations in which the elements are chosen uniformly [1]. While Regev's public key system does not appear on 

Wikipedia's list of prospects for post-quantum cryptography, perhaps due to its inefficiency, a key exchange 

protocol called Ring-LWE Signature appears nearby McEliece's system and has security which is based on the LWE 

problem specialized to polynomial rings over finite fields [27]. The RLWE problem also appeared in a 2017 

algorithm called NewHope, a key-exchange protocol selected as a round-two contestant in the NIST Post-Quantum 

Cryptography Standardization competition, and was one of two algorithms used in the CECPQ1 experiment, an 

experimental post-quantum key agreement protocol developed by Google [36, 37, 38].  

 

3.7 The Rust Programming Language: Adding Uniqueness 

 Rust is a systems programming language that first appeared in 2010 [53]. A systems programming 

language is a language that is used for programming a system such as an operating system as opposed to a user 

application. Rust is a multi-paradigm language, meaning that it can support procedural, functional, and object-

oriented programming styles [53]. One of the most unique features of Rust is its enforcement of memory safety. 

Memory safety prevents attempts to access invalid memory through null or dangling pointers, which can cause 

program crashes or unexpected behavior. Unlike other languages, which enforce memory safety with garbage 

collectors or reference counting, Rust uses its compiler's borrow checker [53]. The borrow checker works by only 

allowing one mutable reference to a piece of data at a time, which prevents the invalid accesses mentioned above as 

well as concurrency bugs such as race conditions. Rust's memory safety also utilizes an ownership system in which 

each value belongs to one owner and the scope of a value is that of its owner; in this way, it can track object lifetime 

and variable scope [53]. Rust has roots in languages such as C++, OCaml, Haskell, and Erlang, and has been used 

by mainstream companies such as Amazon and Google as well as proposed for writing new Linux kernel code, an 

idea which Linus Thorvalds, the inventor of Linux, welcomes [53, 54]. Finally, according to the Stack Overflow 

Developer Survey in 2021, Rust is the most beloved programming language among over 80,000 developers for the 

sixth year in a row [54].  Rust has not been commonly used for experiments comparing pre-quantum and post-

quantum cryptography, so its use will provide novelty as well as industry relevance.  
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4. BACKGROUND 

 The McEliece public key system is based off of linear codes and involves finite field arithmetic, and the 

Regev public key system is based off of the 'learning from parity with error' problem. In this section we give a short 

overview of linear codes, an introduction to finite fields, and an overview of the learning from parity with error 

problem.  

 

4.1 Linear Codes 

 Coding theory is a branch of mathematics that was created in 1948 by Claude Shannon [39]. Coding theory 

is concerned with the problem of reproducing a message "at one point either exactly or approximately a message 

selected at another point" [39]. One of the main ideas of coding theory is a binary symmetric channel, or BSC, 

which is a channel that can transmit one bit at a time at a certain rate, but which is not completely reliable [39]. It is 

binary because it can only transmit 0 or 1 and it is symmetric because the probability of transmitting a 0 correctly is 

the same as the probability of transmitting a 1 correctly [40]. Also important to coding theory are the ideas of a 

binary symmetric source, which emits bits also at a certain rate, and a sender whose job it is to convey to the 

receiver through the BSC and as accurately as possible the source output [39]. The BSC rate may be faster than the 

source rate so that multiple bits can be transmitted per single bit emitted by the source [39]. Therefore the sender 

needs some strategy to encode the bits, and the receiver needs some strategy to decode the bits, such that the 

receiver can correct any garbled bits and retrieve the original message. This gives rise to the definition of a linear 

code. An (𝑛, 𝑘) linear code is a scheme in which the source sequence is divided into blocks of 𝑘 bits, and each block 

is encoded into a 𝑛-bit codeword which then is transmitted over the channel and then received possibly garbled [39]. 

The decoder then maps each 𝑛-bit possibly garbled codeword into a 𝑘-bit block which is an estimate of the original 

source sequence [39]. An image of this process is shown in Figure 1.  

 

 

 

 

 

 

 

Within this context, the generator matrix is what maps 𝑘-bit blocks into 𝑛-bit codewords; the parity check matrix is 

a matrix such that if an 𝑛-bit vector is an element of the code, then the product of the parity check matrix and the 

vector is equal to the zero vector; and the syndrome is a vector that is computed by multiplying a codeword by the 

parity check matrix and which reveals the error vector that was introduced to the codeword by the channel [39].  

 

4.2 Finite Fields 

 A finite field is a set of elements together with two binary operations such that for all elements of the set, 

the field axioms are obeyed [40]. If the binary operations are called addition and multiplication, the field axioms are: 

closure under addition, associativity of addition, additive identity, additive inverse, commutativity of addition, 

Figure 1. Process of a linear code 
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closure under multiplication, associativity of multiplication, distributive laws, commutativity of multiplication, 

multiplicative identity, no zero divisors, and multiplicative inverse [40]. The number of elements in a finite field is 

always a power of a prime, and the field is called GF(𝑝𝑛), where GF stands for Galois field after the mathematician 

who first studied finite fields [40]. A polynomial over a finite field is a polynomial with coefficients in that field.  

4.2.1 The Finite Field GF(2) 

 Finite fields of the form GF(𝑝𝑛) where 𝑛 = 1 are a special case of GF(𝑝𝑛) finite fields. In these special 

cases, elements are taken to be the set 𝑍𝑝 = {0,1, … , 𝑝 − 1} and the two field operations are addition and 

multiplication modulo 𝑛. The finite field GF(2) is one of these cases. It follows that the elements of GF(2) are 0 and 

1, with addition taken modulo 2.  

4.2.2 The Finite Field GF(𝟐𝒎) 

 The finite field GF(2𝑚), 𝑚 > 1 is created by taking the set of all polynomials over GF(2) of degree less 

than 𝑚 and defining addition as polynomial addition and multiplication as polynomial multiplication modulo some 

irreducible polynomial over GF(2) of degree 𝑚 called 𝑓(𝑥). Since the coefficients are in GF(2), all coefficient 

arithmetic is done in GF(2).  

 For example, to create the field GF(23), first choose an irreducible polynomial of degree 3, say 𝑓(𝑥) =

𝑥3 + 𝑥 + 1, and list all the polynomials over GF(2) of degree less than 3. These polynomials are 0, 1, 𝑥, 𝑥 + 1, 𝑥2, 

𝑥2 +  1, 𝑥2 + 𝑥,  and 𝑥2 + 𝑥 + 1. As expected there are 23 = 8 elements in the field. Examples of addition and 

multiplication are shown in Figure 2.  

 

 

 

 

 

 

 

 

 

  

Since the coefficients of polynomials in a field GF(2𝑚) are 0 or 1, elements of this field can be represented as binary 

strings of length 𝑚. For example, the elements of GF(23) can be represented as 0, 1, 10, 11, 100, 101, 110, and 111.  

4.2.3 The Finite Field GF(𝟐𝒎𝒕) 

 The field GF(2𝑚𝑡) is created by taking the set of all polynomials over GF(2𝑚) with degree less than 𝑡 and 

defining addition as polynomial addition and multiplication as polynomial multiplication modulo some irreducible 

polynomial over GF(2𝑚) of degree 𝑡 called 𝑔(𝑥). Since the coefficients are in GF(2𝑚), all coefficient arithmetic is 

done in GF(2𝑚). For example, to create the field GF(2(3)(2)), first choose an irreducible polynomial of degree 2, say 

𝑔(𝑥) = 𝑥2 + 𝑥 + 1100, and list all the polynomials over GF(23) of degree less than 2. These polynomials are 

              

    a) addition                    b) multiplication                            c) reduction 

 
Figure 2. Examples of arithmetic in GF(23) 
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shown in Figure 3 with binary strings used to represent the elements of GF(23). Using 𝑓(𝑥) = 𝑥3 + 𝑥 + 1 to create 

the coefficient field, examples of addition and multiplication are shown in Figure 4. 

 

 

     

4.3 The Learning from Parity With Errors Problem 

 For an integer 𝑛 ≥ 1 and a real number 𝜖 > 0 the learning from parity with error problem is to find 𝒔 ∈ 𝑍2
𝑛 

given the following list of "equations with errors":  

〈𝒔, 𝒂𝟏〉 ≈𝜖  𝑏1(𝑚𝑜𝑑 2) 

〈𝒔, 𝒂𝟐〉 ≈𝜖  𝑏2(𝑚𝑜𝑑 2) 

…  

where the 𝑎𝑖 are chosen uniformly from 𝑍2
𝑛 and 〈𝒔, 𝒂𝒊〉 = ∑ 𝑠𝑗(𝑎𝑖)𝑗𝑗  is the inner product modulo 2 of 𝒔 and 𝒂𝒊, and 

each equation is correct with probability 1 − 𝜖. The inputs to the problem are the pairs (𝒂𝒊, 𝑏𝑖) where each 𝒂𝒊 is 

chosen independently and uniformly from 𝑍2
𝑛 and where each 𝑏𝑖 is independently chosen to be equal to  〈𝒔, 𝒂𝒊〉 with 

probability 1 − 𝜖. The goal is to find 𝒔 [2].  

0𝑥 + 0, 0𝑥 + 1, 0𝑥 + 10, 0𝑥 + 11, 0𝑥 + 100, 0𝑥 + 101, 0𝑥 + 110, 0𝑥 + 111, 

1𝑥 + 0, 1𝑥 +  1, 1𝑥 +  10, 1𝑥 +  11, 1𝑥 +  100, 1𝑥 +  101, 1𝑥 +  110, 1𝑥 +  111 

10𝑥 + 0, 10𝑥 + 1, 10𝑥 + 10, 10𝑥 + 11, 10𝑥 + 100, 10𝑥 + 101, 10𝑥 + 110, 10𝑥 + 111, 

11𝑥 + 0, 11𝑥 + 1, 11𝑥 + 10, 11𝑥 + 11, 11𝑥 + 100, 11𝑥 + 101, 11𝑥 + 110, 11𝑥 + 111, 

100𝑥 + 0, 100𝑥 + 1, 100𝑥 + 10, 100𝑥 + 11, 100𝑥 + 100, 100𝑥 + 101, 100𝑥 + 110, 100𝑥 + 111, 

101𝑥 + 0, 101𝑥 + 1, 101𝑥 + 10, 101𝑥 + 11, 101𝑥 + 100, 101𝑥 + 101, 101𝑥 + 110, 101𝑥 + 111, 

110𝑥 + 0, 110𝑥 + 1, 110𝑥 + 10, 110𝑥 + 11, 110𝑥 + 100, 110𝑥 + 101, 110𝑥 + 110, 110𝑥 + 111, 

111𝑥 + 0, 111𝑥 + 1, 111𝑥 + 10, 111𝑥 + 11, 111𝑥 + 100, 111𝑥 + 101, 111𝑥 + 110, 111𝑥 + 111, 

Figure 3. Elements of GF(2(3)(2)) 

           

       a) addition                             b) multiplication             c) reduction 

Figure 4. Examples of arithmetic in GF(2(3)(2)) 
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5. CRYPTOSYSTEM STEPS 

 In this chapter we go over key generation steps, encryption steps, and decryption steps for the McEliece 

and Regev public key systems. 

 

5.1 McEliece Key Generation 

Many of the steps below are taken from [42] and [52]. 

1. Choose the parameters 𝑛 and 𝑡 with 𝑛 a power of 2. 

2. Set 𝑚 = log2(𝑛). Generate an irreducible polynomial over GF(2) of degree 𝑚 called 𝑓(𝑥)and an irreducible 

polynomial over GF(2𝑚) of degree 𝑡 called 𝑔(𝑥). 

3. Find the parity check matrix for the (𝑛, 𝑘) linear code. 𝑘 is not known at this point but is not necessary to find the 

parity check matrix. First create the set 𝐿 by listing all the elements of GF(2𝑚) in some arbitrary order. There will be 

𝑛 elements and say 𝐿 = {𝛼1, 𝛼2, … , 𝛼𝑛} for 𝛼𝑖 in GF(2𝑚). The parity check matrix is 𝐻 = 𝑥𝑦𝑧 where  

𝑥 =  [

𝑔𝑡 0 0 … 0
𝑔𝑡−1 𝑔𝑡 0 0 0
… … … 0 0
𝑔1 𝑔2 𝑔3 … 𝑔𝑡

] , 𝑦 =

[
 
 
 

𝛼1
0 𝛼2

0 0 … 𝛼𝑛
0

𝛼1
1 𝛼2

1 0 … 𝛼𝑛
1

… … … … …
𝛼1

𝑡−1 𝛼2
𝑡−1 0 … 𝛼𝑛

𝑡−1]
 
 
 
,  and 𝑧 =  

[
 
 
 
 
 

1

𝑔(𝛼1)
0 0

0
1

𝑔(𝛼2)
0

… … …

0 …
1

𝑔(𝛼𝑛)]
 
 
 
 
 

 . 

𝑥 is 𝑡 x 𝑡, 𝑦 is 𝑡 x 𝑛, and 𝑧 is 𝑛 x 𝑛, so 𝐻 will be 𝑡 x 𝑛.  

4. Find the generator matrix for the (𝑛, 𝑘) linear code. The generator matrix is the transpose of the nullspace of the 

parity check matrix: 𝐺 = 𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒(𝐻)𝑇. The dimension 𝑘 is equal to the number of rows in 𝐺. 

5. Generate a 𝑘 x 𝑘 dense nonsingular matrix 𝑆. Make sure that the inverse is equal to 1 or -1 so that the inverse will 

be whole numbers [43]. Also generate a 𝑛 x 𝑛 random permutation matrix 𝑃. Scramble the generator matrix by 

doing 𝐺′ = 𝑆𝐺𝑃.  

6. The public key is 𝐺′. The private key is 𝑆, 𝐺, 𝑃, 𝑔(𝑥), 𝑓(𝑥), and 𝐿.  

 

5.2 McEliece Encryption 

1. To encrypt a binary string 𝑚 of length 𝑘 first do 𝑦 = 𝑚𝐺′. Then 𝑦 will be of length 𝑛. Add up to 𝑡 errors to 𝑦 by 

adding a length 𝑛 vector 𝑒 of all zeros and up to 𝑡 ones. 𝑦′ = 𝑦 + 𝑒 and 𝑦′ is the ciphertext for sending. 

 

5.3 McEliece Decryption 

1. If 𝑦′ is the received ciphertext, first compute 𝑦′𝑃−1. This quantity will be equal to (𝑦 + 𝑒)𝑃−1 = 𝑦𝑃−1 + 𝑒𝑃−1.  

2. Use Patterson's algorithm to find 𝑒𝑃−1.  

 a) If 𝑦 stands for 𝑦′𝑃−1, compute the syndrome 𝑠(𝑥) =  ∑
𝑦𝑖

𝑥−𝛼𝑖
𝑚𝑜𝑑 𝑔(𝑥)𝑛

𝑖=1  

 b) Compute 𝑣(𝑥) ≡ √𝑠(𝑥)−1 − 𝑥 𝑚𝑜𝑑 𝑔(𝑥) 

 c) Find 𝑎(𝑥) and 𝑏(𝑥) so that 𝑎(𝑥) ≡ 𝑏(𝑥)𝑣(𝑥) 𝑚𝑜𝑑𝑔(𝑥) and deg(𝑎) ≤ ⌊
𝑡

2
⌋ and 

                deg (𝑏) ≤ ⌊(𝑡 − 1)/2⌋ . 

 d) Set 𝜎(𝑥) = 𝑎(𝑥)2 + 𝑥 ∙ 𝑏(𝑥)2.  

 e) Plug in each element of 𝐿 to 𝜎(𝑥). If the result is zero and the element plugged in was 𝛼𝑖,  
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                 there was an error added to index 𝑖. Create 𝑒𝑃−1 by creating a vector of all zeros except with  

                 ones in the indices where 𝜎(𝛼𝑖) = 0.   

3. Find 𝑦𝑃−1 by adding 𝑒𝑃−1 found in the previous step to 𝑦′𝑃−1. Since 𝑦𝑃−1 = 𝑚𝑆𝐺𝑃𝑃−1 this results in 𝑚𝑆𝐺. 

4. Find 𝑚𝑆 by row reducing [𝐺𝑇|(𝑚𝑆𝐺)𝑇]. 

5. Find 𝑚 by computing 𝑚𝑆𝑆−1.  

 

5.4 Regev Key Generation  

All arithmetic in this system is done modulo 𝑝. 

1. Choose the security parameter 𝑛 ∈ 𝑍.  

2. Choose two more parameters 𝑝, 𝑚 such that 𝑝 ≥ 2 is a prime number in the range [𝑛2, 2𝑛2] and 𝑚 =

(1 + 𝜖)(𝑛 + 1) log2 𝑝 for some constant 𝜖 > 0. Also create a probability distribution χ = Ψ ̅̅ ̅
𝛼(𝑛)  on 𝑍𝑝. To do this 

first create a normal distribution with mean 0 and standard deviation 
𝛽

2𝜋
 where 𝛽 is 𝛼(𝑛) =

1

√𝑛 log2 𝑛
. Then taking a 

sample from χ is the same as taking sample from the normal distribution, reducing the result modulo 1, multiplying 

by 𝑝, and rounding to the nearest integer modulo 𝑝. The graph of this distribution is shown in Figure 5 [2].  

 

 

 

 

 

 

 

 

 

4. Choose a vector in 𝑍𝑝
𝑛 randomly and call it 𝒔. This is the private key. 

5. To create the public key, first choose 𝑚 vectors in 𝑍𝑝
𝑛 randomly and call them 𝒂𝟏, . . . , 𝒂𝒎. Then choose 𝑚 

elements in 𝑍𝑝 according to χ and call them 𝒆𝟏, … , 𝒆𝒎. Then compute 𝑏1, … , 𝑏𝑛 by setting 𝑏𝑖 = 〈𝒂𝒊, 𝒔〉 + 𝑒𝑖 where 

〈𝒂𝒊, 𝒔〉 is the dot product of 𝒂𝒊 and 𝑠 reduced modulo 𝑝. The public key is 𝑚 tuples (𝒂𝒊, 𝑏𝑖) for 0 ≤ 𝑖 < 𝑚.   

 

5.5 Regev Encryption 

1. Randomly choose a set 𝑆 from all subsets of the set {1, … ,𝑚}. Encrypt a 0 as (∑ 𝒂𝒊,𝑖∈𝑆 ∑ 𝑏𝑖)𝑖∈𝑆  and a 1 as 

(∑ 𝒂𝒊,𝑖∈𝑆 ⌊
𝑝

2
⌋ + ∑ 𝑏𝑖)𝑖∈𝑆  where all numbers are reduced modulo 𝑝.  

 

5.6 Regev Decryption 

1. To decrypt a pair (𝒂, 𝑏) compute 𝑏 − 〈𝑎, 𝑏〉. Check if 𝑏 − 〈𝑎, 𝑏〉 is closer to 0 than to ⌊
𝑝

2
⌋ modulo 𝑝. This is the 

same as computing the circular distance of 𝑏 − 〈𝑎, 𝑏〉 to 0 and ⌊
𝑝

2
⌋ and noting the smaller quantity. If it is closer to 0, 

the bit is 0. If it is closer to ⌊
𝑝

2
⌋, the bit is 1.  

Figure 5. Graph of error distribution from [2] 
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6. CRYPTOSYSTEM IMPLEMENTATION 

 In this section we will go over our implementation of the McEliece and Regev cryptosystems. First we will 

show the list of files in each system and give a brief description of each. Since McEliece was a large system, we 

divided it into five files, listed below with a brief explanation. Regev was a smaller system so we used only one file.  

 

McEliece system files: 

GF_2m.rs       contains finite field operations for the field GF(2𝑚) 
GF_2mt.rs       contains finite field operations for the field GF(2𝑚𝑡) 
matrix.rs       contains generator matrix method, rref, and nullspace   
         methods. Also contains miscellaneous matrix methods. 
encrypt_decrypt.rs     contains methods to encrypt and decrypt a binary vector,  
            and the steps of Patterson's algorithm. 
system.rs       contains higher level methods to create a cryptosystem   
            and implementation of cipher block chaining  
 

 

Regev system file: 

 

main.rs      contains encrypting and decrypting methods, system   
            method, and helper method 
 

 

A full list of methods implemented in each file is shown in Figures 6 and 7. In sections one and two, we will go over 

our implementation of the finite field operations used in McEliece. Following that, we will include descriptions of 

the rest of the methods in the context of our implementation of key generation, encryption, and decryption.  

 

6.1 GF(𝟐𝒎) Implementation 

 Since elements of GF(2𝑚) can be represented by binary strings, they can be represented by u64s in Rust. A 

u64 is an unsigned integer with 64 bits to represent it. The u64 representing the element can be visualized and 

printed as a binary number instead of a decimal number. A printout of an element of GF(2𝑚) is shown in Figure 6. 

 

 

 

 

 

If the elements of GF(2𝑚) are represented as u64s in Rust, bit shifts can easily be used to implement multiplication 

and division of polynomials by 𝑥. For example, if (𝑥2 + 𝑥) = 110 is multiplied by 𝑥, the result will be  

(𝑥2 + 𝑥)𝑥 = 𝑥3 + 𝑥2 = 1100 and if (𝑥2 + 𝑥) = 110 is divided by 𝑥, the result will be (
𝑥2+𝑥

𝑥
) = 𝑥 + 1 = 011 so 

that for any polynomial a:u64,  a*x = a<<1 and a/x = a>>1. This strategy is used in the following 

operations in GF(2𝑚 ). Most methods were implemented following pseudocode by Hankerson et al. in [44]. 

 

Figure 6. 𝑥2 + 𝑥 + 1 represented as a u64 in Rust 
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GF_2mt.rs: 
 Primary methods: 
 - add() 
 - gcd() 
 - inverse() 
 - reduce() 
 - square() 
 - sqrt() 
 - is_irreducible() 
 Helper methods: 
 - get_bx_ax() 
 - multiply_by_constant() 
 - is_one() 
 - is_constant() 
 - is_zero() 
 - deg() 
 - string() 
 - compute() 
 - shift_right() 
 - shift_left() 
 - shift_right_i() 
 - shift_left_i() 
 - get_random_polynomial() 
 - get_irreducible_polynomial() 
 - create_L() 
 

GF_2m.rs: 
 Primary methods: 
 - add() 
 - multiply() 
 - reduce() 
 - gcd() 
 - inverse() 
 - pow() 
 - is_irreducible() 
 Helper methods: 
 - vec() 
 - swap() 
 - bit() 
 - rz() 
 - deg() 
 - string() 
 - shift_right() 
 - shift_left() 
 - shift_right_i() 
 - shift_left_i() 
 - get_random_polynomial() 
 - get_irreducible_polynomial() 
 - create_L() 
 

matrix.rs: 
 Primary methods: 
 - generator() 
 - dense_nonsingular_matrix() 
 - permutation_matrix() 
 - multiply() 
 - x() 
 - y() 
 - z() 
 - nullspace_t() 
 Helper methods: 
 - rref_for_decrypt() 
 - rref_mod_2() 
 - mod2() 
 - mod2_matrix() 
 - row_is_zero() 
 - is_col() 
 - find_col() 
 - append() 
 - binary_matrix() 
 

encrypt_decrypt.rs: 
 Primary methods: 
 - encrypt() 
 - decrypt() 
 - error_vector() 
 - sigma() 
 - syndrome() 
 - choose_error_vector() 
 

system.rs: 
 Primary methods: 
 - create_system() 
 - initialization_vector() 
 - encrypt() 
 - decrypt() 
 Helper methods: 
 - matrix() 
 - matrix_blocks_into_vec() 
 - vec_into_matrix_blocks() 
 - xor_matrix() 
 Structs: 
 - public_key 
 - private_key 
 

Figure 7. List of methods in McEliece system 
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6.1.1 add() 

 Since the elements of GF(2𝑚) are represented as u64s, addition in GF(2𝑚) can be implemented as a 

bitwise XOR: a:u64 + b:u64 = a ^ b. 

6.1.2 multiply() 

 Multiplication is implemented following the right-to-left shift-and-add technique in [44]. The technique 

multiplies two elements of GF(2𝑚) together step by step while keeping the degree of the result less than 𝑚. This is 

useful because two elements of GF(2𝑚) with 𝑚 up to degree 63 can be multiplied together without overflowing the 

u64. A description is below.  

 First, the following equivalence is established: if the irreducible polynomial used for reducing elements of 

the field is 𝑓(𝑥)  =  𝑥𝑚  +  𝑟(𝑥) where 𝑟(𝑥) is some polynomial of degree 𝑚 − 1 or less, then 𝑥𝑚 𝑚𝑜𝑑 𝑓(𝑥)  =

 𝑟(𝑥). In the multiplication method, this equivalence is used to replace an instance of 𝑥𝑚 with 𝑟(𝑥). Since 𝑟(𝑥) has 

degree at most 𝑚 − 1, any term of a polynomial that has a factor 𝑥𝑚 can be reduced by at least one degree by 

factoring out 𝑥𝑚 and replacing 𝑥𝑚 with 𝑟(𝑥). Continuing with the procedure, if 𝑎(𝑥), 𝑏(𝑥) are polynomials in 

GF(2𝑚) and 𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎1𝑥 + 𝑎0 then 𝑎(𝑥)𝑏(𝑥) can be computed by distributing b(x) over a(x): 

𝑎(𝑥)𝑏(𝑥) =  𝑎𝑚−1𝑥
𝑚−1𝑏(𝑥) + ⋯+ 𝑎1𝑥𝑏(𝑥) + 𝑎0𝑏(𝑥). Moving from right to left, and using the fact that 1 bit shift 

left is the same as multiplying by 𝑥, the product can be computed by first letting result:u64 be zero, and then if 

the zeroth coefficient of 𝑎(𝑥) is 1, add 𝑏(𝑥) shifted left zero times to result, and then if the first coefficient of 

main.rs: 
 Primary methods: 
 - create_system() 
 - draw_vector_from_Znp() 
 - get_list() 
 - inner_product() 
 - draw_element_from_X() 
 - alpha() 
 - encrypt_bit() 
 - choose_subset() 
 - add_vector() 
 - decrypt_bit() 
 - circular_distance() 
 Helper methods: 
 - all_possible_messages() 
 - vec() 
 - is_equal() 
 - encrypt_vector() 
 - decrypt_vector() 
 - encrypt() 
 - decrypt() 
 

Figure 8. List of methods in Regev system 
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𝑎(𝑥) is 1 add 𝑏(𝑥) shifted left 1 time to result,  and then if the third coefficient of 𝑎(𝑥) is 1 add 𝑏(𝑥) shifted left 2 

times to result,  and finally if the 𝑚 − 1𝑡ℎ coefficient of 𝑎(𝑥) is 1 add 𝑏(𝑥) shifted left 𝑚 − 1 times to result. 

Whenever the degree of 𝑏(𝑥) reaches 𝑚, before adding it to the result, reduce it by using the equivalence mentioned 

above: if 𝑏(𝑥) = 𝑥𝑚 + 𝑏𝑚−1𝑥
𝑚−1 + ⋯+ 𝑏0, replace 𝑥𝑚 with 𝑟(𝑥) by cancelling out the 𝑚𝑡ℎ bit of 𝑏(𝑥) and 

adding 𝑟(𝑥) to the new 𝑏(𝑥). Any 𝑖𝑡ℎ bit can be canceled out of a u64 by a bitwise AND with 2𝑖 . Since 𝑏(𝑥) is 

always less than degree 𝑚 before adding it to the result, the result also stays less than degree 𝑚. 

6.1.3 pow() 

Raising an element of GF(2𝑚) to the power 𝑖 is implemented by multiplying the polynomial by itself 𝑖 times. There 

is no need to reduce after since our multiplication method does that.  

6.1.4 reduce()  

 The reduce method reduces a polynomial of degree up to 63, the maximum index of the u64, modulo some 

polynomial 𝑓(𝑥) of degree 𝑚. The equivalence used in multiply() is also used here. First, for each term with 

power 𝑚 or higher, take out a factor of 𝑥𝑚 and replace it by 𝑟(𝑥). For example,  if 𝑎(𝑥) = 𝑎63𝑥
63 + 𝑎62𝑥

62 + ⋯+

𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎0 take out 𝑥𝑚 to form (𝑎63𝑥

63−𝑚 + 𝑎62𝑥
62−𝑚 + ⋯+ 𝑎𝑚𝑥𝑚−𝑚)𝑥𝑚 + 𝑎𝑚−1𝑥

𝑚−1 +

⋯+ 𝑎0 and replace 𝑥𝑚  by 𝑟(𝑥) to get (𝑎63𝑥
63−𝑚 + 𝑎62𝑥

62−𝑚 + ⋯+ 𝑎𝑚𝑥𝑚−𝑚)𝑟(𝑥) + 𝑎𝑚−1𝑥
𝑚−1 + ⋯+ 𝑎0. 

Then work from left to right, first adding 𝑟(𝑥) times 𝑎63𝑥
63−𝑚 to 𝑎(𝑥) and canceling out the 63rd bit, and then 

adding 𝑟(𝑥) times 𝑎62𝑥
62−𝑚 to 𝑎(𝑥) and cancelling out the 62nd bit, and continue until finally adding 𝑟(𝑥) times 

𝑎𝑚𝑥𝑚−𝑚 to 𝑎(𝑥) and canceling out the 𝑚𝑡ℎ but. Since 𝑟(𝑥) has degree at most 𝑚 − 1, the degree of each term 

multiplied by 𝑟(𝑥) will be at least one degree smaller than previously. In this way the polynomial shrinks from left 

to right at least one bit at a time. For the implementation itself, 𝑟(𝑥) is shifted to the left by 63-𝑚 and a loop iterates 

from 63 down to 𝑚 − 1. For each index check if that coefficient is one. If it is, add 𝑟(𝑥) to 𝑎(𝑥) and cancel out the 1 

in that index. Otherwise do nothing. Then shift 𝑟(𝑥) to the right for the next term. The resulting polynomial will 

have degree less than 𝑚.  

6.1.5 gcd() 

 The greatest common divisor of two polynomials is found using the extended Euclidean algorithm. For two 

polynomials 𝑎(𝑥) and 𝑏(𝑥) first set 𝑢 =  𝑎, 𝑣 =  𝑏, 𝑔1  =  1, 𝑔2  =  0, ℎ1  =  0, 𝑎𝑛𝑑 ℎ2  =  1. These variables 

are used in two invariants that hold throughout the algorithm:   

 

𝑎𝑔1 + 𝑏ℎ1 = 𝑢 

𝑎𝑔2 + 𝑏ℎ2 = 𝑣  

At the beginning of the algorithm these will be equal to 𝑎(1) + 𝑏(0)  =  𝑢 and 𝑎(0) + 𝑏(1)  =  𝑣. They hold since 

𝑢 was set to 𝑎(𝑥) and 𝑣 was set to 𝑏(𝑥). Then while 𝑢 is not equal to zero, first make sure that 𝑢 has the larger 

degree because 𝑢 acts as the dividend and 𝑣 as the divisor. If this is not the case, swap the values of 𝑔1 and 𝑔2, ℎ1 

and ℎ2, and 𝑢 and 𝑣 so that it is the case. Then find the difference between the degrees of the leading terms of 𝑢 

(dividend) and 𝑣 (divisor) and call it 𝑗. To cancel out the leading term of 𝑢 in long division, 𝑣 would be multiplied 

by 𝑥𝑗 and added to 𝑢. In this case, to maintain the invariant, the entire second equation is multiplied by 𝑥𝑗 and 

added to the first:   
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(𝑎𝑔2 + 𝑏ℎ2 = 𝑣)𝑥𝑗 + 𝑎𝑔1 + 𝑏ℎ1 = 𝑢  

=> 𝑎𝑔1 + 𝑎𝑔2𝑥
𝑗 + 𝑏ℎ1 + 𝑏ℎ2𝑥

𝑗 = 𝑢 + 𝑣𝑥𝑗 

=> 𝑎(𝑔1 + 𝑔2𝑥
𝑗) + 𝑏(ℎ1 + ℎ2𝑥

𝑗) = 𝑢 + 𝑣𝑥𝑗 

When this is done, 𝑢 shrinks by at least one degree and both invariants are maintained. Continue in this way until 

𝑢 =  0, always keeping u as the larger polynomial. When 𝑢 = 0, 𝑣 will contain the last nonzero remainder, which is 

the gcd, and 𝑔2 and ℎ2 will be the factors.  

6.1.6 inverse() 

The inverse is found using the same algorithm as gcd(), except the loop stops when 𝑢 is equal to 1. When 𝑢 is 

equal to 1, then the first equation in the invariant will be 𝑎𝑔1 + 𝑏ℎ1 = 1 and so 𝑔1 contains the inverse of 𝑎 modulo 

𝑏, and ℎ1 contains the inverse of 𝑏 modulo 𝑎, because for example in the first case 𝑎𝑔1 + 𝑏ℎ1 = 1 => 𝑎𝑔1  =

 𝑏ℎ1  +  1 =>  𝑎𝑔1  =  1 𝑚𝑜𝑑 𝑏.  

6.1.7 is_irreducible() 

We include this method here because an appropriate irreducible polynomial is necessary for creating the field 

GF(2𝑚). To check whether a polynomial is irreducible, we use the Ben-Or irreducibility test discussed by Shuhong 

et al. in [46]. The pseudocode is shown below.  

 

// Ben-Or irreducibility test pseudocode 

for i:=1 to n/2 do 

 g := gcd(f, 𝑥𝑞𝑖
 - x mod f); 

 if g != 1 return false 

return true 

 

To find an irreducible polynomial of degree 𝑚 over GF(2) we set q to 2 and n to 𝑚. As is, this method is 

exponential in 𝑚 and requires the modular exponentiation of a polynomial with a very large exponent. To speed up 

this method, we used repeated squaring as suggested by Shuhong at al. in [46] and as explained in [9]. In repeated 

squaring, we double the exponent at each step followed by a reduction [9]. In this way we reduce intermediate 

results and avoid very large polynomials [9].  

6.1.8 get_random_polynomial() 

In this method, we supply random polynomials for get_irreducible_polynomial(). While trinomials and 

pentanomials are often desirable in the construction of finite fields due to the resulting efficiency of field operations, 

in our case the security of the system depends on the randomness of the polynomial [47, 1]. Choosing only 

trinomials and pentanomials would therefore decrease security, so we generate a random polynomial as briefly 

follows. First set result = 1 as u64. Then shift result to the left m times. This will be the polynomial 𝑥𝑚. 

Then, for indices i= 0 through m-1 choose the coefficient 0 or 1 randomly. If the coefficient is 1, add 𝑥𝑖 to 

result. The resulting polynomial will be a random polynomial of degree 𝑚 over GF(2).  
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6.1.9 get_irreducible_polynomial() 

Finally we discuss how we generate irreducible polynomials. According to McEliece, about 
1

𝑛
 degree 𝑛 polynomials 

are irreducible, so if we check random polynomials, we should find an irreducible one in about 𝑛 tries [1]. We use 

this idea here: in a loop, we call get_random_polynomial() and check if it is irreducible with 

is_irreducible().  If it is, we return it. Otherwise, continue and try a new polynomial. 

 

6.2 GF(𝟐𝒎𝒕) Implementation 

 Since elements of GF(2𝑚) are represented as u64s in Rust, an element of GF(2𝑚𝑡) can be represented as a 

vector of u64s. A low order index represents a low order power and a high order index represents a high order 

power. However, the vectors are visualized with the high index on the left and the low index on the right in the same 

way the u64s represent the elements of GF(2𝑚). This is shown in Figure 9.  

 

 

 

 

 

Also in the same way as in GF(2𝑚), multiplying an element of GF(2𝑚𝑡) is the same as a left shift where a left shift 

is implemented as inserting a 0 in the 0 index, and dividing an element of GF(2𝑚𝑡) is the same as a right shift where 

a right shift is implemented as removing an element from the index 0. Arithmetic operations are implemented 

similarly to GF(2𝑚), except all coefficient arithmetic must be done in GF(2𝑚) and therefore calls on the methods 

implemented for that field.  

6.2.1 add() 

Addition is implemented in the same way as GF(2𝑚). Iterate the two polynomials simultaneously from low index to 

high index and call on GF_2m:add() to add their coefficients in the coefficient field. Append the result to a new 

vector.  

6.2.2  reduce() 

Reduce is implemented in the same way as in GF(2𝑚) except with coefficient arithmetic done in GF(2𝑚). If 𝑎(𝑥) =

𝑎𝑑𝑥
𝑑 + 𝑎𝑑−1𝑥

𝑑−1 + ⋯+ 𝑎𝑡𝑥
𝑡 + 𝑎𝑡−1𝑥

𝑡−1 + ⋯+ 𝑎0 factor out 𝑥𝑡 from all possible terms to form (𝑎𝑑𝑥
𝑑−𝑡 +

𝑎𝑑−1𝑥
𝑑−1−𝑡 + ⋯+ 𝑎𝑡𝑥

𝑡−𝑡)𝑥𝑡 + 𝑎𝑡−1𝑥
𝑡−1 + ⋯+ 𝑎0. Replace 𝑥𝑡 by 𝑟(𝑥) to get (𝑎𝑑𝑥

𝑑−𝑡 + 𝑎𝑑−1𝑥
𝑑−1−𝑡 + ⋯+

𝑎𝑡𝑥
𝑡−𝑡)𝑟(𝑥) + 𝑎𝑡−1𝑥

𝑡−1 + ⋯+ 𝑎0. Then distribute 𝑟(𝑥) starting from the left. To accomplish this first shift 𝑟(𝑥) to 

the left 𝑑 times and then multiply it through by 𝑎𝑑. Since 𝑎𝑑 and the coefficients of 𝑟(𝑥) are in GF(2𝑚), call on 

GF_2m::multiply() to multiply and reduce the coefficients in the same step. As in GF(2𝑚), 𝑎(𝑥) will shrink at 

least one degree at a time. In this case as it shrinks, the topmost element can be popped off instead of canceled out.  

6.2.3  gcd() 

The greatest common divisor is implemented using the extended euclidean algorithm with coefficient arithmetic 

done in GF(2𝑚). The algorithm is exactly the same as in GF(2𝑚) except methods from that field must be called to 

do coefficient work. It also follows that canceling out the first term of 𝑢 has some additional steps because this time 

the coefficients of the leading terms of 𝑢 and 𝑣  are elements of GF(2𝑚):  

Figure 9. Element of GF(2𝑚𝑡) 
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𝑎𝑔1 + 𝑏ℎ1 = 𝑢 

𝑎𝑔2 + 𝑏ℎ2 = 𝑣  

Where 𝑢 = 𝑢𝑖𝑥
𝑖 + ⋯𝑢0 and 𝑣 = 𝑣𝑗𝑥

𝑗 + ⋯𝑣0 for 𝑢𝑖 , 𝑣𝑖 in GF(2𝑚). To cancel out 𝑢𝑖𝑥
𝑖 using 𝑣𝑗𝑥

𝑗 first find 𝑐 =

𝑣𝑗
−1𝑚𝑜𝑑 𝑓(𝑥). Then 𝑐𝑣𝑗 = 1 𝑚𝑜𝑑 𝑓(𝑥). Multiply that entire equation by 𝑢𝑖 to form  (𝑐𝑣𝑗 = 1 𝑚𝑜𝑑 𝑓(𝑥))𝑢𝑖 and 

then 𝑐𝑣𝑗𝑢𝑖 = 𝑢𝑖  𝑚𝑜𝑑 𝑓(𝑥). So to cancel out 𝑢𝑖𝑥
𝑖, 𝑣𝑗𝑥

𝑗 can be multiplied by 𝑐𝑢𝑖𝑥
𝑖−𝑗 and added to 𝑢 and the leading 

coefficient of 𝑢 will be canceled out. However, since the invariants must be maintained, multiply the entire second 

equation by 𝑐𝑢𝑖𝑥
𝑖−𝑗 and add it to the first. Call on GF_2m::multiply() GF_2m::add() and to accomplish this. 

𝑢 will shrink by at least one degree each iteration, and the loop will stop when 𝑢 is zero. 𝑣 will contain the last 

nonzero remainder and 𝑔2 and ℎ2 will contain the factors.  

6.2.4 inverse() 

Inverse is implemented again using the extended Euclidean algorithm and is the same as inverse for GF(2𝑚) except 

with arithmetic done in GF(2𝑚) . It also has the modification that loop stops not when 𝑢 =  1 but when 𝑢 is any 

constant. This works because any constant can be multiplied by its multiplicative inverse in the field GF(2𝑚) to get 

1. Multiply the other side of the equation by the same number to get the inverse:  

(𝑎𝑔1 + 𝑏ℎ1 = 𝑐1) ∗ 𝑐1
−1𝑚𝑜𝑑 𝑓(𝑥) 

 And if 𝑐2 = 𝑐1
−1𝑚𝑜𝑑 𝑓(𝑥),  

𝑎𝑔1𝑐2 + 𝑏ℎ1𝑐2 = 1. 

6.2.5 square() 

 Squaring a polynomial over a finite field is the same as squaring the coefficients in their finite field and 

then inserting a zero between all elements followed by a reduction [44]. An example is shown in Figure 10.  

 

 

 

 

 

6.2.6 sqrt() 

The square root of an element 𝑥 in a finite field GF(2𝑚𝑡) is √𝑥 = 𝑥2𝑡𝑚−1
 [45].  Square root is implemented by 

calling square() on the element 𝑡 ∙ 𝑚 − 1 times. 

6.2.7 is_irreducible() 

To create the field GF(2𝑚𝑡) an irreducible polynomial of degree 𝑡 over GF(2𝑚) is required. To check whether a 

polynomial of degree 𝑡 over GF(2𝑚) is irreducible, we use the Ben-Or irreducibility test as in GF(2𝑚) [46]. The 

pseudocode is shown again for reference.  

 

// Ben-Or irreducibility test pseudocode 

for i:=1 to n/2 do 

 g := gcd(f, 𝑥𝑞𝑖
 - x mod f); 

 if g != 1 return false 

Figure 10. Squaring a polynomial over a finite field 
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return true 

 

In this, case, q is equal to 2𝑚 and to implement repeated squaring, we square the polynomial 𝑚 times per iteration 

instead of once as in the previous case.  

6.2.8 get_random_polynomial() 

To generate a random polynomial we use the same technique as in the previous section. First we set result to 

vec![1 as u64] and then shift it left 𝑡 times to create 𝑥𝑡. Then for each index i from 0 to t-1, we generate a 

random number in the range [0, 2^m) as the coefficient and set result[i] equal to that number.  

6.2.9 get_irreducible_polynomial() 

This method works the same way as in the previous section. In a loop, we generate random polynomials and test 

each one for irreducibility until we find one.  

 

6.3 McEliece Implementation 

In our McEliece implementation the Rust library peroxide is used for operations with matrices. A Matrix in 

peroxide holds f64s, so elements of GF(2𝑚) can be converted from u64s to f64s to go in the matrix. 

 

6.3.1 McEliece Key Generation Implementation  

Key generation is accomplished by the method system::create_system(). 

1. Choosing parameters: The system::create_system() method takes in the system parameters n:u64 and 

t:u64 and can be called from main().  The method first checks that n is a power of 2. If it is not, the program 

exits. Otherwise, it sets m = n.log2() and continues. Then it checks that 2𝑚 > 𝑚𝑡. If this condition is not met, 

the dimension of the linear code will be zero. If it is not met, the program exits. Otherwise, it continues.  

2. Generating irreducible polynomials: In create_system(), GF_2m::get_irreducible_polnomial() is 

called to create 𝑓(𝑥) and GF_2mt::get_irreducible_polynomial() is called to create 𝑔(𝑥). These methods 

were explained above. 

3. Finding the parity check matrix for the (𝑛, 𝑘) linear code: After the irreducible polynomials are found, L is 

created by calling GF_2m::create_L(). In create_L(), a loop is used to iterate the range [0,2.pow(m)) 

which are the elements of GF(2𝑚). For each element x, GF_2mt::compute() is called to compute g(x). This is 

done to make sure that 𝑔(𝑥) is really irreducible, because if it is irreducible, it should have no roots in GF(2𝑚). 

Finally all the elements are put in a vector in an arbitrary order and returned. Next, to create the matrix 𝑥, a t by t 

matrix of zeros is first created using x=peroxide::zeros(t, t). Then the coefficients of 𝑔(𝑥) except for 𝑔0 are 

copied to the last row of 𝑥. 𝑔 is shifted one to the left then the coefficients are copied to the second to last row. This 

process continues until the matrix is filled. To create 𝑦, a t by n matrix of zeros is created and the first row is set to 

all ones. Then for r in 1..t and c in 0..n each element is set to GF_2m::pow(L[c],r,f). To create 𝑧, an n by n 

matrix of zeros is created. Then a loop iterates over the rows and columns and and when r==c, the element at 

z[(r,c)] is set to f1::inverse(f2::compute(&g, f, L[r]), f). Finally, 𝑥𝑦𝑧 must be computed. 

However, since the elements of all three matrices are in GF(2𝑚), and decimal multiplication and addition is not the 
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same as GF(2𝑚) multiplication and addition, the peroxide built-in matrix multiplication method cannot be used. 

Instead, a special method is used which does the arithmetic in the proper field.  An image is shown in Figure 11.  

 

 

 

 

 

 

 

 

 

After finding 𝐻, the elements of 𝐻 will be f64s, each representing an element of GF(2𝑚). To continue with the rest 

of the steps this matrix must be converted to a binary matrix, so each element is converted into a u64 and then to a 

binary string including leading zeros using GF_2m::vec(). GF_2m::vec() creates a new Vec of length deg(f) 

and loops over the indices of the Vec from high order to low order. If u % 2 is zero, set the vec[index] to zero. 

Otherwise set vec[index] to one. Then shift the u64 to the right. Continue until the vector is filled. This results in 

a vector where the low order bits are in the high order index. This is so that the vector can be read from left to right 

and still represents the u64 in binary. In the matrix, each vector is then written downwards from high order to low 

order so that the dimensions of 𝐻 become tm by n.    

4. Finding the generator matrix for the (𝑛, 𝑘) linear code 𝐺 = 𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒(𝐻)𝑇: The peroxide matrix library did 

not have a method to find the nullspace of a matrix so a method was implemented by hand based off of Kahn 

Academy [48]. To find the nullspace of a matrix, the matrix is first put into reduced row echelon form. The 

peroxide matrix library also does not have a method to row reduce a matrix so a method was also implemented by 

modifying pseudocode from Wikipedia [49] to work modulo 2. To put a matrix into reduced row echelon form, 

lead, representing the lead column, is set to zero and a loop goes over the rows of the matrix from top to bottom 

with variable r. For each row r, a variable i is initialized to zero. i is sent down the matrix until it finds a row 

where the element at row i, column lead is one. The row found is put into row r by swapping. Then the whole 

column lead is cleared except for the 1 at row r. Since arithmetic is modulo 2, this is achieved by adding row r to 

which ever row does not have a zero at row r, column lead. Then the lead column is incremented and the process 

repeats until lead goes past the end of the matrix. At the end of the method, the matrix is in reduced row echelon 

form. However, reduced row echelon form is not necessarily an identity matrix. To finish creating an identity 

matrix, the code walks through the matrix from left to right to find columns that do not satisfy the identity matrix. It 

then calls the method find_col() to find and swap an appropriate column. The pairs of columns swapped are 

recorded in a vector swap to be swapped back later. A this point the matrix has some kind of identity matrix on the 

left. If the identity matrix is mt by mt, the number of columns which is the dimension of the code will be n-mt. It 

the identity matrix is not mt by mt, there must be a zero row at the bottom of the matrix. For every zero row at the 

bottom of the matrix there will be one additional column in the nullspace and thus the dimension of the code is 

Figure 11. Matrix multiplication using field multiplication and addition where GF_2m is 

used as f1 
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increased by one for each zero row. At this point a new matrix nullspace is created to hold the nullspace. The 

number of rows in nullspace must be equal to the number of columns of the original matrix since there must be a 

row for every variable in the system of equations being solved. The number of columns is equal to however many 

columns are not a part of the leftward identity matrix which is some number greater than or equal to n-mt. So a 

matrix of zeros of that size is created. Then, the columns to the right of the identity matrix are copied into 

nullspace. Finally, if there is a block of zero rows at the bottom of nullspace, fill it with an identity matrix. As 

the last step, go through the vector swap in reverse order and swap the rows back (not the columns as previously 

done). This matrix represents the columns of the nullspace of the original matrix. The matrix is transposed and 

returned and the generator matrix is this matrix with dimension k>=n-mt and length n.  

5. Generating a 𝑘 x 𝑘 dense nonsingular matrix 𝑆: Since the Rust library often crashes when finding the determinant, 

we use the facts that the identity matrix has a determinant of one and that adding a row to another row does not 

change the determinant to create our own nonsingular matrix [49]. However, since the matrix elements are in GF(2) 

we cannot add a row to another row if it would cause any of the elements to reach 2. So to create the matrix we start 

by creating an identity matrix. Then we loop through each row and add it to whichever row will remain in GF(2) 

upon addition. We keep track of the matrix density and after each addition increase it accordingly. We continue the 

loop until density stops increasing.  

Generating a 𝑛 x 𝑛 random permutation matrix 𝑃: First an n by n matrix is created. A vector called ones is 

generated containing values in the range [0,n) and then shuffled. A loop iterates through the range [0,n) and sets 

P[(i,ones[i])] = 1.  

6. The public key is 𝐺′: A struct called public_key is used to hold G', length, dimension, and t. The public key 

needs to contain t so that the encrypter knows how many errors they can include. 

The private key is 𝑆, 𝐺, 𝑃, 𝑔(𝑥), 𝑓(𝑥), and 𝐿: A struct called private_key is used to hold S, G, P, L, g,  f, 

length, and dimension. An image is shown in Figure 12. A tuple (public_key, private_key) is returned from 

create_system().  

 

   

 

 

 

 

 

 

 

 

6.3.2 McEliece Encryption Implementation 

1. Encrypting a binary string m: In encrypt(), the peroxide matrix library is be used to compute mG. A random 

error vector of weight t is chosen from among all possible error vectors, which is 𝐶(𝑙𝑒𝑛𝑔𝑡ℎ, 𝑡) combinations. We 

Figure 12. Structs used to hold the public and private keys in 

McEliece 
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do this by first creating a vector with length zeros. Then we use a loop and choose a random index at each 

iteration. We keep track of the indices chosen and make sure that we do not choose the same one twice. For each 

index we set that element equal to one. The error vector is added to mG.  

 

6.3.3 McEliece Decryption Implementation 

1. Computing 𝑦′𝑃−1: The peroxide matrix libary is used to find P.inv() and compute yP_inv = y*P.inv() 

where the parameter of 𝑦′ is called y. 

2. Using Patterson's algorithm to find 𝑒𝑃−1:  

 a) The syndrome 𝑠(𝑥) =  ∑
𝑦𝑖

𝑥−𝛼𝑖
𝑚𝑜𝑑 𝑔(𝑥)𝑛

𝑖=1  is computed by calling  

                  encrypt_decrypt::syndrome(). In syndrome(), the denominators are computed by   

     calling GF_tm::add() because in this case 𝑥 is a member of GF(2𝑚𝑡) and 𝛼𝑖 is a constant in    

                GF(2𝑚𝑡) so addition is computed in GF(2𝑚𝑡). Then, since 𝑦𝑖  is either one or zero, for every 𝑦𝑖   

                that is a one, the fractional quantity becomes the inverse of an element in GF(2𝑚𝑡),  

                modulo 𝑔(𝑥). To accomplish this, GF(2_mt)::inverse() is called. The inverses, which are  

                also elements of GF(2𝑚𝑡), are summed by using GF_2mt:add(). The sum is also an element  

                of GF(2𝑚𝑡). 

 b) Computing 𝑣(𝑥) ≡ √𝑠(𝑥)−1 − 𝑥 𝑚𝑜𝑑 𝑔(𝑥): The syndrome is an element of GF(2𝑚𝑡) so its   

                 inverse is computed by calling GF_2mt::inverse(). 𝑥 in GF(2𝑚𝑡) is added by calling  

                 GF_2mt::add(). The square root is computed by calling GF_2mt::sqrt().  

 c) Finding 𝑎(𝑥) and 𝑏(𝑥) so that 𝑎(𝑥) ≡ 𝑏(𝑥)𝑣(𝑥) 𝑚𝑜𝑑𝑔(𝑥) and deg(𝑎) ≤ ⌊
𝑡

2
⌋ and 

                deg (𝑏) ≤ ⌊(𝑡 − 1)/2⌋ : These polynomials are found using a special method  

                GF_2mt::get_bx_ax() which is an extended Euclidean algorithm that stops early, at the  

                conditions required.  

 d) Setting 𝜎(𝑥) = 𝑎(𝑥)2 + 𝑥 ∙ 𝑏(𝑥)2: The polynomial 𝜎 is computed by               

                 encrypt_decrypt::sigma() which calls methods from GF_2mt even though the  

                 polynomials are not elements of GF(2𝑚𝑡). GF_2mt::square() is called on ax and bx (no  

                 reduction), bx2 is shifted left by one index, and GF_2mt::add() is called to add ax2 and b2x  

                 and get sigma.  

 e) Plugging in each element of 𝐿 to 𝜎(𝑥): GF_2mt::compute() is called to plug in the element.  

                 compute() just calls the GF_2m arithmetic methods pow(), multiply(), and add() to  

                 compute 𝜎(𝑥) and return the value which is in GF(2𝑚). The error vector is created by  

                 error_vector() which takes in sigma and L. 

3. Finding 𝑦𝑃−1 = 𝑚𝑆𝐺: This quantity is found by adding error_vector to y modulo 2.  

4. Finding 𝑚𝑆 by row reducing [𝐺𝑇|(𝑚𝑆𝐺)𝑇]: Since the peroxide library does not have an append method, 

matrix::append() was implemented. Then G.transpose(), with the transpose found using the library method, 

is appended to mSG.transpose() and a method rref_for_decrypt() is run which puts the matrix into reduced 
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row echelon form without clearing the rightmost column. Then k elements are taken from the top of the rightmost 

column. 

5. Finding 𝑚 by computing 𝑚𝑆𝑆−1: S.inv() is found using the library and the product is computed the library: m 

= mS*S.inv().  

 

6.4 Regev Implementation 

Random numbers are generated using the Rust library std::rand::Rng. Vectors of integers are represented as 

Vecs of u64s.  

 

6.4.1 Regev Key Generation Implementation 

Key generation is accomplished by the method create_system().  

1. Choosing parameters: the create_system() method takes in the system parameters n and E and can be called 

from main(). First the range of p is set by letting lower=n*n and upper=2*lower. Then p is generated by p = 

rand::thread_rng().gen_range(lower..upper). m is set by doing  m = ((1.0 + E) * (n as f64 + 

1.0) * (p as f64).log2()) and then round() is used to round it since m is supposed to be an integer. It is 

not specified in the instructions how to make it an integer. B is set to alpha(n) which implements 𝛼. A private key 

is created by calling the method private_key(). The method private_key() calls 

draw_vector_from_Znp(). The method draw_vector_from_Znp() returns a vector of length n filled with 

random elements from 𝑍𝑝 to use as the private key. create_system() continues by calling public_key(). The 

method public_key() loops from 0 to m. For each loop a vector is drawn from 𝑍𝑝
𝑛 using 

draw_vector_from_Znp(), and then  b is computed by calling b = inner_product(&a, &s, p) + 

draw_element_from_X(p, B). In inner_product() the lengths of both vectors are compared to see if they 

are equal. If they are not, the program exits. Otherwise it continues, and sum is set to zero and for the range 

0..a.len() the product of a[i] and b[i] is added to sum. The sum which is a u64 is reduced by p and then 

returned. draw_element_from_X() is the method that draws the element from the distribution χ. It takes p and B. 

First mean is set to 0 and std_dev to B/(2*PI).sqrt(). Then the Rust library rand_distr::{Normal, 

Distribution} is used to create a normal distribution with mean mean and standard deviation std_dev. That 

normal distribution is sampled from which results in an f64, which is reduced modulo 1.0 with 

rem_euclid(1.0), multiplied by p, rounded it to the nearest integer using round() and then reduced modulo p. 

The resulting number which is a u64 is returned. Returning to public_key(), a is a random vector from 𝑍𝑝
𝑛 and b 

is an element computed by b = inner_product(&a, &s, p) + draw_element_from_X(p, B) and is a 

u64 reduced modulo p. Then a pair instance is created where a pair is a struct used to hold together 

a:Vec<u64> and b:u64 which are the structures used in the public key and the ciphertext. A picture of the struct 

is shown in Figure 14.  
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For i in 0..m a pair is created and pushed to a vector of pairs. Finally in create_system() an instance of the 

public_key struct is created and an instance of the private_key struct is created. These structs are 

shown in Figure 13. A tuple (public_key, private_key) is returned.  

 

6.4.2 Regev Encryption Implementation 

The method encrypt_vector() is called to encrypt a message which is a binary vector. A new vector called 

encrypted_bits is created and a loop goes over the bits in the message. Each bit is encrypted one by one by 

calling encrypt_bit(). encrypt_bit() first calls choose_subset(m) which returns a random subset out of 

all subsets of {1. . 𝑚}. choose_subset() works by generating a random number in the range 0..2.pow(m). 

Since the parameters of the system are large enough that this upper bound does not fit in a u64, this is done by 

creating a vector of length m and setting each element randomly to zero or one. Then for each element i in 1..m, if 

the ith bit of the random number is one, i is pushed to the set. The resulting set is returned which is a vector of 

u64s. After choosing the subset in encrypt_bit(), the two sums ∑ 𝒂𝒊𝑖∈𝑆  and ∑ 𝑏𝑖𝑖∈𝑆  are created by looping over 

the elements of the subset and for each element adding public_key[element].a to the first sum and 

public_key[element].b to the second sum. The vectors in the first sum are added using add_vector() 

which adds a vector modulo p and u64 addition modulo p is used for the second sum. Finally if the bit is 0 the pair 

is returned as is, otherwise the extra value y += (p/2).floor() is added to the second sum and then the pair is 

returned. Each encrypted bit is appended to the vector encrypted_bits(). The vector is returned and is a vector 

of pairs. 

 

6.4.3 Regev Decryption Implementation 

In decrypt_vector(), a vector of pairs is taken and decrypted one by one by calling decrypt_bit(). In 

decrypt_bit(), inner_product() is first called to compute the inner product of pair.a and s and point is 

set to pair.b-inner_product. Then q is set to p/2.floor() and distance_to_0 is computed as the circular 

Figure 14. Struct used to 

hold elements of the public 

key and the ciphertext in 

Regev Figure 13. Structs used to 

hold private and public 

key in Regev 
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distance from point to 0 using our method circular_distance(). The method is shown in Figure 15 and is 

taken from Stack Overflow [50]. 

 

 

 

 

 

 

Then distance_to_q is computed as the circular distance from point to q using circular_distance(). If 

distance_to_0 is less than distance_to_q, 0 is returned, otherwise 1 is returned. In decrypt_vector(), the 

decrypted bits are appended to a vector one by one and returned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Circular distance function used in Regev decryption 
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7. EXAMPLES 

 In this section we show examples of key generation, encryption, and decryption for the McEliece and 

Regev systems.  

 

7.1 McEliece Key Generation Example 

1. Choose 𝑛 and 𝑡 with a 𝑛 a power of 2 and 2𝑚 > 𝑚𝑡:  

(𝑛, 𝑡) = (8,2) 

2. Generate an irreducible polynomial of degree 𝑚 over GF(2), call it 𝑓(𝑥). Also generate an irreducible polynomial 

of degree 𝑡 over GF(2𝑚 = 𝑛) and call it 𝑔(𝑥): 

𝑓(𝑥) = 𝑥3 + 𝑥 + 1,  𝑔(𝑥) = 𝑥2 + 𝑥 + 111 

3. Find the parity check matrix for the linear code corresponding to 𝑔(𝑥).  

Choose L: 𝐿 = {𝛼1, … , 𝛼𝑛} =  {011,100,110,001,000,101,010,111}  

Then use the following formulas to create 𝑥, 𝑦, and 𝑧: 

𝑥 =  [

𝑔𝑡 0 0 … 0
𝑔𝑡−1 𝑔𝑡 0 0 0
… … … 0 0
𝑔1 𝑔2 𝑔3 … 𝑔𝑡

] , 𝑦 =

[
 
 
 

𝛼1
0 𝛼2

0 0 … 𝛼𝑛
0

𝛼1
1 𝛼2

1 0 … 𝛼𝑛
1

… … … … …
𝛼1

𝑡−1 𝛼2
𝑡−1 0 … 𝛼𝑛

𝑡−1]
 
 
 
,  and 𝑧 =  

[
 
 
 
 
 

1

𝑔(𝛼1)
0 0

0
1

𝑔(𝛼2)
0

… … …

0 …
1

𝑔(𝛼𝑛)]
 
 
 
 
 

 . 

So,  

𝑥 =  [
001 000
001 001

], 𝑦 = [
001 001 001 001 001 001 001 001
011 100 110 001 000 101 010 111

], and 

𝑧 =  

[
 
 
 
 
 
 
 
001 000 000 000 000 000 000 000
000 010 000 000 000 000 000 000
000 000 110 000 000 000 000 000
000 000 000 100 000 000 000 000
000 000 000 000 100 000 000 000
000 000 000 000 000 010 000 000
000 000 000 000 000 000 001 000
000 000 000 000 000 000 000 110]

 
 
 
 
 
 
 

 

 

 

 

Then compute 𝐻 = 𝑥𝑦𝑧 and then convert 𝐻 to binary: 

𝐻 =  𝑥𝑦𝑧 =  [
001 010 110 100 100 010 001 110
010 001 100 000 100 011 011 010

] , 𝐻 =  

[
 
 
 
 
 
0 0 1 1 1 0 0 1
0 1 1 0 0 1 0 1
1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 0]

 
 
 
 
 

   

4. Find the generator matrix for the (𝑛, 𝑘) linear code. 

First find the nullspace of 𝐻 and then transpose it to get the generator matrix: 

where the inverses are listed here: 

1−1 𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 001  

𝑥−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 𝑥2 + 1 =  101  

(𝑥 + 1)−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = x2 + x = 110  

(𝑥2)−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 𝑥2 + 𝑥 + 1 = 111  

(𝑥2 + 1)−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 𝑥 = 010  

(𝑥2 + 𝑥)−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 𝑥 + 1 = 011  

(𝑥2 + 𝑥 + 1)−1𝑚𝑜𝑑 𝑥3 + 𝑥 + 1 = 𝑥2 = 100  
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𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒(𝐻) =  

[
 
 
 
 
 
 
 
1 0
1 1
1 1
0 1
1 1
0 1
1 0
0 1]

 
 
 
 
 
 
 

  and 𝐺 =  𝑛𝑢𝑙𝑙𝑠𝑝𝑎𝑐𝑒𝑇 =  [
1 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1

]  and (𝑛, 𝑘) = (8,2). 

5. Generate the 𝑘 x 𝑘 dense nonsingular matrix 𝑆 and the 𝑛 by 𝑛 permutation matrix 𝑃: 

𝑆 =  [
1 0
0 1

]  and  𝑃 =  

[
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0]

 
 
 
 
 
 
 

  

And finally scramble the generator matrix:  

𝐺 =  [
1 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1

]  and 𝐺′ =  𝑆𝐺𝑃 =  [
1 1 0 1 0 1 1 0
1 0 1 0 1 1 1 1

]  

The public key is 𝐺′ and the private key is 𝑆, 𝐺, 𝑃, 𝑔(𝑥), 𝑓(𝑥) and 𝐿. 

 

7.2 McEliece Encryption Example 

1. Choose a message 𝑚 and compute 𝑚𝐺′: 

𝑚 =  [0 1], 𝐺′ =  𝑆𝐺𝑃 =  [
1 1 0 1 0 1 1 0
1 0 1 0 1 1 1 1

], and 𝑚𝐺′ =  [1 0 1 0 1 1 1 1]  

Choose an error vector and compute 𝑦’ =  𝑚𝐺’ + 𝑒:   

𝑒 =  [1 0 0 0 1 0 0 0]  and 𝑚𝐺′ =  [1 0 1 0 1 1 1 1]   

𝑦′ =  𝑚𝐺′ + 𝑒 =  [0 0 1 0 0 1 1 1]  

 

7.3 McEliece Decryption Example 

1. Compute 𝑦′𝑃−1 = 𝑚𝑆𝐺𝑃−1 + 𝑒𝑃−1: 

𝑦′ =  [0 0 1 0 0 1 1 1] and 𝑃−1 =

[
 
 
 
 
 
 
 
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0]

 
 
 
 
 
 
 

  

so 𝑦′𝑃−1 = [0 0 1 0 1 1 0 1] 

2. Use Patterson’s algorithm to find 𝑒𝑃−1: 

 a) Compute the syndrome 𝑠(𝑥): 

 𝑦′𝑃−1 = [0 0 1 0 1 1 0 1] 

 𝐿 = {011,100,110,001,000,101,010,111}  
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 𝑠(𝑥) =  ∑
𝑦𝑖

𝑥−𝛼𝑖
𝑚𝑜𝑑 𝑔(𝑥)𝑛

𝑖=1 = (
1

𝑥+110
)𝑚𝑜𝑑𝑔(𝑥) + (

1

𝑥
)𝑚𝑜𝑑𝑔(𝑥) + (

1

𝑥+101
)  𝑚𝑜𝑑𝑔(𝑥) +

 (
1

010𝑥+011
) 𝑚𝑜𝑑𝑔(𝑥) = 

 = (𝑥 + 110)−1𝑚𝑜𝑑𝑔(𝑥) + (𝑥)−1𝑚𝑜𝑑𝑔(𝑥) + (𝑥 + 101)−1𝑚𝑜𝑑𝑔(𝑥) +  

 (010𝑥 + 011)−1𝑚𝑜𝑑𝑔(𝑥)    

 = 110𝑥 + 1   

 b) Compute 𝑣(𝑥) ≡ √𝑠(𝑥)−1 − 𝑥 𝑚𝑜𝑑 𝑔(𝑥): 110𝑥 + 111 

 c) ) Find 𝑎(𝑥) and 𝑏(𝑥) so that 𝑎(𝑥) ≡ 𝑏(𝑥)𝑣(𝑥) 𝑚𝑜𝑑𝑔(𝑥) and deg(𝑎) ≤ ⌊
𝑡

2
⌋ and  deg(𝑏) ≤ 

 ⌊
𝑡−1

2
⌋ :  𝑎(𝑥) = 110𝑥 + 111,   𝑏(𝑥) = 1  

 d) Set 𝜎(𝑥) = 𝑎(𝑥)2 + 𝑥 ∙ 𝑏(𝑥)2: 10𝑥2 + 𝑥 + 11 

 e) Locate the errors by plugging in the values of L: they are at indices 1 and 3   

 𝜎(011) = 001  

 𝜎(100) = 000  

 𝜎(110) = 001   

 𝜎(001) = 000  

 𝜎(000) = 011  

 𝜎(101) = 011  

 𝜎(010) = 010  

 𝜎(111) = 010  

So 𝑒𝑃−1 = [0 1 0 1 0 0 0 0] . 

Finally Add 𝑒𝑃−1 to 𝑦′𝑃−1 to get 𝑚𝑆𝐺𝑃𝑃−1 = 𝑚𝑆𝐺:  

𝑦′𝑃−1 = [0 0 1 0 1 1 0 1],  𝑒𝑃−1 =   [0 1 0 1 0 0 0 0]  

𝑚𝑆𝐺 = [0 1 1 1 1 1 0 1]  

3. Find 𝑚𝑆 by row reducing [𝐺𝑇|(𝑚𝑆𝐺)𝑇]: 

[𝐺𝑇|(𝑚𝑆𝐺)𝑇] =

[
 
 
 
 
 
 
 
1 0 0
1 1 1
1 1 1
0 1 1
1 1 1
0 1 1
1 0 0
0 1 1]

 
 
 
 
 
 
 

  and [𝐺𝑇|(𝑚𝑆𝐺)𝑇] 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =  

[
 
 
 
 
 
 
 
1 0 𝟎
0 1 𝟏
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0]

 
 
 
 
 
 
 

  

And so 𝑚𝑆 = [0 1] as in the top right hand corner of the matrix.  

4. Finally, find 𝑚 by computing 𝑚𝑆𝑆−1: 

𝑚𝑆 =  [0 1]  and 𝑆−1 =  [
1 0
0 1

] , so 𝑚 =  𝑚𝑆𝑆−1 =  [0 1] as desired. 

 

7.4 Regev Key Generation Example 

1. Choose the security parameter 𝑛 ∈ 𝑍: 
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𝑛 = 3 

2. Choose two more parameters 𝑝, 𝑚 such that 𝑝 ≥ 2 is a prime number in the range [𝑛2, 2𝑛2] and 𝑚 =

(1 + 𝜖)(𝑛 + 1) log2 𝑝 for some constant 𝜖 > 0:  

𝑝 = 10,𝑚 = 20  

 

4. Choose a vector in 𝑍𝑝
𝑛 randomly and call it 𝒔. This is the private key: 

 𝑠 =  [2,7,3] 

5. To create the private key, first choose 𝑚 vectors in 𝑍𝑝
𝑛 randomly and call them 𝒂𝟏, . . . , 𝒂𝒎. Then choose 𝑚 

elements in 𝑍𝑝 according to χ and call them 𝒆𝟏, … , 𝒆𝒎: 

𝑎1 = [1,0,2]  

𝑎2 = [8,2,3]  

𝑎3 = [1,6,3]  

𝑎4 = [5,5,7]  and  

𝑎5 = [2,0,4]  

𝑎6 = [2,3,7]  

𝑎7 = [8,5,2]  

…    

 

Then compute 𝑏1, … , 𝑏𝑛 by setting 𝑏𝑖 = 〈𝒂𝒊, 𝒔〉 + 𝑒𝑖 where 〈𝒂𝒊, 𝒔〉 is the dot product of 𝒂𝒊 and 𝑠 reduced modulo 𝑝: 

𝑏1 = (1)(2) + (0)(7) + (2)(3) + 9 = 2+6+9=17 mod 10 = 7 

…  

𝑏5 = (2)(2) + (0)(7) + (4)(3)  + 2 = 4+12+2 = 18 mod 10 = 8 

…  

𝑏7 = (8)(2) + (5)(7) + (2)(3) + 0 =   16+35+6 = 57 mod 10 = 7 

 

The public key is 𝑚 tuples (𝒂𝒊, 𝑏𝑖) for 0 ≤ 𝑖 < 𝑚: 

([1,0,2], 7)  

…  

([2,0,4], 8)  

…  

([8,5,2],  7)  

…    

 

7.5 Regev Encryption Example 

1. Randomly choose a set 𝑆 from all subsets of the set {1, … ,𝑚}: 

([1,0,2], 7)  

([2,0,4], 8)  

𝑒1 = 9  
𝑒2 = 1  
𝑒3 = 0  
𝑒4 = 0  
𝑒5 = 2  
𝑒6 = 0  
𝑒7 = 0  
…     
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([8,5,2],  7)  

 

Then encrypt a 0 as (∑ 𝒂𝒊,𝑖∈𝑆 ∑ 𝑏𝑖)𝑖∈𝑆  and a 1 as (∑ 𝒂𝒊,𝑖∈𝑆 ⌊
𝑝

2
⌋ + ∑ 𝑏𝑖)𝑖∈𝑆  where all numbers are reduced modulo 𝑝: 

Encrypt a 0 as (∑ 𝒂𝒊,𝑖∈𝑆 ∑ 𝑏𝑖) = ([1,5,8], 2) 𝑖∈𝑆  

Encrypt a 1 as (∑ 𝒂𝒊,𝑖∈𝑆 ⌊
𝑝

2
⌋ + ∑ 𝑏𝑖)𝑖∈𝑆  = ([1,5,8], 2 + 5) = ([1,5,8], 7)  

 

7.6 Regev Decryption Example  

1. To decrypt a pair (𝒂, 𝑏) compute 𝑏 − 〈𝑎, 𝑏〉: 

If the ciphertext is ([1,5,8], 2) , 𝑏⃑ − ⟨𝑎 , 𝑠 ⟩ = 2 – (1)(2) + (5)(3) + (8)(7)  =  2 –  61 =  2 –  1 =  1 

If the ciphertext is ([1,5,8], 7),  𝑏⃑ − ⟨𝑎 , 𝑠 ⟩ = 7 – (1)(2) + (5)(3) + (8)(7)  =  7–  61 =  7 –  1 =  6 

Check if 𝑏 − 〈𝑎, 𝑏〉 is closer to 0 than to ⌊
𝑝

2
⌋ modulo 𝑝. This is the same as computing the circular distance of 𝑏 −

〈𝑎, 𝑏〉 to 0 and ⌊
𝑝

2
⌋, and noting which is the smaller quantity.  

 

 

 

 

Since 1 is closer to 0 on the circle, the first bit is decrypted as a 0 as desired.  

Since 6 is closer to 5 on the circle, the second bit is decrypted as a 1 as desired. 
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8. TESTS 

 It is important to test each system for correctness. Our goal is to have every decrypted message be the same 

as the message we encrypted. In this chapter we go over how we verified this.  

 

8.1 McEliece: Finding Parameter Limits 

 Since we wanted to test the system with as many parameters as possible, we first wanted to determine how 

high we can turn the parameters of the system. Ideally, we would want to meet McEliece's original suggestion of a 

system with 𝑚 = 10 and 𝑡 = 50. Since the first step in creating a McEliece system is the generation of two 

polynomials, it makes sense to test the limits of those methods first. We previously mentioned that the generation of 

an irreducible polynomial of degree 𝑛 should take 𝑛 tries on average [1]. We first tested this hypothesis for 

polynomials over GF(2) by generating 100 irreducible polynomials each for degrees one through ten and averaging 

the number of tries it took to find each one. The results are shown in Figure 16.  

 

 

As the image shows, McEleice's claim pans out almost exactly for polynomials over GF(2). We continued the test 

for polynomials over GF(2) of up to degree 50 and find that it holds. Next we chose the coefficient field GF(23) and 

generated 100 polynomials over GF(23) each for degrees two through five and averaged the number of tries it took 

to find each one. The results were less impressive, with averages of 10, 20, 32, and 216 tries respectively. Since the 

generation of the polynomial 𝑔(𝑥) thus seems to be a bottleneck, we wanted to find out the out the largest we can 

generate over GF(2𝑚) in a reasonable amount of time. To accomplish this, we first held 𝑚 constant at values of 

1,2,3,4,5, and 6 and increased 𝑡 starting from 1 until the generation of a polynomial took more than thirty seconds. 

Then we held 𝑡 constant at values of 2, 3, and 4 and increased 𝑚 starting from 1 until the generation of a polynomial 

took more than thirty seconds. The results are shown in Table 1, where the dashes represent where more than thirty 

seconds went by without finding a polynomial.  

 

Table 1. Maximum parameters for irreducible polynomials over GF(2𝑚) 

𝑚 Maximum 𝑡 𝑡 Maximum 𝑚 

1 2 2 14 

2 3 3 14 

3 9 4 -- 

Figure 16. Number of tries to find an irreducible polynomial over GF(2) 
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4 9     

5 7     

6 --     

 

Finally, as a standalone experiment, we set 𝑡 =  5 and 𝑚 =  10 and checked 500,000 polynomials but never found 

an irreducible one. We reason that a cause could be that our random polynomial generator is producing some or 

many repeated polynomials, but unfortunately we are unable to get to the parameters that McEliece originally 

suggested of 𝑚 = 10 and 𝑡 = 50. 

 

8.2 McEliece: Unit Testing Parameter Limits  

 Nevertheless, calling on our results from above we create a table of as many sets of parameters as our 

irreducible polynomial generator will allow. Then, we shade the cells in grey which do not contain a runnable 

setting due to the parameter constraints of 2𝑚 > 𝑚𝑡, 𝑡 > 1, and 𝑚 > 1. The results are in Table 2. 

  

Table 2. All runnable parameter settings for McEliece 

set 

# 

params set 

# 

params set 

# 

params set 

# 

params set 

# 

params set 

# 

params 

1 (2,1) 11 (8,6) 21 (16,7) 31 (2,2) 41 (2048,2) 51 (128,3) 

2 (2,2) 12 (8,7) 22 (16,8) 32 (4,2) 42 (4096,2) 52 (256,3) 

3 (4,1) 13 (8,8) 23 (16,9) 33 (8,2) 43 (8192,2) 53 (512,3) 

4 (4,2) 14 (8,9) 24 (32,1) 34 (16,2) 44 (16384,2) 54 (1024,3) 

5 (4,3) 15 (16,1) 25 (32,2) 35 (32,2) 45 (2,3) 55 (2048,3) 

6 (8,1) 16 (16,2) 26 (32,3) 36 (64,2) 46 (4,3) 56 (4096,3) 

7 (8,2) 17 (16,3) 27 (32,4) 37 (128,2) 47 (8,3) 57 (8192,3) 

8 (8,3) 18 (16,4) 28 (32,5) 38 (256,2) 48 (16,3) 58 (16384,3) 

9 (8,4) 19 (16,5) 29 (32,6) 39 (512,2) 49 (32,3) 59   

10 (8,5) 20 (16,6) 30 (32,7) 40 (1024,2) 50 (64,3) 60   

 

 

Continuing on, we modified the table to show only the runnable cases and added columns for the number of 

messages tried per system, the number of error vectors tried per message, and the total number of messages 

decrypted correctly. Recall that for each message to be encrypted, an error vector is added. For each message we 

tested multiple error vectors, and the number is listed in the # errs column. For smaller parameter values we tested 

100 random messages with 10 error vectors each to create 1000 messages tested, for medium parameter values we 

tested 10 messages each with 1 error vector, and for large parameter values we tested 1 message with 1 error vector. 

For extremely large parameters, we did not wait. But in total we tested 15, 024 messages across 22 different 
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parameter sets. From the Table 3 it is clear that all 15, 024 messages were decrypted correctly. The number of 

messages decrypted correctly is highlighted in yellow.  

 

Table 3. Number of messages decrypted correctly for all parameter settings 

 

 

We show some example output of the tests in Figure 17. The top picture is for n = 16, t = 3. The bottom picture is 

for n = 32, t = 3. It shows how many tries it took to find the irreducible polynomials, it shows the polynomials it 

found, the length and dimension of the code, and the number of messages decrypted correctly and incorrectly. In 

both images, at bottom it shows that all 1000 messages were decrypted correctly.  

 

set 

# 

(n,t) # 

msgs 

# 

errs 

total 

correct 

set 

# 

(n,t) # 

msgs 

# 

errs 

total 

correct 

set 

# 

(n,t) # 

msgs 

# 

errs 

total 

correct  

7 (8,2) 100 10 1000 35 (32,2) 100 10 1000 48 (16,3) 100 10 1000 

16 (16,2) 100 10 1000 36 (64,2) 100 10 1000 49 (32,3) 100 10 1000 

17 (16,3) 100 10 1000 37 (128,2) 10 1 10 50 (64,3) 100 10 1000 

25 (32,2) 100 10 1000 38 (256,2) 10 1 10 51 (128,3) 1 1 1 

26 (32,3) 100 10 1000 39 (512,2) 1 1 1 52 (256,3) 1 1 1 

27 (32,4) 100 10 1000 40 (1024,2) 1 1 1 53 (512,3) 1 1 1 

28 (32,5) 100 10 1000 41 (2048,2) dnw 
  

54 (1024,3) dnw 
  

29 (32,6) 100 10 1000 42 (4096,2) dnw 
  

55 (2048,3) dnw 
  

33 (8,2) 100 10 1000 43 (8192,2) dnw 
  

56 (4096,3) dnw 
  

34 (16,2) 100 10 1000 44 (16384,2) dnw 
  

57 (8192,3) dnw 
  

Figure 17. Example output from McEliece tests with small parameters 
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We also show in Figure 18 two images from larger parameter settings, n = 64, t = 3, and n = 512, t = 3. The top one 

was tested 1000 times and the results come out with 1000 correct decryptions, and the bottom one was tested once 

and that comes correctly also. 

 

8.3 McEliece: Testing on Text 

Once we were satisfied that the unit tests passed, we wanted to test our implementation of cipher block chaining. 

Arbitrarily we chose some of the faster parameter settings of (8,2), (16,2), (16,3), (32,2), and (32,3) and tested  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Example output from McEliece tests with large parameters 

Figure 19. Example output from McEliece cipher block chaining on text 



Investigating Lattice-Based Cryptography 

39 

 

each system on 22, 24, 26, 28, 210, 212, and 214 characters of Wuthering Heights. The results all come out correctly, 

and some screenshots are shown in Figure 19. For each of the character lengths, it prints True if the decrypted 

ciphertext is equal to the original message.  

 

8.4 Regev: Initial Tests  

Initial tests of the Regev system proved promising. We created three systems: one with 𝑛 =  5, 𝑝 =  4, and 𝑚 =

 6; one with 𝑛 =  5, 𝑝 =  5, and 𝑚 =  3; and one with 𝑛 =  5, 𝑝 =  6, and 𝑚 =  4. We tested all messages of 

length ten 100 times on each system and averaged the results, getting averages of 1022, 1020, and 1023 correct 

decryptions out of 1024. Screenshots of the second system are shown in Figure 20. Since we know that the system 

only decrypts correctly with a certain probability, it seemed like the system was going to work. 

 However, Regev gives parameter constraints that guarantee safety and correctness. When we adjusted the 

parameters to satisfy the constraints, the results were not as good. We again created three systems: one with 𝑛 =

 10, 𝑝 =  164, and 𝑚 =  121; one with 𝑛 =  12, 𝑝 =  248, and 𝑚 =  155; and one with 𝑛 =  15, 𝑝 =

 345, and 𝑚 =  202. For each system we encrypted and decrypted all messages of length ten ten times and averaged 

the number of correct decryptions, getting 637, 186, and 358 average correct decryptions out of 1024.  

 Most messages were decrypted incorrectly in these tests. However, after checking the code to make sure all 

the steps were implemented correctly, we reasoned that the cause of the incorrectness might be something to do with 

the randomness of the subset of the public key chosen during encryption, or something to do with the choosing of 

the errors from the probability distribution during public key generation. So we tested the algorithm with all the 

errors set to zero; as expected, the results all came out correctly. In the next section, we show how we took a closer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

look at how encryption and decryption are supposed to work. In particular, since the algorithm encrypts a single bit 

at a time, we look at bit-level encryption and decryption.  

Figure 20. Initial tests of Regev with small parameters 
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8.5 Regev: Finding the Acceptable Error Range 

If we suppose that 𝑚 = 10 we can write the expanded form of the public key as follows, and we highlight in yellow 

the subset we choose for encryption:  

[𝑎1⃑⃑⃑⃑ ,  𝑏1] = [𝑎1⃑⃑⃑⃑ ,  ⟨𝑎1⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒1] 

[𝑎2⃑⃑⃑⃑ ,  𝑏2] = [𝑎2⃑⃑⃑⃑ ,  ⟨𝑎2⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒2]   

[𝑎3⃑⃑⃑⃑ ,  𝑏3] = [𝑎3⃑⃑⃑⃑ ,  ⟨𝑎3⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒3] 

[𝑎4⃑⃑⃑⃑ ,  𝑏4] = [𝑎4⃑⃑⃑⃑ ,  ⟨𝑎4⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒4] 

[𝑎5⃑⃑⃑⃑ ,  𝑏5] = [𝑎5⃑⃑⃑⃑ ,  ⟨𝑎5⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒5]  

[𝑎6⃑⃑⃑⃑ ,  𝑏6] = [𝑎6⃑⃑⃑⃑ ,  ⟨𝑎6⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒6] 

[𝑎7⃑⃑⃑⃑ ,  𝑏7] = [𝑎7⃑⃑⃑⃑ ,  ⟨𝑎7⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒7] 

[𝑎8⃑⃑⃑⃑ ,  𝑏8] = [𝑎8⃑⃑⃑⃑ ,  ⟨𝑎8⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒8] 

[𝑎9⃑⃑⃑⃑ ,  𝑏9] = [𝑎9⃑⃑⃑⃑ ,  ⟨𝑎9⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒9] 

[𝑎10⃑⃑⃑⃑ ⃑⃑ ,  𝑏10] = [𝑎10⃑⃑⃑⃑ ⃑⃑ ,  ⟨𝑎10⃑⃑⃑⃑ ⃑⃑ , 𝑠 ⟩ + 𝑒10] 

 

Then encrypting a zero becomes:  

 

 

 

 

 

 

And encrypting a one becomes: 

 

 

 

 

 

 

From looking at the expanded form we can see that if we use the equality  

⟨𝑎2⃑⃑⃑⃑ , 𝑠 ⟩ + ⟨𝑎5⃑⃑⃑⃑ , 𝑠 ⟩ + ⟨𝑎6⃑⃑⃑⃑ , 𝑠 ⟩ = ⟨𝑎 2+5+6, 𝑠 ⟩ 

Then decrypting the zero with no error becomes 

𝑏 −  ⟨𝑎 , 𝑠 ⟩ =  ⟨𝑎 2+5+6, 𝑠 ⟩ − ⟨𝑎 2+5+6𝑠 ⟩ = 0 

 

And decrypting the one with no error becomes 

𝑏 −  ⟨𝑎 , 𝑠 ⟩ =  ⟨𝑎 2+5+6, 𝑠 ⟩ − ⟨𝑎 2+5+6𝑠 ⟩ + ⌊
𝑝

2
⌋  = ⌊

𝑝

2
⌋ 

And decrypting the one with some error becomes  

  [𝑎2⃑⃑⃑⃑ ,  𝑏2] = [𝑎2⃑⃑⃑⃑ ,  ⟨𝑎2⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒2] 

  [𝑎5⃑⃑⃑⃑ ,  𝑏5] = [𝑎5⃑⃑⃑⃑ ,  ⟨𝑎5⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒5]  

 + [𝑎6⃑⃑⃑⃑ ,  𝑏6] = [𝑎6⃑⃑⃑⃑ ,  ⟨𝑎6⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒6] 

(𝑎⃑⃑⃑⃑ , 𝑏) =  [a⃑ 2+5+6,  b2+5+6] = [a⃑ 2+5+6,  (⟨𝑎2⃑⃑⃑⃑ , 𝑠 ⟩ + ⟨𝑎5⃑⃑⃑⃑ , 𝑠 ⟩ + ⟨𝑎6⃑⃑⃑⃑ , 𝑠 ⟩)                               ] +𝒆𝟐 + 𝒆𝟓  + 𝒆𝟔 

  [𝑎2⃑⃑⃑⃑ ,  𝑏2] = [𝑎2⃑⃑⃑⃑ ,  ⟨𝑎2⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒2] 

  [𝑎5⃑⃑⃑⃑ ,  𝑏5] = [𝑎5⃑⃑⃑⃑ ,  ⟨𝑎5⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒5]  

 + [𝑎6⃑⃑⃑⃑ ,  𝑏6] = [𝑎6⃑⃑⃑⃑ ,  ⟨𝑎6⃑⃑⃑⃑ , 𝑠 ⟩ + 𝑒6] 

(𝑎 , 𝑏) =  [a⃑ 2+5+6,  b2+5+6 + ⌊
p

2
⌋] = [a⃑ 2+5+6,  (⟨a2⃑⃑⃑⃑ , s ⟩ + ⟨a5⃑⃑⃑⃑ , s ⟩ + ⟨a6⃑⃑⃑⃑ , s ⟩) + ⌊

p

2
⌋                            ] +𝒆𝟐 + 𝒆𝟓 + 𝒆𝟔 
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𝑏 −  ⟨𝑎 , 𝑠 ⟩ =  ⟨𝑎 2+5+6, 𝑠 ⟩ − (⟨𝑎 2+5+6𝑠 ⟩ +𝒆𝟐 + 𝒆𝟓 + 𝒆𝟔) = 𝒆𝟐 + 𝒆𝟓 + 𝒆𝟔 

And decrypting the zero with some error becomes 

𝑏 −  ⟨𝑎 , 𝑠 ⟩ =  ⟨𝑎 2+5+6, 𝑠 ⟩ − (⟨𝑎 2+5+6𝑠 ⟩ + ⌊
𝑝

2
⌋+𝒆𝟐 + 𝒆𝟓 + 𝒆𝟔)= ⌊

𝑝

2
⌋ 𝒆𝟐 + 𝒆𝟓 + 𝒆𝟔. 

Then we again take a look at the decryption step which uses circular distance to check if the computed quantity is 

closer to 0 than to ⌊
𝑝

2
⌋. In particular, we imagine that 𝑝 = 10 and we create a circle and an unwrapped circle that 

represent values closer to 0 in green and values closer to ⌊
𝑝

2
⌋ =  5 in blue. These are shown below, with arrows 

pointing to zero and five.  

 

 

 

 

We know that without adding any error the quantity 𝑏 −  〈𝑠, 𝑎〉 will be 0 for a 0 bit and the quantity 𝑏 − 〈𝑠, 𝑎〉 will 

be 5 for the 1 bit. So from looking at these images we can tell that in order to decrypt a bit correctly, the sum of the 

errors in the subset mod 𝑝 must be 0, 1, or 2 so that the sum will not become closer to the other number, or it must 

be 8 or 9, so that it loops back around and is still closer to the right number. From these observations we can reason 

that there are two acceptable error ranges:  

0 ≤ ∑ 𝑒𝑖𝑖∈𝑆 𝑚𝑜𝑑 𝑝 ≤ ⌊
⌊
𝑝

2
⌋

2
⌋      or       𝑝 − ⌊

⌊
𝑝

2
⌋

2
⌋ ≤ ∑ 𝑒𝑖𝑖∈𝑆 𝑚𝑜𝑑 𝑝 ≤ 𝑝 − 1.  

We can now provide an explanation for the error distribution, again shown in Figure 21.  

 

 

 

 

 

 

 

 

 

 

 

The idea is that most error numbers picked will be either closer to 0 or closer to 𝑝 so that the chances that their sum 

modulo 𝑝 is in the one of the acceptable ranges will be high. 

 

8.6 Regev: Testing the Acceptable Error Range 

We next test out the acceptable error ranges by testing one bit at a time and modifying the code to keep track of the 

errors of the subset chosen in the encryption step. As an informal test, we first create a system with n = 10, p = 199, 

0 

5 

9 
1 

8 2 

4 6 
3 7 

0   1   2   3   4   5   6   7   8   9 

Figure 21. Error distribution in Regev 
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and m = 126 and print out the acceptable error ranges. Then we encrypt and decrypt 5 zero bits and 5 one bits along 

with the error sums corresponding to each. The results are shown in Figure 22..  

 

  

 

From the image it is clear that the single bit decrypted incorrectly had an error sum of 59 which was not in either of 

the acceptable error ranges, and that all of the bits decrypted correctly had an error sum in one of the acceptable 

error ranges.  

 To conduct a more thorough test, we created two systems, one with n = 10, p = 185, and m = 124, and one 

with n = 10, p = 110, and m = 112, and encrypted and decrypted 100,000 zeros and 100,000 ones. For each system 

we used two hash tables, one for correct decryptions and one for incorrect decryptions, with values 0 through p-1 as 

the keys and the number of bits decrypted correctly or incorrectly as the values. For each correctly decrypted bit we 

incremented the count of that error sum in the correct table and for each incorrectly decrypted bit we incremented 

the count of the error sum in the incorrect table. The results are shown in Graph 1 and Graph 2.  

Figure 22. Decrypted bits and their error sums 
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The graphs, for an x-axis in the range of the modulus, show both the number of correct decryptions and incorrect 

decryptions per error sum. The correct are shown in green and the incorrect in red. It is clear that there are no 

incorrect decryptions when the modulus is in the range that we guessed it should be in.  

 Finally, since we established that the system does actually work the way it is supposed to, we decided to 

retest some systems on only a single bit at a time instead of a whole message. We tested five different systems on 

Graph 1. Decryptions for n = 10, p = 185, m = 124 and acceptable error_sum 

range 1: [0, 46], acceptable error_sum range 2: [139, 184] 

Graph 2. Decryptions for n = 10, p = 110, m = 112 and acceptable error_sum 

range 1: [0, 27], acceptable error_sum range 2: [83, 109] 



Investigating Lattice-Based Cryptography 

44 

 

10,000 zero bits and 10,000 one bits and averaged the bits decrypted correctly and the bits decrypted incorrectly. A 

screenshot of the results are shown in Figure 23.  

 

 

 

As is shown in the image, the results are actually over 99 percent correct, specifically with 99.14% of the bits being 

decrypted correctly and 0.86% being decrypted incorrectly. We are satisfied with the success of these results and we 

realized that in our initial tests, if a single bit in a message is decrypted incorrectly, the entire message would be 

decrypted incorrectly, so this is why our initial results seemed so poor. A better test might be, for example, to count 

the number of correct bits per message instead of the number correct messages overall.  

 

 

 

 

 

 

 

 

 

 

Figure 23. Average number of bits decrypted correctly 
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9. EXPERIMENTS 

 We have established that quantum-resistant encryption algorithms are important to develop given the threat 

of quantum computers in the near future. We have given two examples and discussed one way each might be 

implemented. But other than the difficulty in developing them, is there a cost associated with using them? In this 

chapter we examine this question by comparing features of quantum-resistant algorithms with non-quantum-

resistant algorithms.  

 

9.1 Choosing a Yardstick 

 So far we have discussed a code-based post-quantum algorithm and a lattice-based post-quantum 

algorithm. We have established that since they are based on problems that are supposed to be hard, the only way 

they should be able to be broken by a quantum or non-quantum computer is by some form of a brute-force attack. It 

seems that a reasonable way to compare the cost of using these systems would be to set them at parameters that 

provide an equal work factor of security, for example, we could set each system's parameters to the values that 

would require 2100 guesses in a brute-force search. This would allow us to compare the performance of the systems 

at equal levels of security. However, we also need to compare the post-quantum systems with non-post-quantum 

systems. Since we are measuring the cost of the replacement of these non-post-quantum systems with post-quantum 

systems on classical computers, we can ignore the fact that they can be broken by quantum computers and simply 

use the same strategy, setting them at parameters that would require some work factor in a brute-force search. In our 

experiments, we choose RSA as the non-post-quantum system for comparison.  

 

9.2 Setting the X-axis 

 McEliece proposes two basic attacks in his original paper; the first, to try to recover the unscrambled 

generator matrix G; the second, to try to recover the message from the codeword without G. In the first case, since 

G' = SGP, the attacker would have to brute-force guess G, and then brute force guess S and P to scramble G. 

Consider that a binary 𝑚 by 𝑛 matrix has 𝑚𝑛 elements, each of which can be 0 or 1. This creates 2𝑚𝑛 possibilities 

for a binary 𝑚 by 𝑛 matrix. Here, since G is 𝑛 elements in length and at least 𝑛 − 𝑚𝑡 elements in height, the best 

case for the attacker would be that the matrix G has 2𝑛(𝑛−𝑚𝑡) possibilities = 2𝑂(𝑛2) possibilities. Similarly, the work 

factor for guessing S would be 2(𝑛−𝑚𝑡)2 and the work factor for guessing P, a permutation matrix, would be 𝑛!, even 

worse [51]. So the total time to brute-force guess the private key would be 2𝑂(𝑛2) ∗ 2𝑂(𝑛2) ∗ 𝑛! = 𝑂(𝑛!). Similarly, 

as McEliece describes, a brute force attack based on decoding the linear code would be equivalent to an exhaustive 

search over all possible messages and would require 2𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 2𝑘 guesses. We will use these work factors in our 

experiments.  

 Similarly, recall that Regev states the LWE problem can be turned into a Maximum Likelihood Problem 

that can be solved in 2𝑂(𝑛𝑙𝑜𝑔𝑛) time, and that an algorithm was developed in 2003 that can solve the same problem 

in 2𝑂(𝑛)  time [2]. When setting parameters, we assume that these runtimes or "work factors" can be equated with 

our analysis from McEliece; in other words, we assume that 2𝑂(𝑛) time implies the same number of brute force 

guesses.   
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 Finally for RSA, we assume that the private key is the same length as the public key and that a brute-force 

search on the private key takes 2𝑛 guesses where 𝑛 is the length of the public key. Our experiments are thus run on 

the parameters shown below. In Table 4, the security parameters listed in the columns result in the work factor to the 

left for the attack in the corresponding column. The shaded cells represent non-runnable parameters.  

 

Table 4. Parameters for equivalent work factors 

 Work 

factor 

McEliece 𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) Attack 

Regev 𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

𝑂(2𝑛)Attack  

 

security 

parameters: 

 (𝑛, 𝑘) (𝑛, 𝑘) (𝑛, 𝐸) (𝑛, 𝐸) 𝑛 

 21 (2,2) = (2,2) (1,2) (1,0.5) (2,0.5) 1 

 22 (2,2) = (2,2) (2,2) (2,0.5) (2,0.5) 2 

 24 (3,2) = (4,2) (4,2) (4,0.5) (3,0.5) 4 

 28 (5,2) = (8,2) (8,2) (8,0.5) (4,0.5) 8 

 216 (8,2) (16,2) (16,0.5) (7,0.5) 16 

 232 (13,2) = (16,2) (32,2) (32,0.5) (10,0.5) 32 

 264 (20,2) = (32,2) (64,2) (64,0.5) (16,0.5) 64 

 2128 (34,2) = (64,2) (128,2) (128,0.5) (27,0.5) 128 

 2256 (57,2) = (64,2) (256,2) (256,0.5) (47,0.5) 256 

 2512 (98,2) = (128,2) (512,2) (512,0.5) (81,0.5) 512 

 21024 (171,2) = (256,2) (1024,2) (1024,0.5) (160,0.5) 1024 

 22048 (301,2) = (512, 2) (2048,2) (2048,0.5) (318,0.5) 2048 

 

For example, this table shows that the McEliece system set at (64,2) would result in the work factor of 2128 for a 

brute-force search on the permutation matrix which has 𝑛! possibilities. And the Regev system set at (128, 0.5) 

would result in the same work factor for the fastest known attack, the 𝑂(2𝑛) attack. By using the work factor as the 

x-axis, we can compare the costs of the three systems at the same level of security. Finally, recall the 256-bit AES 

key that supposedly will be secure forever. Using the same logic we can assume that the 2256 row in the graph 

represents a solid work factor for a secure system today. Larger work factors are shown for theoretical purposes.  
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9.3 Time and Space Complexity 

We use the breakdowns in Tables 5 through 9 to hypothesize the shape of the graphs for each experiment. For the 

Regev system, note that 𝑚 and 𝑝 are functions of 𝑛: 𝑚 = (1 + 𝜖)(1 + 𝑛) log 𝑝 = 𝑂(𝑛 log 𝑛2) and 𝑛2 ≤ 𝑝 ≤ 2𝑛2 so 

expressions including them can be written in terms of 𝑛. The following notation is used: 

 

𝑡 - degree of irreducible polynomial 𝑔(𝑥) over 𝐺𝐹(2𝑚) 

𝑚 - degree of irreducible polynomial 𝑓(𝑥) over 𝐺𝐹(2) 

𝑑 - degree of largest degree input polynomial 

𝑖 - exponent 

𝑛 - the length of the linear code, equal to 2𝑚 

𝑘 - dimension of generator matrix, equal to number of columns in the nullspace of the parity check matrix, 

constraint: 𝑛 − 𝑡𝑚 ≤ 𝑘 ≤ 𝑛  

 

Table 5. Time complexity of field operations in McEliece 

Operation GF(2𝑚𝑡) Complexity GF(2𝑚) Complexity 

gcd() 𝑂(𝑑2𝑚) = 𝑂(𝑑2) 𝑂(𝑑) 

inverse() 𝑂(𝑡2𝑚) = 𝑂(𝑡2) 𝑂(𝑚) 

reduce() 𝑂(𝑑2𝑚) = 𝑂(𝑑2) 𝑂(𝑑) 

add() 𝑂(𝑡) 𝑂(1) 

is_irreducible() 𝑂(2𝑚𝑡) 𝑂(𝑚2) 

get_ax_bx() 𝑂(𝑑2𝑚) = 𝑂(𝑑2) -- 

square() 𝑂(𝑑2 + 𝑑𝑚) = 𝑂(𝑑2) -- 

sqrt() 𝑂(𝑡3𝑚 + 𝑡2𝑚2) = 𝑂(𝑡3) -- 

compute() 𝑂(𝑚𝑡2) = 𝑂(𝑡2) -- 

multiply() -- 𝑂(𝑚) 

pow() -- 𝑂(𝑚𝑖) 

create_L()  𝑂(𝑚𝑡2𝑛) 

  

Table 6. Time complexity of matrix operations in McEliece 

Operation Complexity 

nullspace() 𝑂(𝑚𝑡𝑛) 

rref() 𝑂(𝑚𝑡𝑛) 

x() 𝑂(𝑡2) 

y() 𝑂(𝑚𝑡2𝑛) 

z() 𝑂(𝑚𝑡2𝑛) 
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multiply() 𝑂(𝑥𝑟𝑜𝑤𝑠 ∗ 𝑦𝑐𝑜𝑙𝑠 ∗ 𝑥𝑐𝑜𝑙𝑠 ∗ 𝑚) 

binary_matrix() 𝑂(𝑡𝑚𝑛) 

dense_nonsingular_matrix() 𝑂(𝑛2) 

permutation_matrix() 𝑂(𝑘2) 

 

Table 7. Time complexity of key generation operations in McEliece 

Operation  Complexity 

x 𝑂(𝑡2) 

y 𝑂(𝑚𝑡2𝑛) 

z 𝑂(𝑚𝑡2𝑛) 

x*y 𝑂(𝑡2𝑚𝑛) 

xy*z 𝑂(𝑡𝑚𝑛2) 

to_binary tm x length 𝑂(𝑡𝑚𝑛) 

rref tm x length 𝑂(𝑡𝑚𝑛) 

nullspace tm x length 𝑂(𝑡𝑚𝑛) 

generate permutation matrix 𝑂(𝑛2) 

generate dense nonsingular matrix 𝑂(𝑘2) 

scramble generator matrix 𝑂(𝑘2𝑛 + 𝑘𝑛2 + 𝑘𝑛) 

mod2 scrambled matrix 𝑂(𝑡𝑚𝑛) 

total  𝑂(𝑛2) 

 

Table 8. Time complexity of encryption in McEliece 

Operation  Complexity 

m*G 𝑂(𝑘𝑛) 

mod2(mG) 𝑂(𝑛) 

total 𝑂(𝑘𝑛) = 𝑂(𝑛2) 

 

Table 9. Time Complexity of decryption in McEliece 

Operation  Complexity 

syndrome() 𝑂(𝑡2𝑚𝑛) 

sigma() 𝑂(𝑡3𝑚 + 𝑡2𝑚2) 

error_vector() 𝑂(𝑡2𝑚𝑛) + 𝑂(𝑡3𝑚 + 𝑡2𝑚2) + 𝑂(𝑚𝑡2) 

P.inv() 𝑂(𝑛3) 

y*P.inv() 𝑂(𝑛2) 

find moved errors 𝑂(𝑡2𝑚𝑙𝑒𝑛𝑔𝑡ℎ) + 𝑂(𝑡3𝑚 + 𝑡2𝑚2) + 𝑂(𝑚𝑡2) 
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add moved errors 𝑂(𝑛) 

compute find_mS 𝑂(𝑘𝑛) 

rref find_mS 𝑂(𝑘𝑛) 

S.inv() 𝑂(𝑛2) 

mS*S.inv() 𝑂(𝑘2) 

total 𝑂(𝑛3) 

 

Table 10. Time complexity of key generation in Regev 

Operation Complexity 

m dot products, n multiplications per 

dot product 

𝑂(𝑚𝑛)= 𝑂(𝑛2log 𝑛2) 

 

Table 11. Time Complexity of encryption in Regev 

Operation Complexity 

2 summations of at most m vectors of 

length n, per bit to be encrypted 

𝑂(𝑚𝑛) =  𝑂(𝑛2log 𝑛2) ∗ number of bits in 

message 

 

Table 12. Time complexity of decryption in Regev 

Operation Complexity 

1 dot product of length n vector, 3 

subtractions 

𝑂(𝑛) ∗ number of bits in message 

 

Table 13. Space complexity of public key in McEliece 

 

 

 

 

 

 

 

 

Table 14. Space complexity of public key in Regev 

 Variable # Bits to store 

generator 𝑘 ∗ 𝑛 ∗ 64 bits 

length 64 bits 

dimension 64 bits 

t 64 bits 

public key 𝑂(𝑛2) 

 Variable # Bits to store 

pair 64 +  𝑛 ∗ 64  

m 64 bits 
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9.4 Experiment 1: Work Factor vs. Public Key Size 

 In this experiment we vary our systems across the parameters listed above and measure the size of the 

public key. Since the public key is what is distributed, we want it to be as small as possible. In general we want the 

public key to be less than 1 Kilobyte [27].  

Hypothesis 

Below we show our general expectation of the shape of each graph. 

 

Table 15. Hypothesis for public key sizes 

 McEliece Regev RSA 

public key 𝑂(𝑛2) 𝑂(𝑚𝑛) 𝑂(𝑛) 

 

Based off of our space complexity analysis, we can predict the general shape of each graph, but we cannot predict 

which system will have the largest key size at a particular point. Based off of our hypothesis here, we expect Regev 

key size to grow the fastest, followed by McEliece. We expect RSA key size to be linear in the security parameter.  

Results 1 

The resulting key sizes from our implementation are shown below, with the keys less than 1 Kilobyte highlighted in 

yellow.  

 

Table 16. Key sizes of McEliece, Regev and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) 

Attack 

Regev 𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

Attack 

𝑂(2𝑛) 

 

public 

key size 

 bits bits bits bits bits 

 21    1728  

 22   1472 1728  

 24   8128 4800  

 28 1216 1216 48320 7872  

n 64 bits 

p 64 bits 

list 𝑚 ∗ (64 + 𝑛 ∗ 64) bits 

public key 𝑂(𝑛2log 𝑛2) 
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 216 1216 8384 234688 35136  

 232 8384 45248 1034432 79552  

 264 45248 213184 4968640 222400  

 2128 213184 934080 23019712 732864 192 

 2256 213184 3932352 105545920 2614144 320 

 2512 934080 16187584 470614208 8719680 576 

 21024 3932352 65798336 2084700352 37970112 1088 

 22048 16187584 265552064 8989442240 164810688 2112 

 

And we graph the results: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis 1 

The graph shows that the Regev key does grow the fastest, as expected, and the McEliece public key grows the 

second fastest, as expected. This indicates that as security increases, the bandwidth required to send a post-quantum 

key increases much faster than a pre-quantum public key, which is undesirable. We can also tell that for all work 

factors, the RSA key is smaller than all other keys, which indicates that regardless of growth, a pre-quantum key is 

always smaller. Finally, from looking at the highlighted cells in the table, it does not appear that any of the post-

quantum systems meet the requirement of a 1 Kilobyte key for any reasonable security factor. Specifically, the 2256 

row of the table looks like this: 

 

Table 17. Row 2256 Key Sizes 

Graph 3. Key sizes of McEliece, Regev, and RSA 
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 Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 𝑂(2𝑛)   Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛)  

RSA 

𝑂(2𝑛) 

 

 2256 213184 3932352 105545920 2614144 320 

 

And it is clear that all keys are significantly larger than the RSA key on the right. From these results we can 

conclude that with regard to public key size, the cost of replacing pre-quantum systems with post-quantum systems 

is likely to be high.  

 However, in our implementation we store every single number as a u64, even binary numbers. So as a 

followup experiment, we adjusted the key size to count only bits. We calculated the public key size using the 

formula 3 ∗ 𝑢64 +  𝑛 ∗ 𝑘 ∗ 𝑢64 for the McEliece public key and the formula 3 ∗ 64 +  𝑚 ∗ 𝑛 ∗ (⌊𝑙𝑜𝑔2(𝑝)⌋ + 1) for 

the Regev public key since each number is between 0 and 𝑝. The adjusted results are shown below.  

Results 2 

 

Table 18. Key sizes of McEliece, Regev, and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) 

Attack 

Regev 

𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

Attack 

𝑂(2𝑛) 

 

public 

key 

size 

 bits bits bits bits bits 

 21    264  

 22   252 264  

 24   812 480  

 28 208 208 5456 792  

 216 208 320 33168 3468  

 232 320 896 177952 8872  

 264 896 3520 1009408 31440  

 2128 3520 14784 5395392 114672 192 

 2256 3520 61632 28035317 490308 320 

 2512 14784 253120 139713728 1771338 576 

 21024 61632 1028288 684042495 8899437 1088 

 22048 253120 4149440 3230580997 43778031 2112 
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Analysis 2 

 The graph looks a little bit better than the previous graph, but the Regev public key still grows very fast. However 

in the table, many more keys fall under 1 Kilobyte as desired. Specifically, the 2256 row looks like the following:  

 

Table 19. Row 2256 Key Sizes 

Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 𝑂(2𝑛)   Regev 𝑂(2𝑛𝑙𝑜𝑔𝑛)  RSA 

𝑂(2𝑛) 

 

2256 3520 61632 1649152 * 17 + 

192=28035317 

40843*12+192=490308 320 

 

So the McEliece public key does appear to be an efficient size and therefore useable for a strong security factor 

today. 

 

9.5 Experiment 2: Work Factor vs. Key Generation Speed 

 In this experiment we vary our systems across the parameters that result in the work factors above and 

measure the speed of key generation. Additionally, since both the McEliece and Regev systems include randomness, 

we ran each system's key generation multiple times and took the average. For Regev for all security factors, we ran 

each key generation 100 times. For McEliece parameters up to 232 we ran 100 times. For 264 through 2512 we ran 

Graph 4. Key sizes of McEliece, Regev, and RSA 
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10 times, and for 21024 and 22048 we ran twice. Finally, since cryptosystems are needed so regularly we can assume 

key generation should take less than one second. 

Hypothesis 

 

Table 20. Hypothesis for key generation speed 

 

For our hypothesis we can again predict the general shapes of the graphs; we expect that Regev key generation 

speed will grow the fastest, and that McEliece and RSA will grow similarly. But until we see the results we cannot 

know which systems actually take longer at a particular level of security. 

Results 

 

Table 21. Key generation speeds of McEliece, Regev, and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) Attack 

McEliece 

𝑂(2𝑛) Attack 

Regev 𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA Attack 

𝑂(2𝑛) 

 

key generation 

time 

 seconds seconds seconds seconds seconds 

 21    .000123  

 22   .000112392 .000055  

 24   .000212368 .000130  

 28 .000784 .000918 .001173041 .000220  

 216 .000512 .001768 .004583284 .000790 .010810 

 232 .001943 .006540 .020853274 .001781 .003524 

 264 .005974 .020723 .102617203 .004651 .003550 

 2128 .020653 .074750 .44960736 .015713 .004828 

 2256 .019606 .273176 2.0868353 .054341 .031310 

 2512 .075963 1.24842 10.126917 .177354 .103344 

 21024 .274670 6.39750 47.790256 .780439 .602274 

 22048 1.239622 37.5098 175.428124 3.354826 17.069227 

 

  McEliece Regev RSA 

key generation speed 𝑂(𝑛2) 𝑂(𝑚𝑛) = 𝑂(𝑛2𝑙𝑜𝑔𝑛2) 𝑂(𝑛2) 
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Analysis 

From the graph is clear that Regev key generation time grows the fastest as expected. We can also see that McEliece 

and RSA appear to be quadratic as expected. Most importantly, for realistic security factors, the three systems 

appear somewhat comparable. Specifically, the row 2256 appears as follows:  

 

Table 22. Row 2256 Key Generation Speed  

Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 

𝑂(2𝑛)   

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛)  

RSA 

𝑂(2𝑛) 

 

2256 .019606 .273176 2.0868353 .054341 .031310 

 

So for the same security factor as a 256-bit AES key, the McEliece system key generation takes about the same time 

as RSA key generation, which means that in terms of key generation time, replacing the pre-quantum system with a 

post-quantum system is reasonable and does not come at great cost. The Regev system key generation, at two 

seconds, could even be considered reasonable.  

 

9.6 Experiment 3: Work Factor vs. Encryption Speed 

 In this experiment we vary our systems across the parameters that result in the work factors above and 

measure the speed of encryption. Again, since encryption involves randomness in the McEliece and Regev systems, 

for each security factor we ran encryption multiple times and averaged the results. For McEliece factors up to 2512 

we averaged encryption time over 100 encryptions and for 21024 and 22048 we averaged encryption time over 10 

encryptions. For Regev factors up to 232 we averaged 100 encryptions, for the factor 264 we averaged 10, for 2128 

we averaged 2, and for 2256 through 2512 we only timed one encryption. For RSA, we implemented cipher block 

Graph 5. Key generation speeds of McEliece, Regev, and RSA 
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chaining and for each system we set the block size to the maximum size runnable. These block sizes were 5 

characters for 𝑛 = 128, 20 characters for 𝑛 = 256, 50 characters for 𝑛 = 512, 110 characters for 𝑛 = 1024, and 

240 characters for 𝑛 = 2048. Finally, since public keys are used for symmetric key exchange, we we used a 256-bit 

AES key as the message to be encrypted.  

Hypothesis 

 

Table 23. Hypothesis for encryption speed 

 

Again we expect Regev to grow the fastest and the shape of McEliece and RSA to look similar.  

Results 

The results are shown below where "inf" means greater than 5 minutes. 

 

Table 24. Encryption speeds of McEliece, Regev, and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) 

Attack 

Regev 

𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

Attack 

𝑂(2𝑛) 

 

encryption 

speed 

 seconds seconds seconds seconds seconds 

 21    .003851  

 22   .004972 .003950  

 24   .012093 .007741  

 28 .002640 .002525 .041004 .014580  

 216 .002546 .001736 .133774 .030920  

 232 .001144 .001083 .435323 .082704  

 264 .000904 .001130 1.535871 .192512  

 2128 .001087 .002128 5.8007805 .430259 .001512 

 2256 .001027 .001821 24.071204 .847360 .000834 

 2512 .002385 .006608 98.704114 2.620565 .000984 

 21024 .001593 .027680 inf 9.082701 .002692 

 22048 .006030 . 110428 inf 37.743688 .008710 

 

  McEliece Regev RSA 

encryption speed  𝑂(𝑛2) 𝑂(𝑚𝑛) = 𝑂(𝑛2𝑙𝑜𝑔𝑛2) 𝑂(𝑛2) 
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Analysis 

From the graph we can indeed see that Regev encryption grows very quickly, perhaps even more quickly than 

expected, which means that if Regev were the replacement system, increasing the security in a post-quantum system 

would come at a much higher cost than increasing the security in a pre-quantum system. However, from the table, 

we can see that McEliece and RSA encryptions are similar and remain feasible even up to the highest work factors. 

Specifically, the 2256 row looks like the following: 

 

Table 25. Row 2256  Encryption Speeds 

Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 

𝑂(2𝑛)   

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛)  

RSA 

𝑂(2𝑛) 

 

2256 .001027 .001821 24.071204 .847360 .000834 

 

From this we can conclude that if Regev were the replacement system, the cost of replacement in terms of 

encryption speed would be unacceptable at 24 seconds. However, if McEliece were the replacement system, the cost 

of replacement in terms of encryption speed would be very low, making McEliece a viable candidate.  

 

9.7 Experiment 4: Work Factor vs. Decryption Speed 

In this experiment we vary our systems across the parameters that result in the work factors above and measure the 

speed of decryption. Again we use the 256-bit AES key as the message to be decrypted. And again to accommodate 

Graph 6. Encryption speeds of McEliece, Regev, and RSA 
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randomness we averaged the decryption time over 100 messages for McEliece factors up to 264, 10 messages for 

2128, and one message for 2512. Since the encryptions for the factors 21024 and 22048 took too long we could not 

time those decryptions and put a question mark in those cells in the graph.  

Hypothesis 

 

Table 26. Hypothesis for decryption speed 

  McEliece Regev RSA 

decryption speed  𝑂(𝑛3) 𝑂(𝑛) per bit  𝑂(𝑛3) 

 

For the decryption speed we expect the shape of McEliece and RSA to be similar. We expect Regev decryption 

speed to grow linearly and it should be faster than McEliece and RSA at all security levels.   

Results 

 

Table 27. Decryption Speeds of of McEliece, Regev, and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) 

Attack 

Regev 

𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

Attack 

𝑂(2𝑛) 

 

decryption 

speed  

 seconds seconds seconds seconds seconds 

 21    .000217  

 22   .000231 .000280  

 24   .000255 .000242  

 28 .057649 .058582 .000326 .000256  

 216 .062007 .072849 .000500 .000324  

 232 .068922 .125848 .000780 .000395  

 264 .141895 .387596 .001371 .000515  

 2128 .388524 1.656945 .002543 .000643 .002256 

 2256 .388930 4.169249 .004916 .001085 .002033 

 2512 1.643109 30.439314 .009317 .001760 .003246 

 21024 4.112714 247.936048 ? .003120 .014033 

 22048 31.787255 inf ? .005721 .083484 
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Analysis 

From the graph we can see that the shape of McEliece does grow the fastest. But from some investigation we also 

know that computing the inverse of the two 𝑂(𝑛) by 𝑂(𝑛) matrices is the most expensive operation in decryption in 

McEliece. In reality we can expect the private key holder to have these inverses pre-computed. Meanwhile Regev 

decryption is very fast and appears to grow linearly as expected. From these observations we can say that in terms of 

decryption speed, the cost of replacing RSA with Regev would be low and thus feasible, while the cost of replacing 

RSA with McEliece might be unreasonable. 

More specifically, the 2256 row of the table looks like the following:  

 

Table 28. Row 2256 Decryption Speeds 

Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 

𝑂(2𝑛)   

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛)  

RSA 

𝑂(2𝑛) 

 

2256 .388930 4.169249 .004916 .001085 .002033 

 

This table confirms that Regev would be a good replacement for RSA in the decryption category. McEliece 

decryption at four seconds takes slightly too long.  

 

Graph 7. Decryption Speed of of McEliece, Regev, and RSA 
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9.8 Experiment 5: Work Factor vs. Encrypted Message Size 

Finally, in this experiment we vary our systems across the parameters that result in the work factors above and 

measure the size of the encrypted message. Again we use the 256-bit AES key, but since no randomness is involved 

in the size of the encrypted message, we only test each parameter set one time.  

Hypothesis 

 

Table 29. Hypothesis for encrypted message size 

  McEliece Regev RSA 

encrypted message 

length 

(𝑛 − 𝑘)/𝑘 + 1 bits per 

bit  =  𝑂(𝑛) 

𝑛 + 1 bits per bit =

 𝑂(𝑛) 

𝑂(𝑛) bits total 

 

From the space complexities calculated we expect Regev message size to grow the fastest followed by McEliece 

followed by RSA.  

 

Table 30. Encrypted Message Sizes of McEliece, Regev, and RSA 

Results 1 

 Work 

factor 

McEliece 

𝑂(𝑛!) 

Attack 

McEliece 

𝑂(2𝑛) 

Attack 

Regev 

𝑂(2𝑛) 

Attack  

Regev 

𝑂(2𝑛𝑙𝑜𝑔𝑛) 

Attack  

RSA 

Attack 

𝑂(2𝑛) 

 

# of 

years 

to 

solve 

# of years 

to solve 

with 

quantum 

# bits  bits bits bits bits bits   

 21    42048    

 22   42048 42048    

 24   70080 56064    

 28 61440 61440 126144 70080    

 216 61440 30720 238272 112128    

 232 30720 22528 462528 154176    

 264 22528 20480 911040 238272    

 2128 20480 24576 1808064 392448 768   

 2256 20480 16384 3602112 672768 512   

 2512 24576 32768 7190208 1149312 512   

 21024 16384 65536 ? 2256576 1024   

 22048 32768 131072 ? 4471104 2048   
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Analysis 1 

In the results we find what we expected, with Regev encrypted message size growing the fastest followed by 

McEliece followed by RSA. However, similarly to Experiment 1, we stored each number of the encrypted message 

in a u64 even if it was a bit or a small number. So we adjusted the results to include only the bits necessary. The 

message length in McEliece then becomes 𝑛. The message length in Regev is computed as ( 𝑛 + 1)  ∗

(⌊𝑙𝑜𝑔2(𝑝)⌋ + 1) ∗ 256.   

Results 2 

 

Table 31. Encrypted Message Sizes of  McEliece, Regev, and RSA 

 Work 

factor 

McEliece 

𝑂(𝑛!) Attack 

McEliece 

𝑂(2𝑛) Attack 

Regev 𝑂(2𝑛) 

Attack  

Regev 𝑂(2𝑛𝑙𝑜𝑔𝑛) Attack  RSA 

Attack 

𝑂(2𝑛) 

 

  # bits # bits # bits # bits # bits 

 21    1971  

 22   1971 

 

1971  

 24   5475 3504  

 28 960 960 13797 5475  

 216 960 480 33507 10512  

Graph 8. Encrypted Message Sizes of of McEliece, Regev, and RSA 
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 232 480 352 79497 16863  

 264 352 320 185055 33507  

 2128 320 384 423765 61320 768 

 2256 320 256 956811 126144 512 

 2512 384 512 2134593 233454 512 

 21024 256 1024 ? 528885 1024 

 22048 512 2048 ? 1187637 2048 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis 2 

While the encrypted message size of Regev is still much larger than in RSA, these results look significantly better 

for McEliece, with encrypted message size being smaller than in RSA for lower security parameters and the same 

size at the higher security levels. More specifically, the 2256 row of the table looks like the following:  

 

Table 32. Row 2256 for encrypted message size 

Work 

factor 

McEliece 

𝑂(𝑛!)  

McEliece 

𝑂(2𝑛)  

Regev 𝑂(2𝑛)   Regev 𝑂(2𝑛𝑙𝑜𝑔𝑛)  RSA 

𝑂(2𝑛) 

 

Graph 9. Encrypted Message Sizes of of McEliece, Regev, and RSA 

 



Investigating Lattice-Based Cryptography 

63 

 

2256 320 256 56283 * 

17=956811 

10512*12=126144 512 

From this row we can conclude that in terms of encrypted message size, there would be no cost associated with 

replacing RSA with McEliece.  

 

9.9 Experiments Conclusions 

Again assuming that a 2256 work factor is sufficient for security today, for the conclusion we combine the results 

from the  2256 work factor from every experiment for the three fastest attacks. The results are shown below, with the 

least expensive algorithm highlighted in green, the second least expensive algorithm highlighted in yellow, and the 

most expensive algorithm highlighted in red.   

 

Table 33. Row 2256 from all experiments 

 

 

From these results we can see that whether we choose McEliece or Regev, there will be a cost associated with 

replacing RSA. However, McEliece remains a viable candidate: its public key size, key generation speed, and 

encryption speed are all comparable to those of RSA. While its decryption speed is costly, we can assume that pre-

computing the two matrix inverses would considerably speed up the process, bringing it into a more reasonable 

range. And McEliece's encrypted AES key is smaller than that of RSA.  

 By running these experiments we hoped to get an idea of the cost of replacing pre-quantum systems with 

post-quantum systems. We chose two candidates, the code-based McEliece system and the lattice-based Regev 

system, to represent post-quantum systems, and we chose RSA to represent pre-quantum systems. Our results are 

both promising and foreboding; our code-based system seems to be a viable candidate with a negligible cost when 

used as a replacement, while our lattice-based system seems to be completely unusable, with an encryption time of 

 Work 

factor 

McEliece 𝑂(2𝑛)  Regev 𝑂(2𝑛)   RSA 𝑂(2𝑛) 

 

public key size 2256 61632 28035317 320 

key generation 

speed 

2256 .273176 2.0868353 .031310 

encryption speed  2256 .001821 24.071204 .000834 

decryption speed  2256 4.169249 .004916 .002033 

encrypted message 

size 

2256 256 956811 512 
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twenty-four seconds for a 256-bit AES key. In the greater scheme, we can conclude that while the replacement of 

pre-quantum systems with post-quantum systems is feasible, more work must be done to gather additional candidate 

systems.  
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10. CHALLENGES 

 We faced many challenges while working on this project. Few examples of the McEliece cryptosystem in 

its entirety appear on the internet, making it difficult to pin down exactly how to do each step. Additionally, efficient 

methods for finite field arithmetic were not obvious and were found only later in the project. Implementing them and 

modifying them for the extension field also required a thorough understanding of finite fields which we did not have 

at the beginning of the project. It also took a while to find an irreducibility test for polynomials over finite fields, and 

we experienced confusion while trying to make the method efficient enough for testing many large polynomials. The 

overall implementation of the McEliece system was so layered and interdependent that debugging the system was 

extremely difficult. We experienced some difficulties with the Rust programming language. Documentation for 

different versions of Rust libraries would appear on Google searches, making it difficult to find the most useful 

version and stick with it. Also, the Rust matrix library, Peroxide, had functionality limited to matrix multiplication 

and matrix inverse and often crashed during other operations. We had to spend ample time implementing basic 

matrix methods that Peroxide did not have. In the Regev system, the steps in the decryption algorithm were 

ambiguous, leading to a delayed understanding of circular distance. Finally, preparing the experiments first required 

a lot of thought and research in order to create an x-axis on which to compare the systems. And running the 

experiments required a lot of extra code to be written and parameters to be changed by hand. Even using the library 

version of RSA took time as we had to choose an appropriate version and subsequently determine runnable 

parameters, find maximum block sizes, and implement cipher block chaining. 
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11. FUTURE WORK 

 In this project, we implemented two candidates for post-quantum cryptography and attempted to measure 

the cost of replacing current systems with those supposedly equipped for quantum attacks. While we feel we made a 

solid start, much work remains to be done. Our implementations of the McEliece and Regev systems could be 

analyzed for code inefficiency, something we were not fully focused on here as we were more concerned with 

correctness and readability. Even small implementation changes might improve their various runtimes. In particular, 

we could re-run McEliece decryption with the two matrix inverses pre-computed, a step we determined was a major 

bottleneck, especially for large parameters. Also as we previously discussed, our McEliece system parameters could 

not be increased to the settings McEliece originally suggested in 1978 due to our trouble generating irreducible 

polynomials. The ability to reach those parameters seem like a basic component of any implemented McEliece 

system, and investigation must be done to determine the cause of such problems finding large irreducible 

polynomials. Perhaps there was some flaw in our irreducibility test or redundancy in our generation of random 

polynomials. In the Regev system, we used u64s to hold all values in the system. Perhaps runtime could be 

decreased by using the smallest necessary data type. Additional holdups in the Regev system could be searched for 

and could include our method for choosing a subset of the public key, the time it takes to generate random numbers, 

or inappropriately chosen data structures. In our experiments, we assumed the fastest attack on an RSA private key 

was exponential in the length of the key. In reality, this is not the case, as an attack on the private key would likely 

involve only trying prime numbers, not all numbers, so as to find the factors the modulus. This means that in reality, 

the parameters of each RSA work factor would have been higher, possibly by a lot, meaning that the apparent 

efficiency of RSA we found may have been misleading. A significant feature of public-key systems is their ability to 

be used "in reverse" to provide digital signature capabilities. We did not test these capabilities here, as the McEliece 

system in its original form cannot be used for digital signatures. A crucial additional experiment would be to 

implement the Niederrieter scheme, a variant of McEliece that has this capability, and compare it with the original 

Regev system used in reverse or even an implementation of the Ring-LWE Signature scheme. Furthermore, these 

post-quantum signature schemes should be compared with RSA as a digital signature or perhaps an implementation 

of the Diffie-Hellman key exchange. Lastly, in our experiments, we only used the Rust programming languages. 

Perhaps another programming language would reveal different strengths or further weaknesses in pre-quantum 

versus post-quantum systems. And finally, there are many more post-quantum systems and approaches to be 

explored, such as the hash-based Merkle signature scheme or another lattice-based approach such as NTRU [27].  
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12. CONCLUSION 

 Cryptography has come a long way since the markings first inscribed on an Egyptian king's tomb four 

thousand years ago. Through the sands of time, ciphers have risen and fallen: from the Spartan scytalae to the 

Polybius Checkerboard, from the Caesar Cipher to the One-Time Pad, from DES to Triple DES to the AES of the 

modern day, human ingenuity continues to drive the advancement of cryptography. This ingenuity was 

demonstrated once again in the 1970s when public keys were invented to solve the major weakness of symmetric 

key systems. However, progress happens in all fields, and the development of quantum computers and the invention 

of Shor's algorithm have emerged to threaten public keys in the near future. In this project we attempted to address 

this issue by discussing and developing two candidates for post-quantum public key systems and estimating the cost 

of replacing pre-quantum systems with those supposedly resistant to quantum attacks. To do this, we implemented 

the McEliece and Regev public key systems in Rust and ran experiments to compare their performance in public key 

size, key generation speed, encryption speed, decryption speed, and encrypted message size with those of RSA. Our 

results showed us that implementing these systems can be complex and that while code-based systems such as 

McEliece seem to be viable candidates, lattice-based systems such as Regev are currently infeasible for practical use 

and must be improved.  Humans will continue to push the boundaries of technology, and the universal need for 

information security will remain present; whether quantum computers can crack current systems in one decade, two, 

or ten, we must match such progress with equally strong cryptography as we step steadily toward the post-quantum 

future.  
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