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ABSTRACT

CoDiS: Community Detection via Distributed Seed-Set Expansion on
Graph Streams

by Austin Anderson

Community detection has been and remains a very important topic in several

fields. From marketing and social networking to biological studies, community detec-

tion plays a key role in advancing research in many different fields. Research on this

topic originally looked at classifying nodes into discrete communities, but eventually

moved forward to placing nodes in multiple communities. Unfortunately, community

detection has always been a time-inefficient process, and recent data sets have been

simply to large to realistically process using traditional methods. Because of this,

recent methods have turned to parallelism, but all these methods, while offering sig-

nificant decrease in processing time, still have several issues. The innovation of this

paper is that it distributes the seed nodes instead of the stream edges, and therefore

assigns to each working node a subset of the current formed communities. Experi-

mental results show that we are able to gain a significant improvement in running

time with no loss of accuracy.
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CHAPTER 1

Introduction

Community detection is crucial technique for many different areas of interest

from biology to social network analysis and even criminal justice, any time it is

useful to find groups of individuals from a seemingly arbitrarily connected network,

community detection algorithms are employed. Research on community detection has

been ongoing for several decades, with new methods being researched to increase the

accuracy, speed, and robustness of community detection algorithms.

Figure 1: Figure 6 from [1], shows a graph of paper references that has been parti-
tioned, revealing communities of papers with similar subjects

Unfortunately, as the internet has continued to grow, and our ability to collect

data has improved, the size and complexity of the networks we wish to analyze has

become prohibitively large. Social networking sites like Facebook or Twitter have

1



millions of daily users each, all friending each-other or mentioning each-other in tweets

and posts several million times a day, which creates massive, complex networks great

for social network analysis. Amazon alone has several hundred million products for

sale, and finding which customers tend to buy similar items is crucial for effectively

marketing to those groups. Because of this it has become difficult to not only process

these networks in a realistic timeframe, but even just storing and accessing them in

a timely manner has become a challenge.

Because of this, much of the recent research on community detection has been

focused not on increasing the accuracy of community detection algorithms, but instead

on increasing the speed and amount of data that can be processed. Along those

same lines, community detection algorithms that can take advantage of new multi-

threaded CPUs and distributed computing have also become the topic of more and

more research papers.

One of these papers is CoEuS [5], by Liakos et al. [5] is a unique approach to the

community detection problem in that it does not try to partition the entire graph into

communities, but instead looks at only a select number of communities of interest.

This works by providing a small set of known nodes from a community of interest,

and then trying to build the rest of the community from that seed set of nodes. This

allows Liakos et al. to look at the graph edge-by-edge instead of trying to load the

entire thing at once, meaning much larger networks can be processed than in other

approaches. In addition to this, Liakos et al. expanded on their approach with DiCeS

[4], which uses Apache Storm and Redis to accelerate the algorithm proposed in [5]

using distributed computing.
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1.1 Problem Definition

While [4] is great for quickly analyzing large networks, it is not without issue.

The way that [4] distributes the work is by having each worker node process edges

in parallel, and write those edges to a shared list of communities, which is stored in

a Redis cluster so that all worker nodes have access to all the communities that are

in consideration. Because of this, there is added overhead to the worker nodes in ac-

cessing the community data from the Redis cluster, as well as concurrency protection

increasing overhead to read and write data to the cluster.

Because of this, we propose a new method of parallelizing the algorithm of [5].

While [4] splits the edges among all the worker nodes, which then look at all the

communities to determine if the nodes in that edge belong in any of those communi-

ties, our proposed method instead splits the communities among the worker nodes,

so that each worker node is only looking at a subset of all the communities that are in

consideration. By doing so, although we decrease the edge processing throughput, we

also decrease the amount of time each worker node spends on each edge. Crucially,

we also remove the need for every worker node to have access to every community in

consideration, meaning we can remove Redis from the equation, regaining the time

that was lost to concurrency protection and data distribution

1.2 Paper Structure

The rest of this paper is structured as follows: immediately following this in-

troduction, there is a list of terms that are useful to know when reading this paper.

Next, Chapter 3 will explore several current community detection approaches, from

well know and oft-cited approaches to recent papers focusing on parallel community

detection approaches. After that, chapters 4 and 5 will go in-depth into the changes

3



Figure 2: Context of how CoDiS distributes the work to several worker nodes

we are proposing and the results of the experiments related to those changes. Finally,

chapter 6 will wrap everything up and discuss more changes that we would like to

consider for future work
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CHAPTER 2

Terminology

In this chapter, we have the basic definitions and notations.

Graph: A graph is a set of vertices and edges 𝐺 = (𝑉,𝐸), where 𝑉 is the set

of all vertices in the graph and 𝐸 is the set of all edges. Graphs are very versatile

and can be used to represent any number of complex ideas in an easy-to-parse data

structure, from geographical layouts to complex interactions in social media networks.

Figure 3: an example of a graph with 10 nodes

Adjacency Matrix: A method of representing a graph in which the graph is
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stored as a 𝑁x𝑁 matrix 𝐴, where 𝑁 is the number of nodes in the graph. The value

at 𝐴[𝑥][𝑦] represents the presence or absence of an edge from node 𝑥 to node 𝑦. For

an unweighted graph, 𝐴 will be a matrix of bool values, with a value of 𝑡𝑟𝑢𝑒 meaning

an edge exists. For a weighted graph, 𝐴 can be a matrix of something like integer

or double, with a 𝑁𝑈𝐿𝐿 value meaning there is no edge, and any other value being

the weight of the edge from 𝑥 to 𝑦. This method of graph representation allows quick

lookup of edges, but also requires a large amount of memory to store, with a space

complexity of 𝑁2.

Figure 4: an example of an adjacency matrix for a graph with 10 nodes

Adjacency List: A method of representing a graph in which the graph is rep-

resented as an array of lists of nodes. Each node in the graph has its own list. For

any given node 𝑥, if its associated list contains the node 𝑦, that means there is an

edge from node 𝑥 to node 𝑦. This method of graph representation is much more space

efficient than an Adjacency Matrix, scaling linearly with the number of edges. On

the other hand, the time to look up an edge is much longer, 𝑁 in the worst case and

scaling with 𝑁 as well as how densely the graph is interconnected.
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Figure 5: an example of an adjacency list for a graph with 10 nodes

Node/Vertex: A vertex, also called a node, is one of the two basic building

blocks of a graph. A vertex represents objects, but what those objects are changes

depending on the graph. For example, a vertex might represent a person in a graph

that describes a social network, a product in a graph that describes a shopping web-

site, or cities in a graph that describes a map. Depending on the graph, a vertex

could represent something more complex or abstract, such as a grouping of objects,

or even other graphs.

Edge: The other of the two basic building blocks of a graph, edges represent

connections between up to two vertices. An edge can connect a vertex to itself or

another vertex, but a single edge cannot connect more than two vertices. Edges can

7



have several additional properties, such as weights or a direction, but these are not

required.

Subgraph: A subgraph is a graph made of a subset of the vertices and edges of

another graph. Given a graph 𝐺 = (𝑉,𝐸) and a subgraph of 𝐺 𝐺′ = (𝑉 ′, 𝐸 ′), then

both ∀𝑣 ∈ 𝑉 ′, 𝑣 ∈ 𝑉 and ∀𝑒 ∈ 𝐸 ′, 𝑒 ∈ 𝐸 are true.

Community: A community is a subset of vertices from a graph that are densely

connected to each other and weakly connected to the rest of the graph.

Community Detection: Community detection is the process of trying to group

vertices of a graph into communities.

Figure 6: Left: a graph before being split into communities
Right: a graph with found communities highlighted

Edge Betweenness: A measure of how commonly traversed an edge is when

finding the shortest path from every vertex in a graph to every other vertex. The edge

betweenness of an edge 𝑒 is calculated as the number of shortest paths that include

edge 𝑒 over the total number of shortest paths

Modularity Score: An approximation of how close the found communities

8



match an ideal community distribution. The higher the modularity score, the closer

the graph is to being separated perfectly into communities, and vice versa

Participation Score: A calculation of how strongly connected a given graph

node is to the nodes in a given community.

Figure 7: Left: a node with high participation score for the community
Right: a node with low participation score for the community

Apache Storm: A java framework for distributed processing using streams

that is maintained by Twitter and the Apache Foundation. Storm abstracts the

distribution and passing of messages between compute nodes. The basic datatype of

a Storm distribution is a Tuple, and there are two types of processing nodes: Spouts

and Bolts.

Tuple: The basic datatype of an Apache Storm distribution. A Tuple contains

any number of supported data-types. Tuples natively support all primitive data

types, as well as Strings and byte arrays. Tuples can also support custom data types

if those data types implement a serializer and register that serializer with Storm.

Topology: A Topology is the construct that contains all the information about

the particular setup for a given Storm program. The Topology is what is submitted

to an Apache Storm cluster and contains the code that computation nodes execute,

as well as how the messages are distributed between nodes and which nodes listen to

each other. A Topology will run indefinitely until the user stops it or submits a new

9



topology to the Storm cluster.

Figure 8: an example of an Apache Storm topology in which there is one spout, 3
bolts that listen to the output of that spout, and two additional bolts that listen to
the output of the 3 previous bolts

Spout: One of the two main components of an Apache Storm Topology. A

Spout is responsible for creating a stream of Tuples that are then emitted to the

rest of the topology. The Topology itself takes care of where how those Tuples are

distributed. Spouts cannot receive Tuples from any other processing nodes, only

create and emit them.

Bolt: One of the two main components of an Apache Storm Topology. Bolts

are typically the nodes that do the actual processing of the topology. Bolts receive

the Tuples emitted from Spouts or even other Bolts, and do some kind of processing

on them. Bolts can emit their own Tuples for consumption by other Bolts.

Apache Storm Local Mode: A way of running an Apache Storm cluster that

simulates distributed computing by using multi-threading instead of multiple systems

10



CHAPTER 3

Existing Methods

3.1 Early Methods

Many of the early community detection algorithms were very simple and restric-

tive, but many of the concepts are still being used in modern approaches. Before

these methods, simple max-flow/min-cut approaches were the norm [6], but these

papers introduced concepts that revolutionized the way community detection was

approached

3.1.1 Girvan-Newman

The Girvan-Newman [1] algorithm was one of the community detection algo-

rithms to gain popularity. The paper introduces two major concepts that are still

used in many modern approaches: Edge-Betweenness and Modularity score. Edge-

Betweenness is used to determine how strongly or weakly an edge is tied to the rest

of the graph.

Then, using the observation that an edge that has high Edge-Betweenness is likely

a connection between communities, the algorithm calculates the edge-betweenness

of every edge in the graph, and then removes the edge with the greatest edge-

betweenness. This process continues until it is determined that the graph has been

properly partitioned into communities, and in the case of [1], the modularity score of

the graph is calculated every time an edge is removed, and once the modularity score

stops increasing, the algorithm finishes.

11



Figure 9: An example of how the Girvan-Newman algorithm works

3.1.2 Louvain

The Louvain method [7] takes the modularity score from Girvan-Newman and

makes it the focus of the algorithm. [7] begins with every node of the graph belonging

to its own community. Then, for every node and every possible community that node

could be a part of, calculate the change in the modularity score that would occur

from moving that node to that community. The change that would bring about the

greatest increase in modularity score is then applied, and this continues until there

are no changes that can be made that would increase the modularity score

3.2 Later Approaches

While the earlier methods of community detection are incredibly important, they

were also slow and restrictive. For example, in both the [1] and [7], nodes could only

12



belong to a single community, which is unrealistic for real-world applications. The

following approaches attempt to solve one or more of these issues.

3.2.1 CONGA and GONGO

CONGA [2] and GONGO [8] are both variants of the Girvan-Newman algorithm

that allow nodes to participate in more than one community. Instead of calculat-

ing which edge has the greatest edge-betweenness and removing it, these algorithms

calculate which node has the greatest node-betweenness and splits that node. The

edges of the original node are distributed to the copy nodes, and when the algorithm

finishes the communities a node belongs to are all the communities its copies are part

of.

Figure 10: Figure 2 from [2] that shows how a node is split into two copies of itself
and the edges from the original node are distributed to the new nodes

3.2.2 CoEuS

CoEuS [5] attempts to solve the speed problem by only looking at a part of the

graph. This method works by starting with a seed set of communities, then streams in

pairs of nodes that are connected by an edge. These nodes are placed in communities

based on what communities those nodes are already in, or if neither of those nodes

has been seen yet, a new community is created that is just those two nodes.

13



3.2.3 Label Propagation

Label propagation algorithms work by giving nodes labels, and then spreading

those labels around. It is very easy to make these algorithms applicable to overlap-

ping community detection by simply allowing every node to maintain a list of labels,

instead of having only a single label. Once the algorithm ends, the communities that

any node belongs to are the labels that exist in that nodes list of labels.

3.2.3.1 COPRA

COPRA [9]works by having each node look at all the nodes of its neighbors, then

take the label that is most prevalent and adds it to its list of nodes. If there is a tie

it is broken in a random but deterministic way.

3.2.3.2 SLPA

SLPA stands for Speaker-Listener Label Propagation Algorithm [10]. In this

algorithm, instead of each node looking at its neighbors’ labels, nodes choose a random

label from their list of labels and broadcast it to all of their neighbors. Although

randomly selected, the choice is weighted, so labels that have been seen often are

more likely to be broadcast than those rarely seen.

3.3 Current Parallel Methods

With the advent and proliferation of multi-core CPUs and the increased access

to distributed computing, parallelization has become a new focus in the community

detection space as a way to further increase the speed and data capacity of community

detection algorithms.
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3.3.1 Subgraphs

Many parallel implementations work by taking a non-parallel algorithm and hav-

ing it run on subsections of the graph. These subsections are then recombined in some

way to get the full community graph structure. The way these approaches split the

graph into subgraphs, and how the subgraphs are recombined has a large effect on

the outcome.

Figure 11: Figure 1 from [3], which shows an example of a graph split into subgraphs
that communicate with each other

For example, [11], [12] and [3] all use a min-cut method to split the graph, but

how they recombine the graphs is very different. When splitting the graph, [11] creates

copies on any nodes that have edges to nodes that are part of other subgraphs, and

those nodes are simply combined together when the algorithm is finished. While [12]

also has a combining step at the end, it does not create duplicate nodes, and instead

has to reconcile all the subgraphs based on their connections before separating the

graph. Finally, [3] does not have a dedicated combination step like [11] or [12], but

instead has a mini combining step at the end of every iteration of the algorithm.

While CoDiS does not use subgraphs directly, it is the concept of subgraphs that

inspired the alternate method of distribution we employ.
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3.3.2 DiCeS

DiCeS [4] is a distributed version of [5], using Apache Storm. It works by having

several worker processes that can take in streamed nodes, and then decides where to

put them in the community graph. The created community graph is accessible to

each worker process.

Figure 12: Figure 1 from [4], shows how the edges are distributed to individual workers
that all access shared data

Improving this method is the main focus of our new approach. While [4] achieves

speedups by parallelizing the edge processing using distributed computing, we are

interested in trying to speed up processing time by splitting the search space between

the different compute nodes. Chapter 4 will go into this topic in more detail.
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CHAPTER 4

New Methods

4.1 CoDiS

Here we describe CoDiS, a new method that functions similarly to DiCeS in

that it runs the CoEuS algorithm in a distributed manner to achieve parallelism,

but modifies it so that each individual worker node only operates on a subset of

the communities of interest. The implementation of this method is done in Java

using Apache Storm to manage the distributed processing. Similar to DiCeS and

CoEuS, this method requires a seed set of nodes for each community of interest, and

the community detection is done by growing that set using participation score as a

metric.

4.1.1 Splitting the Communities

The first step of CoDiSis to initialize the communities of interest and distribute

them among the worker nodes. This is done by either explicitly providing a list of

seed sets or by providing ground truth communities for the graph being processed

and choosing a set of random nodes to be used as the seed set. Algorithm 1 shows

the psuedocode for this process.

The process begins by recording the start time and receiving a list of ground

truth communities (or seed sets, if the algorithm is being run on a dataset without

ground truth communities available), as well as a list of identifiers to access specific

worker nodes. Then, a copy of the list of worker nodes is created, but with the order of

those nodes randomized. The next step is to initialize the communities and distribute

them to to worker nodes

17



Algorithm 1: Community Initialization and Distribution
1 Input(𝐺, 𝑇 ) such that 𝐺 is a list of ground truth communities and 𝑇 is a set

of worker node identifiers
2 begin
3 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒.𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒←− Now()
4 𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑←− Shuffle(T)
5 𝑖←− 0
6 for 𝑔 ∈ 𝐺 do
7 𝑆 ←− ∅
8 𝐶 ←− CoDiSCommunity()
9

10 𝐶.𝑠𝑒𝑒𝑑𝑆𝑒𝑡←− Set(String)
11 𝐶.𝑛𝑜𝑑𝑒𝑠←− Map(String, Double)
12 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠←− Map(String, Double)
13

14 while len(S) < 𝑆𝐸𝐸𝐷_𝑆𝐸𝑇_𝑆𝐼𝑍𝐸 do
15 Append(S, g[Rand()])
16 end
17

18 𝐶.𝑠𝑒𝑒𝑑𝑆𝑒𝑡←− 𝑆
19

20 if 𝑖 ≥ len(shuffled) then
21 𝑖←− 1
22 end
23

24 𝑠ℎ𝑢𝑓𝑓𝑙𝑒𝑑[𝑖++].AddToExecuteQueue(C)
25 end
26 end

This is done by creating a counter 𝑖 that is initialized to zero, then iterating

through all the ground truth communities. For each community, we initialize a

CoDiSCommunity object. We then select a number of random nodes from the ground

truth communities to be used as a seed set and add those to the CoDiSCommunity

seed set list. Finally, we assign this community to the worker node at index 𝑖 of our

shuffled list, then increment 𝑖 or reset it to 0 if it becomes greater than the length of

the shuffled list.
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4.1.2 Edge Ingestion and Distribution

The next step of the process is to start reading edges and distributing them to

the worker nodes. The edges could be read from several sources, such as crawling the

web to find links between pages or accessing a social media API to find connections

between people, but for the purposes of our experiments, we find edges by reading

from a text file.

Algorithm 2: Edge Ingestion and Distribution
1 Input(𝑝𝑎𝑡ℎ, 𝑇 ) such that 𝑝𝑎𝑡ℎ is the filepath to the text file that contains the

community to be read and 𝑇 is a set of worker node identifiers
2 begin
3 𝐹𝐼𝐿𝐸 ←− Open(path, "r")
4 𝑙𝑖𝑛𝑒←− 𝐹𝐼𝐿𝐸.NextLine()
5 while 𝑙𝑖𝑛𝑒 ̸= 𝐸𝑂𝐹 do
6 𝑠←− 𝑙𝑖𝑛𝑒.Split(" ")
7 𝑒←− Tuple(s[0], s[1])
8

9 for 𝑡 ∈ 𝑇 do
10 𝑡.AddToExecuteQueue(e)
11 end
12 𝑙𝑖𝑛𝑒←− 𝐹𝐼𝐿𝐸.NextLine()
13 end
14 𝑡.AddToExecuteQueue("EOF")
15 end

The process begins by taking as input a path to the file to read edges from as well

as a list of identifiers for all the worker nodes. The file at 𝑝𝑎𝑡ℎ is opened for reading,

and the process begins reading the file line-by-line. For every line, as long as the

line isn’t an 𝐸𝑂𝐹 indicator, the process splits the line into the two node identifiers

of the edge the line describes, and creates a Tuple object containing the two node

identifiers. The process then adds the edge to the processing queue of all the worker

threads, reads the next line from the file, and repeats the process. Once the 𝐸𝑂𝐹

indicator is encountered, the process adds this to the processing queue of the worker
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nodes and finishes executing.

4.1.3 Edge Processing and Community Pruning

Algorithm 3 is where the bulk of the community detection process is done. This

algorithm is run in parallel by all of the worker nodes. Each worker node maintains

a queue of inputs received by the edge distribution node, and is simply a loop of

popping the next input from the queue and running algorithm 3 with the input from

the queue as the input to the algorithm

The first thing algorithm 3 does is check the datatype of the input that is received.

If the input is a String, then we know the 𝐸𝑂𝐹 indicator has been reached, and

we can calculate the average F1 score of all the communities and pass that on to the

collection node. Before calculating the F1 score, we prune the community to its final

size, which can be done either by pruning it to the size of the ground truth community

this community is based on, or by using the drop tail technique of [5].

If the input is a CoDiSCommunity, then that community is appended to the list

of communities that the worker node has under inspection. If the input is a Tuple,

then it is an edge that we need to process.

We begin by getting 𝑛𝑜𝑑𝑒𝑈 and 𝑛𝑜𝑑𝑒𝑉 from the Tuple and incrementing the

total degrees for both of the nodes, as well as the counter that keeps track of how

many edges have been processed in total by this worker node. Next, we find all the

communities of this worker node that either of the nodes belong to and start iterating

over all those communities. If the community contains 𝑛𝑜𝑑𝑒𝑈 , then we update the

estimated community degrees of 𝑛𝑜𝑑𝑒𝑉 using the participation score of 𝑛𝑜𝑑𝑒𝑈 , then

we add 𝑛𝑜𝑑𝑒𝑉 to the list of nodes that are part of this community. The same is then

done for 𝑛𝑜𝑑𝑒𝑉 , updating and adding 𝑛𝑜𝑑𝑒𝑈 to the community if applicable.
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Algorithm 3: Edge Processing
1 Input(𝑇 ) such that 𝑇 is either a String, a CoDiSCommunity, or a Tuple
2 begin
3 switch Typeof(T) do
4 case String do
5 𝑠𝑢𝑚𝐹1←− 0
6 for 𝐶 ∈ 𝑡ℎ𝑖𝑠.𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 do
7 𝐶.Prune(GetSizeDetermination(C))
8 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑁𝑜𝑑𝑒.AddToExecuteQueue(CalculateF1Score(C))
9 end

10 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟𝑁𝑜𝑑𝑒.AddToExecuteQueue(this.numEdges)
11 end
12 case CoDiSCommunity do
13 Append(this.communities, T)
14 end
15 case Tuple do
16 𝑡ℎ𝑖𝑠.𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠++
17 𝑛𝑜𝑑𝑒𝑈 ←− 𝑇 [0]
18 𝑛𝑜𝑑𝑒𝑉 ←− 𝑇 [1]
19

20 𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ]++
21 𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ]++
22

23 𝑐𝑜𝑚𝑚𝑠𝑈 ←− GetCommunitiesContaining(nodeU )
24 𝑐𝑜𝑚𝑚𝑠𝑉 ←− GetCommunitiesContaining(nodeV )
25

26 for 𝐶 ∈ (𝑐𝑜𝑚𝑚𝑠𝑈 ∪ 𝑐𝑜𝑚𝑚𝑠𝑉 ) do
27 if 𝐶.Contains(nodeU ) then
28 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ] += 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ]

𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ]

29 𝐶.𝑛𝑜𝑑𝑒𝑠.Put(NodeV, 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ]
𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ]

)
30 end
31 if 𝐶.Contains(nodeV ) then
32 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ] += 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ]

𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑉 ]

33 𝐶.𝑛𝑜𝑑𝑒𝑠.Put(NodeU, 𝐶.𝑐𝑜𝑚𝑚𝐷𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ]
𝑡ℎ𝑖𝑠.𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑛𝑜𝑑𝑒𝑈 ]

)
34 end
35 if 𝑡ℎ𝑖𝑠.𝑛𝑢𝑚𝐸𝑑𝑔𝑒𝑠 % PRUNE_WINDOW == 0 then
36 𝐶.Prune(MAX_COMMUNITY_SIZE)
37 end
38 end
39 end
40 end
41 end

21



Once the processing of the edge is done, we check if the number of processed

edges is a multiple of the chosen pruning window, set to 10000 edges as per [4]. If it

is a multiple, we use algorithm 4 to prune the community to a given size. This starts

by getting a list of key-value pairs of the nodes the community contains and sorting

that list in descending order by value. We then get a subset of this list with only

the top 𝑀𝐴𝑋_𝐶𝑂𝑀𝑀𝑈𝑁𝐼𝑇𝑌 _𝑆𝐼𝑍𝐸 pairs and transform the sub-list back into

a map, replacing the old community nodes map.

Algorithm 4: Community Pruning
1 Input(𝑆𝑖𝑧𝑒) such that 𝑆𝑖𝑧𝑒 is the number of nodes pairs that should remain

in the community after pruning has been completed
2 begin
3 𝑠𝑜𝑟𝑡𝑒𝑑←− GetPairsAsList(this.nodes)
4 𝑠𝑜𝑟𝑡𝑒𝑑←− SortByValueDescending(sorted)
5 𝑠𝑜𝑟𝑡𝑒𝑑←− 𝑠𝑜𝑟𝑡𝑒𝑑.Sublist(0,Size)
6

7 𝑡ℎ𝑖𝑠.𝑛𝑜𝑑𝑒𝑠←− ListToMap(sorted)
8 end

4.1.4 F1 Score Collection and Termination

Algorithm 5 is the process that receives the output from all the worker nodes,

reports the results, and terminates the program. The process receives as input a

Tuple from the worker nodes that contains either a double or a integer.

If the received Tuple is a double, then we know the process has received an F1

score for a single community from a worker node. We then add this F1 score to the

total sum of F1 scores and increment the community counter.

If the received Tuple is an integer, we know that the worker node that sent it

has finished calculating and sending the average F1 score for all the communities that

that worker node has under consideration, and the integer sent is the total number
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of edges the worker node processed. When we receive an integer, we increment the

finished workers counter, and when we have received as many as there are worker

nodes, we can calculate and log the analysis data. We subtract the start time from

the current time to get the total execution time, and then divide that by the number

of edges to get the average time per edge. Finally, we divide the summed F1 scores

by the total number of communities to get the average F1 score and write all these

values to a log for analysis.

Algorithm 5: Collection and Termination
1 Input(𝑇 ) such that 𝑇 is a Tuple that contains either and double or a

integer
2 begin
3 switch Typeof(T) do
4 case double do
5 𝑡ℎ𝑖𝑠.𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ++
6 𝑡ℎ𝑖𝑠.𝑡𝑜𝑡𝑎𝑙𝐹1 += 𝑇

7 end
8 case integer do
9 𝑡ℎ𝑖𝑠.𝑛𝑢𝑚𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑊𝑜𝑟𝑘𝑒𝑟𝑠++

10 if 𝑡ℎ𝑖𝑠.𝑛𝑢𝑚𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑊𝑜𝑟𝑘𝑒𝑟𝑠 == 𝑇𝑂𝑇𝐴𝐿_𝑊𝑂𝑅𝐾𝐸𝑅𝑆 then
11 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒←− Now()− 𝑡ℎ𝑖𝑠.𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒

12 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝐸𝑑𝑔𝑒←− 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒
𝑇

13 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝐹1←− 𝑡ℎ𝑖𝑠.𝑡𝑜𝑡𝑎𝑙𝐹1
𝑡ℎ𝑖𝑠.𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦𝐶𝑜𝑢𝑛𝑡𝑒𝑟

14

15 Log("Average F1: ", averageF1)
16 Log("Total Time: ", executionTime)
17 Log("Time per Edge: ", timePerEdge)
18

19 Exit()
20 end
21 end
22 end
23 end
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4.1.5 Apache Storm

Just as in [4], Apache Storm is used to implement the distributed computing

components of CoDiS. Apache Storm takes care of passing the messages between

different execution nodes. In addition to handling communication between execution

nodes, the Apache Storm implementation also contains a Topology, which handles

how messages should be distributed between nodes, and which nodes receive messages

from other nodes. For example, we do not explicitly distribute messages as in lines

4 and 20-24 of algorithm 1. Instead, once the Topology is set up, we simply call

emit(Tuple), and the Topology takes care of evenly distributing the emitted Tuples

to the worker nodes that are listening to the node emitting the Tuples.

Algorithms 1 and 2 are handled by CoDiSSpout, which extends Spout. Algo-

rithms 3 and 4 are handled by CoDiSBolt, which extends Bolt. Algorithm 5 is

handled by CoDiSCollectionBolt, which also extends Bolt.

The CoDiSSpout is the start of the process, and therefore there is only one

instance of it, which does not listen to the output of any other nodes. CoDiSBolt

implements the worker nodes, so there are as many instances of CoDiSBolt as we

want execution threads, and all the CoDiSBolts listen to the output of the single

CoDiSSpout instance. Finally, there is only a single CoDiSCollectionBolt, which

listens to the output of all the CoDiSBolts.
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CHAPTER 5

Experimental Results

The experiments for the new methods proposed in chapter 4 were run on 4 of the

6 data-sets that [4] was run on. The system used for experimentation is a Linux box

running Ubuntu 22.04.1, with a core i7-12700K and 64 GB of RAM. All tests were run

using 2, 3, and 4 bolts in local mode on the same system under the same conditions,

and were all run 10 times using Maven and OpenTap to automate running the tests

and collecting the results. The input graph text file was shuffled before each test and

the seed-set for each ground truth community was chosen randomly. The tests were

run using the top 5000 ground truth communities with greater than 20 participating

nodes, just as in [4].

Dataset Nodes Edges DiCeS [4] Avg F1 CoDiS Avg F1
Amazon 334,863 925,872 0.817920 0.800006
DBLP 317,080 1,049,866 0.409246 0.412375

Youtube 1,134,890 2,987,624 0.091300 0.086503
LiveJournal 3,997,962 34,681,189 0.573400 0.563260

Table 1: The count of nodes and edges for each dataset that was used, as well as the
average F1 score for both DiCeS [4] andCoDiS when run on our test machine

The reason only 4 of the 6 datasets from [4] are used is that both DiCeS and

CoDiS eventually ran out of memory on our test system when running the Orkut and

Friendster datasets. These datasets, as well as the top 5000 ground-truth communi-

ties, are publicly available1. The code that is run to test [4] is from the authors’ public

repository2 provided for creating reproducible results. No changes to the source code
1https://snap.stanford.edu/data/#communities
2https://github.com/panagiotisl/DiCeS/
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were made, the sole exception being the hard-coded file names and number of edges

for the reproducible tests.

5.1 F1 Score Evaluation

Figure 13, as well as columns four and five of table 1 show the comparison of the

average F1 score of the results of running our implementation and [4] on the same

data-sets and test machine.

The average F1 score results of CoDiS are ±0.02 of the results from running the

provided code for [4] for all datasets. On average, the average F1 score of CoDiS

was lower than that of [4], with the greatest discrepancy being the results from the

Amazon dataset, with a difference of 0.017914. This is not a rule, however, as the

average F1 score of the DBLP dataset when run in CoDiS was actually higher than

the average F1 score when run on [4].

An observation we made during testing is that there was significantly more vari-

ation in the average F1 score for [4] than for CoDiS. When run with a non-random

seed-set and with the same input graph file, the was no observed variation in the

average F1 score for CoDiS on any dataset. This is not true of [4] however, and

we continued to observe variation in F1 score even after locking the seed-sets. We

believe this is due to the fact that the pruning step of [4] is done in parallel to the

worker node execution, and so due to different OS scheduling, it is possible for certain

edges to be processed during or after the pruning step, therefore changing the results

run-by-run. This is not an issue in CoDiS, as it is guaranteed that the same edges

will be processed before pruning on every execution.
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Figure 13: Comparison of average F1 scores for DiCeS [4] and CoDiS, averaged over
10 runs

5.2 Execution Time Evaluation

The main goal of our approach was not to improve the accuracy of [4], but instead

to improve the running time. The main metric that we are looking at to validate this

is the average time it takes to process a single edge. This metric was calculated

by measuring the entire runtime of the program (in microseconds) after community

initialization and then dividing that by the number of edges processed. This gives a

good average time without the overhead required to time each individual edge and

average them at the end.

Figure 14, as well as table 2, show the average time-per-edge of CoDiS and DiCeS

at different worker node counts. Across the board, there was a significant decrease in

time when running CoDiS as opposed to times of DiCeS [4]. The average decrease in

processing time is 3.34 times faster than DiCeS [4]. At 2 bolts, the speedup is 3.26
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Dataset CoDiS 2 Bolts DiCeS [4] 2 Bolts CoDiS 3 Bolts DiCeS [4] 3 Bolts CoDiS 4 Bolts DiCeS [4] 4 Bolts
Amazon 17 46 14 35 11 32
DBLP 10 47 9 42 7 38

Youtube 26 69 19 53 17 48
LiveJournal 19 57 15 41 12 38

Table 2: The time-per-edge of CoDiS and DiCeS [4] for each dataset at 2, 3, and 4
processing nodes

times greater, at 3 it is 3.17 times greater, and at 4 it is 3.58 times greater.
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Figure 14: Comparison of average time per edge for CoDiS and DiCeS when run on
our test machine with 2, 3, and 4 processing nodes, averaged over 10 runs

5.3 Space Usage Evaluation

While the goal of our approach is to improve the runtime, there is unfortunately

a negative effect on the space used because of our changes. In addition to keeping
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track of the community degree of every node for every community, both CoDiS and

DiCeS need to keep track of the total degrees as well. Because the data is no longer

stored in a centralized location, each individual worker node has to maintain the total

degrees count itself. This means that the space required to store the node degrees

scales with the number of worker nodes being deployed.

Figure 15 shows the difference in memory usage between CoDiS and DiCeS [4]

when run on the same dataset and differing numbers of Bolts. This data was collected

using VisualVM to monitor the heap size and actual heap utilization of the JVM as

the program ran. The average memory usage of DiCeS [4] stays relatively constant

even when the number of bolts changes, whereas the memory usage of CoDiS scales

almost linearly with the number of bolts.

Figure 15: Top: The memory usage of CoDiS at (left to right) 2, 3, and 4 Bolts
Bottom: The memory usage of DiCeS [4] at (left to right) 2, 3, and 4 Bolts

However, we believe that these results are not actually indicative of a real-world

application. While this increase in space usage is obvious when running on a single

system in local mode, we believe that this discrepancy in space usage would be sig-

nificantly reduced in an actual distributed-computing setup. Because of the nature

of a distributed-computing deployment, the data will not be duplicated on any single
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machine and is instead shared among all the machines. In addition, in an actual de-

ployment, the data of the Redis cluster is sharded between all the machines, meaning

the data access time would be even longer than when run on a single machine as in

testing.

5.4 Issues with Non-Shuffled Input Graphs

During our testing, we found that there was a large discrepancy between the

results reported in [4] and the results we were seeing when run on our test system.

Figure 16 shows the edge times that were reported by [4]. The shortest time to process

an edge is when working with the amazon dataset, at 210 𝜇s per edge. DBLP and

Livejournal both took around 300 𝜇s per edge, approximately 1.42 times longer per

edge than when running on the Amazon dataset. Youtube took the longest at around

365 𝜇s per edge, approximately 1.74 times longer than Amazon.

When running the source code for [4] on our test system, which uses a much

faster CPU, we found that it only took 38 𝜇s on average to process an edge for the

Amazon dataset. If the times followed the same scaling as in [4], we would expect the

time per edge of the DBLP dataset to be 38 * 300
210

= 54.28𝜇s, which is almost exactly

what we saw when actually running it on our machine.

Unfortunately, that is where the similarities stop, as both the Youtube and Live-

Journal datasets had significantly higher processing time per edge than we expected,

with LiveJournal taking 4 times longer than expected and Youtube taking a whopping

31 times longer. Figure 17 shows the expected running time-per-edge of DiCeS on our

machine, extrapolated from the running time of the Amazon dataset, and the results

from [4]. This increase in time-per-edge was immediately apparent, the processing

time did not increase as the program ran but instead was longer from the very first
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Figure 16: The edge times reported by [4] from testing on their machine using 4
processing bolts

edge.

In order to confirm that it wasn’t an issue with our test machine, we ran the tests

on 2 other machines (both running windows 10): a desktop system with an i7-7700k

and 32 GB of RAM, and a laptop with a Ryzen 9 4900 HS and 16 GB of RAM. While

the time per edge of these systems varied due to the different specifications of them

all, we did in fact see a large jump when being run on the Youtube and LiveJournal

data-sets.

Thankfully, with the help of Dr. Liakos, one of the authors of [4] and the indi-

vidual who maintains the GitHub repository for the paper, we were able to determine

the cause of the problem. Dr. Liakos informed us that not only were the seed-sets

randomized between each test but the input graph file was shuffled as well. Figure

18 shows that after performing this shuffling, the runtime of DiCeS was much more
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Figure 17: Comparison of the expected DiCeS [4] time per edge vs the actual time
per edge on the YouTube dataset with 4 bolts

in line with what we expected to see.

The reason this occurs is that in a dense graph like Youtube, there can be hun-

dreds of edges to just a single node. Because of this, any communities with that node

in the seed set will quickly grow very large before pruning can occur, causing the pro-

cessing for those communities to become exceptionally long. Additionally, because

all the edges are going to many of the same communities, many worker nodes are all

trying to access the same resources at once, leading to a large bottleneck. We believe

that this is the reason we did not see the same exponential increase in time with an

32



Amazon DBLP Youtube LiveJournal
0

10

20

30

40

50

60

70

38

54

66

54

38

53

2,053 220

32

38

48

38

P
ro

ce
ss

in
g

T
im

e
pe

r
E

dg
e
𝜇
s

Expected Time
Actual Time

Time After Shuffle

Figure 18: Comparison of DiCeS [4] running times observed after shuffling the input
graph, as opposed to the expected and observed times from the non-shuffled input
graph

unshuffled graph in CoDiS, as even if a worker node receives several edges that go

to the same community in a row, it can quickly throw them out if those edges don’t

belong to any of its communities. Even if they do, the worker node doesn’t have to

wait for other workers to access any resources, and can immediately process the node.

This situation is not unlikely to occur naturally. Consider a web crawler that

emits as edges links between webpages. If this crawler comes across a page with a

large number of links to other pages and emits all those links before crawling to any
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of them, it would be the same scenario as reading an unshuffled graph, as we would

receive several edges in a row that all share at least one node in common.
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CHAPTER 6

Results and Conclusion

In this paper, we propose a method of distributing the work of the CoEuS algo-

rithm that is an alternative to the method proposed by [4]. This new method takes

inspiration from the subgraph approach and takes advantage of the unique way [5]

approaches community detection to process the communities themselves in parallel

instead of individual edges. By doing this, we hope to gain significant time savings

by removing the need to distribute data among systems and concurrency protection,

while having little to no impact on the accuracy of the found communities.

In addition, we discovered a previously unknown downside to [4]: a significant

loss in processing speed when the input is a long run of edges that all share the same

node. This situation is not unlikely to be encountered in a real deployment, so we

believe the fact that our implementation is not vulnerable to this event is another

improvement over the original approach.

Chapter 5 shows that we successfully achieved this goal. Our proposed imple-

mentation had little to no change in F1 score, with the difference in average F1 score

being smaller than the largest seen variation in F1 score between runs of [4]. Based

on these results, we believe that our implementation is a significant improvement to

[4], and can even be improved further.

6.1 Future Work

While the work we have done to implement our changes has already shown sig-

nificant improvement, there is still more we would like to do if we get a chance to
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revisit this topic in the future

6.1.1 Custom SortedMap

In [4], all data is stored in a Redis cluster. The community nodes specifically

are stored in what Redis calls a SortedSet, which is essentially a String to Double

map that is sorted on the value of the Double. This allows Redis to quickly remove

the last X values from the SortedSet. As removing Redis was one of the major goals

of our implementation, we were unable to use this dataset, and instead used a Java

HashMap. Because of this, whenever we want to prune a community, we need to get

the map pairs as a list, sort that list, get only the first X values that we want to keep,

create a new HashMap from those pairs, and then replace the current HashMap with

the new one. This adds a lot of time and space complexity to our approach, and in

the future, we would like to create a custom datatype that can be kept sorted and

therefore easy to prune quickly while not losing the fast access time of a HashMap.

6.1.2 Parallelize Pruning

One of the advantages of making the community data available to all process-

ing nodes is that it is possible to move the pruning of the communities to its own

processing node. By removing Redis from our implementation, we now have to do

the pruning sequentially with the edge processing, meaning we have to pause edge

processing any time we want to prune. In the future, we would like to look into

ways to possibly move the pruning process back to being done in parallel to the edge

processing. However, this might become unnecessary if the pruning process could be

accelerated using a custom datatype.
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