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ABSTRACT

Adversarial Attacks on Android Malware Detection and Classification

by Srilekha Nune

Recent years have seen an increase in sales of intelligent gadgets, particularly

those using the Android operating system. This popularity has not gone unnoticed

by malware writers. Consequently, many research efforts have been made to develop

learning models that can detect Android malware. As a countermeasure, malware

writers can consider adversarial attacks that disrupt the training or usage of such

learning models. In this paper, we train a wide variety of machine learning models

using the KronoDroid Android malware dataset, and we consider adversarial attacks

on these models. Specifically, we carefully measure the decline in performance when

the feature sets used for training or testing are contaminated. Our experimental

results demonstrated that elementary adversarial attacks pose a significant threat in

the Android malware domain.
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CHAPTER 1

Introduction

Smartphone usage has been increasing day by day. Most customers are replacing

their mobile phones with smartphones. Mobile phones are communication and com-

puting devices [1]. The most popular platform for smartphones is Android. Other than

the United States, in the remaining countries, the sales market for Android is high.

Especially the Android OS is playing high sales in the current market. Smartphones

become access points for almost everything, like monthly payments, online shopping,

controlling smart cars, smart doors at the house, and so many others. So, smartphones

are the single device with all the treasures.

The fast growth of Android usage worldwide and high market share made attackers

focus on it. Malicious attackers started attacking smartphones through malicious

applications. Google’s Android market is the online market that provides software for

Android smartphones [2]. It has both official and unofficial repositories. The Android

market allows developers to upload their applications without using any certificate

authority. So this makes it easy for the attackers to upload the application with

malware and spread it to unregistered repositories.

Many applications are modified, inserted malicious parts in them, and distributed

in Google’s Android Market, which makes spread easy. The Android platform has a

robust permission system [3]. It will restrict the installation of malicious applications

by warning or asking for permission to install. Some activities, like sending Short

Message/Messaging Service (SMS) from a malicious application, also require consent

from the user. But the users will ignore the warning and give the permissions which

allow the malicious application to achieve its goal. The malicious applications use

advanced techniques. There are many variations in malicious applications.

• Some applications will download malicious code after some time of installation.
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• Hide the malicious code inside the applications using obfuscation.

• Use the same name, icon, and version of the original application with the malware

functions in it.

McAfee Mobile Treat Report issued in 2020 says that the number of malicious

applications is increasing, and most are on the Android operating system [4]. There-

fore, mobile targeting malware is rising faster than computer/PC targeting malware.

Moreover, day by day, the attackers are improvising the application with malware

based on the current trend. Attackers can induce malware into the applications

through repackaging, drive-by downloads, and update attacks [1].

• Repackaging: Malware developers take and download the original application,

dissemble it, patch it with the malware, re-assemble and upload it to the actual

market or some other sites. The users will download these applications, install

them, and get caught by the malware.

• Drive-by download: This method will not upload the malware directly. But

it will entice the users to download other applications or features.

• Update attack: The same repackaging process is done here but filled with the

update component, not the whole malware code. It will download the malware

when the application is running. So, it is little harder to detect and cannot be

done by static analysis.

Researchers have developed various techniques to combat Android malware.

However, at the same time, attackers are introducing adversarial attacks in mobile

applications to escape from the detection model. In this study, adversarial attacks [5]

are our primary emphasis, and we examine how well the models continue to function

even after applying these attacks. Support Vector Machine, Logistic Regression, and

Multi-Layer Perceptron are the models that were used in our project. Our primary

adversarial strategy in this project involved changing class labels to create adversarial

2



samples. The system architecture for this adversarial attack is illustrated in Figure 1.

Figure 1: Architecture for Poisoning Attack [6]

The second included altering the components of malware testing samples such

that malware detection models would view them favorably. For example, instead

of altering the training data as in a previous attack, we will alter the new data we

are entering into the model. Our primary attention was on these two categories of

strategies.

The features employed are just as crucial to how well the malware detection exer-

cise turns out as the methods and algorithms used to carry out the detection. Features

extracted from Android applications can be divided into static and dynamic. Static

features are collected directly from the source code and binaries without executing the

application. Examples of static features include Application Programming Interface

(API) calls, permissions, intents, opcodes, and control flow graphs. Dynamic features

are extracted by running or emulating an application. Examples of dynamic features

include network activity, system calls, dynamic API calls, register changes, instruction
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traces, etc. Extracting dynamic features is generally more time and resource-intensive,

but dynamic features are typically more immune to standard obfuscation techniques.

So, we use a dataset consisting of dynamic and static features.

This paper is structured as follows. Chapter 2 discusses relevant background

topics and related work on adversarial attacks and malware evolution. Chapter 3

presents a brief review of the machine learning algorithms and adversarial attacks we

employ. Dataset related details and experiment setup will be discussed in Chapter 4.

Finally, results are covered in Chapter 5, while the conclusion and potential future

work are discussed in Chapter 6.
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CHAPTER 2

Background

This section covers the relevant research that has been done so far on Android

malware detection, critical characteristics of Android malware, and adversarial attacks

in this area.

There are two approaches for analyzing and detecting Android malware: static

analysis and dynamic analysis [7]. Hybrid analysis can be done by using both static

and dynamic analysis. Static analysis is done by inspecting source code and binaries

for malicious patterns; no need to execute the application. Most static features can be

extracted by inspecting the package, accessing the manifest file, and decompiling the

source code.

The most common features of static analysis are API calls, Permissions, Intent,

Opcodes, Control Flow, etc. But obfuscated malware cannot be detected by the

static. The benefit is high code coverage [8]. It is also called signature-based detection.

However, the signature-based software must maintain the repository of the known

attack’s signature repository and keep updating it, which is the main disadvantage of

static analysis.

Other is dynamic analysis, also called behavior-based detection. Features are

captured by running the applications on the emulator or smartphones in an isolated

environment. Some features are network activity, system calls, dynamic API calls,

register changes, and instruction traces. However, it has less code coverage.

Nowadays, malicious code is able to find whether the applications are run on the

emulator or actual device and used by real users or automated tools. This makes the

dynamic analysis weaker. By triggering some activities to the real device or emulator,

monitoring agents capture the features like network traffic, cryptographic functions,

system calls, and so on.
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Compared to dynamic, static is relatively simple, easy to implement, and works for

most known attacks. To overcome the disadvantages of static and dynamic analysis,

several authors researched hybrid analysis, which combines both static and dynamic

analysis. It has the advantages of both analysis and consumes a lot of resources and

time.

2.1 Related Work

We discuss pertinent research on Android malware in this section. First, we

go into the specifics of Android malware detection and begin working on its feature

analysis. Second, we discuss the works on adversarial attacks.

2.1.1 Android Malware Detection and Classification

A lightweight client called “Crowdroid” to monitor the Linux Kernel system

calls in Android mobiles is developed [2]. System calls are the most critical features,

as malware applications will perform some or other operations on the system. A

dedicated server is used to capture data and analyze it [2]. Deployed this framework

into Google’s Market. As more customers download this onto their smartphones,

more data about the system calls will be collected for each application and even

warn the user if any abnormal activity happens in the smartphone. This framework

distinguishes the applications with the same version and name but behaves differently.

A comprehensive static analysis on Android malware is performed and proposed

Drebin - a lightweight method to detect Android malware by gathering as many static

features as possible from the application dex code and manifest [3]. The features are

extracted by using the Android Asset Packaging Tool. All the features are formulated

in the vector space. Applied Support Vector Machines (SVM) to separate the benign

and malicious applications from the vectors. It will provide the user with appropriate

messages about the application, whether benign or malicious, how it was concluded
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as malicious, and which feature makes it malicious.

Opcode 𝑛-grams detect Android malware in [1]. Experimented on the frequencies

of 𝑛-gram opcodes and succeeded in catching some families with perfect detection rates

but failed for others. In the learning phase, used two classifiers, SVM and Random

Forest (RF). Random forest achieved high accuracy of 96.88% with just bigrams. The

metamorphic malware escaped the technique used, and there were fewer applications

with that malware at the testing time. It worked well for polymorphic malware.

A comparison of static, dynamic, and hybrid analysis with the Hidden Markov

Model (HMMs) machine learning technique done in [7]. API calls and opcode sequences

are used as the features. In addition, 5-fold cross-validation is used for partition.

Using dynamic for both training and testing got the best results for both the features

when compared with entire static, training with static, and testing with hybrid and

vice versa.

White box attacks include data poisoning and evasive attacks [9]. The author’s

will have knowledge of the model’s specifics, training data, and relevant feature sets.

On the other hand, the malware author will only know about the input features in

the black box. We are working with the white box attacks in our project.

MADAM is a multi-level anomaly detector and a behavior-based detector designed

to detect Android malware [10]. It extracts five groups of features from four different

levels named kernel, application, user, and package. At the kernel level, system calls

are monitored. The vast and sudden increase of the system calls detects misbehavior

of the application. At the application level, both API calls and SMS are monitored.

Most malware applications will have an SMS trojan to send SMS to the remote servers

and capture the user contact list. Using SMS service will push financial costs on

the user. The third level, user activity, is monitored on the user level. These level

activities are related to the application level. Because the user or attacker will use the
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SMS function. Finally, the package level monitors the static app metadata, mostly

the permissions.

2.1.2 Adversarial Attacks on Android Malware

Explanation on how the adversary could evade static and dynamic Android

malware detection techniques done in [8]. First, inject the benign opcode and benign

system call sequences to avoid the malware detection mechanism. Then, opcode

𝑛-grams are used as features for static analysis, and system calls are used for dynamic

analysis—used TF-IDF to inject the features of benign applications into the malware

application. Only with a few injections do adversaries produce misclassification.

In [11], authors created twelve malware detection models and performed adver-

sarial attacks. The assault is made to turn as many malware samples into adversarial

samples as possible with the least amount of alteration to each sample. As a result,

the proposed attacks has a good average fooling rate. Later, to defend against attacks

made on detection models, authors introduced three adversarial defense tactics. First,

the average accuracy was increased for permission-based and intent-based detection

models using the suggested hybrid distillation-based protection method.

Single-policy attack was recommended in a white-box scenario when an adversary

has complete knowledge of the detection mechanism [12]. They developed a reinforce-

ment agent that uses a single Q-table technique to initiate an aggressive attack. The

test findings demonstrated that with a few minor adjustments, a single-policy assault

can successfully evade malware detection systems to achieve a high fooling rate. In

addition, the authors developed a cutting-edge adversarial strategy called a multi

policy assault for use in so-called "grey boxes," or situations when the attacker is

unfamiliar with the model architecture and classification procedure [12]. The multi

policy strategy produced the highest fooling rate, which is higher than that of the
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single policy approach.

AdvAndMal, a system that uses a two-layer network for adversarial training to

generate adversarial samples and improve the performance of classifiers in Android

malware detection and classification [13]. The adversarial sample generation layer is

composed of a conditional generative adversarial network called pix2pix, which can

produce malware variants to increase the training set for the classifiers. The malware

classification layer is trained using an RGB image visualized from a series of system

calls. The overall framework’s accuracy has raised.

Label flipping assaults have been proven to be successful at severely reducing

system performance, even when the attacker’s capabilities are limited. Label flipping

are a specific type of data poisoning in which the attacker has control over the labels

given to a subset of the training points. In [14], the authors suggested a way to

identify and rename suspicious data points, reducing the impact of such poisoning

assaults, as well as an effective algorithm to carry out optimal label flipping poisoning

attacks.

The authors in [15] tested the performance and resilience of six machine learning

algorithms against two distinct adversarial techniques using four different datasets.

Label flipping at random and label flipping based on distance are the two options.

Some machine learning methods show better robustness and performance results

against adversarial attacks practically for all datasets.
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CHAPTER 3

Methodology

We will explore various adversarial attack types and the attacks we use in our

studies. A brief description of the machine learning and deep learning techniques we

use in our research is also provided.

3.1 Adversarial Attacks

The objective of the adversarial attack is to increase the fooling rate by introducing

clever perturbations to malware samples that drive misclassification and decrease

the accuracy of the malware detection models. We learned that there are different

adversarial attacks from [5]. We will briefly go over two types of attacks.

3.1.1 Data Poisoning Attack

A data poisoning attack is a causative attack. A causal assault contaminates

data. Data corruption is its primary concern. It has different kinds of data corruption

methods.

Label Flipping: By changing the training data’s label from malicious to benign

in this attack, the malware author corrupts the training data [16]. As a result, the

detection system will be educated on this corrupted data, and during testing, it will

classify the infection as benign. One of the methods we employ in our experiments is

this one.

Injection of data: Even though the training data and malware detection model

are unknown to the malware author, this approach works. The training set will merely

receive fresh adversarial samples. The dataset will be tampered with in this manner,

and the detecting system will malfunction.

Corruption of algorithm logic: The malware creator will be aware of the

malware detection model and attempt to sabotage the algorithm’s operational logic.

This attack is brutal to build.
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Although there are different kinds of data poisoning attacks, we will only use the

label flipping attack that results from data poisoning.

3.1.2 Evasive Attack

Most people agree that the evasion attack is the most often utilized assault against

malware detectors built using machine learning. An evasive attack is an exploratory

attack [17]. The input data is purposefully changed to launch an evasion assault by

tricking the machine learning system into classifying malware samples as benign.

White box attacks include data poisoning and evasive attacks [9]. The malware

author’s will have knowledge of the model’s specifics, training data, and relevant

feature sets. On the other hand, the malware author will only know about the input

features in the black box. We are working with the white box attacks in our project.

3.2 Techniques for Classification

Classifying an input dataset involves predicting its class or label. Then, following

the characteristics of the input data, the input dataset is mapped to the appropriate

output class. The methods that we will employ to classify our experiments will be

covered in this section. One deep learning approach, Multi-Layer Perceptron, and two

machine learning techniques, Support Vector Machine, and Logistic regression are

employed. The many machine-learning methods and their application to real-world

problems are detailed in [18].

3.2.1 Multi-Layer Perceptron (MLP)

A neural network with numerous layers is a Multi-Layer Perceptron [19]. The

outputs of some neurons become the inputs of other neurons when we join neurons to

form a neural network. Generally speaking, there are three critical layers: the input

layer, the hidden layers, and the output layer. MLP consists of one input layer, one

or more hidden layers, and one output layer. Each input and output is separated
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into nodes or neurons in the input and output layers. Every input will have a weight

associated with it. The input and weights work together to determine whether or not

a neuron should fire. The neuron will fire if the sum is higher than the threshold.

Figure 2: MLP with Two Hidden Layers [20]

In Figure 2, we can see a Multi-Layer Perceptron with two hidden layers. The

weights of the MLP are completed after training and are assigned to each of its

edges. The MLP can give some input features more weight than others and produce a

decision boundary depending on which one categorizes the input features given the

best. In [21], the author experimented with MLP for Android malware detection. The

malicious applications that were disguised were found using the model. Therefore, we

decided to use this technique in our experiments.

3.2.2 Logistic Regression (LR)

When the answer variable is categorical, the classification algorithm known as

Logistic Regression is utilized. Logistic regression aims to find a correlation between
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features and the likelihood of a specific outcome [22]. The classifier is a linear one in

LR. It is a supervised learning technique for categorical data where some parameters

depend on the input characteristics, and the output is a definite prediction. When a

sigmoid function is fitted to the data in logistic regression, an S-shaped curve with

values between 0 and 1 is produced. The sigmoid function is defined as

𝑓(𝑥) =
1

1 + 𝑒−(𝑥)

The input data are described, and a correlation is found using logistic regression.

A dependent variable, a mean function to make predictions, and a link function that

can change the mean function back into the distribution of the dependent variable are

all needed for logistic regression. The underlying premise of logistic regression is that

the independent variables are uncorrelated. Binomial logistic regression is logistic

regression that fits two classes. A logistic regression model that includes more than

two classes is referred to as multinomial logistic regression. This approach works best

for our research because our trials use binary and multi-class data and are helpful for

classification.

3.2.3 Support Vector Machine (SVM)

SVM’s primary goal is to classify the dataset by maximizing the distance between

the separating hyperplane and the dataset [18]. SVM is a supervised machine learning

model used for classification. The tiny differences in malware samples from a particular

family can be recognized using SVMs. In figure 3, we see the separating hyperplane,

which maximizes the margin, and the data is linearly separable. The data points

closest to the hyperplane are the support vectors. SVM uses of support vectors to

increase the distance between the data points and the hyperplane.

SVM can be used for non-linearly separable data. Finding the ideal kernel can

be difficult, but it can significantly increase classification accuracy with little to no
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Figure 3: SVM with Separating Hyperplane [18]

additional computational burden. SVM has two methods to handle training data that

cannot be separated linearly [18]. One approach is to choose a soft margin, which

permits specific classification errors and creates a separable hyperplane. Another way

is to map the input data to the feature space. The input data will be transformed

into higher dimensions. In our project, we will be working with the linear SVM.

3.3 Metrics to Measure Performance

The performance of the models are assessed and examined using a variety of

metrics, including Accuracy, Confusion Matrix, F1 Score, Recall, and Precision [23].

Accuracy measures how many forecasts our model correctly predicted. The number

of occurrences between two, the true classification, and the anticipated classification

are all recorded in the confusion matrix, a table. Before learning about precision and

recall, there are a few things we need know.

1. True Positives (TP): These are the components that the model has designated

as positive and genuinely are positive.

2. False Positives (FP): These are things that the model has classified as positive

14



but are actually negative.

3. False Negatives (FN): Elements are those that the model has classified as

negative but which are actually positive.

4. True Negatives (TN): The projected and actual values are identical.

Precision gives an idea of what percentage of positive samples was accurate. In

simple terms, our model indicates that the samples are positive, and they are. Recall

shows what percentage of real positives were successfully identified. F1 Score is the

precision and recall weighted average.
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CHAPTER 4

Implementation

This chapter will briefly introduce our dataset, features, and malware types.

Then, we will discuss how we are implementing the attacks. After that, we discuss

how the models are built for our experiments.

4.1 Dataset

The dataset used in this research is KronoDroid [24]. It is a hybrid-featured

dataset of Android malware that is appropriate for our goal. Figure 4 shows the

dataset creation process in Kronodroid.

Figure 4: Process of Dataset Creation [24]

Both dynamic and static features can be found in this dataset. Real devices are

also utilized to extract the functionalities in addition to the emulator. The dataset
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has 78,137 samples, of which 41,382 are malware, and 36,755 are benign. Figure 5

shows the sample count where 0 represents benign and 1 represents malware. There

are a total of 484 features available.

Figure 5: KronoDroid Samples Count

4.1.1 Data Preprocessing

We have to process the dataset, before we use them for our experiments. The

caliber of the data used in machine learning implementations is one of the most crucial

duties. Outliers, Missing data etc. can all have a big impact on how well a model

performs. Utilizing the data as-is had a negative impact on model performance and

produced low accuracy. We removed 36 duplicate samples in the dataset, which makes

78,101 samples.

4.1.1.1 Data for binary classification to perform Label Flip

From 484 features, five are being removed. The features eliminated include

"Package," "MalFamily," "sha256," "EarliestModDate," and "HighestModDate." The

terms "MalFamily," "Package," and "sha256" will make it crystal evident if something
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is malicious or not. "MalFamily" will be used for multi-class classification.

4.1.1.2 Data for multi-class classification to perform Label Flip

The malware samples in this dataset represent 240 malware families. We are

considering the top 9 malware families for our multi-class classification, as shown in

Figure 6. These malware families correspond to numerous malware types, including

trojans, worms, and viruses. Here is a brief description of each family.

Figure 6: KronoDroid Top Families

• Airpush/StopSMS: An aggressive advertising network is Airpush [25]. The SMS

message containing the download Uniform Resource Locator (URL) serves as

the malware’s primary spread method.

• SMSreg: The battery utilization of a device is said to be maximized by SMSreg,

which is offered under the name "Battery Improve" [26]. Without the user’s

knowledge or approval, it secretly gathers data from the device.

• Malap: Another form of information stealing malware.

• Boxer: A family of malware known as Boxer makes money via sending SMS

messages. It poses as a trustworthy installer or application downloader, but it
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secretly sends SMS messages in the background once set up. The users’ account

is billed for costs related to its SMS sending actions [25].

• Agent: Unknown to the user, the malicious program agent runs in the back-

ground of a mobile device. It waits silently for orders from a Command and

Control (C&C) server [27]. These instructions could be anything from stealing

and transferring sensitive data to distant sites to acting as Distributed Denial of

Service (DDoS) bots against specific targets.

• FakeInst: This particular family of malware simulates the installation of a

legitimate app by displaying a false window to the user. In addition, the malware

discreetly sends SMS messages to premium-rate short numbers during the false

installation [25].

• Locker/SLocker Ransomware: Locker/SLocker Ransomware is purportedly the

first file-encrypting Android ransomware. It is also notable for communicating

with its controller through the network.

• BankBot: The purpose of BankBot is to steal payment and banking credentials

from the user’s mobile [28]. In addition, it deceives users into providing their

bank information by displaying an overlay window that looks exactly like the

bank mobile app login page.

• Dowgin: Dowgin is an advertisement app that is typically distributed as part of

a package with other programs that are trustworthy [25]. The advertising app

is used to display ads; while doing so, it may also discreetly collect and send

information from the device.

After taking into account 9 families, we obtained 30,017 samples in total. Table 1

shows the number of samples in each family. In terms of features, we employ the same

ones as binary classification with the exception of "MalFamily". In our multi-class
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system, this feature serves as the label.

Table 1: Families Count in KronoDroid

Family name Sample count
Airpush/StopSMS 7775

SMSreg 5019
Malap 4055
Boxer 3597
Agent 2930

FakeInst 2384
Locker/SLocker Ransomware 1815

BankBot 1297
Dowgin 1145

4.1.1.3 Data for binary classification to perform evasive attack

We must lower the number of features to undertake the evasive assault on the

binary classification. Our data collection contains 478 features. Using Recursive

Feature Elimination with Cross Validation (RFECV) and logistic regression, features

were reduced to 28. The features which we are using for experiment are mentioned in

Table 2

4.2 Implementation of Adversarial Attacks

We provide a detailed explanation of the attacks we use on our dataset and model.

We are developing two attack strategies. Label flipping is one, while evasive attack is

another. In all our experiments, we are dividing the dataset into 25% for testing and

75% for training.

4.2.1 Label Flip on Binary Classification

There are other approaches to flip the labels, including using the same samples,

selecting them at random, or using certain criteria. We are working on randomly

converting the labels in the train dataset. Two labels are available in a binary

classification problem: malicious(1) or benign (0). Once we divided our dataset, we
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Table 2: Selected Features to Perform Evasive Attack

Features selected
sigaltstack

fchmod
truncate
fstatfs64

getsockopt
sysinfo
wait4

getrlimit
SYS_306
SYS_312
SYS_333
SYS_339

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

ACCESS_NETWORK_STATE
ACCESS_WIFI_STATE

BIND_QUICK_SETTINGS_TILE
BODY_SENSORS

BROADCAST_STICKY
FOREGROUND_SERVICE

MEDIA_CONTENT_CONTROL
MOUNT_UNMOUNT_FILESYSTEMS

READ_CONTACTS
RECEIVE_BOOT_COMPLETED

RECEIVE_MMS
SYSTEM_ALERT_WINDOW

dangerous
Detection_Ratio

worked on various sample flipping percentages. We worked with a proportion of 10,

20, 30, 40, 50, 60, and 70. Therefore, we will flip that many percentages of the labels

from the training sample for each %. We reverse the label to 0 (benign) if it is 1

(malware) and vice versa. If the sample has already been flipped, we move on to the

other sample for flipping.
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4.2.2 Label Flip on Multi-Class Classification

We have multi-class labels in this case, as the name says. We will have 9 class

labels because we are taking into account the top 9 families. This classification

divides the dataset into 75% for training and 25% for testing. The class label flipping

requirement requires that a class label be chosen randomly from the remaining class

labels. If the class label has already been modified, we shall move on to the following

sample and skip that label. Additionally, the sample will be chosen at random. In

this classification, we also use the exact sample corruption percentages as binary

classification.

4.2.3 Evasive Attack on Binary Classification

Instead of using training samples in this attack, we use testing samples. We

use the linear SVM on the training data to locate the benign sample closest to the

hyperplane. We might claim that this sample represents the malware sample that

has undergone the fewest changes possible to become as innocent. We identify the

characteristics that need to change to make malware more benign. To compare the

error rate, we will start with a testing sample corruption rate of 10% and then increase

it by 10% each time.

4.3 Implementation of Techniques

SVM, LR, and MLP were the three algorithms we chose to use. The grid search

technique selects the optimal parameters for each model before production. A method

for locating the ideal parameter values in a grid from a set of parameters is called

GridSearchCV. In essence, it is a cross-validation method. Predictions are performed

after extracting the ideal parameter values. Finally, we will go into detail regarding

model hyper parameters, building and training.
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CHAPTER 5

Results

For both attacks listed above, we received findings as graphs, and the following

sections contain an in-depth discussion of those results.

5.1 Label Flip Attack on Binary Classification

Before attacking the model, we have to build the model. GridSearchCV selects

the best parameters for the models. The parameter selection for all the three models

for binary classification on Label flip attack can be seen in Table 3. Without making

any attacks, compare the accuracies of all three models in Figure 7. The accuracy of

the Multi-Layer Perceptron is slightly higher than that of the other two models.

Table 3: Hyperparameters for Label Flip Attack on Binary Classification

Model Hyperparameters Tested values Accuracy
Train Test

SVM 𝐶 (0.1,1,10) 0.992 0.990gamma (0.001,0.01,0.1,1,10,100)

LR
𝐶 (0.1,1,10)

0.992 0.992solver (newton-cg, lbfgs)
penalty (l2,l1)

MLP

solver (adam, sgd)

0.998 0.994

max_iter (100, 1000)
hidden_layer_sizes ((200),(300),(400),(100,100),(200, 200))

activation (tanh, relu)
alpha (0.0001,0.001,0.005)

early_stopping (True, False)

5.1.1 Support Vector Machine

We utilized a linear kernel, 𝐶 as 0.1 and 𝑔𝑎𝑚𝑚𝑎 as 0.01, for the SVM. SVM

achieved a 99% accuracy rate with these ideal settings. We now apply the attack to

the model we choose. Let us start by using a 10% corruption to the training samples,

which is 5,857 samples out of 58,575 samples. Our accuracy result was 98.7%, which

indicates a decline. Next, try flipping 20% of the training samples which is 11,715
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Figure 7: Accuracy of Binary Models without any Attack

samples. A 98.5 percent accuracy was attained. This time, there is not much of a

decrease.

Currently, 17,572 out of 58,575 training samples which is 30%, are being flipped.

We have not noticed much decline in accuracy as of yet. We got 0.983. After 40%

of flipping, we see a sudden decrease in the accuracy. Similarly, we experimented

with different corruption levels in the training data. We can observe the training and

testing accuracy for the various percentages of sample corruption in Figure 8 scores.

The testing score visibly decreases when we increase the training sample corruption

rate.

5.1.2 Logistic Regression

The ideal values for 𝐶, 𝑠𝑜𝑙𝑣𝑒𝑟, and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 for LR with grid search are "𝑙𝑏𝑓𝑔𝑠,"

"𝑙2," and "0.1." This model got a 99.1% accuracy rate. Execute the assault against

the model. First, we corrupt 10% of the training samples and still managed to achieve

24



Figure 8: SVM Binary Classification with Label Flip Attack

an accuracy of 98.9%, matching the SVM’s results. There has been no noticeable

decline in accuracy after flipping the labels of 20% of the samples, which resulted in

an accuracy of 98.7%.

By inverting their labels, try again with a 30% sample corruption. A 97.8%

accuracy rate was attained. Following, we observe a further accuracy reduction. We

calculated the remaining sample corruption percentage and displayed the findings in

Figure 9. We can observe some accuracy that is somewhat similar to or close to SVM

in Figure 11.

5.1.3 Multi-Layer Perceptron

We employed a Multi-Layer Perceptron with a single hidden layer of 400 neurons.

The activation function is "𝑡𝑎𝑛ℎ," and the maximum number of iterations is 1000. Our

accuracy percentage of 99.4% is more significant than what SVM and LR obtained.

We are now going to tackle the model. Start with a training set that has 10% sample
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Figure 9: LR Binary Classification with Label Flip Attack

corruption with the attack. Obtained a 95% accuracy rate, which is lower than the

results of the two classical machine learning methods.

20 percent of the training samples were corrupted by classifying malware as benign

and benign as malware. We got an accuracy of 82%, which is a fairly sharp decline in

accuracy. We attempted to increase the amount of corruption in the samples, and

the results are shown in Figure 10.

We may evaluate the three models accuracy under a label flip attack with varying

percentages of obfuscated samples in Table 4. Although the traditional approaches are

steady for the first few runs, we later observe accuracy loss along with MLP. While in

MLP, the decrease is visible even in the initial experiments. We can conclude from

this series of experiments that the traditional models performed better in Figure 11.
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Figure 10: MLP Binary Classification with Label Flip Attack

Table 4: Comparison of Accuracy with Label Flip Attack for Binary

Model 0% 10% 20% 30% 40 % 50 % 60%
SVM 0.990 0.986 0.985 0.985 0.919 0.342 0.016
LR 0.991 0.989 0.987 0.979 0.857 0.529 0.417

MLP 0.994 0.951 0.838 0.648 0.530 0.482 0.485

5.2 Label Flip Attack on Multi-Class Classification

We must first construct the model before assaulting it. The ideal model parameters

are chosen for the models by GridSearchCV as shown in Table 5. Compare the

accuracies of all three models in Figure 12 without making any assaults. We can see

Multi-Layer Perceptron model performing better than the remaining classic models

SVM and LR.

5.2.1 Support Vector Machine

For the SVM model, we used a linear kernel with 𝐶 as 10 and 𝑔𝑎𝑚𝑚𝑎 as "𝑎𝑢𝑡𝑜".

With these optimum settings, SVM had a 92.5 percent accuracy rate. We can view
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Figure 11: Label Flip Attack on the Models

Table 5: Hyperparameters for Label Flip Attack on Multi-Class Classification

Model Hyperparameters Tested values Accuracy
Train Test

SVM 𝐶 (0.1,1,10) 0.925 0.910gamma auto

LR
𝐶 (0.1,1,10)

0.915 0.900solver (newton-cg, lbfgs)
penalty (l2, l1, none))

MLP

solver (adam, sgd)

0.994 0.926

max_iter (100,1000,10000)
hidden_layer_sizes ((200),(300),(400),(100,100),(200, 200))

activation (logistic, tanh, relu)
alpha (0.0001,0.001,0.005)

early_stopping (True, False)

the recall, precision, and f1-scores for all the families prior to the attack in Table 6.

Now, we apply the label flip attack on our model. In this approach, we switch
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Figure 12: Accuracy of Multi-Class Models without any Attack

Table 6: Recall, Precision and F1-score before Attack with SVM

Family Recall Precision F1-score
Airpush/StopSMS 0.97 0.98 0.98

SMSreg 0.92 0.93 0.93
Malap 0.91 0.87 0.89
Boxer 0.96 0.99 0.97
Agent 0.73 0.80 0.76

FakeInst 0.84 0.84 0.84
Locker/SLocker Ransomware 0.97 0.88 0.92

BankBot 0.95 0.98 0.97
Dowgin 0.76 0.60 0.67

the sample’s label to a different class that is been chosen at random. For instance, if

the sample label we chose is 2, we will swap it out for another label that is chosen at

random from 1 to 9 and not 2. Starting with 2,250 samples out of 22,512 training

samples, let us apply a 10 percent corruption to the samples. The accuracy result we

obtained was 89.5%, which is declining. The recall, precision, and f1-scores after 10
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percent attack can be seen in Table 7.

Table 7: Recall, Precision and F1-score after 10% Attack with SVM

Family Recall Precision F1-score
Airpush/StopSMS 0.96 0.97 0.97

SMSreg 0.91 0.92 0.92
Malap 0.88 0.87 0.88
Boxer 0.96 0.98 0.97
Agent 0.72 0.78 0.75

FakeInst 0.87 0.80 0.83
Locker/SLocker Ransomware 0.95 0.87 0.91

BankBot 0.91 0.98 0.94
Dowgin 0.72 0.58 0.64

Next, we attempted flipping the labels for many classes with 20% of the training

sample corrupted. With an accuracy of 87.6%, we saw a fairly sharp decline in

accuracy. We tried flipping 30% of randomly selected samples with various class labels

and obtained an accuracy of 84.1%, which is not a significant change. In the training

data, we also experimented with various amounts of corruption with 10 percent of

increase each time till 80 percent. In Figure 13, we can see the testing accuracy for

the different sample corruption percentages. The testing score visibly decreases as the

training sample corruption rate rises. There is a noticeable decline after 30 percent

sample tampering.

5.2.2 Logistic Regression

For LR with grid search, the best values for 𝑠𝑜𝑙𝑣𝑒𝑟, and 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 are "𝑙𝑏𝑓𝑔𝑠,"

"𝑛𝑜𝑛𝑒" respectively. This model’s accuracy rating was 90%. Different scores of the

model for different families can be seen in Table 8. Carry out the attack on the model.

This model also uses the same attack that we used on the SVM. First, we were able to

corrupt 10% of the training samples and get an accuracy of 88.1%. Accuracy suffers

when there is even a 10% contamination. The recall, precision and f1-scores before
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Figure 13: SVM Multi-Class Classification with Label Flip Attack

the attack are listed in the Table 9.

Table 8: Recall, Precision and F1-score before Attack with LR

Family Recall Precision F1-score
Airpush/StopSMS 0.97 0.97 0.97

SMSreg 0.92 0.93 0.92
Malap 0.89 0.85 0.87
Boxer 0.96 0.99 0.98
Agent 0.73 0.75 0.74

FakeInst 0.83 0.83 0.83
Locker/SLocker Ransomware 0.93 0.89 0.91

BankBot 0.95 0.98 0.96
Dowgin 0.67 0.65 0.66

20% of the training instances had labels that we tried flipping to a new class.

Obtained an accuracy of 85.7%. The remaining sample corruption percentage was

explored with. With an increase in training sample corruption, the testing score

degrades clearly. Figure 14 makes it crystal evident how accuracy decreases as the
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Table 9: Recall, Precision and F1-score after 10% Attack with LR

Family Recall Precision F1-score
Airpush/StopSMS 0.95 0.97 0.96

SMSreg 0.89 0.90 0.90
Malap 0.88 0.85 0.86
Boxer 0.94 0.98 0.96
Agent 0.71 0.72 0.71

FakeInst 0.81 0.74 0.77
Locker/SLocker Ransomware 0.90 0.88 0.89

BankBot 0.91 0.98 0.94
Dowgin 0.65 0.61 0.63

percentage of distorted samples rises.

Figure 14: LR Multi-Class Classification with Label Flip Attack

5.2.3 Multi-Layer Perceptron

We employed a Multi-Layer Perceptron with a two hidden layers of 200 neurons

each. The activation function is "𝑟𝑒𝑙𝑢," and the maximum number of iterations is

10000. Our accuracy percentage of 92.6% is more significant than what SVM and LR
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obtained. In Table 10, we can see the different scores of all the families. We are now

Table 10: Recall, Precision and F1-score before Attack with MLP

Family Recall Precision F1-score
Airpush/StopSMS 0.98 0.97 0.98

SMSreg 0.95 0.93 0.94
Malap 0.93 0.93 0.93
Boxer 0.98 0.99 0.98
Agent 0.74 0.80 0.77

FakeInst 0.87 0.89 0.88
Locker/SLocker Ransomware 0.96 0.93 0.94

BankBot 0.97 0.97 0.97
Dowgin 0.80 0.66 0.72

going to tackle the model. Start with a training set that has 10% sample corruption

with the attack. Obtained a 89.8% accuracy rate, which is higher than the results of

the two traditional machine learning techniques. The results of the model after the

attack is displayed in Table 11. Next, tried with 20% samples flipping in the training

set and got an accuracy of 79.4%. We attempted to increase the amount of corruption

in the samples, and the results are shown in Figure 15.

Table 11: Recall, Precision and F1-score after 10% Attack with MLP

Family Recall Precision F1-score
Airpush/StopSMS 0.97 0.91 0.94

SMSreg 0.86 0.93 0.89
Malap 0.91 0.92 0.91
Boxer 0.96 0.98 0.97
Agent 0.77 0.73 0.75

FakeInst 0.82 0.87 0.84
Locker/SLocker Ransomware 0.92 0.90 0.91

BankBot 0.94 0.97 0.96
Dowgin 0.73 0.72 0.73

We have performed all the experiments on the three different models with different

percentage of corruption with label flip attack and the results are shown in Figure 16.
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Figure 15: MLP Multi-Class Classification with Label Flip Attack

We may evaluate the three models accuracy under a label flip attack with varying

Figure 16: Label Flip Attack on the Multi-Class Models

percentages of obfuscated samples in Table 12. Although the MLP is steady for
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the first few runs, we later observe accuracy loss along with SVM and LR. We can

conclude from this series of experiments that the SVM model performed little better

than other two models.

Table 12: Comparison of Accuracy with Label Flip Attack for Multi-Class

Model 0% 10% 20% 30% 40 % 50 % 60%
SVM 0.910 0.895 0.876 0.841 0.160 0.051 0.031
LR 0.900 0.881 0.857 0.769 0.223 0.067 0.025

MLP 0.926 0.898 0.794 0.636 0.334 0.144 0.075

5.3 Evasive Attack on Binary Classification

Before we initiate the assault, we must first determine the features that must be

changed to convert malicious software samples into benign ones. The dataset consists

of 78,137 samples and 28 attributes. Using the linear SVM, the benign point closest

to the hyperplane is identified. Identify the qualities that need to be modified next.

We can see the feature importance of all the 28 can be seen in Figure 17. We are

considering the positive ones which are 17. Table 13 provides a list of the 17 essential

characteristics that must be changed for the malware sample in order for the model

to recognize it as benign.

Before using an evasive assault on any of the three models, the accuracy of each is

shown in Figure 18. Comparing the MLP to the other two models, it is more accurate.

For this experiment, we did not continually train the model because the training

data did not vary, as we did with the label flip attack. It only changes the malicious

sample in test data. In Table 14, we can see the model best parameters chosen for

each model.

5.3.1 Support Vector Machine

Using GridSearchCV, we identified the most productive experimental parameters.

There are only 28 features to consider in this situation. A linear SVM’s optimal 𝐶
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Figure 17: Feature Importance for Selected 28 Features

and 𝑔𝑎𝑚𝑚𝑎 values are 0.1 and 0.01, respectively. With these settings, we trained the

model, and the result was an accuracy of 99.1%, which is a respectable result. It’s

time to start attacking the trained model now. By replacing the values for the 17

features listed in Table 13 with values obtained from the benign point values which

is near to hyperplane, we taint the testing sample. Start by corrupting 10% of the

samples. From 19,526 testing samples, we corrupt 1,952 samples.

Only 10% of the test sample contamination resulted in an accuracy of 94.6%. Try

36



Table 13: 17 Important Features to Make Malware as Benign

Features
truncate
fstatfs64
sysinfo
wait4

getrlimit
SYS_312
SYS_333
SYS_339

ACCESS_COARSE_LOCATION
ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE
BROADCAST_STICKY

MOUNT_UNMOUNT_FILESYSTEMS
RECEIVE_BOOT_COMPLETED

SYSTEM_ALERT_WINDOW
dangerous

Detection_Ratio

Figure 18: Accuracy of Models before Evasive Attack

a 20% test sample now, paying specific attention to the malware samples. A 89.8%

accuracy rate was obtained. We can see that the accuracy decreases by 5% every time

the corruption goes up by 10%. The training and testing accuracy of the model for

each 10% till 60% of obfuscation is shown in Figure 19. As we previously stated, the
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Table 14: Hyperparameters for Evasion Attack on Binary Classification

Model Hyperparameters Tested values Accuracy
Train Test

SVM 𝐶 (0.1,1,10) 0.990 0.991gamma (0.001,0.01,0.1,1,10,100)

LR
𝐶 (0.1,1,10)

0.991 0.992solver (newton-cg, lbfgs)
penalty (l2, l1))

MLP

solver (adam, sgd)

0.996 0.993

max_iter (100,1000,10000)
hidden_layer_sizes ((200),(300),(400),(100,100),(200, 200))

activation (logistic, tanh, relu)
alpha (0.0001,0.001,0.005)

early_stopping (True, False)

training score would remain unchanged because we did not alter the training samples.

Figure 19: SVM with Evasive Attack

5.3.2 Logistic Regression

We identify the model’s ideal parameters as 𝐶 as 0.1, 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 as "𝑙2", and 𝑠𝑜𝑙𝑣𝑒𝑟

as "𝑙𝑏𝑓𝑔𝑠". With these settings, we created a logistic regression model with a 99.1%

accuracy rate, which is slightly equal to SVM. As soon as our model is prepared, we

launch an evasive attack against it. Now, work with 10% of the test samples that
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have features taken from the training sample’s benign sample. When we apply a 10

percent corruption, our accuracy dropped by 6%, giving us a result of 93.06 percent.

We performed a 20 percent corrupted sample injection into the test data and

obtained an accuracy of 86.9 percent. We run tests using the remaining attack

percentage. In Figure 20, we can see the accuracy versus corruption ratio. As the

corruption percentage rises, accuracy decreases linearly in the opposite direction. The

training score is same for all the experiments as they is no change in the training

samples.

Figure 20: LR with Evasive Attack

5.3.3 Multi-Layer Perceptron

First, using GridSearchCV’s top parameter picks, we build the model. These are

the best parameters we could come up with, with a 99.3% accuracy rate, and they

include the activation function "𝑟𝑒𝑙𝑢," two hidden layers with 200 neurons each, and

a maximum iteration of 10,000. The base accuracy of the other two models is roughly
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comparable.In the same way that we did for the other two models, conceal 10% test

samples with the attributes we obtained from the benign sample that is closest to the

hyperplane. The accuracy of the test using the base model is now 96.9%.

Figure 21: MLP with Evasive Attack

Now, we run the test using samples that have 20% corruption. Our accuracy was

94.3%. We work with percentages of 30, 40, 50, and 60. Because there are roughly

60% malware samples in the test set, we are unable to get above this level. We can

view the results of the trials with the remaining percentages in the Figure 21. Every

time, we observe a 2 percent accuracy loss for a 10 percent rise in corruption.

Finally, we can observe the correctness of each of the three models along with

the proportion of corruption in Figure 22. Comparing Multi-Layer Perceptron to the

other two models, we can say that it did well in this evasive attack. We can see the

accuracy of each of the three models at each level of corruption in Table 15.
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Figure 22: Evasive Attack on the Models

Table 15: Comparison of Accuracy with Evasive Attack

Model 0% 10% 20% 30% 40 % 50 % 60%
SVM 0.991 0.946 0.898 0.852 0.804 0.758 0.745
LR 0.992 0.931 0.869 0.807 0.746 0.686 0.669

MLP 0.993 0.969 0.943 0.919 0.893 0.870 0.864
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CHAPTER 6

Conclusions and Future Work

This chapter examines the project’s end and potential follow-up tasks. There

is a lot of study being done related to the adversarial attacks. This project can be

expanded using a wide variety of additional methods and strategies.

We employed two different adversarial attack methods in this research. Evasive

attack and label flipping attacks are the two types. To trick the detection model,

we "flipped" the label of malware to make it appear innocuous. On both binary and

multi-class classification, we applied the same attack. As we raised the rate of labels

for flipping, we noticed an increase in the fooling rate. SVM, LR, and MLP were the

targets of this attack. SVM appears to perform more effectively than the other two

models. In order to conduct a evasive attack, we locate a benign sample that is close

to the SVM hyperplane. Identify the characteristics that have the biggest impact on

the benign sample. We modified these characteristics in the malware testing samples.

We used SVM, LR, and MLP to do our binary classification on these corrupted testing

samples. When compared to the other two models, MLP fared better. Despite the

fact that the model’s fooling rate has increased because to the increased number of

corrupted samples.

Several experiments have been carried out to examine the impact of the two

attacks. The two adversarial example attacks can significantly reduce the performance

of malware detection systems, experimental results overwhelmingly demonstrate. SVM

has fared better in comparison to the other two models in label flipping attack and

MLP has performed better in evasive attack. Therefore, SVM and MLP prevailed in

our experiments.

Finally, we discuss a few potential extensions of the findings. We are looking into

ways to defend against adversarial assaults, especially the data poisoning and evasion
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attack, and to make malware detection systems stronger. Work with other adversarial

attacks as well, such as algorithm logic, where the malware detection model’s logic is

distorted, and reverse engineering, where an adversary tries to recreate the classifier’s

decision limits.

Working on a reverse engineering attack is difficult, in our opinion, because the

author will have restricted access to knowledge about the detection system and its

data. On multiple-class classification, we wish to carry out the evasive attack. Due

to the fact that MLP surpasses other machine learning models in terms of evasive

attack, we also wish to experiment with additional deep learning methods.

43



LIST OF REFERENCES

[1] G. Canfora, A. De Lorenzo, E. Medvet, F. Mercaldo, and C. A. Visaggio, ‘‘Ef-
fectiveness of opcode ngrams for detection of multi family android malware,’’
in 2015 10th International Conference on Availability, Reliability and Security,
2015, pp. 333--340.

[2] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, ‘‘Crowdroid: Behavior-based
malware detection system for android,’’ in Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices. New York, NY,
USA: Association for Computing Machinery, 2011, p. 15–26. [Online]. Available:
https://doi-org.libaccess.sjlibrary.org/10.1145/2046614.2046619

[3] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of android malware in your pocket,’’ in
Network and Distributed System Security Symposium, 02 2014.

[4] R. Samani, ‘‘Mcafee mobile treat report,’’ 2020. [Online]. Avail-
able: https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-
Threat-Report.pdf

[5] B. Neha, A. Aemun, L. Wenjia, T. Fernanda, B. Arpit, and B. Prachi,
‘‘Droidenemy: Battling adversarial example attacks for android malware
detection,’’ Digital Communications and Networks, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352864821000900

[6] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, ‘‘Manipu-
lating machine learning: Poisoning attacks and countermeasures for regression
learning,’’ in 2018 IEEE Symposium on Security and Privacy (SP), 2018, pp.
19--35.

[7] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
‘‘A comparison of static, dynamic, and hybrid analysis for malware detection,’’
Journal of Computer Virology and Hacking Techniques, vol. 13, pp. 1--12, 2017.

[8] T. S. John and T. Thomas, ‘‘Evading static and dynamic android malware
detection mechanisms,’’ in Security in Computing and Communications, S. M.
Thampi, G. Wang, D. B. Rawat, R. Ko, and C.-I. Fan, Eds. Singapore: Springer
Singapore, 2021, pp. 33--48.

[9] W. Schroeder, ‘‘Learning machine learning part 2: Attacking white box models,’’
2022. [Online]. Available: https://posts.specterops.io/learning-machine-learning-
part-2-attacking-white-box-models-1a10bbb4a2ae

44

https://doi-org.libaccess.sjlibrary.org/10.1145/2046614.2046619
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.sciencedirect.com/science/article/pii/S2352864821000900
https://posts.specterops.io/learning-machine-learning-part-2-attacking-white-box-models-1a10bbb4a2ae
https://posts.specterops.io/learning-machine-learning-part-2-attacking-white-box-models-1a10bbb4a2ae


[10] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘Madam: Effective
and efficient behavior-based android malware detection and prevention,’’ IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83--97,
2018.

[11] R. Hemant, S. Adithya, S. K. Sahay, and S. Mohit, ‘‘Robust malware detection
models: Learning from adversarial attacks and defenses,’’ Forensic Science
International: Digital Investigation, vol. 37, p. 301183, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666281721000913

[12] H. Rathore, S. Sahay, P. Nikam, and M. Sewak, ‘‘Robust android malware
detection system against adversarial attacks using q-learning,’’ Information
Systems Frontiers, vol. 23, pp. 1--16, 08 2021.

[13] C. Wang, L. Zhang, K. Zhao, X. Ding, and X. Wang, ‘‘Advandmal:
Adversarial training for android malware detection and family classification,’’
Symmetry, vol. 13, no. 6, 2021. [Online]. Available: https://www.mdpi.com/2073-
8994/13/6/1081

[14] A. Paudice, L. Muñoz-González, and E. C. Lupu, ‘‘Label sanitization against
label flipping poisoning attacks,’’ in ECML PKDD 2018 Workshops, C. Alzate,
A. Monreale, H. Assem, A. Bifet, T. S. Buda, B. Caglayan, B. Drury, E. García-
Martín, R. Gavaldà, I. Koprinska, S. Kramer, N. Lavesson, M. Madden, I. Molloy,
M.-I. Nicolae, and M. Sinn, Eds. Cham: Springer International Publishing, 2019,
pp. 5--15.

[15] Y. Fahri Anıl and B. Şerif, ‘‘Data poisoning attacks against machine
learning algorithms,’’ Expert Systems with Applications, vol. 208, p. 118101,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417422012933

[16] B. Biggio, B. Nelson, and P. Laskov, ‘‘Poisoning attacks against support vector
machines,’’ in Proceedings of the 29th International Conference on Machine
Learning, ser. ICML’12. Madison, WI, USA: Omnipress, 2012, p. 1467–1474.

[17] H. Bostani and V. Moonsamy, ‘‘Evadedroid: A practical evasion attack on
machine learning for black-box android malware detection,’’ 2021. [Online].
Available: https://arxiv.org/abs/2110.03301

[18] M. Stamp, Introduction to Machine Learning with Applications in Information
Security, 2nd ed. Chapman & Hall, 2022.

[19] Swarnimrai, ‘‘Multi-layer perceptron learning in tensorflow,’’ 2021. [Online].
Available: https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-
tensorflow/

45

https://www.sciencedirect.com/science/article/pii/S2666281721000913
https://www.mdpi.com/2073-8994/13/6/1081
https://www.mdpi.com/2073-8994/13/6/1081
https://www.sciencedirect.com/science/article/pii/S0957417422012933
https://www.sciencedirect.com/science/article/pii/S0957417422012933
https://arxiv.org/abs/2110.03301
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/


[20] S. Mark, ‘‘Alphabet soup of deep learning topics,’’ 2019. [Online]. Available:
https://www.cs.sjsu.edu/~stamp/RUA/alpha.pdf

[21] K. Xu, Y. Li, R. H. Deng, and K. Chen, ‘‘Deeprefiner: Multi-layer android mal-
ware detection system applying deep neural networks,’’ in 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), 2018, pp. 473--487.

[22] A. Agrawal, ‘‘Logistic regression. simplified.’’ 2017. [Online]. Avail-
able: https://medium.com/data-science-group-iitr/logistic-regression-simplified-
9b4efe801389

[23] M. Grandini, E. Bagli, and G. Visani, ‘‘Metrics for multi-class classification: an
overview,’’ 2020. [Online]. Available: https://arxiv.org/abs/2008.05756

[24] G.-M. Alejandro, B. Hayretdin, and N. Sven, ‘‘Kronodroid: Time-based hybrid-
featured dataset for effective android malware detection and characterization,’’
Computers & Security, vol. 110, p. 102399, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821002236

[25] M. Spreitzenbarth and J. Bombien, ‘‘Forensic blog - mobile phone forensics and
mobile malware,’’ 2015. [Online]. Available: https://forensics.spreitzenbarth.de/
android-malware/

[26] ‘‘Riskware:android/smsreg.’’ [Online]. Available: https://www.f-secure.com/sw-
desc/riskware_android_smsreg.shtml

[27] ‘‘Android/trojan.agent.’’ [Online]. Available: https://www.malwarebytes.com/
blog/detections/android-trojan-agent/

[28] P. Danny, ‘‘Bankbot android malware sneaks into the google play store - for the
third time,’’ 2017. [Online]. Available: https://www.zdnet.com/article/bankbot-
android-malware-sneaks-into-the-google-play-store-for-the-third-time/

46

https://www.cs.sjsu.edu/~stamp/RUA/alpha.pdf
https://medium.com/data-science-group-iitr/logistic-regression-simplified-9b4efe801389
https://medium.com/data-science-group-iitr/logistic-regression-simplified-9b4efe801389
https://arxiv.org/abs/2008.05756
https://www.sciencedirect.com/science/article/pii/S0167404821002236
https://forensics.spreitzenbarth.de/android-malware/
https://forensics.spreitzenbarth.de/android-malware/
https://www.f-secure.com/sw-desc/riskware_android_smsreg.shtml
https://www.f-secure.com/sw-desc/riskware_android_smsreg.shtml
https://www.malwarebytes.com/blog/detections/android-trojan-agent/
https://www.malwarebytes.com/blog/detections/android-trojan-agent/
https://www.zdnet.com/article/bankbot-android-malware-sneaks-into-the-google-play-store-for-the-third-time/
https://www.zdnet.com/article/bankbot-android-malware-sneaks-into-the-google-play-store-for-the-third-time/


APPENDIX A

Label Flip Attack on Binary Classification

Figure A.23: SVM Confusion Matrix
before Label Flip Attack

Figure A.24: SVM Confusion Matrix
with 10% Label Flip Attack

Figure A.25: SVM Confusion Matrix
with 20% Label Flip Attack

Figure A.26: SVM Confusion Matrix
with 30% Label Flip Attack
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Figure A.27: SVM Confusion Matrix
with 40% Label Flip Attack

Figure A.28: SVM Confusion Matrix
with 50% Label Flip Attack

Figure A.29: SVM Confusion Matrix
with 60% Label Flip Attack

Figure A.30: SVM Confusion Matrix
with 70% Label Flip Attack
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Figure A.31: LR Confusion Matrix be-
fore Label Flip Attack

Figure A.32: LR Confusion Matrix
with 10% Label Flip Attack

Figure A.33: LR Confusion Matrix with
20% Label Flip Attack

Figure A.34: LR Confusion Matrix
with 30% Label Flip Attack
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Figure A.35: LR Confusion Matrix with
40% Label Flip Attack

Figure A.36: LR Confusion Matrix
with 50% Label Flip Attack

Figure A.37: LR Confusion Matrix with
60% Label Flip Attack

Figure A.38: LR Confusion Matrix
with 70% Label Flip Attack
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Figure A.39: LR Confusion Matrix with
80% Label Flip Attack

Figure A.40: MLP Confusion Matrix
before Label Flip Attack

Figure A.41: MLP Confusion Matrix with
10% Label Flip Attack

Figure A.42: MLP Confusion Matrix
with 20% Label Flip Attack
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Figure A.43: MLP Confusion Matrix with
30% Label Flip Attack

Figure A.44: MLP Confusion Matrix
with 40% Label Flip Attack

Figure A.45: MLP Confusion Matrix with
50% Label Flip Attack

Figure A.46: MLP Confusion Matrix
with 60% Label Flip Attack
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Figure A.47: MLP Confusion Matrix with
70% Label Flip Attack

Figure A.48: MLP Confusion Matrix
with 80% Label Flip Attack
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APPENDIX B

Label Flip Attack on Multi-Class Classification

Figure B.49: SVM Confusion Matrix
before Label Flip Attack

Figure B.50: SVM Confusion Matrix
with 10% Label Flip Attack

Figure B.51: SVM Confusion Matrix
with 20% Label Flip Attack

Figure B.52: SVM Confusion Matrix
with 30% Label Flip Attack
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Figure B.53: SVM Confusion Matrix
with 40% Label Flip Attack

Figure B.54: SVM Confusion Matrix
with 50% Label Flip Attack

Figure B.55: SVM Confusion Matrix
with 60% Label Flip Attack

Figure B.56: SVM Confusion Matrix
with 70% Label Flip Attack
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Figure B.57: LR Confusion Matrix be-
fore Label Flip Attack

Figure B.58: LR Confusion Matrix
with 10% Label Flip Attack

Figure B.59: LR Confusion Matrix with
20% Label Flip Attack

Figure B.60: LR Confusion Matrix
with 30% Label Flip Attack
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Figure B.61: LR Confusion Matrix with
40% Label Flip Attack

Figure B.62: LR Confusion Matrix
with 50% Label Flip Attack

Figure B.63: LR Confusion Matrix with
60% Label Flip Attack

Figure B.64: LR Confusion Matrix
with 70% Label Flip Attack
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Figure B.65: LR Confusion Matrix with
80% Label Flip Attack

Figure B.66: MLP Confusion Matrix
before Label Flip Attack

Figure B.67: MLP Confusion Matrix
with 10% Label Flip Attack

Figure B.68: MLP Confusion Matrix
with 20% Label Flip Attack
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Figure B.69: MLP Confusion Matrix
with 30% Label Flip Attack

Figure B.70: MLP Confusion Matrix
with 40% Label Flip Attack

Figure B.71: MLP Confusion Matrix
with 50% Label Flip Attack

Figure B.72: MLP Confusion Matrix
with 60% Label Flip Attack
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Figure B.73: MLP Confusion Matrix
with 70% Label Flip Attack

Figure B.74: MLP Confusion Matrix
with 80% Label Flip Attack
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APPENDIX C

Evasive Attack on Binary Classification

Figure C.75: SVM Confusion Matrix
before Evasive Attack

Figure C.76: SVM Confusion Matrix
with 10% Evasive Attack

Figure C.77: SVM Confusion Matrix
with 20% Evasive Attack

Figure C.78: SVM Confusion Matrix
with 30% Evasive Attack
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Figure C.79: SVM Confusion Matrix
with 40% Evasive Attack

Figure C.80: SVM Confusion Matrix
with 50% Evasive Attack

Figure C.81: SVM Confusion Matrix
with 60% Evasive Attack

Figure C.82: LR Confusion Matrix
before Evasive Attack
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Figure C.83: LR Confusion Matrix with
10% Evasive Attack

Figure C.84: LR Confusion Matrix
with 20% Evasive Attack

Figure C.85: LR Confusion Matrix with
30% Evasive Attack

Figure C.86: LR Confusion Matrix
with 40% Evasive Attack

63



Figure C.87: LR Confusion Matrix with
50% Evasive Attack

Figure C.88: LR Confusion Matrix
with 60% Evasive Attack

Figure C.89: MLP Confusion Matrix
before Evasive Attack

Figure C.90: MLP Confusion Matrix
with 10% Evasive Attack
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Figure C.91: MLP Confusion Matrix
with 20% Evasive Attack

Figure C.92: MLP Confusion Matrix
with 30% Evasive Attack

Figure C.93: MLP Confusion Matrix
with 40% Evasive Attack

Figure C.94: MLP Confusion Matrix
with 50% Evasive Attack
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